地质导向[优质ppt]

合集下载

水平钻井地震地质实时导向 PPT

水平钻井地震地质实时导向 PPT

大家好
12
2、速度谱数据建立速度体
Datum 地震基准面(120m)
基准面校正
钻井平台
Depth
KB 钻井补心高 TVD
MSL 平均海平面(0m)
MD
地表
Datum CMP面
TVDSS
Depth: 井深度 1836m TVD: 垂直深度 1756m TVDSS: 平均海平面下
垂直深度 -1716m MD: 测量深度 2276m KB: 补心海拔 40m
大家好
4
GeoEast 创新研发了水平钻井地震地质实时导向技术,该技术由设计导向与入靶导向 两部分构成,将地震资料应用到水平井设计和入靶点预测,结合地质、测井等资料,提高了 入靶精度和油层钻遇率,同时提高了工作效率。
Entry Point 误差 --1667.27 2.06 -1702.98 2.04 -1750.93 0.7 -1774.92 0.61 -1783.11 0.58
攻关以后 GeoEast
1个
耗时 10分钟 7分钟 1分钟 2分钟 0分钟 5分钟 25分钟
2016年首次利用该软件进行茂204-平2井现场跟踪(工区面积35km2),有效的提高了入
靶精度,提高了现场实施数据更新效率,GeoEast水平井模块相比之前,工作效率提高5倍。
大家好
6
总体思路
GeoEast基于标志层倒三角逐层逼近法,通过速度场校正进行的地震地质导向水平井井轨迹
b、选择层位
大家好
20
3、井时深曲线数据建立速度体
c、选择井时深曲线
d、创建速度体
Wells and Logs Velocity or Q
T-D
大家好
21

随钻测井及地质导向钻井技术 ppt课件

随钻测井及地质导向钻井技术  ppt课件
换言之,地质导向就是使用随钻测量数据和随钻地层 评价测井数据来控制井眼轨迹的钻井技术。它以井下实际 地质特征来确定和控制井眼轨迹,而不是按预先设计的井 眼轨迹进行钻井。
PPT课件
6
地质导向钻井技术
组成
概念
根据地质导向工具提供的井下实时 地质信息和定向数据,辨明所钻遇 的地质环境并预报将要钻遇的地下 情况,引导钻头进入油层并将井眼 轨迹保持在产层延伸。
移定向井、水平井及特殊工艺井中广泛应用。
美国、挪威、英国等国家采用地质导向钻井技术完成的井
数逐年增加,钻井周期逐步缩短,钻井成本明显下降,油田开
发效果明显提高。
PPT课件
5
一、地质导向钻井技术概述
地质导向钻井就是在钻井过程中通过测量多种地质和 工程参数来对所钻地层的地质参数进行实时评价,根据评 价结果来精确地控制井下钻具命中最佳地质目标。

几何导向
井眼准确钻入设计靶区。设计靶区可

能并非储层)

地质导向技术问 世之前,常规的

井眼轨迹控制技
井 技
术均属几何导向 范畴。
以井下实际地质特征来确定和控

地质导向
制井眼轨迹。任务是对准确钻入油气 目的层负责,具有测量、传输和导向
三大功能。
PPT课件
3
一、地质导向钻井技术概述
有线随钻——电缆作为数据传输介质,随钻连续测量
MWD/LWD——钻井液(或电磁波)作为数据传输介质,随钻连续测量
PPT课件
13
都振川
二、随钻测量技术
1、有线随钻测量技术
有线随钻测斜仪是定向井测量仪器中的一种, 它可 在钻井过程中实时测量井斜、方位、工具面和温度等钻 井工程参数。

近钻头地质导向技术交流(丹诺)

近钻头地质导向技术交流(丹诺)

• 3.经济价值明显,前景广阔.
• 在老油田后期开发、提高采收率及油层薄、形状特殊的难采油藏 开采方面具有明显的效果和显著的经济效益,潜力巨大,应用前 景沙 层
实际结果
断层
倾角变化
三.(2)应用实例高8-33平5井
• 由左图可以看出LWD 电磁波电阻率和近钻 头电磁波电阻率误差 为正负3欧姆,井段全 部位于储层中(大于10 欧姆可认为是储层 ),1447-1449米,是阻值 高区,表示此区间的储 层发育比较好
三.(2)应用实例高8-33平5井
近钻头地质导向技 术简介
汇报内容
引言:优秀水平井满足的特点
一、常规实钻水平井技术介绍 二、近钻头地质导向技术介绍
三、现场实际应用效果
四、总结
引言:优秀的水平井应该有以下特点
• 高油藏钻遇率 ( > 90%)
– 增加有效泻油面积,提高水平井产量
• 井眼轨迹位于油藏最佳位置
– 井身定位于物性较好的油藏部分 – 井眼轨迹保持在油水界面安全距离之上 – 进一步提高水平井产量
近钻头方位地质导向服务
• 实时方位密度和中子 (测量井眼上下左右方)
– 实时确认井眼轨迹和地层的关系 – 实时地层倾角计算和更新
及时发现断层
及时发现地层倾角变化
实时密度层像 – 地层倾角计算和更新
近钻头实时井斜测量
更能精确的控制 和优化井眼轨迹
三.(1)现场实际应用效果 Philips China 2002 Jan
• 没有方位性测量 (只靠平均值)
• 存在很大的测量盲区(见下图)。电阻率 探测点距钻头约8~9 m, 伽玛测量点距钻 头约13~15 m,井斜、方位测量点距钻头 约17~21 m。井眼轨迹参数测量相对滞后 ,井底工程数据预测十分困难,无法准确 预计井眼轨迹的走向。

地质导向技术PPT课件

地质导向技术PPT课件
在大位移、大角度井段,仪器难以下放 到井底,需要采用开泵泵冲仪器到井底、 开泵座键等施工工艺。
.
11
地质导向钻井技术
MWD/DWD工作原理 及施工方式
井下仪器随钻具下 到井底,系统进入工 作状态以后,随时可 以根据施工的需要进 行测量或随钻施工。
.
12
地质导向钻井技术
四种信号传输方式 连续波方法
.
2
地质导向钻井技术
60年代初期,ARPS公司和LANE WELLS公 司联合研制出了自然伽玛和电阻率随钻测井仪 器,在有限的几口井中成功投入使用。 由于遥测技术没有发展成熟,井下工具性能 受到限制,钻井工艺落后,该技术没有广泛推 广,但为以后的地质导向钻井技术打下了基础。
.
3
地质导向钻井技术
60年代后期到70年代,人们认识到了测量技 术在钻井工业中的重要地位,开始重点研制井下 测量仪器,先后开发出有线随钻测量仪器(SST) 和无线随钻测量仪器(MWD/DWD)。
.
13
地质导向钻井技术
四种信号传输方式
正脉冲
泥浆正脉冲发生器的针阀与小孔 的相对位置能够改变泥浆流道在此的 截面积,从而引起钻柱内部的泥浆压 力的升高,针阀的运动是由探管编码 的测量数据通过调制器控制电路来实 现。在地面通过连续地检测立管压力 的变化,并通过译码转换成不同的测 量数据。
优点:下井仪器结构简单、尺寸小, 使用操作和维修方便,不需要专门的 无磁钻铤。
第二部分地质导向钻井技术
.
1
地质导向钻井技术
地质导向钻井技术是在导向钻井技术的基础上发展 起来的。
地质导向钻井技术由地质导向仪器和导向工具共同 组成。地质导向仪器和导向工具的每一次发展,都会 带动地质导向钻井技术向新的境界发展。

地质导向原理

地质导向原理

地质导向原理简介地质导向原理是地质学中的一个重要概念,用于研究和解释地球上的各种地质现象和过程。

它是指地质活动和地质现象的发生和演化有其自身的规律性和内在联系,这种规律性和联系可以以一定的方式进行解释和预测。

重要性地质导向原理对于探索和发现矿产资源、理解地球演化、预测地质灾害等具有重要意义。

它可以指导地质勘探工作,提高勘探成功率;可以揭示地质演化的规律,进一步认识地球的历史和未来;可以预测和防范地质灾害,保护人类生命和财产安全。

地质活动和地质现象的规律地壳运动规律•构造运动:地球上的地壳是由地壳板块组成的,并且板块之间存在相对运动。

构造运动包括板块边界的互动、地震、火山喷发等现象。

•岩石运动:地壳中的岩石具有自己的变形和运动规律。

岩石的折叠、褶皱、断裂等运动会导致地质构造的形成。

•地面移动:地壳运动还会导致地表的移动,如地裂缝、滑坡等现象。

岩石变质规律•热变质:高温下,岩石中的矿物质会发生相变,形成新的岩石类型。

热变质主要发生在地壳深部,如火山和岛弧带等地方。

•压力变质:岩石在高压力下,会发生组织和结构的变化。

压力变质主要发生在大型构造地带,如碰撞带和楔前带等地方。

•化学变质:岩石中的矿物质在化学反应的作用下,产生新的成分和结构。

化学变质主要发生在沉积盆地和矿床附近。

地质灾害规律•地震规律:地震主要发生在地壳板块边界,如板块断裂带和板块碰撞带等地方。

地震的频率和强度与构造运动和地表应力的分布有关。

•滑坡规律:滑坡主要发生在斜坡地貌和重力作用较大的地方。

降雨和地质结构的改变是滑坡发生的重要原因。

•泥石流规律:泥石流主要发生在高山地区和降雨充沛的地方。

地质结构的特点和降雨的强度是泥石流发生的关键因素。

地质导向原理的应用矿产资源勘探地质导向原理在矿产资源勘探中起着重要作用。

根据地壳运动和岩石变质规律,勘探人员可以确定矿床的形成过程和特点。

通过研究矿床附近地质体的分布、构造特征和岩石组成,可以找到潜在的矿床富集区域。

地质导向

地质导向

前言水平井作为大幅度提高单井产量和采收率的重要手段越来越多地被应用在油田开发中,特别是在油田开发的后期,如东部公司HZ26-1、HZ21-1等合作油田;近几年,渤海矿区也广泛采用水平井来增加产量,提高经济效益,因为一个采油平台有两口水平井,就足以达到开采一个产层(组)的目的。

水平井可理解为高角度的定向井或近于水平的井,但其真正含意应该是井眼轨迹和产层近于平行的井,并非要水平,这主要取决于目的层的倾角。

水平井段往往被锁定在离目的层顶面一定的距离,以最大限度地提高采收率,减少死油区。

对于薄油层或差油层,水平井段必须位于理想的部位,上下活动幅度很小,只有1-2米,甚至几十公分(图1);即使是厚油层,井眼轨迹也不能在油层内任意穿梭,必须限定某个特定的部位;另一方面,井的轨迹还要随产层的波动而浮动。

渤海矿区为陆相沉积,岩性、岩相及厚度变化较快,油层往往呈组出现,如Ⅰ油组、Ⅱ油组等,每个油组往往由多个单油层组成,这些单层在某些部位相通,而在另一些部位是不相通的,这就要求井眼轨迹只能在最上部的单层顶部,而不能位于其它部位,否则,会造成大块的死油,甚至提前见水,严重降低采收率。

所有这些都使得水平井轨迹趋于复杂化,不再局限在二维平面内,而是三维展布;井眼轨迹越来越难控制,定向难度可想而知(图2)。

完成高难度水平井作业离不开地质导向,它是完成水平井的必须保证。

Schlumberger 的Anadrill和Baker Hughes 的Autotrak公司是两家世界上最著名的地质导向服务公司,目前,被广泛应用在CACT、Phillips及其渤海的某些油田开发中。

地质导向系统可分为井下工具部分和地面部分,包括数据采集、处理和输出等。

这里探讨的主要内容有以下几个方面:地质导向系统,包括设备组成、人员管理、管理和协调;资料的收集整理;目的层位臵的预测,及井眼轨迹的控制;目前存在的问题、解决方法及工作设想。

一地质导向系统简介1 地质导向系统工作界面上图显示的是Anadrill公司的地质导向系统工作界面,类似于Autotrack的工作界面,可实时显示井下工具的工作状态,井眼倾角、方位,实时测井曲线及部分钻井工程参数。

地质导向钻井技术

地质导向钻井技术
国际第三大石油技术服务公司Halliburton目前也不掌握此项 尖端技术,但正在积极进行开发。
Halliburton 现有的 Pathfinder 系统只是 LWD( 随钻测井 ) , 还无近钻头测量短节,当配用螺杆马达时其最下端的传感器 离钻头距离约为 17m ,最上端的传感器距离钻头约 22m ,尚无 法用于地质导向,也不能实现精确的几何导向。
(三) 地质导向与其他几种技术概念间的区别与 联系
4. 随钻测量(MWD)
随钻测量 (Measurement While Drilling) 是在钻井过程 中进行井下信息的实时测量和上传的技术的简称(MWD)
通常意义的 MWD 仪器系统,主要限于对工程参数 ( 井斜,方 位,工具面)的测量 由井下部分 ( 脉冲发生器,驱动电路 , 定向测量探管,井下 控制器,电源等 ) 和地面部分 ( 地面传感器,地面信息处理 和控制系统)组成,以钻井液作为信息传输介质。脉冲发生 器有正脉冲、负脉冲和连续脉冲三种,井下电源可分为电 池和井下涡轮发电机两类 它只是一种测量仪器,而无直接导向钻进的功能
IDEAL 地面综合处理信息系统
卫星通讯
井 场 信 息 系 统 是 IDEAL 系统的中枢,通过结合 所有的地面数据和井下 数据来监测钻井过程。 原始数据由解释程序转 换成井场决策人员所需 信息,并在高分辨率彩 色监控器上以彩图的方 式直观显示,使用方便。
司钻台
地面控制室 用户
(四)
地质导向钻井系统的结构特征
(三) 地质导向与其他几种技术概念间的区别与 联系
1. 地质导向(Geosteering)
地质导向的任务是对准确钻入油气目的层负责,为此,它具有 测量、传输和导向三大功能,具体为:
(1) 近钻头测量参数(电阻率、自然伽玛)和工程参数(井斜角)测 量; (2) 用随钻测量仪器(MWD)或随钻测井仪器(LWD)作为信息传输通 道,把所测的井下信息(部分)传至地面处理系统,作为导向决 策的依据;

地质导向钻井技术

地质导向钻井技术
地质导向钻井技术
Compan.地质导向钻井的钻具组成
3.地质导向钻井的工作原理 4.地质导向钻井的施工工艺
5.地质导向钻井的优缺点
Company Logo
一.地质导向钻井技术的发展
1.地质导向钻井的定义:
在定向钻井作业的同时,能实时测量地层参数和井眼 轨迹,并能绘制各种测井曲线的一种钻井技术。
Company Logo
一.地质导向钻井技术的发展
导向钻井 技术 地质导向 钻井技术 旋转导向 钻井技术 闭环 钻井技术
导向 仪器 有 线 随 钻 ( 我 国 ) 无 线 随 钻 MWD
导向 工具 井 下 动 力 钻 具
导向 仪器 FEWD
导向 工具 井 下 动 力 钻 具
导向 仪器 FEWD/MWD
Company Logo
二.地质导向钻井的钻具组成
地质导向仪器由MWD和能够测量地质参数的地质传感器共同 组成。MWD仪器和导向钻井技术的MWD通用,主要用来测量工程 参数、采集各地质参数并将工程、地质参数按一定的格式编码 后,向地面发射这些测量数据。 目前用于地质导向的测井仪器包括自然伽玛测井仪、电阻 率测井仪、岩层密度测井仪、中子孔隙度测井仪、声波测井仪、 井径测井仪、地层压力/温度测井仪等。
井下地质导向仪器LWD
将根据要求组装的井下地质仪器和MWD连接,随钻具下入井底。系统进入 工作状态后,井下地质仪器开始测量地质参数,井下MWD探管测量工程参 数并根据预先设置的工作方式采集地质仪器测量到的地质参数,按一定 的格式编码后,控制脉冲发生器向地面以泥浆脉冲信号或电磁波的形式 发送。地面信号检波器将检测到的井下信号经信号过滤传输系统传输到 地面数据处理系统。地面数据处理系统对井下信号进行解码、处理、计 算后,得到实际的井下模拟数据,并将该数据与深度追踪系统测量到的 深度一一映射对应后存储,根据用户的指令进行打印、绘图、向地面数 据显示系统(司钻阅读器)发送,从而完成了地质导向实时测量任务。

地质导向

地质导向

6、设计和优化井眼轨道剖面; 7、确定目的层内井眼合适位置的允许误差及风险; 8、完成钻井评估/完井计划; 9、开钻,将垂直井段钻至造斜点并进行初始定向钻井; 10、进行地质对比和目标控制; 11、需要时在最后的造斜段调整井眼轨迹剖面; 12、使钻头准确定位于水平井入口点处; 13、监测大斜度井段的轨迹及导向能力; 14、确定钻头的前探距离及预测异常情况的位置; 15、对地质上的意外情况采取补救方法,必要时采取绕障法或做出 侧钻决策; 16、用关于井眼稳定性风险评价的最新资料来有效地确定总井深; 17、根据达到的设计目标或已钻井段中所遇到的不可接受的风险 值来确定总井深。
偏置机构(执行机构)
可伸缩的翼肋结构 导 向 力 液压活塞机构
方向
导向力方向与翼肋 伸出方向相反
工作原理
偏置机构(执行机构)
导向力大小方向与接触象限有关
接触力
导向力
Fk F0 sin 0 0
1 2 F0 d ( Pi Po ) 4
(0 0 )
工作原理
以上六个环节中,井下随钻测量和井下自动控制是关键环节, 同时也是关键技术,二者结合起来实际上是井眼轨迹自动控制技 术。
2、导向钻井
导向钻井实际就是井眼 轨迹控制问题,无论是常规 直井或特殊工艺井,都需要 井眼轨迹控制。直井需要防 斜打直,定向井需要按设计 井眼轨道控制钻头钻进的轨 迹。传统的导向钻井(即井 眼轨迹控制)是由井下导向 工具配以适当的钻井参数来 实现的,自动导向钻井是由 井下计算机根据随钻采集的 参数自动控制导向工具来实 现的。
自动导向钻井技术简介
周广陈
中国石油大学石油工程学院
主要内容
• • • • • 概述 导向方式 导向工具 地质导向 自动垂直钻井 系统 • 自动导向钻井 的关键技术

《斯伦贝谢地质导向》课件

《斯伦贝谢地质导向》课件
测井技术
对井筒内岩层进行物理参数测量,如密度、电阻率等参数,获得岩层信息。
地球物理学
通过引入外部能源,如电磁波、重力场等,研究物理场参数随时间空间变化的规律。
地质导向应用
1 油气勘探开发
通过地质导向技术,可以 更准确的评估油气资源储 量,制定更科学的开发方 案。
2 地下水勘探
通过地质导向技术,可以 更准确地判断地下水分布 和地下水资源量,为水资 源的开发提供依据。
数据处理与解读能力
采用高效的数据处理算法和自 主研发的数据解释流程,提高 了数据处理效率和解读准确性。
先进仪器设备
引进了多款先进的测井设备、 实验室分析仪器和数据处理软 件,为技术创新提供基础保障。
行业发展趋势
1
行业现状
全球油气探采技术不断升级和改进,需求不断增长,市场规模不断扩大。
2
未来发展趋势
3 地址勘探与开发
通过地质导向技术,可以 更准确地了解土地内部构 造、建筑物地基条件等信 息,制定更合理的地址规 划和建筑方案。
Slumberger的地质导向产品与服务
地震前处理与成像
井下测井
使用地震勘探技术,获取岩层结构信息和成像图像, 为后续勘探提供基础数据。
通过下井插入测井仪器,获取油气储藏层的物理特 征和储层信息。
《斯伦贝谢地质导向》 PPT课件
本课件介绍了斯伦贝谢公司在地质导向方面的技术能力和行业应用,并展示 了该领域的发展趋势。
概述
Slumberger成立于1926年,是一家全球领先的油气勘探技术与设备供应商。地质导向是判断井下岩性结构和识 别资源分布的技术手段。
地质导向技术
地震勘探
利用声波在岩层中传播的物理原理,获取岩层结构信息。

地质导向技术介绍_Final_Client_New

地质导向技术介绍_Final_Client_New
Motor来自Add Flt sub: 1.22m
近钻头电阻率4.8m 近钻头井斜9.9m 侧向电阻率以及电阻率成像10.3m MicroScope伽玛11.7m 感应电阻率16.1米 方位井斜17.67m
优点:
IMPulse伽玛18.28m
1)侧向电阻率成像实时拾取地层倾角变化进行精确地质导向、裂缝评价; 2) 近钻头测量进行实时评价储层岩性及构造变化;
17
地质导向关键测量技术(2)近钻头孔隙度及早确定物性
EcoScope 常规LWD
中子密度距钻头10米以内; 比传统技术缩短了14米
提前发现穿层,及早采取导向措施 低孔地层
14米
近钻头孔隙度
传统技术
中子密度 孔隙度
中子密度 孔隙度
高孔地层 提前发现横向变化,及早采取地质决策 高孔地层
低孔地层
存在侧钻风险
Cap rock
Reservoir Shale or Water Zone
22 1/4/2016
PeriScope_经典组合
TeleScope
PeriScope
PD X6
Bit
GR, 2.19m D&I survey, Gamma Ray, 10.29m 2.44m Multi-Depth Resistivity, 12..01m D & I Survey, 18.32m
传统技术 近钻头孔隙度
在低孔渗储层, 提供最早的地质导向决策依据
18
岩性油藏地质导向测量经典组合推荐
(最佳地质导向及储层评价方案)
MWD LWD
定向工具
简单的钻具组合: “一支MWD工具,一支LWD工具,一支定向工具” 最有效的地质导向组合: 1) 全部测量整体靠近钻头,尤其是“孔隙度”测井更靠近钻头; 2) 具有随钻成像资料,实时判断分析构造变化,调整轨迹; 最全的测井组合:提供“伽马,电阻率,中子,密度,井径,光电指数,ECS能谱,西格玛”等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、旋转导向工具
旋转式导向工具是在钻柱旋转的情况下实现自动的连续的钻 头轨迹控制,从而避免了钻柱躺在井壁上滑动,使井眼得到很好 的清洗,同时允许根据地层选择合适的钻头类型,这样可显著地 减轻或消除滑动式导向工具的不足。
世界上最早的旋转导向工具是上世纪80年代末90年代初德国 KTB计划中开发的垂直钻井(VDS)系统,专为直井防斜用的。 在此基础上,国外多家公司相继开发了多种型号的旋转导向钻井 系统,并成功地投入现场应用。目前世界上有代表性的旋转导向 钻井系统有贝克休斯公司的AutoTrack RCLS系统,哈里伯顿的 GEO-PILOT系统和斯仑贝协公司的PowerDrive SRD系统。
A
接钻头 旋转内筒
A 可伸缩翼肋ຫໍສະໝຸດ 非旋转外筒如上图,旋转导向系统主要由可旋转 内筒(接钻头)、非旋转外筒和可伸缩翼 肋组成。系统工作时钻头所需要的导向力 (即侧向力)通过可伸缩翼肋的活动来提 供。如图 A-A,当一号翼肋伸出支撑在井 壁上时,钻头就获得与一号翼肋伸出方向 相反的侧向力F,这样钻头在这个侧向力的
作用下就可以改变自己原来的切削轨迹。
2
1
F
3
A—A
实际上旋转导向钻井系统的工作并非如此简单,整个 系统的工作是由计算机控制的。系统工作时首先由测量系 统根据需要测量井眼的实时几何参数(地质导向还要测地 质地层参数),这些参数进入井下计算机,计算机进行评 价决策,并向控制系统发出指令,由控制系统控制可伸缩 翼肋的动作,从而给钻头施加侧向力,自动控制井眼轨迹。
4、国外旋转导向钻井系统简介
世界上已有多个国家的石油公司对旋转导向钻井系统开展了深入的 研究与应用,其中较成熟的有以下几种:
90年代初德国KTB项目组开发的VDS系统 AGIP公司与BAKER HUGHES公司合作研制了SDD系统 美国能源部资助研制的ADD系统 HALLIBURTON SPERRY-SUN公司研制了GEO-PILOT系统 英国CAMCO公司和SCHLUMBERGER 公司研制PowerDrive
旋转导向钻井
完全抛开了滑动导向钻井,而是以旋转方式连续自动控制轨迹,从而解决了 常规导向钻井的缺点
采用旋转导向钻井技术,可根据地质要求,钻出空间三维井眼 (DESIGNER WELL),以达到绕障、穿过多油藏和精确钻穿薄油层的 目的,从而大大提高了采收率和效率。
3、旋转导向工具的工作原理
旋转导向钻井系统的导向力主要是通过偏置钻头来获得的,下 面以贝克休斯的 AutoTrack RCLS 系统为例简要说明旋转导向钻井 系统的工作原理。
自动化钻井的主要环节
* 地面数据实时测量 主要用地面仪器仪表。
* 井下数据随钻测量 目前主要用MWD/LWD/FEWD/DWD等。
* 数据实时采集
由相关计算机(井下或地面)完成。。
* 数据综合解释及决策指令 应用人工智能优化钻井措施。
* 地面操作自动化
铁钻工/自动排管机等。
* 井下操作自动控制 钻头自动导向(轨迹自动控制)。
自动导向钻井技术简介
主要内容
• 概述 • 导向方式 • 导向工具 • 地质导向 • 自动垂直钻井
系统 • 自动导向钻井
的关键技术
一、概述
1、自动化钻井 钻井技术发展的最高阶段是自动化钻井。所谓自动
化钻井就是钻井的全部过程依靠传感器测量各种参数, 并用计算机采集,进行综合解释与处理,然后再发出决 策指令,最后由各相关设备自动执行各自的动作,使整 个钻井过程变成一个无人操作的自动控制过程。这样一 来,不但地面操作自动化,井下钻头钻进的轨迹也可以 自动控制。
SRD系统
具有代表性的有三种
• SCHLUMBERGER,ANADRIL公司的 PowerDrive SRD系统(调制式旋转导向钻 井系统)
• BAKER HUGHES INTEQ公司的 AutoTrack RCLS系统(不旋转外筒式旋转 导向钻井系统)
• SPERRY SUN公司与JNOC联合研制的 GEO-PILOT系统

以上六个环节中,井下随钻测量和井下自动控制是关键环节,
同时也是关键技术,二者结合起来实际上是井眼轨迹自动控制技
术。
2、导向钻井
导向钻井实际就是井眼 轨迹控制问题,无论是常规 直井或特殊工艺井,都需要 井眼轨迹控制。直井需要防 斜打直,定向井需要按设计 井眼轨道控制钻头钻进的轨 迹。传统的导向钻井(即井 眼轨迹控制)是由井下导向 工具配以适当的钻井参数来 实现的,自动导向钻井是由 井下计算机根据随钻采集的 参数自动控制导向工具来实 现的。
三、导向工具
导向钻井的实现主要靠导向工具,导向工具按其工作方式分为 滑动式导向工具 旋转式导向工具 1、滑动导向工具 滑动式导向工具的特征是导向钻井作业时钻柱不旋转,钻柱随 钻头向前推进,沿井壁滑动。 滑动导向钻井有诸多缺点,例如钻柱摩阻大,对井眼清洗不利 和机械钻速慢,钻头选择受限等。尽管如此,由于导向工具的成本 问题滑动式导向钻井目前仍占主导地位。 滑动式导向工具主要有弯接头、可调弯接头和弯外壳马达等。 滑动式导向工具组合方式一般为: 钻柱 + MWD/LWD + 动力钻具 +导向工具+ 钻头。
自动导向钻井技术是钻井工程领域的高新技术,代表着
世界先进的钻井技术发展方向。目前,在世界范围内水平井、 大位移井、分支井等高难度的复杂井正蓬勃发展,常规钻井 技术难以适应需要,必须依靠先进的导向技术才能保证井眼 轨迹的准确无误。
二、导向钻井的方式
导向钻井按照导向的依据可分为几何导向钻井和地质导向钻井。
1、几何导向钻井 根据井下测量工具(MWD)测量的井眼几何参数(井斜角、方
位角和工具面角)来控制井眼轨迹的导向钻井方式称为几何导向钻井。 如果井下参数测量和导向工具的控制由井下计算机完成,则为自动几 何导向钻井。
2、地质导向钻井 地质导向是在拥有几何导向的能力的同时,又能根据随钻测井
(LWD)得出的地质参数(地层岩性、地层层面、油层特点等), 实时控制井眼轨迹,使钻头沿着地层的最优位置钻进。这样可在预先 不掌握地层特性的情况下实现最优控制。地质导向本身就是自动导向 钻井,井眼轨迹控制的依据是地质地层参数,这样一来实钻井眼的轨 迹很有可能脱离钻井设计的井眼轨道。
相关文档
最新文档