面板数据

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Panel Data 分析的基本框架:非线性模 型
logit和probit模型:固定效应模型(ML估计、 CMLE估计和半参估计方法估计模型参数)和随 机效应模型(MLE估计)用二步骤方法来检验 模型是否存在异方差。 非线性潜在变量模型:包括变量是线性的但模 型是非线性的形式和变量非线性模型(估计方 法包括非一致的IV估计、ML估计、最小距离 MDE估计、二步估计、近似MLE 估计以及估计 偏差调整)以及作为变量非线性模型中的一种 特殊情况--二元选择情形,估计方法用重复ML 估计或者条件ML估计。
平行数据研究的发展和应用
目前,世界上已经成立了专门研究 Panel Data 的协会, 每两年举办一次全球性的Panel Data 学术交流大会。第 九届国际Panel Data会议于2000年6月22-23日在日内瓦大 学举行,入会者均是从事Panel Data研究的经济学家、经 济计量学家、统计学家和社会学家。大会强调除了在经 济计量学中以外,要扩展Panel Data的应用领域,以期发 现Panel Data分析的新方法和新的应用领域,特别强调 Panel Data在社会科学、医学和金融学这三个领域的应用。
Panel Data 分析的基本框架: Panel Data 分析的最新进展
目前,在Panel Data理论和应用研究中, 主要有两个热点领域:一个是非线性模型 研究,另一个是动态线性模型单位根和协 整的理论联系和应用研究。
Panel Data 分析的基本框架:线性
模型之其它类型模型
联立方程模型:包括带特定误差成分和联立方 程(用GLS、最大似然估计、G2SLS、EC2SLS、 G3SLS、EC3SLS以及FIML等方法估计参数), 以及带自相关特定效应或者带随机效应的联立 方程模型。 带测量误差模型:包括基本回归模型、带一个 误差成分结构测量误差模型,参数估计方法包 括基本估计、集合估计、差分估计。还包括具 有测量误差和异方差的模型(GLS估计),以及 具有自相关性测量误差的模型。
平行数据研究的发展和应用
Panel Data在经济学领域的应用 :在宏观 经济领域,它被广泛应用于经济增长、技 术创新、金融、税收政策等领域;在微观 经济领域,它被大量应用于就业、家庭消 费、入学、市场营销等领域。
平行数据研究的发展和应用
美国最著名的两个Panel Data 数据集,一 个是俄亥俄大学的NLS 数据集(the National Longitudinal Surveys of Labor Market Experience);另一个是密西根大 学的PSID数据集(the University of Michigan’s Panel Study of Income Dynamics)。
Panel Data 分析的基本框架:非线性模 型
生存模型:主要包括对Cox模型、加速生 存模型、竞争风险模型研究。 点过程:主要包括对马氏过程、半马氏过 程,以及用广义半参方法处理的点过程。
Panel Data 分析的基本框架:非线性模 型
处理Panel Data数据不完整而带来的选择偏差问 题:通常不完整的Panel Data按照对研究结果的 影响分为可忽略选择规则(机制)和不可忽略 选择规则(机制)。可忽略选择规则(机制) 模型参数通常用ML估计和EM算法,而不可忽 略选择机制模型参数通常用二步估计,?是否 是?(含义不清)不可忽略选择规则(机制) 通常采用LM检验、Hausman检验、变量可加性 检验。
Panel Data 分析的基本框架:线性
模型之单变量模型
(5)动态线性模型(Dynamic linear Models), 该模型同样又包含固定效应自回归模型(通常 用LSDV估计、Within估计、IV估计法估计参 数)、动态误差成分模型(λ-类估计、IV估计、 GMM估计和最大似然估计等方法估计参数)以 及带有异方差的动态线性模型(联合估计 、组 均值估计和截面估计等方法估计参数,并检验 异方差性),成为近来Panel Data单位根和协整 理论发展的基础。
Panel Data 分析的基本框架:线性
模型之单变量模型
(3)随机系数模型(Random Coefficient Models): 即模型自变量的系数可能包含时间效应或个体 效应,再加上一个随机数,系数通常用抽样方 法或者贝叶斯方法来估计。 (4)带有随机自变量的线性模型(Linear models with random regressiors):通常用工具变量估计 (IV估计)和GMM估计。同时,利用工具变量 可以对相关的特定效应模型(the Correlated Specific Effect Models)估计,并对随机变量与特 定效应之间的相关性进行检验。
平行数据分析的优点和限制 因素
(2)面板数据能够提供更多信息、更多变化性、更少共线性、更 多自由度和更高效率。反观时间序列经常受多重共线性的困扰。 (3)面板数据能够更好地研究动态调节,横截面分布看上去相对 稳定但却隐藏了许多变化,面板数据由于包含较长时间,能够弄清 诸如经济政策变化对失业状况的影响等问题。 (4)面板数据能更好地识别和度量纯时间序列和纯横截面数据所 不能发现的影响因素。 (5)相对于纯横截面和纯时间序列数据而言,面板数据能够构造 和检验更复杂的行为模型。 (6)通常,面板数据可以收集到更准确的微观单位(个人、企业、 家庭)的情况。由此得到的总体数据可以消去测量误差的影响。
平行数据分析的优点和限制 因素
目前仍然存在的一些需要解决的问题: (1)设计和收集数据困难:同普通数据收集和管理 一样,Panel Data也面临着设计不完整、无回答、核 准、多次访问、访问间隔、对比参照期等问题。 (2)存在测量误差:由于不清楚的回答、记忆错误 等带来的测量误差给Panel Data应用带来很大困难。 (3)存在选择性困难:主要指自选择无回答和磨损 (样本丢失)。 (4)时间序列较短:由于收集数据时间跨度较短, 为了满足渐近理论,就要求样本数量趋向于无穷。
平行数据分析的优点和限制 因素
Panel Data的 作用 (1)控制个体行为差异: Panel Data数据库显示个体(包括个人、 企业、地区或国家)之间存在差异,而单独的时间序列和横截面不 能有效反映这种差异。如果只是简单使用时间序列和横截面分析就 可能获得有偏结果。此外,Panel Data分析能够控制在时间序列和 横截面研究中不能控制的涉及地区和时间为常数的情况。也就是说, 当个体在时间或地区分布中存在着常数的变量(例如受教育程度、 电视广告等)时,如果在模型中不考虑这些变量,有可能会得到有 偏结果。Panel Data分析能够控制时间或地区分布中的恒变量,而 普通时间序列和横截面研究中则不能。
计量经济学:平行数据分析
平行数据分析
平行数据分析的一般问题 平行数据分析的基本框架 平行数据分析模型
平行数据分析的一般问题
为什么引入平行数据分析 平行数据的含义 平行数据研究的应用和发展 平行数据分析的优点和限制因素
为什么引入平行数据分析
经典线性计量经济学模型中利用的数据有两个 特征:1.或只用截面数据,或只用时间序列数据; 2.作为被解释变量的样本观测值必须是连续的, 且与随机误差项同分布。而实际上,只用截面 或时间序列数据常常不能满足分析需要,并且 数据常常是不连续的。正是由于经典线性计量 经济学模型的这些不足,计量经济学家们才研 究了运用平行数据进行分析的方法。
Panel Data 分析的基本框架
线性模型 非线性模型
Panel Data 分析的基本框架:线性模 型
线性模型: (1)单变量模型 (2)联立方程模型 (3)带测量误差模型 (4)伪Panel Data
Panel Data 分析的基本框架:线性
模型之单变量模型
(1) 固定效应和固定系数模型(Fixed Effect Models and Fixed Coefficient Models):通常采用OLS估计。固 定效应包括时间效应以及时间和个体效应,并可以进一 步放宽条件,允许在有异方差、自相关性和等相关矩阵 块情况下,用GLS估计。 (2)误差成分模型(Error Components Models):最 常用的Panel Data模型。针对不同情况,通常可以用OLS 估计、GLS估计、内部估计(Within Estimator)和FGLS 估计,并检验误差成分中的个体效应以及个体和时间效 应,同时将自相关和异方差情况也纳入该模型框架中。
平行数据研究的发展和应用
目前,世界上已经成立了专门研究 Panel Data 的协会, 每两年举办一次全球性的Panel Data 学术交流大会。第 九届国际Panel Data会议于2000年6月22-23日在日内瓦大 学举行,入会者均是从事Panel Data研究的经济学家、经 济计量学家、统计学家和社会学家。大会强调除了在经 济计量学中以外,要扩展Panel Data的应用领域,以期发 现Panel Data分析的新方法和新的应用领域,特别强调 Panel Data在社会科学、医学和金融学这三个领域的应用。
Panel Data 分析的基本框架:非线性 模型
非线性模型 (1)logit和probit模型 (2)非线性潜在变量模型 (3)生存模型 (4)点过程 (5)处理Panel Data数据不完整而带来的选择偏差问题 (6)GMM估计方法的使用和对非线性模型进行特殊检 验 (7)借助Gibbs抽样
平行数据的含义
所谓平行数据,是指在时间序列上取多个 截面,在这些截面上同时选取样本观测值 所构成的样本数据。 面板数据是同时在时间和截面空间上取得 的二维数据。从横截面上看,是由若干个 体在某一时刻构成的截面观测值,从纵剖 面上看是一个时间序列。
平行数据研究的应用和发展
最早是Mundlak(1961)、Balestra和 Nerlove (1966)把Panel Data引入到经济计量中。从此 以后,大量关于Panel Data的分析方法、研究文 章如雨后春笋般出现在经济学、管理学、社会 学、心理学等领域。从1990年到目前为止,已 有近1000篇有关 Panel Data理论性和应用性的文 章发表,Panel Data 研究成为近十年来经济计量 学的一个热点。
平行数据的含义
Panel Data 的含义:Panel Data(或者time series and cross section data 、 Longitudinal Data ) 可 译成“板面数据”、“时空数据”、“平行数 据”、“时间序列截面数据”,按照比较权威 的理解,是用来描述一个总体中给定样本在一 段时间的情况,并对样本中每一个样本单位都 进行多重观察。 这种多重观察既包括对样本单位在某一时期 (时点)上多个特性进行观察,也包括对该样 本单位的这些特性在一段时间的连续观察,连 续观察将得到数据集称为板面数据。
Panel Data 分析的基本框架:线性
模型之其它类型模型
伪Panel Data:伪Panel Data是指重复抽自 一个横截面所构成的数据集,对伪Panel Data研究包括伪Panel Data的识别和估计。 除此之外,还有一些源自文库殊问题如误差成分 模型形式选择,豪斯曼(Hausman)特定 检验,异方差问题等到处理。
Panel Data 分析的基本框架:非线性模 型
GMM估计方法使用和对非线性模型进行 特殊检验:包括使用GMM方法估计泊松 模型、非均衡Panel Data和对Panel Probit利 用Ward、LM、Hausman方法进行检验。 借助Gibbs抽样:利用MCMC方法对Panel Data 模型进行推断,主要是针对带随机效 应高斯模型和带随机效应的Panel Probit模 型。
相关文档
最新文档