新课程改革下初中数学概念教学刍议

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课程改革下初中数学概念教学刍议

发表时间:2014-04-29T11:03:31.700Z 来源:《教育与管理》2014年3月供稿作者:刘培兰[导读] 简言之,探究学习是对数学探究的模拟,有别于学生好奇心驱动下所从事的那种自发、盲目、低效或无效的探究活动。笙河北省宁晋县第三中学/刘培兰

1 数学概念的有意义化教学我们知道学习概念一是要知道它的外延意义,二是要理解它的内涵意义。而内涵意义是概念名称在学习者内部唤起的独特的、个人的、情感的和态度的反应。学习者的这类反应,取决于他们对这类物体的特定经验。像“无理数”这类数学名称对大多数学生来讲具有很少的内涵意义,如果直接讲授,抽象难懂,则学生不易接受,心理容易疲劳。

例如:上“无理数”这课时,我准备了十个乒乓球,在每个乒乓球上分别贴上0~9 这十个数字放在不透明的袋子里,上课时先出示乒乓球,然后请同学们上来在袋中摸出一个球,看谁摸到的球上的数字最大,并请一个同学在小数点后面写上同学所摸到乒乓球上的数字,随着一个个同学上来摸球,数字一次次地记,黑板上出现了一个不断延伸的小数:0.418532469…在学生玩得起劲的时候,暂停他们的工作,然后问“同学们,如果你们不停地上来摸球,数字不断地记下去,那么我们在黑板上能得到一个什么样的小数?学生回答“能得到一个有无限多位的小数。”我追问“是无限循环小数吗?”学生异口同声“不是”。“为什么?”我追问。有学生答:“点数是摸乒乓球摸出来的,并没有什么规律。”我及时归纳:不错,这样得到的小数,一般是一个无限不循环小数。这种无限不循环小数与我们已经学过的有限小数、无限循环小数不同,是一类新数,我们称它为“无理数”,这就是我们今天要学习的主题。

2 数学概念的探究性教学探究性学习是一种在教师引导下的体现学生主动学习的一种学习方式,它往往模拟数学家发现新的概念和命题的探究过程。简言之,探究学习是对数学探究的模拟,有别于学生好奇心驱动下所从事的那种自发、盲目、低效或无效的探究活动。事实上,学生探究活动过程所涉及的观察、思考、推理等活动不全是他们能独自完成的,需要教师在关键时候给予必要的启发、引导。例如在“相反意义的量”的教学上先用多媒体演示:“一个人向东走

3 步,向西走

4 步;一小虫在树干上先向上爬20cm,再向下爬回到出发点,再向下爬10cm;在一个装有苹果的盘子里增加4 个苹果,再取走

5 个苹果等。”然后引导学生观察每一事例在数量上的变化情况,并要学生用语言描述以上3 个事例,引导学生概括出其中数量上的变化情况,并板书,再请同学思考:①事例中什么在发生变化?②怎样变化?③变化的意义是否相同?④三个不同事例变化的共同之处是什么?经过讨论、交流,学生认识到它们的共同之处在于数量的变化都是相反的。在明确考察的对象是事物数量对应性变化这个问题后,请同学们列举类似的事例以进一步理解概念。然后再任选学生的举例提问:“向南走3 步,向北走4步;赢利200 元,再赢利300 元;向上8cm,向东10cm。三句话中两个量变化有何区别。”引导学生关注量所反映的方向,进而引导学生在比较中关注量的相对性质,最后由学生来思考概括所有相关例子中共同的东西,即他们都是相反意义的量,而非“相同意义的量”或“不同意义的量”。

在这堂课里,通过学生对相对具体事物的直接观察、感知、分析、比较,进而抽象概括出概念,整个过程引导学生成为“相反意义的量”概念本质的“发现者”,亲自参与了由表及里的不断深入的理解过程,从而品尝了发现所带来的快乐,实践了抽取实际事物量的关系而舍弃其他一切表面现象的一种思维活动。这样的探究教学活跃了学生的思维,数学变得亲近,学生乐于接受。

3 数学概念的情境性教学“能够用来促进学生学习的任何正当的手段和方法,都是合理的,假如为了促进学习,必须把要教的东西包上糖衣,那么你不应当吝啬糖。”这“糖衣”就是问题情境,一个好的问题情境能大大激发学生的学习兴趣和探究的欲望。如在“平面直角坐标系”概念的教学中,情境引入:“如今索马里海盗对国际航运和海上安全构成严重威胁。一艘途经索马里海域的轮船怎样来确定自己的位置?”学生一般都能回答是用经度和纬度来确定它们的位置。再问:“那么单独用经度或纬度一个量来确定它们的位置行吗?”“不行。”“为什么?”学生通过思考交流相互补充举反例的方法体验用一对数确定一个物体位置的合理性。然后问:“同学们那么你们现在的位置怎么确定下来?”学生:“我在第3 小组第

4 排。”“很好,那么单独用小组数或排数能否确定你的位置?”“不能。”然后让第3 小组的学生站起来,第4 排的学生也站一下,通过实际情境进一步体验用一对数来确定平面上一点位置的正确性。然后再问:“把教室的右墙角的两条墙角线分别看作是0 排0 组,请同学们分别说出自己的位置。”用(x,y)表示,x 表示组数,y 表示排数,在这过程中学生巩固了用一对有序实数来确定平面上一点的方法。然后要同学们考虑这时隔壁班的同学的位置该怎样确定,通过学生自己的交流、讨论得到了“平面直角坐标系”的基本框架。

整堂课的教学基本上在具体的情境中进行。学生情绪高涨、思维活跃,积极参与。在不知不觉中掌握了“平面直角坐标系”的概念。可见好的情境对概念教学有着不可忽视的作用。

参考文献1 杨琴艳.浅谈初中数学基本概念的教学[J].当代教育,2007(4)

相关文档
最新文档