立体几何中常见模型总结归纳

合集下载

▲立体几何中的外接球与内切球---模型知识点

▲立体几何中的外接球与内切球---模型知识点

立体几何中的外接球与内切球---模型类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)类型二、垂面模型1(顶点的射影在底面顶点上)1.题设:如图5,⊥PA 平面ABC 解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C cB b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=类型二、垂面模型2(顶点的射影为底面三角形的外心)题设:如图6,7,8,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点图2图3图7-1图7-2图5解题步骤: 第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线; 第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆。

类型三、切瓜模型(两个平面互相垂直,一个面为直角三角形)1.题设:如图9-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径) 解题步骤:第1步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第2步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R 2.如图9-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径) 21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=3.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点解题步骤: 第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线; 第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R图8-1图8-2图8-3图9-1图9-2图9-3图9-44.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=类型四、汉堡模型(直棱柱的外接球、圆柱的外接球)题设:如图10-1,图10-2,图10-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)解题步骤: 第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA=1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒R =题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图解题步骤:第一步:先画出如图所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+类型六、对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,图11⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=,补充:abc abc abc V BCD A 31461=⨯-=- 第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R ,例如,正四面体的外接球半径可用此法。

立体几何专题:外接球问题中常见的8种模型(学生版)

立体几何专题:外接球问题中常见的8种模型(学生版)

立体几何专题:外接球问题中常见的8种模型1.知识梳理一、墙角模型适用范围:3组或3条棱两两垂直;可在长方体中画出该图且各顶点与长方体的顶点重合直接用公式(2R )2=a 2+b 2+c 2,即2R =a 2+b 2+c 2,求出R【补充】图1为阳马,图2和图4为鳖臑二、麻花模型适用范围:对棱相等相等的三棱锥对棱相等指四面体的三组对棱分别对应相等,且这三组对棱构成长方体的三组对面的对角线。

推导过程:三棱锥(即四面体)中,已知三组对棱分别相等,(AB =CD ,AD =BC ,AC =BD )第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为a ,b ,c ,AD =BC =x ,AB =CD =y ,AC =BD =z ,列方程组,a 2+b 2=x 2b 2+c 2=y 2c 2+a 2=z 2⇒(2R )2=a 2+b 2+c 2=x 2+y 2+z 22,补充:V A −BCD =abc −16abc ×4=13abc 第三步:根据墙角模型,2R =a 2+b 2+c 2=x 2+y 2+z 22,R 2=x 2+y 2+z 28,R =x 2+y 2+z 28,求出R .三、垂面模型适用范围:有一条棱垂直于底面的棱锥。

推导过程:第一步:将ABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O .第二步:O 1为ABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r(三角形的外接圆直径算法:利用正弦定理a sin A =b sin B=csin C =2r ,OO 1=12PA .第三步:利用勾股定理求三棱锥的外接球半径:(1)(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;(2)R 2=r 2+OO 21⇔R =r 2+OO 21.公式:R 2=r 2+h 24四、切瓜模型适用范围:有两个平面互相垂直的棱锥推导过程:分别在两个互相垂直的平面上取外心O 1、O 2过两个外心做两个垂面的垂线,两条垂线的交点即为球心0,取B C 的中点为E ,连接OO 1、OO 2、O 2E 、O 1E 为矩形由勾股可得|OC |2=|O 2C |2+|OO 2|2=|O 2C |2+|O 1C |2-|CE |2∴R 2=r 21+r 22-l 24公式:R 2=r 21+r 22-l 24五、斗笠模型适用于:顶点的投影在底面的外心上的棱锥推导过程:取底面的外心01,连接顶点与外心,该线为空间几何体的高h ,在h 上取一点作为球心0,根据勾股定理R 2=(h -R )2+r 2⇔R =r 2+h 22h公式:R =r 2+h 22h六、矩形模型适用范围:两个直角三角形的斜边为同一边,则该边为球的直径推导过程:图中两个直角三角形ΔPAB 和ΔQAB ,其中∠APB =∠AQB =90°,求外接圆半径取斜边AB 的中点O ,连接OP ,OQ ,则OP =12AB =OA =OB =OQ 所以O 点即为球心,然后在ΔPOQ 中解出半径R 公式:R 2=l22(l 为斜边长度)七、折叠模型适用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠.推导过程:两个全等的三角形或者等腰拼在一起,或者菱形折叠,设折叠的二面角∠A EC =α,CE =A E =h .如图,作左图的二面角剖面图如右图:H 1和H 2分别为△BCD ,△A BD 外心,分别过这两个外心做这两个平面的垂线且垂线相交于球心O CH 1=r =BD 2sin ∠BCD,EH 1=h -r ,OH 1=(h -r )tanα2由勾股定理可得:R 2=OC 2=OH 21+CH 21=r 2+(h -r )2tan 2α2.公式:R 2=r 2+(h -r )2tan 2α2八、鳄鱼模型适用范围:所有二面角构成的棱锥,普通三棱锥方法:找两面外接圆圆心到交线的距离m ,n ,找二面角α,找面面交线长度l 推导过程:取二面角两平面的外心分别为O 1,O 2并过两外心作这两个面的垂线,两垂线相交于球心O ,取二面角两平面的交线中点为E ,则O ,O 1,E ,O 2四点共圆,由正弦定理得:OE =2r =O 1O 2sin α①在ΔO 1O 2E 中,由余弦定理得:O 1O 2 2=O 1E 2+O 2E 2-2O 1E O 2E cos α②由勾股定理得:OD 2=O 1O 2+O 1D 2③由①②③整理得:OD2=O 1O 2+O 1D 2=OE 2-O 1E 2+O 1D 2=O 1O 2sin α2-O 1E 2+O 1D 2=O 1E2+O 2E 2-2O 1E O 2E cos αsin 2α-O 1E 2+O 1D 2=O1E2+O2E2-2O1EO2Ecosαsin2α-O1E2+O1B2记O1E=m,O2E=n,AB=l,则R2=m2+n2-2mn cosαsin2α+l22公式:R2=m2+n2-2mn cosαsin2α+l222.常考题型3.题型精析题型一:墙角模型1(2023·高一单元测试)三棱锥A-BCD中,AD⊥平面BCD,DC⊥BD,2AD=BD=DC=2,则该三棱锥的外接球表面积为()A.3π2B.9π2C.9πD.36π1.(2022秋·陕西西安·高一统考期末)在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.已知在鳖臑A-BCD中,满足AB⊥平面BCD,且AB=BD=5,BC=3,CD=4,则此鳖臑外接球的表面积为()A.25πB.50πC.100πD.200π2.(2023·高一课时练习)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50πC.100πD.500π33.(2023·广西南宁·统考二模)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,CD ⊥AD ,AB =BD =2,已知动点E 从C 点出发,沿外表面经过棱AD 上一点到点B 的最短距离为10,则该棱锥的外接球的体积为.4.(2023春·辽宁朝阳·高二北票市高级中学校考阶段练习)已知四棱锥P -ABCD 的外接球O 的表面积为64π,PA ⊥平面ABCD ,且底面ABCD 为矩形,PA =4,设点M 在球O 的表面上运动,则四棱锥M -ABCD 体积的最大值为.题型二:麻花模型1(2023春·广东梅州·高二统考期中)已知三棱锥S -ABC 的四个顶点都在球O 的球面上,且SA =BC =2,SB =AC =7,SC =AB =5,则球O 的体积是()A.83π B.3223π C.423π D.823π1.(2022春·江西景德镇·高一景德镇一中校考期中)在△ABC 中,AB =AC =2,cos A =34,将△ABC 绕BC 旋转至△BCD 的位置,使得AD =2,如图所示,则三棱锥D -ABC 外接球的体积为.2.(2023秋·吉林·高一吉林一中校考阶段练习)如图,在△ABC 中,AB =25,BC =210,AC =213,D ,E ,F 分别为三边中点,将△BDE ,△ADF ,△CEF 分别沿DE ,EF ,DF 向上折起,使A ,B ,C 重合为点P ,则三棱锥P -DEF 的外接球表面积为()A.72π B.7143π C.14π D.56π3.(2023·江西·统考模拟预测)在三棱锥P -ABC 中,已知PA =BC =213,AC =BP =41,CP =AB =61,则三棱锥P -ABC 外接球的表面积为()A.77πB.64πC.108πD.72π4.(2022·全国·高三专题练习)已知四面体ABCD 的棱长满足AB =AC =BD =CD =2,BC =AD =1,现将四面体ABCD 放入一个轴截面为等边三角形的圆锥中,使得四面体ABCD 可以在圆锥中任意转动,则圆锥侧面积的最小值为.题型三:垂面模型1(2023·高一单元测试)在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =6,BC =3,∠CAB =π6,则三棱锥P -ABC 的外接球半径为()A.3B.23C.32D.61.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且边长为3,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.4πB.8πC.16πD.32π2.(2020春·天津宁河·高一校考期末)在三棱锥P -ABC 中,AP =2,AB =3,PA ⊥面ABC ,且在△ABC 中,C =60°,则该三棱锥外接球的表面积为()A.20π3B.8πC.10πD.12π3.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且其面积为334,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.πB.2πC.4πD.8π4.(2022春·山东聊城·高一山东聊城一中校考阶段练习)在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为矩形,BC =2,PC 与平面PAB 所成的角为30o ,则该四棱锥外接球的体积为()A.433π B.43πC.823πD.833π题型四:切瓜模型1(2023·贵州贵阳·校联考模拟预测)在三棱锥A -BCD 中,已知AC ⊥BC ,AC =BC =2,AD =BD =6,且平面ABD ⊥平面ABC ,则三棱锥A -BCD 的外接球表面积为()A.8πB.9πC.10πD.12π1.(2023·四川达州·统考二模)三棱锥A -BCD 的所有顶点都在球O 的表面上,平面ABD ⊥平面BCD ,AB =AD =6,AB ⊥AD ,∠BDC =2∠DBC =60°,则球O 的体积为()A.43πB.32π3C.49π3D.323π2.(2023春·陕西西安·高一长安一中校考期中)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =AA 1=4,点P 为B 1C 1的中点,则四面体PABC 的外接球的体积为()A..41416π B.41413π C.41412π D.4141π3.(2022·高一单元测试)四棱锥P -ABCD 的顶点都在球O 的表面上,△PAD 是等边三角形,底面ABCD 是矩形,平面PAD ⊥平面ABCD ,若AB =2,BC =3,则球O 的表面积为()A.12πB.16πC.20πD.32π4.(2021·高一课时练习)在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,∠DPA =π2,AD =23,AB =2,PA =PD ,则四棱锥P -ABCD 的外接球的体积为()A.163π B.323π C.643π D.16π5.(2023春·全国·高一专题练习)在四棱锥P-ABCD中,ABCD是边长为2的正方形,AP=PD=10,平面PAD⊥平面ABCD,则四棱锥P-ABCD外接球的表面积为()A.4πB.8πC.136π9D.68π3题型五:斗笠模型1(2023·全国·高一专题练习)正四面体S-ABC内接于一个半径为R的球,则该正四面体的棱长与这个球的半径的比值为()A.64B.33C.263D.31.(2022·高一专题练习)已知正四棱锥P-ABCD(底面四边形ABCD是正方形,顶点P在底面的射影是底面的中心)的各顶点都在同一球面上,底面正方形的边长为10,若该正四棱锥的体积为50 3,则此球的体积为()A.18πB.86πC.36πD.323π2.(2022·全国·高一专题练习)某四棱锥的底面为正方形,顶点在底面的射影为正方形中心,该四棱锥内有一个半径为1的球,则该四棱锥的表面积最小值是()A.16B.8C.32D.243.(2022春·安徽·高三校联考阶段练习)在三棱锥P-ABC中,侧棱PA=PB=PC=10,∠BAC=π4,BC=22,则此三棱锥外接球的表面积为.题型六:矩形模型1(2022春·全国·高一期末)已知三棱锥A-BCD中,CD=22,BC=AC=BD=AD=2,则此几何体外接球的表面积为()A.2π3B.2π C.82π3D.8π1.(2022春·广东惠州·高一校考期中)在矩形ABCD中,AB=6,BC=8,现将△ABC沿对角线AC翻折,得到四面体DABC,则该四面体外接球的体积为()A.1963π B.10003π C.4003π D.5003π2.(2022春·河北沧州·高一校考阶段练习)矩形ABCD中,AB=4,BC=3,沿AC将三角形ABC折起,得到的四面体A-BCD的体积的最大时,则此四面体外接球的表面积值为()A.25πB.30πC.36πD.100π3.(2022春·四川成都·高一统考期末)在矩形ABCD 中,AB =6,AD =8,将△ABC 沿对角线AC 折起,则三棱锥B -ACD 的外接球的表面积为()A.36πB.64πC.100πD.与二面角B -AC -D 的大小有关题型七:折叠模型1(2022春·陕西西安·高一长安一中校考期末)已知菱形ABCD 的边长为3,∠ABC =60°,沿对角线AC 折成一个四面体,使平面ACD 垂直平面ABC ,则经过这个四面体所有顶点的球的体积为().A.5152π B.6πC.515πD.12π1.已知等边△ABC 的边长为2,将其沿边AB 旋转到如图所示的位置,且二面角C -AB -C 为60°,则三棱锥C -ABC 外接球的半径为2.(2023·广西南宁·统考二模)蹴鞠,又名“蹴球”“蹴圈”等,“蹴”有用脚蹴、踢的含义,鞠最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的足球,现已知某“鞠”的表面上有四个点A ,B ,C ,D 满足AB =BC =CD =DA =DB =433cm ,AC =23cm ,则该“鞠”的表面积为cm 2.3.(2022秋·福建泉州·高三校考开学考试)在三棱锥S -ABC 中,SA =SB =AC =BC =2,SC =1,二面角S -AB -C 的大小为60°,则三棱锥S -ABC 的外接球的表面积为.4.(2022秋·山东德州·高二统考期中)已知在三棱锥中,S -ABC 中,BA ⊥BC ,BA =BC =2,SA =SC =22,二面角B -AC -S 的大小为5π6,则三棱锥S -ABC 的外接球的表面积为()A.56π3B.58π3C.105π4D.124π9题型八:鳄鱼模型1(2022春·四川成都·高一树德中学校考期末)已知在三棱锥S-ABC中,AB⊥BC,AB=BC=2,SA =SC=22,二面角B-AC-S的大小为2π3,则三棱锥S-ABC的外接球的表面积为()A.124π9B.105π4C.105π9D.104π91.(2023春·全国·高一专题练习)如图,在三棱锥P-ABC,△PAC是以AC为斜边的等腰直角三角形,且CB=22,AB=AC=6,二面角P-AC-B的大小为120°,则三棱锥P-ABC的外接球表面积为()A.5103π B.10π C.9π D.4+23π2.(2023·陕西榆林·统考三模)在三棱锥A-BCD中,AB⊥BC,BC⊥CD,CD=2AB=2BC= 4,二面角A-BC-D为60°,则三棱锥A-BCD外接球的表面积为()A.16πB.24πC.18πD.20π3.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)如图1,四边形ABCD中,AB=AD =2,CB=CD=2,AB⊥AD,将△ABD沿BD翻折至△PBD,使二面角P-BD-C的正切值等于2,如图2,四面体PBCD的四个顶点都在同一个球面上,则该球的表面积为()A.4πB.6πC.8πD.9π4.(2023·江西南昌·校联考模拟预测)在平面四边形ABCD中,AD=CD=3,∠ADC=∠ACB =90°,∠ABC=60°,现将△ADC沿着AC折起,得到三棱锥D-ABC,若二面角D-AC-B的平面角为135°,则三棱锥D-ABC的外接球表面积为.5.(2023春·广东广州·高三统考阶段练习)在三棱锥P-ABC中,△ABC为等腰直角三角形,AB=AC=2,△PAC为正三角形,且二面角P-AC-B的平面角为π6,则三棱锥P-ABC的外接球表面积为.。

立体几何知识点归纳

立体几何知识点归纳

一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222coscos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h为棱柱的高) 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

基本立体几何图形归纳总结

基本立体几何图形归纳总结

基本立体几何图形归纳总结立体几何是数学中一门重要的分支,研究的对象是具有长度、宽度和高度的几何图形。

在立体几何中,有许多基本的图形,它们具有不同的特征和性质。

本文将对基本立体几何图形进行归纳总结,包括立方体、正方体、圆柱体、圆锥体和球体。

立方体是一种有六个相等的正方形面的立体图形。

它的特征是所有的面都是正方形,而且边长相等。

在一个立方体中,对角线的长度相等,且平行于一个面的对角线互相垂直。

立方体还具有以下性质:表面积等于6个正方形面的总面积,体积等于边长的立方。

正方体是一种特殊的立方体,它的所有边长都相等。

正方体的特点是六个面都是正方形,对角线长度相等且垂直。

正方体的表面积等于6倍的边长的平方,体积等于边长的立方。

圆柱体是一种有两个底面和一个侧面的立体图形。

圆柱体的底面是圆,侧面是连接两个底面的曲面。

一般来说,圆柱体的底面半径为r,高度为h。

圆柱体的底面积等于πr²,侧面积等于2πrh,总表面积等于2πr(r+h),体积等于πr²h。

圆锥体是一种有一个底面和一个侧面的立体图形。

圆锥体的底面是圆,侧面是连接底面和顶点的曲面。

一般来说,圆锥体的底面半径为r,高度为h,侧面直母线长度为l。

圆锥体的底面积等于πr²,侧面积等于πrl,总表面积等于πr(r+l),体积等于1/3πr²h。

球体是一种所有点到中心距离相等的立体图形。

球体的特点是表面光滑且无棱角。

一般来说,球体的半径为r,球体的表面积等于4πr²,体积等于4/3πr³。

总结起来,基本立体几何图形包括立方体、正方体、圆柱体、圆锥体和球体。

它们各自具有不同的特征和性质,如表面积、体积等。

通过对这些基本立体几何图形的归纳总结,我们可以更好地理解立体几何的基本概念和原理,为进一步的研究奠定坚实的基础。

立体几何四个重要模型

立体几何四个重要模型

立体几何四个重要模型广州市第六十五中学朱星如模型1:在棱长为a 的正面体ABCD 中:1.求证它是一个正三棱锥。

证明:即证顶点A 在底面BCD 的中心H 的连线与底面垂直。

取BC 的中点E,BD 的中点F,连CF,DE 相交于点H,则H 是三角形BCD 的中心,且H 是CF,DE 的一个三等分点,连AH,由BC ⊥DE,BC ⊥AE,AE 交DE=E,AE,DE 的平面AED 内,得BC ⊥平面AED,由此得BC ⊥AH,即AH ⊥BC。

(1)同理:AH ⊥BD。

(2)由BC 交BD=B,BC,BD 在平面BCD 内及(1)(2)得:AH ⊥平面BCD。

所以四面体ABCD 是正三棱锥。

2.设E、F、S、T 分别是BC、BD、AD、AC 的中点,求证:四边形EFST 是正方形。

证明:由于E、F、S、T 分别是BC、BD、AD、AC 的中点,故有ST 12DC EF,ST EF,所四边形EFST 是平行四边形。

同理:SF 12AB TE ,DC=AB ,所以四边形EFST 是菱形。

仿题1可证DC ⊥平面ABH,故DC ⊥AB,故有四边形EFST 是正方形。

注;由此可得到相对的两棱所成角为90o 。

3.设E、S 分别是BC、AD 的中点,求证:ES ⊥BC,ES ⊥AD,并求ES 的长。

证明:可证BC ⊥平面AED,从而BC ⊥ES;可得AD ⊥平面BCS,从而AD ⊥ES。

在直角三角形SBE 中,SB=32a,BE=12a,从而,2222ES SB BE =-=4.求任何一条棱与它相交的面所成角的正弦值。

解:只要求AB 与平面BCD 所成的角。

AH ⊥平面BCD,∴AB 与平面BCD 所成的角是ABH ∠。

22333323BH DE ==⨯=,在直角三角形ABH 中,2263AH AB BH =-=,故6sin 3AH ABH AB ∠==。

5.求相邻两个面的夹角的余弦值。

解:只要求二面角A-BD-C 的平面的余弦值。

立体几何中外接球与内切球模型归纳

立体几何中外接球与内切球模型归纳

立体几何中外接球与内切球模型归纳
在立体几何中,外接球和内切球是两个重要的概念。

外接球和内切球分别指在几何体上找到的可以用一个球切割出来的最大和最小的球形结构。

在实际应用中,外接球和内切球可以应用到各种领域,例如机械制造、建筑设计等。

一、外接球
外接球是指能够切割几何体上所有顶点的球,也就是说,外接球的球心在几何体的所以顶点上。

常见的外接球有以下几种类型:
1. 立方体的外接球
立方体的外接球是一个边长等于立方体对角线长度的球。

由于立方体的对角线长度是边长的$\sqrt{3}$倍,因此,立方体的外接球半径为边长的$\frac{\sqrt{3}}{2}$倍。

圆锥的外接球是一个球心位于圆锥顶点上,且半径等于圆锥母线长度的一半的球。

圆锥的外接球直径等于底面圆的直径加上圆锥高的二倍,即外接球直径等于
$\sqrt{d^2+4h^2}$。

二、内切球
立方体的内切球是一个正八面体,正八面体的体心即为立方体重心。

2. 正四面体的内切球
正四面体的内切球是一个球心位于四面体重心处,且半径等于四面体高的
$\frac{1}{3}$倍的球。

4. 圆锥的内切球
圆锥的内切球是一个球心位于圆锥顶点上,且半径等于圆锥母线长度与底面半径之差的一半的球。

立体几何中常见模型总结归纳

立体几何中常见模型总结归纳

正方体中包含了丰富的线面关系
A
C
B
D
A1
C1
B1
D1
观察图中的线面垂直关系
正方体中包含了丰富的线面关系
A
C
B
D
A1
C1
B1
D1
观察图中的线面垂直关系
正方体中包含了丰富的线面关系
A
C
B
D
A1
C1
B1
D1
观察图中的线面垂直关系
观察图中的线面垂直关系
A
C
B
D
A1
C1
B1
D1
正方体中包含了丰富的线面关系
常见模型归纳
Annual Work Summary Report
C
B
D
C1
B1
观察图中的线面垂直关系
01
单击添加内容标题
02
单击添加内容标题
03
单击添加内容标题
正方体中包含了丰富的线面关系
A
C
B
D
A1
C1
B1
D1
观察图中的线面垂直关系
正方体中包含了丰富的线面关系
A
C
B
D
A1
C1
B1
D1
观察图中的线面垂直关系
A
C
B
D
A1
C1
B1
D1
正方体中包含了丰富的线面关系
A
C
B
D
A1
C1
B1
D1
观察图中的不变的线面关系源自ACBD
B1
A1
C1
D1
观察图中的不变的线面关系
正方体中包含了其他几何模型

立体几何初步知识点全总结

立体几何初步知识点全总结

立体几何初步知识点全总结一、空间几何体的结构。

1. 棱柱。

- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。

- 直棱柱:侧棱垂直于底面的棱柱。

正棱柱:底面是正多边形的直棱柱。

- 性质:- 侧棱都相等,侧面是平行四边形。

- 两个底面与平行于底面的截面是全等的多边形。

- 过不相邻的两条侧棱的截面(对角面)是平行四边形。

2. 棱锥。

- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。

- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。

- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。

3. 棱台。

- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。

- 性质:- 棱台的各侧棱延长后交于一点。

- 棱台的上下底面是相似多边形,侧面是梯形。

4. 圆柱。

- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

- 性质:- 圆柱的轴截面是矩形。

- 平行于底面的截面是与底面全等的圆。

5. 圆锥。

- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。

- 性质:- 圆锥的轴截面是等腰三角形。

- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。

6. 圆台。

- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

高中数学立体几何外接球7大模型

高中数学立体几何外接球7大模型

02
03
04
例题1
已知长方体的长为3,宽为4 ,高为5,求其外接球的半径

解法
根据长方体外接球半径计算方 法,可得出外接球的半径为 1/2*sqrt(3^2+4^2+5^2)=
3/2*sqrt(10)。
例题2
已知长方体的长为6,宽为8 ,高为10,求其外接球的半
径。
解法
根据长方体外接球半径计算方 法,可得出外接球的半径为 1/2*sqrt(6^2+8^2+10^2) =1/2*sqrt(100+64+100)=1 /2*sqrt(264)=sqrt(66)。
长方体的每个面都是 矩形或正方形,相对 的两个面完全相同。
长方体外接球半径计算方法
01
设长方体的长、宽、高分别为a、 b、c,则长方体的体对角线长度 为sqrt(a^2+b^2+c^2)。
02
外接球的半径为体对角线长度的 一半,即 R=1/2*sqrt(a^2+b^2+c^2)。
典型例题解析
01
外接球半径$R = frac{sqrt{3}a}{3}$
典型例题解析
题目
在正四面体$P-ABC$中,点$P,A,B,C$都在同一球面上,若$angle PAB = angle PBA = angle BPC = angle ACP = 90^{circ}$,则该球的表面积为____.
解析
首先根据正四面体的性质,我们可以计算出外接球的半径$R = frac{sqrt{3}a}{3}$。然后 根据球的表面积公式$S = 4pi R^{2}$,我们可以计算出球的表面积为$S = 4pi (frac{sqrt{3}a}{3})^{2} = frac{4pi a^{2}}{3}$。

立体几何知识点归纳

立体几何知识点归纳

一、空间几何体(一)空间几何体的结构:1、几何体:2、多面体:3、旋转体:4、棱柱:5、棱锥:6、棱台:7、圆柱:8、圆锥:9、圆台:10、球:(二)简单几何体的构成:1、2、(三)三视图:1、投影:2、投影类型:3、三视图:(1)正视图(2)侧视图:(3)俯视图:(三)直观图:(1)直观图:(2)斜二测画法规则:(四)体积面积公式:1、柱体体积:2、锥体体积:3、台体体积:4、球体体积:球体表面积:5、祖暅原理:二、平面的性质与直线的位置关系1、平面意义:(1)空间图形是由点、线、面组成的(2)平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形(3)平面的两个特征:①无限延展 ②平的(没有厚度) 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性一个平面把空间分成两部分,一条直线把平面分成两部分 2 平面的基本性质公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 应用:①判定直线在平面内;②判定点在平面内模式:a A A aαα⊂⎧⇒∈⎨∈⎩.公理2如果两个不重合平面有一个公共点,那么它们有且只有一条过该点的公共直线。

推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭ 如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈ 应用:①确定两相交平面的交线位置;②判定点在直线上公理3 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈.应用:①确定平面;②证明两个平面重合“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.推论1:推论2:推论3:3、 空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不同在任何..一个平面内,没有公共点; 4、平线直线:(1)公理4 :平行于同一条直线的两条直线互相平行(空间平行线的传递性)推理模式://,////a b b c a c ⇒.(2)空间四边形:顺次连结不共面的四点A,B,C,D 所组成的四边形叫空间四边形,相对顶点的连线AC,BD 叫空间四边形的对角线(3)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(4)等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.指出:等角定理及其推论,说明了空间角通过任意平行移动具有保值性,因而成为异面直线所成角的基础.5、异面直线:不同在任何..一个平面内,没有公共点 (1).空间两条异面直线的画法a b1A CA(2)异面直线判定定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:,,,A B l B l ααα∉∈⊂∉⇒AB 与l 是异面直线(3)异面直线判定方法:判定定理、反证法。

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h为棱柱的高) 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

6.立体几何垂直证明题常见模型及方法

6.立体几何垂直证明题常见模型及方法
立体几何垂直证明题常见模型 及方法
类型一:线线垂直证明(共面垂直、异面垂直)
共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)
1 、等腰(等边)三角形中的中线 2、 菱形(正方形)的对角线互相垂直 3、勾股定理中的三角形 4 、 1:1:2 的直角梯形中 5 利用相似或全等证明直角。
类型三、面面垂直的证明。 (本质上是证明线面垂直)
B EABiblioteka C FD类型四、探索性问题
异面垂直 (利用线面垂直来证明,高考中的意图)
类型二:线面垂直证明
方法1 利用线面垂直的判断定理
A
D O B E
C
2 利用面面垂直的性质定理 (方法点拨:此种情形,条件中含有面面垂直。)
例3、在四棱锥P-ABCD,底面ABCD是正方形,侧 面PAB是等腰三角形,且平面PAB⊥面ABCD,求证 BC⊥面PAB

高中立体几何知识点总结(最新最全)

高中立体几何知识点总结(最新最全)

高中立体几何知识点总结 一 、空间几何体(一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征 2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。

棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

对棱间的距离为a 22(正方体的边长)正四面体的高a 6(正方体体对角线l 32=)正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-)正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=)3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。

高中数学立体几何总结

高中数学立体几何总结

高中数学立体几何总结立体几何是高中数学中一个重要的内容,大致内容包括立体几何基本概念、体积、体积计算公式、侧棱、正三棱柱、正四棱锥、正八棱锷、台面等等。

(一)立体几何基本概念1、三视图:即从三个不同的视角把物体有条不紊的绘出来的文字图形,可以根据它来确定物体的三维形状。

2、几何体:是由把平面图形几何关系组合而成的任何在空间中由一致点构成的物体。

3、棱:即立体几何中各几何体的侧面所围成的线段或面称为棱,如正三棱柱的侧棱。

(二)体积1、体积的定义:体积是立体图形的面积之和,反映物体内部空间的容积大小。

2、体积的计算公式:几何体的体积可用面积的乘积公式计算,比如正三棱柱的体积的表示公式:V=ah;正四棱锥的体积的表示公式:V=1/3bh;正八棱锷的表示公式为:V=1/3πr²h。

(三)正三棱柱1、正三棱柱,是一种方形底面,面积相同的三角柱体,它有三个直角,等边的三个棱,以及一个正方形的底部。

2、侧棱:正三棱柱的侧棱可以分别表示为a,b,c三条线段,表示a=b=c,它们在同一平面且互相垂直。

3、体积计算:正三棱柱的体积可以用面积乘积公式来计算:V=ah;其中,a表示正三棱柱的侧棱,h表示高度。

(四)正四棱锥1、正四棱锥是由正方形底面、顶面和棱构成的三角锥体,它有四个直角棱,棱之间相互垂直,底面和顶面也相互垂直。

2、侧棱:正四棱锥的侧棱只有一条,用a表示,它的四条边都要等于。

(五)正八棱锷1、正八棱锷是一种八个棱组成的几何体,其四条边中有三条边为互相垂直的折线,其余五条边为圆形弧线。

2、侧棱:正八棱锷有八个侧棱,用a1,a2,a3…a8表示,但它们互相之间不相等,作用上也不是等距的。

(六)台面1、台面,又称台体,是由一个小三角形共同构成的平面图形。

当该平面图形在三维空间中展开时,可以形成一个台体,它由三个等高的并列棱构成。

2、台体体积计算:台体的体积可以由其三角面积和三边长共同确定,台体的体积公式为:V=1/3(A1+A2+A3)H;其中,A1,A2,A3表示三个三角面积,H表示高度。

立体几何解答题常考模型归纳总结(九大题型)(原卷版)-高中数学

立体几何解答题常考模型归纳总结(九大题型)(原卷版)-高中数学

立体几何解答题常考模型归纳总结 高考立体几何解答题常考模型主要包括柱体、锥体、球体、旋转体、多面体等。

这些模型常涉及体积、表面积的计算,截面问题,以及与其他几何体的组合或相交问题。

此外,空间位置关系,如平行、垂直的判断与证明,也是常考内容。

空间角的计算,包括异面直线所成的角、直线与平面所成的角、二面角等,同样是高考立体几何的重要考点。

最后,空间距离的计算,如点到平面的距离、两平行平面间的距离等,也是解答题中常见的考查点。

掌握这些模型的基本性质和解题方法,对于提高高考立体几何的解题能力至关重要。

题型一:非常规空间几何体为载体【典例1-1】(2024·河南濮阳·模拟预测)如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==(1)求证:1AA ^平面11BCC B ;(2)求直线AB 和平面1ACB 所成角的正弦值.【典例1-2】(2024·云南昆明·三模)如图,在三棱台111ABC A B C -中,上、下底面是边长分别为2和4的正三角形,1AA ^平面ABC ,设平面11AB C I 平面=ABC l ,点,E F 分别在直线l 和直线1BB 上,且满足EF l ^,1EF BB ^.(1)证明:^EF 平面11BCC B ;(2)若直线EF 和平面ABC 【变式1-1】(2024·天津和平·二模)如图,三棱台111ABC A B C -中,ABC V 为等边三角形,1124AB A B ==,1AA ^平面ABC ,点M ,N ,D 分别为AB ,AC ,BC 的中点,11A B AC ^.(1)证明:1CC ∥平面1A MN ;(2)求直线1A D 与平面1A MN 所成角的正弦值;(3)求点D 到平面1A MN 的距离.【变式1-2】(2024·河南周口·模拟预测)如图,平行六面体1111ABCD A B C D -中,底面ABCD 与平面11ABC D 都是边长为2的菱形,11120BCD BC D °Ð=Ð=,侧面11BCC B(1)求平行六面体1111ABCD A B C D -的体积;(2)求平面11BCC B 与平面11CDD C 的夹角的余弦值.题型二:立体几何存在与探索性问题【典例2-1】如图1,ABC V 是边长为3的等边三角形,点,D E 分别在线段,AC AB 上,且1,2AE AD ==,沿DE 将ADE V 翻折到PDE △的位置,使得PB 2.(1)求证:平面PDE ^平面BCDE ;(2)在线段PB 上是否存在点M ,使得//EM 平面PCD ,若存在,求出PM MB的值;若不存在,请说明理由.【典例2-2】(2024·广东·一模)如图所示,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,608AB AD BAD AC Ð===o ,,.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为 2V ,求 12V V ;(2)设点F 在线段AP 上,且存在一个正整数k ,使得PA kPF PC kCE ==,,若已知平面FCD 与平面PCDk 的值.【变式2-1】在ABC V 中,90ABC Ð=°,6AB BC ==,D 为边AB 上一点,2AD =,E 为AC 上一点,//DE BC ,将ADE V 沿DE 翻折,使A 到A ¢处,90DA B ¢Ð=°.(1)证明:A B ¢^平面A DE ¢;(2)若射线DE 上存在点M ,使l =uuuu r uuu r DM DE ,且MC 与平面A EC ¢所成角的正弦值为15,求λ.【变式2-2】(2024·甘肃张掖·模拟预测)如图,在四棱锥P ABCD -中,底面四边形ABCD为菱形,且60,DAB PAD Ð=o V 是边长为2的等边三角形,且平面PAD ^平面,ABCD O 为AD 中点.(1)求证:OB ^平面PAD ;(2)在线段PC 上是否存在点M ,使二面角M BO C --的大小为60o ,若存在,求PM PC的值,若不存在,请说明理由.题型三:立体几何折叠问题【典例3-1】(2024·湖北武汉·模拟预测)如图1,在矩形ABCD 中,2AB =,BC =ABD △沿矩形的对角线BD 进行翻折,得到如图2所示的三棱锥A BCD -,且AB CD ^.(1)求翻折后线段AC 的长;(2)点M 满足2AM MD =uuuu r uuuu r ,求CM 与平面ABD 所成角的正弦值.【典例3-2】(2024·山东·模拟预测)如图,在菱形ABCD 中,60BAD Ð=°,E 是AD 的中点,将ABE V沿直线BE 翻折使点A 到达点1A 的位置,F 为线段1AC 的中点.(1)求证:DF ∥平面1A BE ;(2)若平面1A BE ^平面BCDE ,求直线1A E 与平面1A BC 所成角的大小.【变式3-1】(2024·河南驻马店·二模)在如图①所示的平面图形中,四边形ACDE 为菱形,现沿AC 进行翻折,使得AB ^平面ACDE ,过点E 作//EF AB ,且12EF AB =,连接,,FD FB BD ,所得图形如图②所示,其中G 为线段BD 的中点,连接FG .(1)求证:FG ^平面ABD ;(2)若2AC AD ==,直线FG 与平面BCD ,求AB 的值.【变式3-2】在等腰梯形ABCD 中,//AB CD ,2AB =,2AD BC ==,60DAB Ð=°,M 为AB 中点,将AMD V ,BMC △沿MD ,MC 翻折,使A ,B 重合于点E ,得到三棱锥M CDE -.(1)求ME 与平面CDE 所成角的大小;(2)求二面角M DE C --的余弦值.题型四:立体几何作图问题【典例4-1】(2024·河南信阳·模拟预测)长方体1111ABCD A B C D -中,123,2AB AA AD CE ED ===uuu r uuu r .(1)过E 、B 作一个截面,使得该截面平分长方体的表面积和体积.写出作图过程及其理由.(2)记(1)中截面为a ,若a 与(1)中过D 点的长方体的三个表面成二面角分别为,,q j w ,求222cos cos cos q j w ++的值.【典例4-2】(2024·高三·河北承德·期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,,,O E F 分别是,,BD PA BC 的中点.(1)证明://OE 平面PBC ;(2)若平面a 经过点,,F D E ,且与棱PB 交于点H .请作图画出H 在棱PB 上的位置,并求出PH HB的值.【变式4-1】(2024·辽宁大连·一模)如图多面体ABCDEF 中,面FAB ^面ABCD ,FAB V 为等边三角形,四边形ABCD 为正方形,EF BC ∥,且334EF BC ==,H ,G 分别为CE ,CD 的中点.(1)证明:BF AD ^;(2)求平面BCEF 与平面FGH 所成角的余弦值;(3)作平面FHG 与平面ABCD 的交线,记该交线与直线AD 交点为P ,写出AP AD的值(不需要说明理由,保留作图痕迹).【变式4-2】如图,已知底面为平行四边形的四棱锥P ABCD -中,平面MNGH 与直线PB 和直线AC 平行,点E 为PD 的中点,点F 在CD 上,且:1:2DF FC =.(1)求证:四边形MNGH 是平行四边形;(2)求作过EF 作四棱锥P ABCD -的截面,使PB 与截面平行(写出作图过程,不要求证明).截面的定义:用一个平面去截一个几何体,平面与几何体的表面的交线围成的平面图形.【变式4-3】(2024·北京·三模)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB p Ð=.AC BD O =I ,且^PO 平面ABCD ,PO =,点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅱ)求直线AB 与平面EFG 的成角的正弦值;(Ⅲ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.题型五:立体几何建系繁琐问题【典例5-1】(2024·山东淄博·二模)已知直角梯形ABCD ,90ADC Ð=°,//AB CD ,2AB CD AD ===M 为对角线AC 与BD 的交点.现以AC 为折痕把ADC V 折起,使点D 到达点P 的位置,点Q 为PB 的中点,如图所示:(1)证明:AC ^平面PBM ;(2)求三棱锥P ACQ -体积的最大值;(3)当三棱锥P ACQ -的体积最大时,求直线AB 与平面PBC 所成角的正弦值.【典例5-2】(2024·贵州黔东南·二模)如图,在四棱台1111ABCD A B C D -中,O 为AC 的中点,1111122AA A C C C AC ====.(1)证明:1//OC 平面11AA D D ;(2)若平面ABCD ^平面11ACC A ,AB BC ^,当四棱锥11B AA C C -的体积最大时,求1CC 与平面11AA B B 夹角的正弦值.【变式5-1】(2024·重庆·三模)如图所示的几何体是一个半圆柱和一个三棱锥的组合体.11,BB CC 是半圆柱的母线,1,O O 分别是底面直径BC 和11B C 的中点,11114,2,BC B C BB CC A ====是半圆O 上一动点,1A 是半圆1O 上的动点,1AA 是圆柱的母线,延长1A A 至P 点使得A 为1A P 的中点,连接PB ,PC 构成三棱锥P ABC -.(1)证明:1AC BA ^;(2)当三棱锥P ABC -的体积最大时,求平面1ABA 与平面1BA C 的夹角.【变式5-2】已知平面四边形ABCD ,2AB AD ==,60BAD Ð=°,30BCD Ð=°,现将ABD D 沿BD 边折起,使得平面ABD ^平面BCD ,此时AD CD ^,点P 为线段AD 的中点.(1)求证:BP ^平面ACD ;(2)若M 为CD 的中点①求MP 与平面BPC 所成角的正弦值;②求二面角P BM D --的平面角的余弦值.题型六:两角相等(构造全等)的立体几何问题【典例6-1】(2024·河南·模拟预测)如图,在三棱锥A BCD -中,ABC V 是等边三角形,90BAD BCD Ð=Ð=°,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ^平面BDP ;(2)若BD =,且二面角A BD C --为120°,求直线AD 与平面BCD 所成角的正弦值.【典例6-2】(2024·广西桂林·二模)如图,四棱锥F ABCD -中,底面ABCD 为边长是2的正方形,E ,G 分别是CD ,AF 的中点,4AF =,FAE BAE Ð=Ð,且二面角F AE B --的大小为90°.(1) 求证:AE BG ^;(2) 求二面角B AF E --的余弦值.【变式6-1】(2024·安徽合肥·模拟预测)如图,四棱锥E ABCD -中,四边形ABCD 是边长为2的菱形,45DAE BAE °Ð=Ð=,60DAB Ð=°.(1)证明:平面ADE ^平面ABE ;(2)当直线DE 与平面ABE 所成的角为30°时,求平面DCE 与平面ABE 所成锐二面角的余弦值.【变式6-2】(2024·辽宁沈阳·模拟预测)如图,四棱锥E ABCD -中,四边形ABCD 是边长为2的菱形45DAE BAE Ð=Ð=°,60DAB Ð=°(1)证明:平面ADE ^平面ABE ;(2)当平面DCE 与平面ABE DE 与平面ABE 所成角正弦值.题型七:利用传统方法找几何关系建系【典例7-1】(2024·江苏南京·二模)如图,//AD BC ,AD AB ^,点E 、F 在平面ABCD 的同侧,//CF AE ,1AD =,2AB BC ==,平面ACFE ^平面ABCD ,EA EC ==(1)求证://BF 平面ADE ;(2)若直线EC 与平面FBD ,求线段CF 的长.【典例7-2】斜三棱柱ABC -A 1B 1C 1上,侧面AA 1C 1C ⊥平面ABC ,侧面AA 1C 1C 是菱形,∠A 1AC =60°,A 1C =AC AB =2,为BB 1的中点.(1)求二面角C -A 1D -C 1的余弦值;(2)记△ABC 的外接圆上有一动点P ,若二面角P -AA 1-C 与二面角C -A 1D -C 1相等,求AP 的长.【变式7-1】如图,已知四棱锥P ABCE -中,PA ^平面ABCE ,平面PAB ^平面PBC ,且1AB =,2BC =,BE =,点A 在平面PCE 内的射影恰为PCE V 的重心G .(1)证明:BC AB ^;(2)求直线CG 与平面PBC 所成角的正弦值.【变式7-2】如图所示,圆锥的高2PO =,底面圆O 的半径为R ,延长直径AB 到点C ,使得BC R =,分别过点A ,C 作底面圆O 的切线,两切线相交于点E ,点D 是切线CE 与圆O 的切点.(1)证明:平面PDE ^平面POD ;(2)若直线PE 与平面PBD ,求点A 到平面PED 的距离.题型八:空间中的点不好求【典例8-1】(2024·山东日照·三模)在五面体ABCDEF 中,CD ADE ^平面,EF ADE ^平面.(1)求证:AB CD ∥;(2)若222AB AD EF ===,3CD =,90ADE Ð=°,点D 到平面ABFE A BC F --的余弦值.【典例8-2】(2024·全国·校联考模拟预测)已知三棱锥ABCD ,D 在面ABC 上的投影为O ,O 恰好为△ABC 的外心.4AC AB ==,2BC =.(1)证明:BC ⊥AD ;(2)E 为AD 上靠近A 的四等分点,若三棱锥A-BCD 的体积为1,求二面角E CO B --的余弦值.【变式8-1】(2024·河南·校联考模拟预测)如图,在四棱锥P ABCD -中,AB BC ==AD CD AC ===E ,F 分别为AC ,CD 的中点,点G 在PF 上,且G 为三角形PCD 的重心.(1)证明://GE 平面PBC ;(2)若PA PC =,PA CD ^,四棱锥P ABCD -的体积为GE 与平面PCD 所成角的正弦值.【变式8-2】(2024·湖北武汉·华中师大一附中校考模拟预测)如图,平行六面体1111ABCD A B C D -中,点P 在对角线1BD 上,AC BD O =I ,平面ACP ∥平面11AC D .(1)求证:O ,P ,1B 三点共线;(2)若四边形ABCD 是边长为2的菱形,11π3BAD BAA DAA =ÐÐ==Ð,13AA =,求二面角P AB C --大小的余弦值.【变式8-3】(2024·全国·模拟预测)已知菱形ABCD 中,1AB BD ==,四边形BDEF 为正方形,满足2π3ABF Ð=,连接AE ,AF ,CE ,CF .(1)证明:CF AE ^;(2)求直线AE 与平面BDEF 所成角的正弦值.题型九:数学文化与新定义问题【典例9-1】(2024·高三·山东青岛·期中)某校积极开展社团活动,在一次社团活动过程中,一个数学兴趣小组发现《九章算术》中提到了“刍薨”这个五面体,于是他们仿照该模型设计了一道数学探究题,如图1,E 、F 、G 分别是边长为4的正方形的三边AB CD AD 、、的中点,先沿着虚线段FG 将等腰直角三角形FDG 裁掉,再将剩下的五边形ABCFG 沿着线段EF 折起,连接AB CG 、就得到了一个“刍甍” (如图2)。

高中数学立体几何知识点总结(超详细)

高中数学立体几何知识点总结(超详细)

立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。

初中数学的归纳与解析常见的立体几何体及其性质解析

初中数学的归纳与解析常见的立体几何体及其性质解析

初中数学的归纳与解析常见的立体几何体及其性质解析立体几何是初中数学中非常重要的一个分支,它研究的是空间中的形体、体积和表面积等几何属性。

在初中阶段,我们需要学习一些常见的立体几何体及其性质。

本文将对常见的立体几何体进行归纳和解析,以帮助读者更好地理解和掌握这些概念。

一、正方体正方体是一种六个面都是正方形的立体几何体。

它具有以下性质:1. 六个面都相等,每个面都是正方形;2. 八个顶点和每个面的中心都在同一个平面上;3. 所有边长相等;4. 对角线相等且彼此垂直。

二、长方体长方体是一种六个面都是矩形的立体几何体。

它具有以下性质:1. 六个面都相等,每个面都是矩形;2. 八个顶点和每个面的中心都在同一个平面上;3. 相对的面是相等的,即对边相等;4. 相对的边是平行的。

三、棱柱棱柱是一种两个底面相等且平行的多边形,并由这些边和底面的垂直边连接而成的立体几何体。

根据底面的形状,棱柱可以分为正方形棱柱、长方形棱柱、三角形棱柱等。

总的来说,棱柱具有以下性质:1. 底面是一个多边形,顶面与底面各对边相交于直角;2. 侧面是个矩形,且相等;3. 所有侧棱相等;4. 顶点到底面的距离相等。

四、棱锥棱锥是一种一个底面和顶点之间以及与底面各顶点相连的棱线所围成的立体几何体。

根据底面的形状,棱锥可以分为正方形棱锥、三角形棱锥等。

它具有以下性质:1. 一条侧棱连接底面的顶点和顶点;2. 底面是一个多边形;3. 顶点到底面各顶点的距离相等;4. 侧面是一个三角形,且相等。

五、球球是一种所有点到球心的距离都相等的立体几何体。

它具有以下性质:1. 所有点到球心的距离相等;2. 表面是光滑的;3. 中心是球的对称中心;4. 所有球面上表面的点到球心的距离相等。

六、圆柱圆柱是一种两个底面都是圆形的立体几何体,且底面中心到垂直于底面的轴的距离相等。

它具有以下性质:1. 两个底面都是圆形;2. 底面中心到垂直于底面的轴的距离相等;3. 侧面是一个矩形,且相等;4. 侧面法线垂直于底面。

初中知识点归纳——立体几何篇

初中知识点归纳——立体几何篇

初中知识点归纳——立体几何篇立体几何是初中数学的重要内容之一,它主要研究空间中的各种几何体的性质和相互关系。

掌握立体几何的基本概念和性质,对于解题和解决实际问题非常有帮助。

本文将对初中立体几何的知识点进行归纳和总结,帮助读者更好地理解和运用这些知识。

一、立体几何的基本概念1. 点、线、面和体:点是没有长宽高的,用大写字母表示;线是由无数个连续点组成的,用两个点的大写字母表示;面是由无数个连续线组成的,用大写字母表示;体是由无数个连续面组成的,用大写字母表示。

2. 多面体和非多面体:多面体是由多个平面围成的立体,如正方体、长方体等;非多面体则不是由平面围成的,如圆柱体、圆锥体等。

二、立体图形的计算1. 面积的计算:不同立体图形的面积计算公式不同。

常见的计算公式有:- 正方体的表面积 = 6 × (边长)²- 长方体的表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)- 圆柱体的侧面积= 2 × π × 半径 ×高- 球的表面积= 4 × π × 半径²2. 体积的计算:不同立体图形的体积计算公式也不同。

常见的计算公式有:- 正方体的体积 = 边长³- 长方体的体积 = 长 ×宽 ×高- 圆柱体的体积= π × 半径² ×高- 球的体积= (4/3) × π × 半径³三、常见的立体几何体1. 正方体:所有的边相等且平行于坐标轴,有六个面,每个面上有四个顶点。

2. 长方体:所有的边相等或相等且平行于坐标轴,有六个面,每个面上有四个顶点。

3. 三棱柱:两个底面是相等的全等三角形,有三个长方形的面,每个面上有两个顶点。

4. 圆柱体:两个底面是相等的圆形,有一个长方形的面,每个面上有两个顶点。

高中数学立体几何之外接球与内切球问题常见模型归纳(完整版)

高中数学立体几何之外接球与内切球问题常见模型归纳(完整版)

外接球问题江西省永丰中学陈保进若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

若一个定点到一个多面体的所有顶点的距离都相等,则这个定点就是该多面体外接球的球心。

以下为常见模型。

1、长方体模型结论:长方体的外接球的球心为其体对角线的中点,直径为体对角线。

公式:2222c b a R ++=(a ,b ,c 为长宽高)补充:以下情况可转化成长方体模型。

①若三棱锥的三条棱PA ,PB ,PC 两两互相垂直(墙角模型),则可在长方体中构造。

2222PC PB P A R ++=②正四面体P -ABC 可在正方体中构造,正方体棱长2=PA a ③若三棱锥的三组对棱两两相等,则可在长方体中构造。

设AC =BP =m ,AP =BC =n ,AB=PC =t ,则⎪⎩⎪⎨⎧=+=+=+222222222t c b n c a m b a ,三式相加,222222)(2t n m c b a ++=++2)2(2222222t n m c b a R ++=++=abc2、直三棱柱模型结论:直三棱柱外接球的球心是上、下底面外心连线的中点,222()2hR r =+r 为底面三角形外接圆的半径,可用正弦定理求,h 为直三棱柱的高。

补充:有一条侧棱垂直底面的三棱锥可补成直三棱柱,如图P -ABC 中,PA ⊥平面ABC ,则可补成直三棱柱PB 1C 1-ABC ,外接球半径公式同上。

提醒:底面具有外接圆的直棱柱才有外接球,比如正棱柱,且球心在上、下底面外心连线的中点,底面无外接圆的直棱柱,以及所有斜棱柱均无外接球。

3、共斜边模型四面体D-ABC 中,DC AD ⊥,BC AB ⊥,AC 为公共的斜边,O 为AC 的中点,则O 为四面体D-ABC 外接球的球心。

4、正棱锥模型外接球的球心在正棱锥的高所在直线上,如图正三棱锥A-BCD 中,作AO 1⊥平面BCD ,则易得BO 1=CO 1=DO 1,所以O 1为△BCD 的外心,设O 为其外接球球心,半径为R ,则BO =AO =R ,设AO 1=h ,BO 1=r ,则由BO 2=BO 12+OO 12,得R 2=r 2+(h-R )2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见模型归纳
桓台一中 高一数学组 尹朔
• 正方体中包含了丰富的线面关系
观察图中的线面垂直关系
D1 A1 B1 C1
D A B
C
• 正方体中包含了丰富的线面关系
观察图中的线面垂直关系
D1 A1 B1 C1
D A B
C
• 正方体中包含了丰富的线面关系
观察图中的线面垂直关系
D1 A1 B1 C1
D A B
C
• 正方体中包含了丰富的线面关系
观察图中的线面垂直关系
D1 A1 B1 C1
D A B
C
• 正方体中包含了丰富的线面关系
观察图中的线面垂直关系
D1 A1 B1 C1
D A B
C
• 正方体中包含了丰富的线面关系
观察图中的线面垂直关系
D1 A1 B1 C1
D A B
C
• 正方体中包含了丰富的线面关系
观察图中的线面垂直关系
D1 A1 B1 C1 A1 D1 B1 C1
D A B
C AD BCFra bibliotek• 正方体中包含了丰富的线面关系 观察图中的不变的线面关系 观察图中的不变的线面关系 不变
D1 A1 B1 C1
AB ⊥ 侧面ADD1A1 BC ⊥ 侧面DCC1D1 所以四棱锥 D − ABCD中的
D A B
C
四个三角形都是直角三 角形
• 正方体中包含了其他几何模型 观察图中的不变的线面关系 观察图中的不变的线面关系 不变
D1 A1 D B1 C1
C B
A
相关文档
最新文档