《数据结构》期末复习题及参考答案 - 第6章 树和二叉树【HSH2013级】给学生
数据结构二叉树习题含答案
} ChangeLR(T->lchild); ChangeLR(T->rchild); } ( 4)设计二叉树的双序遍历算法(双序遍历是指对于二叉树的每一个结点来说,先访 问这个结点, 再按双序遍历它的左子树, 右子树)。 void DoubleTraverse(BiTree T) { if(T == NULL) return; else if(T->lchild==NULL&&T->rchild==NULL) cout<<T->data; else { cout<<T->data; DoubleTraverse(T->lchild); cout<<T->data; DoubleTraverse(T->rchild); } } ( 5)计算二叉树最大的宽度(二叉树的最大宽度是指二叉树所有层中结点个数的最大 值) 。 [ 题目分析 ] 求二叉树高度的算法见上题。求最大宽度可采用层次遍历的方法,记下各 层结点数,每层遍历完毕,若结点数大于原先最大宽度,则修改最大宽度。 int Width(BiTree bt)// { if (bt==null) else {BiTree Q[];//Q 结点在队列中的位置 temp=0; maxw=0; Q[rear]=bt; // while (front<=last) {p=Q[front++]; temp++; // 同层元素数加 1 左子女入队 右子女入队 if (p->lchild!=null) Q[++rear]=p->lchild; // if (p->rchild!=null) Q[++rear]=p->rchild; // if (front>last) {last=rear; if (temp>maxw) maxw=temp;//last temp=0; }// if return (maxw); }// while 指向下层最右元素 , 更新当前最大宽度 // 一层结束, //temp 记局部宽度 , maxw 记最大宽度 根结点入队列 是队列,元素为二叉树结点指针,容量足够大 队头指针 ,rear 队尾指针 ,last 同层最右 front=1;rear=1;last=1;//front 求二叉树 bt 的最大宽度 return (0); // 空二叉树宽度为 0 然后再一次访问这个结点, 接下来按双序遍历它的
【免费下载】数据结构 第6章习题答案
4 5 3 (3)
(注:合并值应排在叶子值之后)
1
2
(注:原题为选择题:A.32
B.33
C.34
D.15)
三、单项选择题(每小题 1 分,共 11 分)
( C )1. 不含任何结点的空树
。
(A)是一棵树;
(B)是一棵二叉树;
(C)是一棵树也是一棵二叉树;
(D)既不是树也不是二叉树
答:以前的标答是 B,因为那时树的定义是 n≥1
空指针。 (正确。用二叉链表存储包含 n 个结点的二叉树,结点共有 2n 个链域。由于二叉树中,除根结点外,每 一个结点有且仅有一个双亲,所以只有 n-1 个结点的链域存放指向非空子女结点的指针,还有 n+1 个空指 针。)即有后继链接的指针仅 n-1 个。 ( √ )10. 〖01 年考研题〗具有 12 个结点的完全二叉树有 5 个度为 2 的结点。
,而 N 的右子女是它在原树里对应结点的 D 。
供选择的答案
A: ①是特殊的树 ②不是树的特殊形式 ③是两棵树的总称 ④有是只有二个根结点的树形结构
B: ①左子结点 ② 右子结点 ③ 左子结点或者没有右子结点 ④ 兄弟
C~D: ①最左子结点
② 最右子结点 ③ 最邻近的右兄弟
④ 最邻近的左兄弟
⑤ 最左的兄弟 ⑥ 最右的兄弟
答案:A=
B=
C=
D=
答案:ABCDE=2,1,1,3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配,料置不试技仅卷术可要是以求指解,机决对组吊电在顶气进层设行配备继置进电不行保规空护范载高与中带资负料荷试下卷高总问中体题资配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,.卷编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试5写交卷、重底保电要。护气设管装设备线置备4高敷动调、中设作试电资技,高气料术并中课3试中且资件、卷包拒料中管试含绝试调路验线动卷试敷方槽作技设案、,术技以管来术及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数据结构 第六章 树和二叉树作业及答案
第六章树和二叉树作业一、选择题(每题2分,共24分)。
1. 一棵二叉树的顺序存储情况如下:树中,度为2的结点数为( C )。
A.1 B.2 C.3 D.42. 一棵“完全二叉树”结点数为25,高度为(B )。
A.4 B.5 C.6 D.不确定3.下列说法中,(B )是正确的。
A. 二叉树就是度为2的树B. 二叉树中不存在度大于2的结点C. 二叉树是有序树D. 二叉树中每个结点的度均为24.一棵二叉树的前序遍历序列为ABCDEFG,它的中序遍历序列可能是(B )。
A. CABDEFGB. BCDAEFGC. DACEFBGD. ADBCFEG5.线索二叉树中的线索指的是(C )。
A.左孩子 B.遍历 C.指针 D.标志6. 建立线索二叉树的目的是(A )。
A. 方便查找某结点的前驱或后继B. 方便二叉树的插入与删除C. 方便查找某结点的双亲D. 使二叉树的遍历结果唯一7. 有 D )示意。
A.B.C.D.8. 一颗有2046个结点的完全二叉树的第10层上共有(B )个结点。
A. 511B. 512C. 1023D. 10249. 一棵完全二叉树一定是一棵(A )。
A. 平衡二叉树B. 二叉排序树C. 堆D. 哈夫曼树10.某二叉树的中序遍历序列和后序遍历序列正好相反,则该二叉树一定是( C )的二叉树。
A .空或只有一个结点B .高度等于其结点数C .任一结点无左孩子D .任一结点无右孩子11.一棵二叉树的顺序存储情况如下:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15A B C D E 0 F 0 0 G H 0 0 0 X结点D 的左孩子结点为( D )。
A .EB .C C .FD .没有12.一棵“完全二叉树”结点数为25,高度为( B )。
A .4B .5C .6D .不确定二、填空题(每空3分,共18分)。
1. 树的路径长度:是从树根到每个结点的路径长度之和。
对结点数相同的树来说,路径长度最短的是 完全 二叉树。
数据结构习题与答案--树和二叉树
第六章树和二叉树一、判断题( t )01、若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。
( f )02、二叉树中每个结点的两棵子树的高度差等于1。
(t )03、二叉树中每个结点的两棵子树是有序的。
( f )04、二叉树中每个结点有两棵非空子树或有两棵空子树。
( f )05、二叉树中所有结点个数是2k-1-1,其中k是树的深度。
(f )06、二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。
( f )07、对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。
(t )08、用二叉链表法存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。
(t)09、具有12个结点的完全二叉树有5个度为2的结点。
( f )10、二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。
( f )11、二叉树按某种顺序线索化后,任一结点均有指向其前驱和后续的线索。
( t )12、二叉树的先序遍历序列中,任意一个结点均处在其孩子结点的前面。
二、填空题01、由3个结点所构成的二叉树有_5_种形态。
02、一棵深度为6的满二叉树有____个分支结点和____个叶子。
03、一棵具有257个结点的完全二叉树,它的深度为____。
04、设一棵完全二叉树有700个结点,则共有____个叶子结点。
05、设一棵完全二叉树具有1000个结点,则此完全二叉树有____个叶子结点,有____个度为2的结点,有____个结点只有非空左子树,有____个结点只有非空右子树。
06、一棵含有n个结点的k叉树,可能达到的最大深度为____,最小深度为____。
07、二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。
因而二叉树的遍历次序有六种。
最常用的是三种:前序法(即按N L R次序),后序法(即按LRN次序)和中序法(也称对称序法,即按L N R次序)。
第6章_数据结构习题题目及答案_树和二叉树_参考答案
一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。
【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。
【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。
本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。
虽然解法也对,但步骤多且复杂,极易出错。
6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。
【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。
6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。
【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。
若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。
6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。
数据结构与算法第六章课后答案第六章 树和二叉树
第6章 树和二叉树(参考答案)6.1(1)根结点a6.2三个结点的树的形态: 三个结点的二叉树的形态:(1) (1) (2) (4) (5)6.3 设树的结点数是n ,则n=n0+n1+n2+……+nm+ (1)设树的分支数为B ,有n=B+1n=1n1+2n2+……+mnm+1 (2)由(1)和(2)有:n0=n2+2n3+……+(m-1)nm+16.4(1) k i-1 (i 为层数)(2) (n-2)/k+1(3) (n-1)*k+i+1(4) (n-1)%k !=0; 其右兄弟的编号 n+16.5(1)顺序存储结构注:#为空结点6.6(1) 前序 ABDGCEFH(2) 中序 DGBAECHF(3) 后序 GDBEHFCA6.7(1) 空二叉树或任何结点均无左子树的非空二叉树(2) 空二叉树或任何结点均无右子树的非空二叉树(3) 空二叉树或只有根结点的二叉树6.8int height(bitree bt)// bt是以二叉链表为存储结构的二叉树,本算法求二叉树bt的高度{ int bl,br; // 局部变量,分别表示二叉树左、右子树的高度if (bt==null) return(0);else { bl=height(bt->lchild);br=height(bt->rchild);return(bl>br? bl+1: br+1); // 左右子树高度的大者加1(根) }}// 算法结束6.9void preorder(cbt[],int n,int i);// cbt是以完全二叉树形式存储的n个结点的二叉树,i是数// 组下标,初始调用时为1。
本算法以非递归形式前序遍历该二叉树{ int i=1,s[],top=0; // s是栈,栈中元素是二叉树结点在cbt中的序号 // top是栈顶指针,栈空时top=0if (n<=0) { printf(“输入错误”);exit(0);}while (i<=n ||top>0){ while(i<=n){visit(cbt[i]); // 访问根结点if (2*i+1<=n) s[++top]=2*i+1; //若右子树非空,其编号进栈i=2*i;// 先序访问左子树}if (top>0) i=s[top--]; // 退栈,先序访问右子树} // END OF while (i<=n ||top>0)}// 算法结束//以下是非完全二叉树顺序存储时的递归遍历算法,“虚结点”用‘*’表示void preorder(bt[],int n,int i);// bt是以完全二叉树形式存储的一维数组,n是数组元素个数。
数据结构考研试题精选及答案第6章 树和二叉树答案
第6章树和二叉树部分答案解释如下。
12. 由二叉树结点的公式:n=n0+n1+n2=n0+n1+(n0-1)=2n0+n1-1,因为n=1001,所以1002=2n0+n1,在完全二叉树树中,n1只能取0或1,在本题中只能取0,故n=501,因此选E。
42.前序序列是“根左右”,后序序列是“左右根”,若要这两个序列相反,只有单支树,所以本题的A和B均对,单支树的特点是只有一个叶子结点,故C是最合适的,选C。
A或B 都不全。
由本题可解答44题。
47. 左子树为空的二叉树的根结点的左线索为空(无前驱),先序序列的最后结点的右线索为空(无后继),共2个空链域。
52.线索二叉树是利用二叉树的空链域加上线索,n个结点的二叉树有n+1个空链域。
部分答案解释如下。
6.只有在确定何序(前序、中序、后序或层次)遍历后,遍历结果才唯一。
19.任何结点至多只有左子树的二叉树的遍历就不需要栈。
24. 只对完全二叉树适用,编号为i的结点的左儿子的编号为2i(2i<=n),右儿子是2i+1(2i+1<=n)37. 其中序前驱是其左子树上按中序遍历的最右边的结点(叶子或无右子女),该结点无右孩子。
38 . 新插入的结点都是叶子结点。
42. 在二叉树上,对有左右子女的结点,其中序前驱是其左子树上按中序遍历的最右边的结点(该结点的后继指针指向祖先),中序后继是其右子树上按中序遍历的最左边的结点(该结点的前驱指针指向祖先)。
44.非空二叉树中序遍历第一个结点无前驱,最后一个结点无后继,这两个结点的前驱线索和后继线索为空指针。
三.填空题1.(1)根结点(2)左子树(3)右子树2.(1)双亲链表表示法(2)孩子链表表示法(3)孩子兄弟表示法3.p->lchild==null && p->rchlid==null 4.(1) ++a*b3*4-cd (2)18 5.平衡因子6. 97. 128.(1)2k-1 (2)2k-19.(1)2H-1 (2)2H-1(3)H=⎣log2N⎦+110. 用顺序存储二叉树时,要按完全二叉树的形式存储,非完全二叉树存储时,要加“虚结点”。
第6-10章 树和二叉树--答案
第6章树和二叉树一、基础知识题1.列出右图所示二叉树的叶结点、分支结点和每个结点的层次。
[解答]二叉树的叶结点有⑥、⑧、⑨。
分支结点有①、②、③、④、⑤、⑦。
结点①的层次为0;结点②、③的层次为1;结点④、⑤、⑥的层次为2;结点⑦、⑧的层次为3;结点⑨的层次为4。
2.使用(1)顺序表示和(2)二叉链表表示法,分别画出右图所示二叉树的存储表示。
[解答](1)顺序表示(2)二叉链表表示3.在结点个数为n(n>1)的各棵树中,高度最小的树的高度是多少?它有多少个叶结点?多少个分支结点?高度最大的树的高度是多少?它有多少个叶结点?多少个分支结点?[解答]结点个数为n时,高度最小的树的高度为1,有2层;它有n-1个叶结点,1个分支结点;高度最大的树的高度为n-1,有n层;它有1个叶结点,n-1个分支结点。
4.试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。
[解答]具有3个结点的树具有3个结点的二叉树5.如果一棵树有n1个度为1的结点,有n2个度为2的结点,…,n m个度为m的结点,试问有多少个度为0的结点?试推导之。
[解答]总结点数n=n0+n1+n2+…+n m总分支数e=n-1= n0+n1+n2+…+n m-1=m×n m+(m-1)×n m-1+…+2×n2+n1则有 n 0=∑=+-mi i n i 21))1((6.试分别找出满足以下条件的所有二叉树:(1) 二叉树的前序序列与中序序列相同; (2) 二叉树的中序序列与后序序列相同; (3) 二叉树的前序序列与后序序列相同。
[解答](1) 二叉树的前序序列与中序序列相同:空树或缺左子树的单支树;(2) 二叉树的中序序列与后序序列相同:空树或缺右子树的单支树; (3) 二叉树的前序序列与后序序列相同:空树或只有根结点的二叉树。
7.填空题(1)对于一棵具有n 个结点的树,该树中所有结点的度数之和为 n-1 。
数据结构树和二叉树习题及答案
数据结构树和二叉树习题及答案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#习题六树和二叉树一、单项选择题1.以下说法错误的是 ( )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构E.任何只含一个结点的集合是一棵树2.下列说法中正确的是 ( )A.任何一棵二叉树中至少有一个结点的度为2B.任何一棵二叉树中每个结点的度都为2C.任何一棵二叉树中的度肯定等于2D.任何一棵二叉树中的度可以小于23.讨论树、森林和二叉树的关系,目的是为了()A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储C.将树、森林转换成二叉树D.体现一种技巧,没有什么实际意义4.树最适合用来表示 ( )A.有序数据元素 B.无序数据元素C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。
与森林F对应的二叉树根结点的右子树上的结点个数是()。
A.M1 B.M1+M2 C.M3 D.M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是()A. 250 B. 500 C.254 D.505 E.以上答案都不对8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( )A.不确定 B.2n C.2n+1 D.2n-19.二叉树的第I层上最多含有结点数为()A.2I B. 2I-1-1 C. 2I-1 D.2I -110.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+111. 利用二叉链表存储树,则根结点的右指针是()。
数据结构第六章考试题库(含答案)
第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DE D. -+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D 3. 设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是( ) 【南京理工大学1999 一、20(2分)】 A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D .8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是( )【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换; ④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A .①②③B .②③④C .②④D .①④6. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( )A .m-nB .m-n-1C .n+1D .条件不足,无法确定 【南京理工大学2000 一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T 。
其余结点分成为m (m>0)个((2))的集合T1,T2, …,Tm ,每个集合又都是树,此时结点T 称为Ti 的父结点,Ti 称为T 的子结点(1≤i ≤m )。
《数据结构》习题集:第6章_树和二叉树
第6章树和二叉树一、选择题1.有一“遗传”关系,设x是y的父亲,则x可以把它的属性遗传给y,表示该遗传关系最适合的数据结构是()A、向量B、树C、图D、二叉树2.树最适合用来表示()A、有序数据元素B、元素之间具有分支层次关系的数据C、无序数据元素D、元素之间无联系的数据3.树B 的层号表示为1a,2b,3d,3e,2c,对应于下面选择的()A、1a(2b(3d,3e),2c)B、a(b(D,e),c)C、a(b(d,e),c)D、a(b,d(e),c)4.对二叉树的结点从1 开始连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,则可采用()次序的遍历实现二叉树的结点编号。
A、先序B、中序C、后序D、从根开始按层次遍历5.按照二叉树的定义,具有3 个结点的二叉树有()种。
A、3B、4C、5D、66.在一棵有n个结点的二叉树中,若度为2的结点数为n2,度为1的结点数为n1,度为0的结点数为n0,则树的最大高度为(),其叶结点数为();树的最小高度为(),其叶结点数为();若采用链表存储结构,则有()个空链域。
log+1 C、log2n D、nA、n/2B、⎣⎦n2E、n0+n1+n2F、n1+n2G、n2+1H、1I、n+1 J、n1K、n2L、n1+17.对一棵满二叉树,m 个树叶,n 个结点,深度为h,则()A、n=m+hB、h+m=2nC、m=h-1D、n=2h-18.设高度为h 的二叉树中只有度为0 和度为2 的结点,则此类二叉树中所包含的结点数至少为(),至多为()。
A、2hB、2h-1C、2h-1D、2h-19.在一棵二叉树上第5 层的结点数最多为()(假设根结点的层数为1)A、8B、16C、15D、3210.深度为5 的二叉树至多有()个结点。
A、16B、32C、31D、1011.一棵有124 个叶结点的完全二叉树,最多有()个结点A、247B、248C、249D、25012.含有129 个叶子结点的完全二叉树,最少有()个结点A、254B、255C、256D、25713.假定有一棵二叉树,双分支结点数为15,单分支结点数为30,则叶子结点数为()个。
数据结构课后习题(第6章)
【课后习题】第6章树和二叉树网络工程2010级()班学号:姓名:一、填空题(每空1分,共16分)1.从逻辑结构看,树是典型的。
2.设一棵完全二叉树具有999个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个度为1的结点。
3.由n个权值构成的哈夫曼树共有个结点。
4.在线索化二叉树中,T所指结点没有左子树的充要条件是。
5.在非空树上,_____没有直接前趋。
6.深度为k的二叉树最多有结点,最少有个结点。
7.若按层次顺序将一棵有n个结点的完全二叉树的所有结点从1到n编号,那么当i为且小于n时,结点i的右兄弟是结点,否则结点i没有右兄弟。
8.N个结点的二叉树采用二叉链表存放,共有空链域个数为。
9.一棵深度为7的满二叉树有___ ___个非终端结点。
10.将一棵树转换为二叉树表示后,该二叉树的根结点没有。
11.采用二叉树来表示树时,树的先根次序遍历结果与其对应的二叉树的遍历结果是一样的。
12.一棵Huffman树是带权路径长度最短的二叉树,权值的外结点离根较远。
二、判断题(如果正确,在对应位置打“√”,否则打“⨯”。
每题0.5分,共5分)1.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i-1个结点。
2.二叉树的前序遍历并不能唯一确定这棵树,但是,如果我们还知道该二叉树的根结点是那一个,则可以确定这棵二叉树。
3.一棵树中的叶子结点数一定等于与其对应的二叉树中的叶子结点数。
4.度≤2的树就是二叉树。
5.一棵Huffman树是带权路径长度最短的二叉树,权值较大的外结点离根较远。
6.采用二叉树来表示树时,树的先根次序遍历结果与其对应的二叉树的前序遍历结果是一样的。
7.不存在有偶数个结点的满二叉树。
8.满二叉树一定是完全二叉树,而完全二叉树不一定是满二叉树。
9.已知二叉树的前序遍历顺序和中序遍历顺序,可以惟一确定一棵二叉树;10.已知二叉树的前序遍历顺序和后序遍历顺序,不能惟一确定一棵二叉树;三、单项选择(请将正确答案的代号填写在下表对应题号下面。
数据结构课后习题答案第六章
欢迎下载
6
-
9.已知信息为“ ABCD BCD CB DB ACB ”,请按此信息构造哈夫曼树,求出每一字符的最优编码。 10. 己知中序线索二叉树采用二叉链表存储结构,链结点的构造为:
_,双分支结点的个数为 ____, 3 分支结点的个数为 ____, C 结点的双亲结点为 ____ ,其孩子结点为 ____。
5. 一棵深度为 h 的满 k 叉树有如下性质:第 h 层上的结点都是叶子结点,其余各层上的每个结点都有
k 棵非空子树。
如果按层次顺序(同层自左至右)从 1 开始对全部结点编号,则:
7.二叉树的遍历分为 ____ ,树与森林的遍历包括 ____。 8.一棵二叉树的第 i(i>=1) 层最多有 ____ 个结点;一棵有 n(n>0) 个结点的满二叉树共有 ____ 个叶子和 ____个非终端结点。
9.在一棵二叉树中,假定双分支结点数为 5 个,单分支结点数为 6 个,则叶子结点为 ____个。
A. 逻辑 B.逻辑和存储 C.物理 D.线性 19.由权值分别是 8,7, 2, 5 的叶子结点生成一棵哈夫曼树,它的带权路径长度为
A. 23 B. 37 C. 46 D. 43 20.设 T 是哈夫曼树,具有 5 个叶结点,树 T 的高度最高可以是 ( )。
A.2 B . 3 C. 4 D. 5
()
6.在叶子数目和权值相同的所有二叉树中,最优二叉树一定是完全二叉树。
()
7.由于二叉树中每个结点的度最大为 2,所以二叉树是一种特殊的树。 8.二叉树的前序遍历序列中,任意一个结点均处在其子树结点的前面。
数据结构复习题-第6章答案2014-6-16
第6章树和二叉树一、选择题(每小题1分,共10分)1.以下数据结构中,( A )是非线性数据结构。
A.树B.线性表C.队列D.栈2.在一棵二叉树中第五层上的结点数最多为( B )。
A.8B.15C.16D.323. 已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为( A )。
A. CBEFDAB. FEDCBAC. CBEDFAD. 不定4.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是( B )。
A.9B.11C.15D.不确定5.给定二叉树如图所示。
设N代表二叉树的根,L代表根结点的左子树,R代表根结点的右子树。
若遍历后的结点序列为3,7,5,6,1,2,4,则其遍历方式是(D )。
A. LRNB. NRLC. RLND. RNL6.在下列存储形式中,哪一个不是树的存储形式?( D )A.双亲表示法B.孩子表示法C.孩子兄弟表示法D.顺序存储表示法7.有n个叶子的哈夫曼树的结点总数为(D )。
A.不确定B.2n C.2n+1 D.2n-18.设i为n个结点的完全二叉树结点编号,i=1,2,3...n;若i≤(n-1)/2时,结点i的右孩子为( B )A.2iB.2i+1C.2i-1D.i+19. 由分别带权为9、2、5、7的四个叶子结点构造一棵哈夫曼树,该树的带权路径长度为( C )。
A.23B.37C.44D.4610.一棵具有n个结点的完全二叉树的树高度(深度)是( A )。
A. +1B. log2n+1C.D. log2n-111.由权值分别为7,9,4,2,5的叶子结点生成一棵哈夫曼树,它的带权路径长度为( B )。
A.36B.60C.48D.5312.由权值分别为11,8,6,2,5的叶子结点生成一棵哈夫曼树,它的带权路径长度为( B )。
A. 24B. 71C. 48D. 5313.具有35个结点的完全二叉树的深度为( B )。
树和二叉树-第6章-《数据结构题集》习题解析-严蔚敏吴伟民版
树和⼆叉树-第6章-《数据结构题集》习题解析-严蔚敏吴伟民版习题集解析部分第6章树和⼆叉树——《数据结构题集》-严蔚敏.吴伟民版源码使⽤说明链接☛☛☛课本源码合辑链接☛☛☛习题集全解析链接☛☛☛相关测试数据下载链接☛本习题⽂档的存放⽬录:数据结构\▼配套习题解析\▼06 树和⼆叉树⽂档中源码的存放⽬录:数据结构\▼配套习题解析\▼06 树和⼆叉树\▼习题测试⽂档-06源码测试数据存放⽬录:数据结构\▼配套习题解析\▼06 树和⼆叉树\▼习题测试⽂档-06\Data⼀、基础知识题6.1❶已知⼀棵树的集合为{<I, M>, <I, N>, <E, I>, <B, E>, <B, D>, <A, B>, <G, J>, <G, K>, <C, G>, <C, F>, <H, L>, <C, H>, <A, C>},请画出这棵树,并回答下列问题:(1)哪个是根结点?(2)哪些是叶⼦节点?(3)哪个是结点G的双亲?(4)哪些是结点G的祖先?(5)哪些是结点G的孩⼦?(6)哪些是结点E的⼦孙?(7)哪些是结点E的兄弟?哪些是结点F的兄弟?(8)结点B和N的层次号分别是什么?(9)树的深度是多少?(10)以结点C为根的⼦树的深度是多少?6.2❶⼀棵度为2的树与⼀棵⼆叉树有何区别?6.3❶试分别画出具有3个结点的树和3个结点的⼆叉树的所有不同形态。
6.4❸⼀棵深度为H的满k叉树有如下性质:第H层上的结点都是叶⼦结点,其余各层上每个结点都有k棵⾮空⼦树。
如果按层次顺序从1开始对全部结点编号,问:(1)各层的结点数⽬是多少?(2)编号为p的结点的⽗结点(若存在)的编号是多少?(3)编号为p的结点的第i个⼉⼦结点(若存在)的编号是多少?(4)编号为p的结点有右兄弟的条件是什么?其右兄弟的编号是多少?6.5❷已知⼀棵深度为k的树中有n1个度为1的结点,n2个度为2的结点,…,nk个度为k的结点,问该树中有多少个叶⼦结点?6.6❸已知在⼀棵含有n个结点的树中,只有度为k的分⽀结点和度为0的叶⼦结点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数据结构》期末复习题及参考答案 - 第6章 树和二叉树一、 选择题1、在二叉树的第I 层(I≥1)上最多含有结点数为( )A. 2IB. 2I-1-1C. 2I-1D. 2I -12、深度为6的二叉树最多有( )个结点A .64 B.63 C.32 D.313、一棵树高为K 的完全二叉树至少有( )个结点A.2k –1B.2k-1 –1C.2k-1D.2 k4、有关二叉树下列说法正确的是( )A. 二叉树的度为2B. 一棵二叉树的度可以小于2C. 二叉树中至少有一个结点的度为2D. 二叉树中任何一个结点的度都为25、n 个结点的线索二叉树上含有的线索数为( )A. 2nB. n -lC. n +lD. n6、线性表和树的结构区别在于( )A .前驱数量不同,后继数量相同B .前驱数量相同,后继数量不同C .前驱和后继的数量都相同D .前驱和后继的数量都不同7、已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,则其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DE D. -+A*BC/DE8、设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是( )A. A*B+C/(D*E)+(F-G)B. (A*B+C)/(D*E)+(F-G)9、一棵具有 n 个结点的完全二叉树的树高度(深度)(符号⎣⎦x 表示取不大于x 的最大整数)是( )10、利用二叉链表存储树,则根结点的右指针是()。
11、已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为()。
12、某二叉树中序序列为A,B,C,D,E,F,G,后序序列为B,D,C,A,F,G,E 则前序序列是:A.E,G,F,A,C,D,B B.E,A,C,B,D,G,F C.E,A,G,C,F,B,D D.上面的都不对13、若前序遍历二叉树的结果为序列A、B、C,则有_________棵不同的二叉树可以得到这一结果。
A. 3B. 4C. 5D. 614、已知某二叉树的后序遍历序列是dabec, 中序遍历序列是debac , 则它的前序遍历是()。
A. acbedB. decabC. deabcD. cedba15、线索二叉树是一种()结构。
A.逻辑B.逻辑和存储C.物理D.线性二、填空题1、对于任意一棵二叉树,如果其叶子结点数为N0,度为1的结点数为N1,度为2的结点数为N2,则N0=___ N2 + 1_________。
4、深度为H 的完全二叉树至少有_ 2__个结点;至多有2-1_个结点;H和结点总数N10、下面程序段的功能是建立二叉树的算法,请在下划线处填上正确的内容。
typedef struct node{ int data;struct node *lchild;_struct node *rchild __;} BiTNode, *BiTree;void createBitree(BiTree &T){ scanf(―%c‖, &ch);if(ch=='#')T=NULL ;else{ T=( BiTNode *)malloc(sizeof(BiTNode));T->data=ch;createBitree(T->lchild);___createBitree(T->rchild);}}15、树的孩子兄弟表示法和二叉树的二叉链表表示法,本质是一样的,只是解释不同,也就是说树(树是森林的特例,即森林中只有一棵树的特殊情况)可用二叉树唯一表示,并可使用二叉树的一些算法去解决树和森林中的问题。
16、树和二叉树逻辑上都是树形结构,但是二叉树不是树的特例,二叉树与树是两个不同的概念。
二叉树的度至多为2,树无此限制;二叉树有左右子树之分,即使在只有一个分枝的情况下,也必须指出是左子树还是右子树,树无此限制。
三、简答题1、已知一棵二叉树的前序遍历的结果是ABKCDFGHIJ,中序遍历的结果是KBCDAFHIGJ, 试画出这棵二叉树,并写出后序遍历结果。
答案:当前序序列为ABKCDFGHIJ,中序序列为KBCDAFHIGJ时,逐步形成二叉树的过程如下图所示:这棵二叉树的后序遍历结果是:K D C B I H J G F A2、某通信电文由A、B、C、D、E、F六个字符组成,它们在电文中出现的次数(权值)分别是16,5,7,3,8,1。
试画出其哈夫曼树,确定其对应的哈夫曼编码,并计算其带权路径长度。
为使结果唯一,请将权值较小的结点作为其双亲的左孩子,而将权值较大的结点作为其双亲的右孩子。
答案:哈夫曼树如下:对应的哈夫曼编码如下:A: 0B: 101C: 110D: 1001E: 111F: 1000带权路径长度为: WPL=(1+3)*4+(5+7+8)*3+16*1=923、对下图所示二叉树分别按前序﹑中序﹑后序遍历,给出相应的结点序列,同时给二叉树加上中序线索。
答案:(1)前序序列:ABDEHCFG (2)中序序列:DHEBAFCG (3)后序序列:HEDBFGCA(4)中序线索见图中虚线箭头所示。
四、算法分析题1、已知二叉树的存储结构为二叉链表,阅读下面算法,之后,对于如下所示的二叉树:(1)画出执行下面算法后所建立的结构;(2)说明该算法的功能。
typedef struct node {DateType data ;Struct node * next ;}ListNode ;typedef ListNode * LinkList ;LinkList Leafhead = NULL ;void Inorder ( BinTree T ){LinkList s ;If(T) { Inorder(T ->lchild);If ((!T ->lchild)&&(!T ->rchild)){ s=(ListNode*)malloc(sizeof(ListNode));s ->data=T ->data ;s ->next=Leafhead ;Leafhead=s;}Inorder(T->rchild);}}答案:2、已知二叉树中的结点类型BinTreeNode定义为:struct BinTreeNode{ ElemType data;BinTreeNode *left, *right;};其中data为结点值域,left和right分别为指向左、右孩子结点的指针域。
下面函数的功能是从二叉树BT中查找值为x的结点,若查找成功则返回结点地址,否则返回空。
按标号填写空缺的内容,要求统一填写在算法后面的标记处。
BinTreeNode* BTF(BinTreeNode* BT,ElemType x){if(BT==NULL) _ return NULL __;else { if(BT->data==x) _ return BT _;else { BinTreeNode* t;if(t=BTF(BT->left, x)) return t;___ if(t=BTF(BT->right, x)) return t _____;return NULL;}}}3、由二叉树的前序序列和中序序列能否唯一确定一棵二叉树?由二叉树的中序序列和后序序列能否唯一确定一棵二叉树?由二叉树的前序序列和后序序列能否唯一确定一棵二叉树?请分别进行论述。
答案:(1)给定二叉树结点的前序序列和中序序列,可以唯一确定该二叉树。
因为前序序列的第一个元素是根结点,该元素将二叉树中序序列分成两部分,左边(设l个元素)表示左子树,若左边无元素,则说明左子树为空;右边(设r个元素)是右子树,若为空,则右子树为空。
根据前序遍历中―根—左子树—右子树‖的顺序,则由从第二元素开始的l个结点序列和中序序列根左边的l个结点序列构造左子树,由前序序列最后r个元素序列与中序序列根右边的r个元素序列构造右子树。
(2)由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。
证明如下:当n=1时,只有一个根结点,由中序序列和后序序列可以确定这棵二叉树。
设当n=m-1时结论成立,现证明当n=m时结论成立。
设中序序列为S1,S2,…,Sm,后序序列是P1,P2,…,Pm。
因后序序列最后一个元素Pm是根,则在中序序列中可找到与Pm相等的结点(设二叉树中各结点互不相同)Si(1≤i≤m),因中序序列是由中序遍历而得,所以Si是根结点,S1,S2,…,Si-1是左子树的中序序列,而Si+1,Si+2,…,Sm是右子树的中序序列。
若i=1,则S1是根,这时二叉树的左子树为空,右子树的结点数是m-1,则{S2,S3,…,Sm}和{P1,P2,…,Pm-1}可以唯一确定右子树,从而也确定了二叉树。
若i=m,则Sm是根,这时二叉树的右子树为空,左子树的结点数是m-1,则{S1,S2,…,Sm-1}和{P1,P2,…,Pm-1}唯一确定左子树,从而也确定了二叉树。
最后,当1<i<m时,Si把中序序列分成{S1,S2,…,Si-1}和{Si+1,Si+2,…,Sm}。
由于后序遍历是―左子树—右子树—根结点‖,所以{P1,P2,…,Pi-1}和{Pi,Pi+1,…Pm-1}是二叉树的左子树和右子树的后序遍历序列。
因而由{S1,S2,…,Si-1}和{P1,P2,…,Pi-1}可唯一确定二叉树的左子树,由{Si+1,Si+2,…,Sm}和{Pi,Pi+1,…,Pm-1}可唯一确定二叉树的右子树。
(3)由二叉树的前序序列和后序序列不能唯一确定一棵二叉树。
因为无法确定左右子树两部分。
例如,任何结点只有左子树的二叉树和任何结点只有右子树的二叉树,其前序序列相同,后序序列相同,但却是两棵不同的二叉树。
五、算法描述题试写出复制一棵二叉树的递归函数的算法。
BiTree Copy(BiTree t)//复制二叉树t{ BiTree bt;if (t==null) bt=null;else{ bt=(BiTree)malloc(sizeof(BiNode));bt->data=t->data;bt->lchild=Copy(t->lchild);bt->rchild=Copy(t->rchild);}return(bt);}。