炼钢生产中转炉炼钢脱氧工艺

合集下载

转炉炼钢工艺

转炉炼钢工艺

合金钢是指钢中除含有硅和锰作为合金元素或脱氧 元素外,还含有其他合金元素如铬、镍、钼、钛、钒、 铜、钨、铝、钴、铌、锆和稀土元素等,有的还含有 某些非金属元素如硼、氮等的钢。根据钢中合金元素 含量的多少,又可分为低合金钢,中合金钢和高合金 钢。一般合金元素总含量小于3%的为普通低合金钢, 总含量为3%~5%的为低合金钢,大于10%的叫高合金钢, 总含量介于3%~10%之间为中合金钢。按钢中所含有的 主要合金元素不同可分为锰钢、硅钢、硼钢、铬镍钨 钢、铬锰硅钢等。

如果钢中的氧含量较高,FeS与FeO形成的共晶体熔
点更低(940℃),更加剧了钢的“热脆”现象的发 生。 锰可在钢凝固范围内生成MnS和少量的FeS,纯MnS的 熔点为1610℃,共晶体FeS-MnS(占93.5%)的熔点

为1164℃,它们能有效的防止钢热加工过程的“热
脆”。
在 冶 炼 一 般 钢 种 时 要 求 将 [Mn] 控 制 在 0.4%-0.8%。在实际生产中还将[Mn]/[S]比作 为一个指标进行控制,因为研究发现钢中的 [Mn]/[S] 比对钢的热塑性影响很大,从低碳 钢高温下的拉伸实验结果可以发现提高 [Mn]/[S] 比 可 以 提 高 钢 的 热 延 展 性 。 一 般 [Mn]/[S]≥7时不产生热脆。

外来夹杂是指冶炼和浇铸过程中,带入钢液
中的炉渣和耐火材料以及钢液被大气氧化所
形成的氧化物。
内生夹杂包括:




脱氧时的脱氧产物; 钢液温度下降时,硫、氧、氮等杂质元素 溶解度下降而以非金属夹杂形式出现的生 成物; 凝固过程中因溶解度降低、偏析而发生反 应的产物; 固态钢相变溶解度变化生成的产物。
铝(Al)
铝是终脱氧剂,生产镇静钢时,[Al]多在0.005%0.05%,通常为0.01%-0.03%。钢中铝的加入量因氧量而异, 对高碳钢应少加些,而低碳钢则应多加,加入量一般 为:0.3-1.0kg/t钢。

炼钢转炉冶炼低碳钢脱氧合金化工艺优化

炼钢转炉冶炼低碳钢脱氧合金化工艺优化

炼钢转炉冶炼低碳钢脱氧合金化工艺优化随着工业技术的发展和市场需求的变化,钢铁行业对于低碳钢的需求越来越高。

低碳钢具有良好的可加工性、韧性和焊接性能,广泛应用于汽车、船舶、建筑等领域。

而炼钢转炉是生产低碳钢的重要工艺设备,其冶炼过程中的脱氧合金化工艺直接影响着低碳钢的质量和性能。

本文将对炼钢转炉冶炼低碳钢脱氧合金化工艺进行优化提升。

一、传统工艺存在的问题传统的炼钢转炉冶炼低碳钢脱氧合金化工艺存在一些问题,主要包括:1. 脱氧材料不足:传统工艺中常用的脱氧剂是硅铁,其存在着脱氧效果不佳、回收利用难等问题,无法满足低碳钢的脱氧需求。

2. 钢水中氧含量高:传统炼钢转炉工艺在钢水中脱氧不彻底,导致钢水中氧含量仍然较高,降低低碳钢的质量。

3. 合金元素添加不均匀:为了满足低碳钢的性能需求,需要添加合金元素,但传统工艺中合金元素的添加存在不均匀的问题,造成低碳钢性能的不稳定。

二、工艺优化方案针对传统工艺存在的问题,我们可以采取以下工艺优化方案:1. 优化脱氧剂的选择:传统的硅铁脱氧剂可以通过其他脱氧剂进行替代,例如铝、锰等。

这些脱氧剂具有良好的脱氧效果和易回收利用的特点,可以提高低碳钢的质量。

2. 加强脱氧过程控制:通过提高脱氧剂的加入量和延长脱氧时间,确保炉料中的氧含量完全脱氧。

可以采用自动控制系统,实时监测钢水中氧含量,调整脱氧剂的加入量,实现钢水的有效脱氧。

3. 合金元素均匀添加:采用先进的合金元素添加技术,确保合金元素的均匀分布。

可以利用真空脱气设备将合金元素均匀加入钢水中,或者采用复合脱氧剂,使脱氧剂和合金元素同时添加,提高低碳钢的合金化效果。

4. 优化工艺参数:通过对炉温、转炉容量、吹氧时间等工艺参数的优化调整,提高低碳钢的冶炼效果。

可以利用计算机模拟技术对工艺参数进行优化设计,以实现低碳钢冶炼过程的最佳效果。

三、优化方案的效果及推广通过实施上述工艺优化方案,可以显著提高炼钢转炉冶炼低碳钢脱氧合金化的效果,进一步提升低碳钢的质量和性能。

浅析炼钢生产的转炉炼钢脱氧工艺

浅析炼钢生产的转炉炼钢脱氧工艺

浅析炼钢生产的转炉炼钢脱氧工艺山西通才工贸有限公司山西临汾 043409摘要:钢铁企业在当前的市场竞争中面临着巨大的压力,需要提高投资成本和质量管理。

为了增强产品竞争力,运用最先进的科技和工艺改善产品是非常重要的。

其中,减少投资成本是一个重要的方向。

在钢铁生产的过程中,转炉炼铁是必不可少的。

然而,氧的产生也是不可避免的。

因此,我们需要认识到氧对炼钢冶金和钢铁生产的危害性。

为了解决这一问题,我们需要掌握合理的脱氧方案,并合理采用和脱氧工艺技术。

这样可以增加脱氧处理的实际效果,减少氧对钢铁的危害。

同时,我们还需要不断探索和研究新的脱氧工艺技术,以满足市场需求。

关键词:炼钢生产;转炉炼钢;脱氧工艺1转炉炼钢的原理转炉炼铁是一种常用的铁炼制方法,其使用旋转炉设备,可以360度内任意转动。

该方法的主要原料为铁水的废钢,其吹炼步骤包括脱碳、脱磷、脱硫和脱氧等反应。

在吹炼期间,需要运用热平衡方法以及加白灰、轻烧公式来控制铁水温度和成分,以去除杂质。

热平衡方法是指通过调整转炉内的氧气流量和废钢加入量来控制转炉内部的温度平衡。

同时,加白灰和轻烧公式也是非常重要的控制方法。

加白灰可以减少铁水中的氧化铁和氧化物,从而降低钢水中的杂质含量。

轻烧公式则可以通过添加特定的化合物来吸附和还原氧化物,同时还可以改善钢水的流动性和热稳定性。

在出钢阶段,需要开展脱氧合金化技术来改善钢材的性能。

该技术可以通过添加特定的元素来改变钢材的组成,从而提高其强度和韧性。

脱氧合金化技术还可以减少钢材中的气泡和夹杂物,提高其质量和性能。

2转炉冶炼概述在现代工业中,钢铁被广泛应用于各个领域,从建筑到汽车、航空航天等,都需要高性能的钢材。

而转炉炼钢作为钢铁生产的主要工艺之一,可以制造出具备优良物理性能和化学性能的高性能钢铁,备受业界青睐。

转炉炼钢通过氧化生铁中的碳,制造出高性能钢铁。

其中,碳含量在2.1%范围内可以产生钢铁。

生钢铁中的铁元素和碳元素形成过饱和的固溶体,提高铁、碳含量可以提升钢的韧性和可塑性。

关于转炉炼钢脱氧工艺研究

关于转炉炼钢脱氧工艺研究

关于转炉炼钢脱氧工艺研究摘要:随着我国社会经济的逐步发展,对高精度钢材的需求增加,钢材的生产标准也越来越高。

在此基础上,有必要加强对钢铁技术的深入研究,加强脱氧工艺,提高钢的纯度,满足现代社会经济发展的需要。

为了进一步提高加工钢材的质量和技术水平,有必要对加工钢材的制氧工艺和危害进行深入分析,并在此基础上对不同类型的脱氧工艺的不同特点等要素进行精细分析,以便为以下方面提供动态支持。

关键词:炼钢生产;转炉炼钢;脱氧工艺引言在生产过程中对钢厂的控制主要侧重于钢的水质,但随着经济的发展,市场竞争加剧和社会对环境保护的需求使得钢铁能够在生产过程中节约能源和减少能源消耗。

通过对钢加工过程的控制采取优化措施,对节能减排产生了良好影响,提高了市场竞争力。

1转炉炼钢概述转炉炼钢主要包括:建立转炉,将铁水及废钢加入其中,结合具体情况添加其他材料,促进氧和铁水等物质的氧化反应,主要任务是脱硅、脱磷、脱碳、升温,钢的熔点较高,碳含量较低,因此其综合性能明显高于生铁。

采用转炉炼钢生产的主要钢类型是低碳、强度较低、但强度较高和耐用度较高的钢。

因此,转炉炼钢生产的钢材用途比较广泛。

2氧在炼钢中的产生以及危害分析需要大量氧气吹氧,去除钢混合物,通过氧化反应有效氧化氧和杂质,提取氧,获得高纯钢。

钢液中一定有氧气,钢液中杂质含量越大,氧气呼出和硬化时所需氧气量就越大。

如果液体中的氧未得到有效处理,且液体中的氧含量过高,则液体中的氧会在液体凝固时引起氧化反应,形成氧化铁晶体沉积。

铁液中的氧化铁对熔化的原油造成了巨大损害,产品的断裂就证明了这一点,从而使熔化的原油的白色背景发生变形。

铁水含氧量越大,损害就越大。

同时,铁水还含有硫元素,硫与氧之间的化学反应产生了含硫氧化物等污染物,当液态钢含量较高时,这些污染物更难分离。

考虑到钢的力学性能,有必要确保钢水中的氧元素也用于与碳反应,钢溶液中氧含量越高,一氧化碳气泡越多,液体中一氧化碳含量越高,导致钢液沸腾。

炼钢过程钢中氧的控制

炼钢过程钢中氧的控制

炼钢过程钢中氧的控制(三种脱氧方式)1 钢中的氧——钢洁净度的量度炼铁是一个还原过程。

高炉内加入还原剂(C、CO)把铁矿石中的氧(Fe3O4、Fe2O3)脱除,使其成为含有C、Si、Mn、P、S的生铁。

炼钢是一个氧化过程。

把纯氧吹入铁水熔池,使C、Si、Mn、P氧化变成不同碳含量的钢液。

当吹炼到终点时,钢水中溶解了过多的氧,称为溶解氧[O]D或a[O]。

出钢时,在钢包内必须进行脱氧合金化,把[O]D转变成氧化物夹杂,它可用[O]I表示,所以钢中氧可用总氧T[O]表示:T[O]=[O]D+[O]I出钢时,钢水中[O]I→0,T[O]→[O]D;脱氧后:根据脱氧程度的不同[O]D→0,T[O]=[O]I。

因此,可以用钢中总氧T[O]来表示钢的洁净度,也就是钢中夹杂物水平。

钢中T[O]越低,则钢就越“干净”。

为使钢中T[O]较低,必须控制:(1)降低[O]D:控制转炉终点a[O],它主要决定于冶炼过程;转炉采用复吹技术和冶炼终点动态控制技术可使转炉终点氧[O]D控制在(400~600)×10-6范围。

(2)降低夹杂物的[O]I:控制脱氧、夹杂物形成及夹杂物上浮去除——夹杂物工程概念(Inclusion Engineering)。

随着炉外精炼技术的发展,钢中的总氧含量不断减低,夹杂物越来越少,钢水越来越“干净”,甚至追求“零夹杂物”,钢材性能不断改善。

1970~2000年钢中T[O]演变,由于引入炉外精炼,对于硅镇静钢,T[O]可达(15~20)×10-6,对于铝镇静钢,T[O]可达到<10×10-6。

(3)连铸过程:一是防止经炉外精炼的“干净”的钢水不再污染,二是要进一步净化钢液,使连铸坯中的T[O]达到更低的水平。

钢中T[O]量与产品质量关系举例如下:(1)轴承钢T[O]由30×10-6降到5×10-6,疲劳寿命提高100倍。

(2)钢中T[O]与冷轧板表面质量存在明显的对应关系。

转炉炼钢脱氧工艺探讨

转炉炼钢脱氧工艺探讨

转炉炼钢脱氧工艺探讨摘要:由于在固态铁中氧的溶解度非常低,最后形成的氧化物夹杂会导致钢材的机械性能降低,尤其是会导致钢材的冲击韧性以及疲劳强度下降,所以必须要采取有效的工艺方法来进行转炉炼钢的脱氧。

关键词:转炉炼钢;脱氧工艺1炼钢脱氧概述炼钢脱氧是炼钢的重要工序,若无法进行高效地炼钢脱氧,直接影响炼钢夹杂物的控制,炼钢的脱氧不彻底,给夹杂物的氧化空间,铸坯在氧气下,容易在皮下产生气泡、水口结瘤、坯夹杂物增多等问题。

因此,对钢水的脱氧进行彻底,能够降低钢中氧化夹杂物数量,改变硫化夹杂物形态,增强钢材稳定性以及稳定力学性能。

炼钢脱氧不彻底是夹杂物清洁的关键,同时,转炉吹炼是炼钢的工序,炉吹过程中,熔池供氧需要满足一定的量,才能确保耐火材料的稳定性,钢水也能发挥溶解氧气的作用,而钢水含有溶解氧,增加了钢水危害性,炉内吹炼会增加实物质量,脱氧未达到标准会有严重危害,吹炼结束要保证脱除到的程度,能推动浇注的有序和高效,对铸坯的结构合理性有较好的作用。

因此整个炼钢过程必须选择正确的脱氧剂,并控制脱氧剂的加入量,也要控制钢水的含氧量,确保脱氧程度。

2转炉炼钢过程中氧气的产生和危害在钢水转炉的过程中,氧主要是来自原料和吹氧炼钢等生产的过程,它通常是以非金属夹杂物和溶解氧的形式存在于钢水中,在炼钢的过程中还会产生硅、磷、锰等杂质,这些杂质会与氧产生一定量的化学反应,在晶体上析出FEO。

随着钢水温度的不断下降,氧气含量会升高并且与其他的元素产生化学反应,从而会破坏钢的质量,降低钢的塑形程度,并且产生热脆的反应,相当于一个秸秆,看上去挺硬,稍微一折就会断掉,炼钢过程中所产生的一系列氧化反应都增加了炼钢的成本,浪费了人力、物力和财力。

为此需要研究出一些脱氧的方法来锻造出高质量的钢铁。

3转炉炼钢脱氧工艺问题现阶段,转炉炼钢采用的脱氧工艺存在一定问题,无法保证钢产品质量。

在普碳钢脱氧过程中,主要加入FeSi、FeMn等实现脱氧合金化,需要结合钢水实际脱氧度进行调整,在精炼前需要实现铝粒的添加,保证满足钢种要求。

转炉炼钢工艺简介

转炉炼钢工艺简介

18
萤石作用及要求
• 作用
造渣加入萤石可以加速石 灰的溶解,萤石的助熔作 用是在很短的时间内能够 改善炉渣的流动性,但过 多的萤石用量,会加剧炉 衬的损坏,并污染环境。
• 质量要求 • CaF2≥75%, SiO2≤23%,S≤0.20%, P≤0.08%,H2O≤3.0% • 粒度:5-60mm
渣量=(石灰+镁球或熟白)×(2-3)
8
铁水成分及温度影响
• Mn的影响 • 锰是弱发热元素,铁水中Mn氧化后形成的(MnO)可促 进石灰溶解,加快成渣;减少氧枪粘钢,终点钢中余 锰高,能够减少合金用量,利于提高金属收得率;锰 在降低钢水硫含量和硫的危害方面起到有利作用。 Mn/Si的比值为0.8~1.00时对转炉的冶炼操作控制最 为有利。当前使用较多的为低锰铁水,一般铁水中 [Mn]=0.20%~0.40%。
6.设备少,投资节省。
4
炉顶料仓 振动给料器 电子称 带式运输机 密封料仓 传动机构 实 心 轴
汽包 氧 枪 风 机 不 回 收 时 放 空 回收煤气 进入煤气柜
烟 道
文氏管 脱水器
溜 槽
洗 涤 塔
沉淀池
电动机 渣 罐 转 炉 吸 滤 池
水封逆止阀 送往高炉利用
支架Hale Waihona Puke 氧气顶吹转炉工艺流程示意图
5
二 、转炉炼钢用主要原材料
28
2.1装料制度:废钢量的确定
• 热量来源于:
• 转炉炼钢不需要外来热源;
铁水物理热及元素氧化化学热。 铁水及废钢的合理配比须根据炉子的热平衡计算确定。 • 硅的作用 优点:因发热量大,增大废钢加入量,一般铁水中Si增 加0.1%,废钢比增大1%。 缺点:增大渣量,侵蚀炉衬一般控制在0.3-0.5%。

炼钢生产中脱氧工艺分析

炼钢生产中脱氧工艺分析

14炼钢生产中脱氧工艺分析梁金鹏(甘肃酒钢集团宏兴钢铁股份有限公司安全环保处,甘肃 嘉峪关 735100)摘 要:钢液脱氧处理是炼钢工艺的重要步骤,其脱氧效果直接决定着钢水的整体质量,因此,需要在炼钢生产中重视脱氧处理。

钢液中氧含量过多,就会降低钢产品的结构质量,增加其热脆概率。

关键词:炼钢生产;转炉炼钢;脱氧工艺中图分类号:TF713.5 文献标识码:A 文章编号:11-5004(2019)09-0014-2收稿日期:2019-09作者简介:梁金鹏,男,生于1977年,汉族,河南平顶山人,本科,中级工程师,研究方向:炼钢工艺及金属冶炼安全。

1 氧的产生与危害在炼钢生产所产生的钢液中,氧一般以非金属夹杂物、溶解氧的形式存在,这种形式主要是由于炼钢生产中原料的特殊性与吹氧炼钢生产等造成的。

在炼钢生产中,无论采用何种生产方式,在去除钢中杂质中,都需要借助于氧气与这些元素的反应来实现,通过氧气与杂质元素的反应,生成氧化反应物,析出杂质。

在吹氧冶炼中,钢液中氧的含量是随着其他杂质元素的含量而变化的,二者成负向变化的关系,杂质含量低,钢液中氧的含量反而较高,一旦没有进行必要的脱氧处理,含氧量较高的钢液在冷凝固中,氧会与钢液产生化学反应,使得其析出FeO,这种反应现象大大降低了钢产品的质量,使得钢的塑性降低,极易出现热脆现象,还会加大其氧化的概率。

如果钢液中含有的氧较多,还会加大硫的危害,使得氧可以与钢液中的其他物质连续发生反应,形成氧化产物,这些氧化产物的出现大大降低了钢产品的物理与化学性能。

2 脱氧技术的现状近年来,炼钢生产中的转炉炼钢脱氧工艺中,铝依然是最常用到的脱氧剂,但是其回收利用率在10%~25%之间,利用效率低,因此,大大提高了炼钢生产企业的生产成本,有些炼钢企业为了有效解决此类问题,逐步研发了一些铝系的复合脱氧剂,比如硅铝铁、铝锰铁等。

一般情况下,这些复合脱氧剂的密度要远远高于纯铝,将其倒入钢液以后,有足够的上浮时间,因此,能够大大提高其回收利用效率,脱氧以后会形成低熔点的复合氧化物,因此,可以达到理想的脱氧效果。

炼钢生产中转炉炼钢脱氧工艺

炼钢生产中转炉炼钢脱氧工艺

炼钢生产中转炉炼钢脱氧工艺摘要:近些年来,随着炼钢企业的快速发展,很多先进的炼钢技术和设备被的应用和推广。

在具体的炼钢生产过程中,广泛的应用转炉炼钢脱氧方法,有利于提高钢产品的质量,相关技术人员需要对转炉中的氧气含量进行有效的控制,对提高岗产品质量具有重要的作用,也是整个炼钢生产过程中的重要环节。

由于炼钢生产过程中会产生一些氧气成分,作为生产管理人员应该明确炼钢生产过程中所产生的氧气对钢产品的质量有着重要的危害和影响,所以应该加强脱氧方法和技术的研究与创新,善于运用先进的脱氧工艺和脱氧技术不断提高脱氧效果,因此,文章对炼钢生产中转炉炼钢脱氧工艺的相关内容进行分析,为炼钢企业提高钢产品质量提出一些合理化建议。

关键词:炼钢;转炉炼钢;脱氧工艺前言:近些年来,炼钢企业竞争日趋激烈,所以企业管理者应该加强产品质量的重视,同时做到有效的成本控制,不断提高市场竞争力。

通过改善炼钢生产核心技术的方式,实现企业的长远发展[1-2]。

在具体的炼钢过程中,转炉炼钢是重要的生产环节,在转炉炼钢运行过程中会产生一定量的氧气,通过技术人员的分析和研究表明,转炉炼钢生产所产生的氧气对钢铁产品质量具有一定的影响[5],所以在生产过程中要求技术人员采用有效的脱氧方法,提升脱氧效果[3-4]。

在基础生产工艺的前提和基础上,对脱氧工作进行优化和完善,对提高钢铁产品质量具有重要的作用。

1转炉炼钢的含义转炉生产过程中,通过高温和高炉的作用下,对钢进行氧化处理,目的是降低生钢的碳元素含量,有利于保障产品的质量。

由于所冶炼的钢与铁材质上存在很大的差异,其中所富含的碳总量也存在不同,钢的碳含量一般在2%以下,比生铁熔点更高。

转炉炼钢生产过程中都广泛的运用低碳钢,这种钢材的材质和硬度相对不高,所以这类钢材在使用过程中具有一定的可塑性,在不同的生产与制造领域中得到了广泛的应用。

2炼钢过程中的影响因素分析在具体的炼钢工作中,相关人员应该注重炼钢设备与炼钢质量的有效控制,在不同的炼钢环节,科学合理的使用原材料,满足炼钢工作的质量要求,生产出符合要求的产品。

转炉炼钢脱氧工艺分析

转炉炼钢脱氧工艺分析

21Metallurgical smelting冶金冶炼转炉炼钢脱氧工艺分析徐 亮(河北钢铁集团宣化钢铁公司,河北 张家口 075100)摘 要:以如今实际的炼钢情况而言,转炉炼钢的应用频次较高,此种炼钢方法的自动化水平普遍高于其他技术,其生产效果相对显著,但是此种炼钢方法在具体应用期间必须关注脱氧技术的良好应用,由于脱氧操作质量能够在一定程度上决定炼钢操作的效果。

总体而言,在炼钢操作期间,转炉炼钢的应用需要重视脱氧技术的操作,因此针对其展开探讨与研究对于炼钢业的发展具有重要的意义。

关键词:转炉炼钢;脱氧工艺;对策分析中图分类号:TF713.5 文献标识码:A 文章编号:11-5004(2020)21-0021-2收稿日期:2020-11作者简介:徐亮,男,生于1987年,汉族,辽宁鞍山人,工程师,研究方向:炼钢冶金。

钢铁企业立足实际,选择合适的转炉炼钢脱氧工艺,通过降低钢中的夹杂物,改善钢水的流动性,提升脱氧效率与效果。

1 转炉炼钢与脱氧工艺的相关概述1.1 转炉炼钢的原理转炉炼钢操作的设备为转炉。

转炉的形态类似于鸭梨,内部为由耐火砖形成的炉壁,炉体能够360度任意角度旋转。

炼钢所需的原料为铁水和废钢,转炉炼钢在整个吹炼过程为氧化反应,炼钢的基本任务包括:脱碳、脱磷、脱硫、脱氧去除有害气体和杂质,提高温度和调整成分。

吹炼过程根据铁水温度和成分操作人员利用热平衡公式和加白灰、轻烧公式使炼钢渣系形成合适的碱度和氧化镁有效的去除C、P、S,并在冶炼结束能够达到合适的出钢温度和成分要求。

由于在吹炼过程中顶吹氧气和炉内铁水、废钢发生强有力的化学氧化反应,最终所得钢水所含氧含量不能满足钢种质量要求,所以在出钢过程中要开展脱氧合金化操作来提升钢的品质,达到钢种要求。

1.2 脱氧工艺在炼钢过程中的重要作用转炉炼钢期间脱氧技术主要为了降低钢中氧的数量,防止因为氧含量较多,和别的物质发生不利于生产质量要求的反应。

转炉炼钢工艺流程介绍

转炉炼钢工艺流程介绍

转炉炼钢工艺流程介绍
转炉炼钢是一种常见的钢铁生产工艺,下面是其工艺流程的介绍:
1. 铁水预处理:首先,将铁水经过除渣工序,去除其中的杂质和非金属物质,提高炉内的纯净度和质量。

2. 转炉兑炉:之后,将预处理后的铁水加入转炉中,同时加入适量的废钢、废铁等回收材料。

这些回收材料能够提供多种元素和合金,有助于调整并优化转炉内的化学成分。

3. 吹氧气:然后,通过吹氧装置向转炉中喷吹氧气。

氧气与铁水中的杂质反应生成氧化物,如氧化碳、氧化硅等,这些氧化物随废气排出转炉。

4. 炼钢反应:转炉内的铁水经过吹氧反应后,温度升高,同时炉内的化学反应也进行着。

在高温和高氧气作用下,铁水中的碳、硅等元素会逐渐氧化和燃烧,生成气体和渣。

5. 加入合金:根据需要,再加入一定量的合金,如镍、铬、锰等。

合金的加入可以调整钢的成分和性能,改善钢的质量。

6. 钢包炉脱氧:在转炉炼钢过程中,钢中可能还含有一定量的氧气。

为了降低钢中的氧含量,通常还需将钢浇入预先加入了脱氧剂的钢包炉中,并进行搅拌。

脱氧剂能与钢中的氧气反应生成气体,进一步减少钢中的氧含量。

7. 出钢和连铸:最后,将炼制好的钢浇入连铸机中,进行连续铸造,制成钢坯。

这些钢坯经过后续的轧制和加工,可制成各种形状和规格的钢材。

值得注意的是,转炉炼钢是一个复杂的过程,涉及到许多工艺参数和控制指标,操作人员需要根据实际情况进行调整和控制,以达到所需的钢材质量。

转炉炼钢原理及工艺介绍

转炉炼钢原理及工艺介绍

锰的氧化反应有三种情况:
(1)锰与气相中的氧直接作用
[Mn]+ 1/2{O2}=(MnO)
(2)锰与溶于金属中的氧作用
[Mn]+ [O2] =(MnO)
(3)锰的氧化与还原
3)锰与炉渣中氧化亚铁作用
[Mn]+(FeO)=(MnO)+ [Fe]
第三个反应在炉渣——金属界面上迸行,是锰氧化的主要反应。
锰的氧化还原与硅的氧化还原相比有以下基本特点:
1)在冶炼初期锰和硅一样被迅速大量氧化,但锰的氧化程度要低些
,这是由于硅与氧的结合能力大于锰与氧的结合能力;
2)MnO为弱碱性氧化物,在碱性渣中( MnO)大部分呈自由状态存
在。因此,在一定条件下可以被还原。由于锰的氧化反应是放热反应,故
温度升高有利于锰的还原。所以在生产实践中冶炼后期熔池中会出现回锰
1)在某一温度下,几种元素同时和氧相遇时,位置低的元素先氧化。如1500℃ 时,氧化顺序为Al、Si、C、V、Mn。
2)位置低的元素可将位置高的氧化物还原。炼钢过程中脱氧就是利用Al、Si等 元素将FeO还原。
3)CO的分解压曲线的斜率与其它氧化物的不同,它与Si、Mn、V等的氧化物分 解与压CO曲分线解有压一曲交线点相,交此点点对所应对的应温的度温为度15称30为℃氧,化当转t>化15温30度℃。时例,如Si,先S于iOC2被分氧解化压;曲当线 t<1530℃时,则C先于Si被氧化。1530℃即为Si、C的氧化转化温度。
• 所谓炼钢,就是通过冶炼降低生铁中的 碳和去除有害杂质,在根据对钢性能的要求 加入适量的合金元素,使其成为具有高的强 度、韧性或其他特殊性能的钢。
•二、炼钢基本原理
• 因此,炼钢的基本任务可归纳为:

转炉炼钢脱氧工艺

转炉炼钢脱氧工艺

一、引言钢铁企业管理者无一不希望自家企业的钢材质量可以稳居市场龙头,进而钢铁企业内部竞争不亚于一线城市内房地产行业之间的竞争。

如何利用现存的先进脱氧工艺提升钢材质量,降低脱氧成本变成了各个钢铁企业在行业中获得核心竞争力的重点。

由于在实际转炉炼钢过程中,必然会有氧气的产生,而氧气的存在对于转炉炼钢这个工业起着重要的作用。

因此,钢铁企业管理者需要充分了解氧气的存在对于钢产品来说会产生怎样的危害,并着重掌握脱氧技术的核心内容。

以期达到少资金投入,大幅度脱氧的目的,让炼钢产业可以更快更好的发展起来。

二、转炉石炼钢脱氧工艺的诞生一种成熟的脱氧工艺诞生之前都有无数个稚嫩的脱氧工艺为之铺路,虽然这些稚嫩如今已不被企业所使用,但它们的存在伟大且有意义,值得用纤细的笔杆浓墨重彩地写入历史。

1865年英国工程师贝斯麦通过研究得出了低吹酸性转炉炼钢法,让钢铁变得更易制取,大量而廉价的钢铁从机器中源源不断地生产出来,从而促进了欧洲的工业革命。

1879年,发明的吹碱性转炉炼钢法更大大的提升了钢铁的转化率和质量。

又过百年,奥地利通过研究得到了纯氧顶吹转炉,将前人头痛的祛除有害物质的难题解决掉的同时,也为后期完善而系统的脱氧工艺做出了铺垫。

三、钢材中氧气存在的危害钢铁作为一种满足工程建筑需求的材料,企业一般要求其质量和性能都能够承载住重达千斤的物品。

可生铁或废铁中一般都含有磷、硫、氢、氧、氮等元素,它们的存在让钢铁的性能大打折扣。

其中的氧元素则以非金属物质存在于钢液之中,在炼钢吹氧这步骤中,想除去一些杂质金属氧气必须存在,并且发挥着不可替代的作用。

例如,和杂质结合时形成氧化物沉淀,让金属杂质从钢液中析出。

在整个过程中氧气含量充足时,金属杂质将会被充分化为沉淀,但氧气含量过饱和且不能有效处理后。

会发生下列三种情况。

①过量的氧气会在钢液凝固的途中与之发生化学反应,生成一种名为氧化亚铁的杂质,此种物质的存在极有可能损害铸培,严重者有可能使钢材发生变形这种糟糕的情况,会对钢材质量造成毁灭性打击。

转炉炼钢工艺操作规程

转炉炼钢工艺操作规程

操作规程转炉冶炼基本工艺操作规程1 开新炉1.1 开新炉在保证烧结炉衬的同时,炼成合格钢水。

1.2 当铁水Si+P不足1.2%,装铁水前向炉内加FeSi配至1.2%。

1.3 渣料:石灰第一批20-30kg/t,开吹后一次加入,第二批50-60 kg/t,开吹后五分钟开始小批加入,拉碳前三分钟加完。

萤石一批料加2-3 kg,二批料酌情加入,但总量≯4 kg/t。

1.4 第一次拉碳时间≥25分钟,出钢≥1720℃。

1.5 使用氧压0.7MPa,基本枪位1000mm。

1.6 开炉前10炉,必须连续冶炼,不得保温。

2正常炉操作2.1 装入制度2.1.1 每班接班第一炉测量液面一次,以作为合适装入量及吹炼枪位的依据。

2.1.2 以出钢量计,当班装入量波动不得大于±1吨。

2.1.3 分阶段定量装入,铁水+废钢(或铁块)量见下表。

按炉龄分段装入量表2.1.4 回炉钢水不得大于装入量的1/2。

2.2 冷却制度以废钢和生铁块为冷却剂。

炼钢用各种冷却剂和非冷却剂冷却效果与影响终点温度参考表(以废钢冷却效果为1)见下表。

冷却剂和非冷却剂的冷却效果参考表2.3 供氧制度2.3.1 采用分期定压、恒压变枪位操作。

氧压低于0.4MPa不得吹炼。

各阶段氧压参考表2.3.2 枪位控制基本枪位900-1100mm,波动枪位800-1200mm。

枪位调整要做到勤动少动。

正常情况应控制≯200mm/次。

以基本枪位为主要吹炼枪位,为迅速成渣,在开始吹炼时或炉渣返干时允许适当提高枪位。

严禁过高枪位操作。

冶炼末期要采取低枪位操作,时间最少不少于60秒。

2.3.3 采用三孔喷头吹炼,喷头参数φ27×3-11,氧枪漏水时应及时换枪。

2.4 造渣制度要求吹炼全程化渣2.4.1 除后吹炉次外,均采用留渣操作工艺。

即出完钢后,先向炉内加入石灰、白云石混合物,稠化炉渣,后吹炉次必须倒净炉渣,不得先加石灰,后倒渣。

2.4.2 铁水Si>0.8%时应采用双渣操作。

炼钢转炉冶炼低碳钢脱氧合金化工艺优化精编版

炼钢转炉冶炼低碳钢脱氧合金化工艺优化精编版

炼钢转炉冶炼低碳钢脱氧合金化工艺优化精编版近年来,随着全球环保意识的提升和新能源材料的广泛应用,对于炼钢转炉冶炼低碳钢脱氧合金化工艺的优化研究受到了广泛关注。

本文将就该工艺的优化进行精编论述。

低碳钢脱氧合金化工艺的目标是通过合理的调整转炉冶炼过程中的气体成分、温度、转炉操作等参数,减少钢中的氧含量,实现低碳钢的合金化。

目前常用的脱氧合金化剂有铝、硅、锰等,它们在转炉冶炼过程中能与钢中的氧反应生成相应的氧化物,从而降低钢中的氧含量。

在炼钢转炉冶炼低碳钢脱氧合金化过程中,需要注意以下方面的优化:首先,要合理选择脱氧剂,并确定其添加量。

一般来说,铝是最常用的脱氧剂,其添加量应根据钢的成分和规格进行合理调整。

同时,由于铝在钢中的溶解度较低,需要通过增加温度和延长保温时间来提高脱氧效果。

其次,要控制转炉中的气氛成分。

脱氧合金化反应是在氧化性气氛中进行的,因此需要确保转炉中的气氛保持适当的氧化性。

一般来说,通过调节煤气的流量和氧气的进气量等参数来控制气氛成分。

此外,还需要注意炉排煤气中的水蒸气含量,过高的水蒸气含量会影响脱氧合金化反应的进行。

此外,还要注意转炉操作的合理性。

在进行低碳钢的脱氧合金化时,需要合理控制吹氧时间、转炉的转速等参数。

合理的吹氧时间能够充分利用脱氧剂的作用,降低钢中的氧含量;而合理的转速可以确保转炉中的煤气和钢水充分接触,促进脱氧合金化反应的进行。

最后,要注意对炼钢转炉冶炼低碳钢脱氧合金化工艺进行监测和调整。

通过在线监测钢水中的氧含量和其他成分的变化,可以及时发现问题并采取相应的措施进行调整,确保工艺的稳定性和一致性。

总之,炼钢转炉冶炼低碳钢脱氧合金化工艺的优化对提高钢质和节约能源具有重要意义。

通过合理选择脱氧剂、控制气氛成分、优化转炉操作以及进行及时监测和调整,可以实现低碳钢脱氧合金化工艺的高效、稳定和可持续发展。

氧气顶吹转炉炼钢工艺

氧气顶吹转炉炼钢工艺

第四章氧气顶吹转炉炼钢工艺内容提要一炉钢的吹炼过程装入制度供氧制度造渣制度温度制度终点控制和出钢脱氧合金化吹损与喷溅操作事故及处理转炉炼钢仿真操作训练§4—1 一炉钢的吹炼过程一.钢与铁的区别及炼钢的任务1.钢与铁的性能比较钢和铁都是铁碳合金,同属于黑色金属,但它们的性质有明显不同.生铁硬而脆,焊接性差.钢具有很好的物理化学性能与力学性能,可进行拉,压,轧,冲,拔等深加工,其用途十分广泛;用途不同对钢的性能要求也不同,从而对钢的生产也提出了不同的要求.2.钢与铁性能差别的原因:碳和其它合金元素的含量不同.在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度,硬度增加,而塑性和冲击韧性降低.钢和生铁含碳量的界限通常是:生铁: [C]=1.7~4.5%钢: [C]≤ 1.7%生铁和钢的化学成分材料化学成分%CSiMnPS炼钢生铁3.5~4.00.6~1.60.2~0.80.0~0.40.03~0.07静钢0.06~1.500.1~0.370.25~0.80≤0.045≤0.05沸腾钢0.05~0.27≤0.070.25~0.70≤0.045≤0.054.炼钢的基本任务:⑴脱碳;将铁水中的碳大部分去除,同时随着脱碳的进行,产生大量CO气泡,在CO排出过程中,搅拌熔池促进化渣,同时脱除[H],[N]和夹杂.⑵去除杂质(去P,S和其它杂质);铁水中[P],[S]含量高,而钢中[P]会造成"冷脆",[S]造成"热脆".通常大多数钢种对P,S含量均有严格要求,炼钢必须脱除P,S等有害杂质.⑶去除气体及夹杂物;在炼钢过程中通过熔池沸腾(碳氧反应,底吹惰性气体搅拌)脱除H],[N]和非金属夹杂物.⑷脱氧合金化;在炼钢过程中因为脱碳反应的需要,要向钢液中供氧,就不可避免地使后期钢中含有较高的氧,氧无论是以液体形态还是以氧化物形态存在于钢中都会降低钢的质量,所以必须在冶炼后期或出钢过程中将多余的氧去除掉.在冶炼过程中,铁水中的Si, Mn大部分氧化掉了,为了保证成品钢中的规定成分,要向钢水中加入各种合金元素,这个过程与脱氧同时进行,称为合金化.⑸升温(保证合适的出钢温度).铁水温度一般在1250~1300℃,而钢水的出钢温度一般在1650℃以上,才能顺利浇注成铸坯,因此炼钢过程也是一个升温过程.5.完成炼钢各项任务的基本方法⑴氧化为了将铁水等炉料中的硅,锰,碳等元素氧化掉,可以采用"吹氧"方法,即直接喷吹氧气,或加入其它氧化剂,如铁矿石,铁皮等.⑵造渣为了去除炉料中的P,S等杂质,在炼钢过程中加入渣料(石灰,白云石,熔剂等),形成碱度合适,流动性良好,足够数量的炉渣,一方面完成脱除P,S的任务,同时减轻对炉衬对侵蚀.转炉主要是依靠碳,硅,锰等元素氧化放出等热量,以及铁水的物理热实现升温.⑷加入脱氧剂和合金料通过向炉内或钢包内加入各种脱氧剂和合金料的方法,完成脱氧及合金化的任务.二.金属成分和炉渣成分的变化规律1.Si在吹炼前期(一般在3~4分钟内)即被基本氧化.在吹炼初期,铁水中的[Si]和氧的亲和力大,而且[Si]氧化反应为放热反应,低温下有利于此反应的进行,因此,[Si]在吹炼初期就大量氧化.[Si]+O2=(SiO2) (氧气直接氧化)[Si]+2[O]= (SiO2) (熔池内反应)[Si]+(FeO)=(SiO2)+2[Fe] (界面反应)2(FeO)+(SiO2)=(2FeO·SiO2)随着吹炼的进行石灰逐渐溶解,2FeO·SiO2转变为2CaO·SiO2,即SiO2与CaO牢固的结合为稳定的化合物,SiO2活度很低,在碱性渣中FeO的活度较高,这样不仅使[Si]被氧化到很低程度,而且在碳剧烈氧化时,也不会被还原,即使温度超过1530℃,[C]与[O]的亲和力也超过[Si]与[O]的亲和力,终因(CaO)与(SiO2)结合为稳定的2CaO.SiO2,[C]也不能还原(SiO2).硅的氧化对熔池温度,熔渣碱度和其他元素的氧化产生影响:[Si]氧化可使熔池温度升高;[Si]氧化后生成(SiO2),降低熔渣碱度,熔渣碱度影响脱磷,脱硫;熔池中[C]的氧化反应只有到[%Si]P0.⑵喷嘴前氧压P0:其选用应考虑以下因素:A.氧气流股出口速度要达到超音速(450~530cm∕s),即M=1.8~2.1.B.出口的氧压应稍高于炉膛内气压.通常P0=0.784~1.176MPa.⑶出口氧压P:应稍高于或等于周围炉气的压力.通常P=0.118~0.125MPa.六.枪位及其控制所谓枪位,是指氧枪喷头端面距静止液面的距离,常用H表示,单位是m.目前,一炉钢吹炼中的氧枪操作有两种类型,一种是恒压变枪操作,一种是恒枪变压操作.比较而言,恒压变枪操作更为方便,准确,安全,因而国内钢厂普遍采用.1.枪位的变化范围和规律关于枪位的确定,目前的做法是经验公式计算,实践中修正.一炉钢冶炼中枪位的变化范围可据经验公式确定:H=(37~46)P×D出式中 P——供氧压力,MPa;D——喷头的出口直径,mm;H——枪位,mm.具体操作中,枪位控制通常遵循"高-低-高-低"的原则:⑴前期高枪位化渣但应防喷溅.吹炼前期,铁水中的硅迅速氧化,渣中的(SiO2)较高而熔池的温度尚低,为了加速头批渣料的熔化(尽早去P并减轻炉衬侵蚀),除加适量萤石或氧化铁皮助熔外应采用较高的枪位,保证渣中的(FeO)达到并维持在25~30%的水平;否则,石灰表面生成C2S 外壳,阻碍石灰溶解.当然,枪位亦不可过高,以防发生喷溅,合适的枪位是使液面到达炉口而又不溢出.⑵中期低枪位脱碳但应防返干.吹炼中期,主要是脱碳,枪位应低些.但此时不仅吹入的氧几乎全部用于碳的氧化,而且渣中的(FeO)也被大量消耗,易出现"返干"现象而影响S,P的去除,故不应太低,使渣中的(FeO)保持在10~15%以上.⑶后期提枪调渣控终点.吹炼后期,C-O反应已弱,产生喷溅的可能性不大,此时的基本任务是调好炉渣的氧化性和流动性继续去除硫磷,并准确控制终点碳(较低),因此枪位应适当高些.⑷终点前降枪点吹破坏泡沫渣.接近终点时,降枪点吹一下,均匀钢液的成分和温度,同时降低炉渣的氧化铁含量并破坏泡沫渣,以提高金属和合金的收得率.2.枪位的调节⑴开吹前必须了解的情况A.喷嘴的结构特点及氧气总管氧压情况;B.铁水成分,主要是Si,P,S的含量;C.铁水温度,包括铁水罐,混铁炉或混铁车内存铁情况及铁水包的情况;D.炉役期为多少,是否补炉,相应的装入量是多少,上炉钢水是否出净,是否有残渣;E.吹炼钢种及其对造渣和温度控制的要求;F.上一班操作情况,并测量熔池液面高度.⑵枪位的调节生产条件千变万化,因此具体操作中还应根据实际情况对枪位进行适当的调节.A.铁水温度:若遇铁水温度偏低,应先压枪提温,而后再提枪化渣,以防渣中(FeO)积聚引发大喷,即采用低-高-低枪位操作.铁水温度高时,碳氧反应会提前到来,渣中∑(FeO)降低,枪位可稍高些,以利成渣.B.铁水成分:铁水硅,磷高时,若采用双渣操作,可先低枪位脱硅,磷,倒掉酸性渣;若单渣操作,由于石灰加入量大,应较高枪位化渣.铁水含锰高时,有利于化渣,枪位则可适当低些.C.装入量变化:炉内超装时,熔池液面高,枪位应相应提高,否则,不仅化渣困难而且易烧坏氧枪.D.炉内留渣:采用双渣留渣法时,由于渣中(FeO)高,有利于石灰熔化,因此吹炼前期的枪位适当低些,以防渣中(FeO)过高引发泡沫喷溅.E.供氧压力:高氧压与低枪位的作用相同,故氧压高时,枪位应高些.F.废钢中生铁块多导热性差,不易熔化,应降低枪位,以防吹炼后期没有完全熔化.G.炉龄a 开新炉,炉温低,应适当降低枪位;b 炉役前期液面高,可适当提高枪位;c 炉役后期装入量增加,熔池面积增大,不易化渣,可在短时间内采用高低枪位交替操作以加强熔池搅拌,利于化渣.H.渣料a 石灰质量差和加入量多,则渣量大,枪位应相应提高;b 使用活性石灰成渣快,整个过程枪位都可以稍低些;c 铁矿石,氧化铁皮和萤石用量多时,熔渣容易形成,同时流动性较好,枪位可适当低一些. I.钢种炼高碳钢时,由于脱磷困难,应采用较高的枪位,特别是在吹炼后期.同理,在吹炼含磷很低的钢种时,应采用较高枪位.七.恒压变枪操作的几种模式由于各厂的转炉吨位,喷嘴结构,原材料条件及所炼钢种等情况不同,氧枪操作也不完全一样.现介绍如下几种氧枪操作方式.1.高—低—高的六段式操作开吹枪位较高,及早形成初期渣;二批料加入后适时降枪,吹炼中期炉渣返干时又提枪化渣;吹炼后期先提枪化渣后降枪;终点拉碳出钢.2.高—低—高的五段式操作五段式操作的前期与六段式操作基本一致,熔渣返干时可加入适量助熔剂调整熔渣流动性,以缩短吹炼时间,见下图.3.高一低一高一低的四段式操作在铁水温度较高或渣料集中在吹炼前期加入时可采用这种枪位操作.开吹时采用高枪位化渣,使渣中含(FeO)量达25~30%,促进石灰熔化,尽快形成具有一定碱度的炉渣,增大前期脱磷和脱硫效率,同时也避免酸性渣对炉衬的侵蚀.在炉渣化好后降枪脱高—低—高五段式操作示意图碳,为避免在碳氧化剧烈反应期出现返干现象,适时提高枪位,使渣中(FeO)保持在10~15%,以利磷,硫继续去除.在接近终点时再降枪加强熔池搅拌,继续脱碳和均匀熔池成分和温度,降低终渣(FeO)含量.例:马钢一钢厂95T转炉氧枪操作A.全程枪位:高—低—高式或高—高—低式过程枪位:要力求稳定,尽量少波动,每次动枪波动范围≯200mm.补吹枪位:必须按最低枪位控制(1.1m).B.高枪位:1.7~2.0m;基本吹炼枪位:1.4~1.7m;拉碳枪位:1.2~1.4m;吹炼中,高碳钢拉碳枪位应提高0.1~0.2m.例:马钢一钢厂95T转炉开吹枪位的确定(a)铁水Si>0.70%时渣量大,易喷溅,枪位应比正常情况下低0.1~0.2m;铁水Si ,P含量低,特别是Si1%),P,S较高,或生产优质钢时采用.倒渣时机:这是双渣法操作的关键.选择在渣中含P量最高,含铁量最低的时刻,以获得高脱磷率和低铁损的效果.同时,应在Si已氧化完毕,炉渣已基本化好,P在渣钢之间的分配已接近平衡时进行. 生产实践证明,顶吹转炉在吹炼时间25%左右,复吹转炉为30%左右时倒渣脱磷率最高;若是因铁水硫高而采用双渣法,则应在吹炼10min左右倒渣.注意:倒渣前1分钟适当提枪或加些熔剂改善炉渣的流动性,以便于倒渣操作.3.双渣留渣法定义:将上一炉的终渣(高碱度,高温度和较高(FeO)含量)部分地留在炉内,并在吹炼中途倒出部分炉渣再造新渣的操作方法.特点:初渣早成而前期的去硫及去磷效率高,总去硫率可达60%~70%,总去磷率更是高达95%,适合于吹炼中,高磷铁水.注意:装料时应先加一批石灰稠化所留炉渣,而且兑铁水时要缓慢进行,以防发生爆发性碳氧反应而引起喷溅.若上一炉钢终点碳过低,不宜进行留渣操作.应当指出,顶吹转炉虽能将高磷铁水炼成合格的钢,但技术经济指标较差,与吹炼中,低磷铁水相比,每吨钢的金属料消耗高30~100kg,石灰多用40~100kg,炉龄大幅降低;产量也仅为吹炼低磷铁水时的70%~80%;另外,单渣法生产稳定,操作简单,便于实行计算机控制.因此,对于含硅,磷及硫较高的铁水,入炉前进行预处理使之达到单渣法操作的要求,不仅技术上可行而且工艺上经济合理.七.渣料的加入方法关于渣料的加入,关键是要注意渣料的分批和把握加入的时间.1.渣料分批加入目的:渣料应分批加入以加速石灰的熔化(否则,会造成熔池温度下降过多,导致渣料结团且石灰块表面形成一层金属凝壳而推迟成渣).批次:单渣操作时,渣料通常分成两批:第一批1/2~2/3及白云石全部(冶炼初期炉衬侵蚀最严重);第二批1/2~1/3.2.加料时间⑴第一批渣料在开吹的同时加入.⑵第二批渣料,一般是在硅及锰的氧化基本结束,头批渣料已经化好,碳焰初起的时候(30吨的转炉开吹6 min左右)加入(如果加入过早,炉内温度还低且头批渣料尚未化好又加冷料,势必造成渣料结团难化;反之,如果加入过晚,正值碳的激烈氧化时期,渣中的(∑FeO)较低渣料亦难化.问题的关键是正确判断炉况,头批渣料化好的标志是:火焰软且稳定,炉内发出柔和的嗡嗡声,喷出物为片状,落在炉壳上不粘贴;未化好的情况是:炉口的火焰发散且不稳定,炉内发出尖锐的吱吱声,喷出物是金属火花和石灰粒).有的厂二批料分小批多次加入以利熔化,但最后一小批料必须在终点前3~4分钟加入八.石灰,白云石加入量的确定加入炉内的渣料主要是石灰和白云石,还有少量的萤石或氧化铁皮等熔剂.1.石灰加入量的确定⑴首先根据铁水的硅,磷含量和炉渣碱度计算A.铁水含磷较低([P]<0.3%)时,(kg∕t铁)%CaO有效—石灰中的有效CaO,%CaO有效=(%CaO)石灰-R×(%SiO2)石灰废钢,生铁块也应根据上式计算需补加的石灰量.例:B.铁水含磷较高([P]≥0.3%)时,(kg∕t铁)⑵其次,当加入含(%SiO2)的辅助原料时(如:矿石,白云石萤石,菱镁矿等),应补加石灰. 例: 铁矿石中SiO2的含量为8%,碱度按3.0控制,石灰的有效氧化钙为80%,则每kg矿石补加石灰量 = 8×3.0/80 = 0.3(kg)⑶石灰加入总量废钢中含有一定量的Si,但成分通常不知,一般按每吨废钢补加石灰15~20kg.2.白云石用量的确定白云石的加入量应根据炉渣要求的饱和MgO含量来确定.通常渣中MgO含量控制在8%~10%,除了加入的白云石含有MgO外,石灰和炉衬也会带入一部分.理论用量W(kg/t)=实际加入量W/=W-W灰-W衬3.熔剂的用量萤石用量:尽量少用或不用,部标要求≤4kg/t.矿石用量:铁矿石及氧化铁皮也具有较强的化渣能力,但同时对熔池产生较大的冷却效应,其用量应视炉内温度的高低,一般为装入量的2~5%.4.计算举例例题1:1t金属料中铁水占85%,废钢占10%,生铁块占5%,每T金属料加矿石5kg,萤石3kg,铁水带渣比为0.5%,石灰熔化率为85%,各原材料成分列在下表中.炉渣碱度为3.5.计算:1t金属料所需石灰加入量为多少原料成分铁水废钢生铁块铁水带渣石灰矿石萤石[%Si]0.500.101.40%CaO37.583%SiO2362.56.05.0解:石灰加入量铁水带渣量为:1000×85%×0.5% = 4.25 (kg)铁水带渣带入的SiO2应考虑铁水渣中CaO相当的SiO2量:辅助原料及铁水带渣需补加石灰量(kg))例题2:用轻烧白云石作为调渣剂其成分如下表:原料成分石灰轻烧白云石炉衬%CaO%SiO2%MgO832.54.09502.03777计算条件:终渣成分要求(MgO)=9.66%,渣量为金属装入量的8.2%,炉衬侵蚀量是装入量的0.05%,其它条件同上述例题.解题思路:终渣(MgO)来源:A. 加入的轻烧白云石.C.石灰中的MgO.D.炉衬被侵蚀下来的MgO.⑴计算轻烧白云石加入量由例题1计算的结果是不加轻烧白云石时石灰加入量为68.39kg∕t.石灰带入MgO量:68.39×4.09% =2.80 (kg)炉衬蚀损带入MgO量:1000×0.05%×77%=0.385 (kg)根据1t装入量计算终渣MgO量:1000×8.2%×9.66%=7.92 (kg∕t)⑵计算轻烧白云石需补加石灰量⑶计算轻烧白云石相当的石灰量石灰加入总量= 68.39 - 8.62 + 1.21= 60.98 (kg)例题3:某转炉铁水装入量为100t,铁水含Si:0.4%,P:0.1%.采用单渣法造渣,终渣碱度为3.5,每炉加矿石3000kg,为保证渣中MgO,每炉加轻烧白云石2500kg.已知:石灰:CaO: 91.6% SiO2: 1.6%矿石:SiO2: 8%轻烧白云石:MgO:35% CaO:55% SiO2: 2%计算石灰加入量(单位kg,保留整数).解:⑴计算未加白云石时石灰加入量⑵计算轻烧白云石需补加石灰量⑶计算轻烧白云石相当的石灰量⑷计算石灰加入总量石灰加入总量= 5454+203-1599 = 4085 (kg)九.渣量计算渣量可以用元素平衡法计算.由铁水炼成钢,各元素一部分被氧化,一部分残留在钢中.如果知道某一元素在钢中的数量,该元素其余部分全部进入了熔渣,则通过这个元素在渣中的百分含量,就可以计算出熔渣的数量.Mn和 P两元素,从渣料及炉衬中的来源很少,其数量可以忽略不计.因而可以用Mn或 P的平衡来计算渣量.例:渣量计算(单渣法)装入量 Mn P Fe装 (kg) % kg % kg % kg入铁水28000 0.40 112 0.20 56料废钢4000 0.50 20 0.02 0.8数铁矿石1000 0.30 3 0.10 1.0 56.0 560据小计 135 57.8 560(MnO)% [%Mn] (P2O5)% [%P]终点钢水 0.12 0.03数炉渣 3.30 2.56 2.86 1.25据金属装入量 28000+4000+560=32560kg出钢量(按装入量的90%计算)32560×90%=29304kg钢水中Mn 量 29304×0.12%=35.16kg钢水中P量 29304×0.03%= 8.79kg进入渣中Mn 量 135-35.16=99.84kg进入渣中P量 57.8 - 8.79=49.01kg用Mn 平衡法熔渣占装入量的百分比用P平衡法熔渣占装入量的百分比习题:1名词解释:泡沫渣,单渣法双渣法双渣留渣法2造渣方法如何选择采用双渣法操作时,倒渣的时间应如何掌握3石灰加入量如何计算渣料如何加入4影响石灰溶解的因素有哪些5炉渣严重泡沫化的原因是什么如何控制泡沫渣6.吹炼过程中为什么会出现炉渣"返干"现象§4—5 温度制度氧气转炉的温度制度包括两方面的内容:一是准确控制终点温度,二是恰当控制冶炼过程温度. 温度对于转炉吹炼过程既是重要的热力学参数,又是重要的动力学参数.它既对各个化学反应的反应方向,反应程度和各元素之间的相对反应速度有重大影响,又对熔池的传质和传热速度有重大影响.因此,为了快而多地去除钢中的有害杂质,保护或提取某些有益元素,加快吹炼过程成渣速度,加快废钢熔化,减少喷溅,提高炉龄等,都必须控制好吹炼过程温度.此外,对各钢种都有其要求的出钢温度.出钢温度过低会造成回炉,短锭,包底凝钢及钢锭的各种低温缺陷和废品;过高则会造成跑漏钢,钢锭上涨,粘模及钢锭的各种高温缺陷和废品,并影响炉衬和氧枪的寿命.一.转炉温度控制的目标及温度控制内容1.目标希望吹炼过程中均衡升温,吹炼终点时钢水的温度和化学成分同时命中钢种要求的范围.2.内容⑴确定合适的钢种出钢温度;⑵确定熔池富裕热量的数值,选择冷却剂并确定其冷却效果和加入量;⑶掌握影响熔池温度变化的因素,及进行温度控制操作.二.热量来源与热量支出1.热量来源氧气转炉炼钢的热量来源主要是铁水的物理热和化学热.物理热是指铁水带入的热量,它与铁水温度有直接关系,化学热是铁水中各元素氧化后放出的热量,它与铁水化学成分直接相关. 在炼钢温度下,各元素氧化放出的热量各异,它可以通过各元素氧化放出的热效应来计算确定.例如铁水温度1200℃,吹入的氧气25℃,碳氧反应生成CO时:[C]1473+{O2}298={CO}1473 ΔH1473K= -137520 J/mol则1kg[C]氧化生成CO时放出的热量为137520/12≈11300kJ/kg.现以100kg金属料为例,计算各元素的氧化热能使熔池升温多少.设炉渣量为装入金属料的15%,炉衬吸热为装入金属料的10%,计算热平衡公式如下:Q=∑MCT式中 Q—1kg元素氧化放出的热量,kJ/kg;M——受热金属液,炉衬和炉渣重量,kg;C——各物质比热,已知钢液CL为0.84~1.0kJ/kg·℃,炉渣和炉衬的CS为1.23kJ/ kg·℃.计算在1200℃时C—O反应生成CO时,氧化1kg碳可使熔池温度升高数为:℃1kg元素是100kg金属料的1%,因此,根据同样道理和假设条件,可以计算出其它元素氧化1%时使熔池的升温数.碳完全燃烧生成CO2时其发热量最高,使熔池升温数最大,其次是磷和硅.但是碳大部分没有完全燃烧,因此,在氧气转炉吹炼中采用双流氧枪,可有助于CO进一步燃烧生成CO2,使转炉热效率提高.哪些元素是转炉炼钢的主要热源,不仅要看其热效应大小,还要视其氧化总量的多少而定.例如,在1400℃时,硅氧化0.5%,碳氧化3%,则分别使熔池升温数为71℃和249℃,可见碳氧化产生的总热量要比硅的总热量多得多.2.热量支出热量支出主要包括:钢水物理热;炉渣物理热;炉气物理热;烟尘物理热;渣中金属铁珠物理热;喷溅金属物理热;矿石分解热;废钢物理热(见热平衡表).其中,钢水的物理热约占70%,这是一项主要的支出,熔渣带走的热量大约占10%,它与渣量的多少有关.因此在保证去除P,S的条件下,采用最小的渣量.渣量过大不仅增加渣料的消耗,也增加热量的损失,所以要求铁水进行预处理,这样既可实现少渣操作;同时在吹炼过程中也可减少喷溅,缩短吹炼时间,减少炉与炉的间隔时间,减少热损失,提高转炉的热效率.转炉热效率提高以后,可以提高废钢比.3.转炉炼钢的热平衡指炼钢过程的热量来源与支出之间的平衡关系(见热平衡表).为了准确的控制转炉的吹炼温度,需要知道铁水中各成分氧化反应放出的总热量;这些热量除了把熔池加热到出钢温度外,富余多少热量需要加多少冷却剂这要经过热平衡计算才能得出,具体物料平衡,热平衡计算参看教材中物料平衡与热平衡计算内容.热平衡表的分析:根据转炉吹炼过程中热量的收入与支出,作出热平衡计算列出热平衡表,得出氧气转炉热工特点如下:⑴热量收入主要是铁水的物理热和化学热;⑵尚有大量的富余热量,必须加入冷却剂;⑶元素氧化放热中,C,Si,P都是重要的发热元素,其中碳占有主要地位(占氧化总放热的一半以上).⑷转炉热效率为60~70%左右.转炉总热效率计算公式如下:总热效率=×100%在转炉炼钢过程中,真正有用的热量占整个热量收入的70%左右,在热量的利用上还是有一定潜力的,应努力提高热效率.三.出钢温度的确定出钢温度的高低受钢种,锭型和浇注方法的影响.1.出钢温度的确定依据:⑴保证浇注温度高于所炼钢种凝固温度20~30℃(小炉子偏上限,大炉子偏下限).⑵考虑出钢过程和钢水运输,镇静时间,钢液吹氩时的降温,一般为80~120℃.⑶考虑浇注方法和浇注锭型大小所用时间的降温.2.确定出钢温度T出钢T出钢 =T凝 +△t过热+△T总式中 T凝——钢液的熔点即液相线温度,根据钢种的化学成分而定.T凝=1539-∑△ti×[%i]-7 ℃;△t过热—钢水过热度,℃.即高于熔点的温度值,与钢种,坯型有关.△T总—从出钢→精炼→浇注过程中的温降值.△T总=△t1+△t2+△t3+△t4+△t5△t1—出钢过程温降,℃.△t2—出钢毕至精炼开始之前的温降,℃.△t3—钢水精炼过程温降,℃.△t4—钢水精炼完毕至开浇前的温降,℃.△t5—钢水从钢包至中间包的温降,℃.四.确定冷却剂用量1.冷却剂及其特点转炉炼钢的冷却剂主要是废钢和矿石.比较而言,废钢的冷却效应稳定,而且硅磷含量也低,渣料消耗少,可降低生产成本;但是,矿石可在不停吹的条件下加入,而且具有化渣和氧化的能力.因此,目前一般是矿石,废钢配合冷却,而且是以废钢为主,且装料时加入;矿石在冶炼中视炉温的高低随石灰适量加入.另外,冶炼终点钢液温度偏高时,通常加适量石灰或白云石降温(前两种均不能用).2.各冷却剂的冷却效应冷却效应是指每kg冷却剂加入转炉后所消耗的热量,常用q表示,单位是kJ/kg.⑴矿石的冷却效应:矿石冷却主要靠Fe2O3的分解吸热,因此其冷却效应随铁矿的成分不同而变化,含Fe2O370%,FeO10%时铁矿石的冷却效应为:q矿=1×C矿×△t+λ矿+1×(Fe2O3%×112/160×6456+FeO%×56/72×4247)=1×1.02×(1650-25)+209+1×(0.7×112/160×6456+0.1×56/72×4247)=5360 kJ/kg⑵废钢的冷却效应:废钢主要依靠升温吸热来冷却熔池,由于不知准确成分,其熔点通常按低碳钢的1500℃考虑,入炉温度按25℃计算,于是废钢的冷却效应为:q废=1×[C固(t熔-25)+λ废+ C液(t出-t熔)]=1×[0.7×(1500-25)+272+0.837(1650-1500)]=1430 kJ/kg⑶氧化铁皮的冷却效应:计算方法同矿石,对于50%FeO,40%Fe2O3 的氧化铁皮,其冷却热效应为:q皮=5311 kJ/kg。

转炉炼钢工艺(主要是热平衡计算)

转炉炼钢工艺(主要是热平衡计算)

3 氧气顶吹转炉炼钢工艺3.1 一炉钢的操作过程要想找出在吹炼过程中金属成分和炉渣成分的变化规律,首先就必须熟悉一炉钢的操作、工艺过程。

在下面的图3-1中示出了氧气顶吹转炉吹炼一炉钢的操作过程与相应的工艺制度。

由图可以清楚地看出,氧气顶吹转炉炼钢的工艺操作过程可分以下几步进行:1)上炉钢出完并倒完炉渣后,迅速检查炉体,必要时进行补炉,然后堵好出钢口,及时加料。

2)在装入废钢和兑入铁水后,把炉体摇正。

在下降氧枪的同时,由炉口上方的辅助材料溜槽,向炉中加入第一批渣料(石灰、萤石、氧化铁皮、铁矿石),其量约为总量的2/3~1/2。

当氧枪降至规定的枪位时,吹炼过程正式开始。

当氧气流与溶池面接触时,碳、硅、锰开始氧化,称为点火。

点火后约几分钟,炉渣形成覆盖于熔池面上,随着Si、Mn、C、P的氧化,熔池温度升高,火焰亮度增加,炉渣起泡,并有小铁粒从炉口喷溅出来,此时应当适当降低氧枪高度。

3)吹炼中期脱碳反应剧烈,渣中氧化铁降低,致使炉渣的熔点增高和粘度增大,并可能出现稠渣(即―返干‖)现象。

此时,应适当提高氧枪枪位,并可分批加入铁矿石和第二批造渣材料(其余的1/3),以提高炉渣中的氧化铁含量及调整炉渣。

第三批造渣料为萤石,用以调整炉渣的流动性,但是否加第三批造渣材料,其加入量如何,要视各厂生产的情况而定。

4)吹炼末期,由于熔池金属中含碳量大大降低,则使脱碳反应减弱,炉内火焰变得短而透明,最后根据火焰状况,供氧数量和吹炼时间等因素,按所炼钢种的成分和温度要求,确定吹炼终点,并且提高氧枪停止供氧(称之为拉碳)、倒炉、测温、取样。

根据分析结果,决定出钢或补吹时间。

5)当钢水成分和温度均已合格,打开出钢口,即可倒炉出钢。

在出钢过程中,向钢包内加入铁合金,进行脱氧和合金化(有时可在打出钢口前向炉内投入部分铁合金)。

出钢完毕,将炉渣倒入渣罐。

通常将相邻两炉之间的间隔时间(即从装钢铁材料到倒渣完毕),称为冶炼周期或冶炼一炉钢的时间。

转炉炼钢原理及工艺介绍

转炉炼钢原理及工艺介绍

转炉炼钢原理及工艺介绍引言转炉炼钢是一种常用的钢铁生产工艺,具有高效、灵活、环保等特点。

本文将介绍转炉炼钢的原理及工艺流程。

一、转炉炼钢原理转炉炼钢是通过在高温下将生铁与废钢等原料进行反应,去除杂质,调整合金成分来生产钢铁。

其原理基于以下几个重要的化学反应步骤:1.氧化反应:在高温下,将生铁中的杂质氧化为气体或溶于渣中。

主要的氧化反应有:Fe+C+O2=FeO+CO、Mn+C+O2=MnO+CO等。

2.还原反应:在氧化反应的基础上,通过还原剂(如脱氧剂)来还原产生的氧化物。

主要还原反应有:FeO+CO=Fe+CO2、MnO+CO=Mn+CO2等。

3.合金化反应:在还原反应的基础上,通过加入适量合金元素来调整合金成分。

合金化反应可以通过添加合金块、废钢等方式实现。

通过以上化学反应的组合,转炉炼钢可以控制合金成分、去除杂质、调整温度等,从而得到符合要求的钢铁产品。

二、转炉炼钢工艺介绍转炉炼钢的工艺可以分为以下几个主要步骤:1.预处理:生铁、废钢等原料经过破碎、除尘等处理后,进入转炉炉前料斗。

2.加料:原料从炉前料斗通过螺旋输送机被输送至转炉炉缸中。

3.预热:将炉缸中的原料进行预热,以提高反应效果。

4.吹炼:将炉底引入的高纯氧吹入炉缸中,通过氧化反应和还原反应去除杂质、调整合金成分。

5.加料:在吹炼过程中,适量添加合金块、废钢等调整合金成分。

6.测温:通过测温仪器监测和调节炉内温度。

7.出渣:通过倾炉装置将产生的渣浆从转炉中排出。

8.抽炉:将炉内得到的钢液通过倾炉装置倾出,并进行钢液处理(如脱氧、出气、精炼等)9.浇铸:将经过处理的钢液进行浇铸,得到需要的钢铁产品。

三、转炉炼钢的优势转炉炼钢工艺具有以下几个优势:1.高效:转炉炼钢的操作灵活,能够快速调整合金成分和生产规格,生产效率高。

2.资源利用:转炉炼钢可以利用废钢等再生资源,减少资源浪费。

3.环保:转炉炼钢排放的烟尘、废气等污染物可以通过环保设施进行处理,达到环保要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

炼钢生产中转炉炼钢脱氧工艺
发表时间:2019-03-07T13:55:31.470Z 来源:《建筑学研究前沿》2018年第33期作者:张文兴[导读] 这样就能够在确保钢产品质量的基础上,减少投入成本,让炼钢生产能够安全、高效地进行。

中天钢铁集团有限公司江苏常州 213011
摘要:由于钢铁行业之间的竞争越发激烈,使得各个钢铁企业逐渐增强了对生产成本以及产品质量的控制,怎样运用先进技术工艺来提升产品质量,减少投入成本成为了现阶段钢铁企业提升行业竞争力的重点。

在转炉炼钢的实际生产过程中,氧气的产生是必然的,因此我们需要先了解氧对炼钢生产以及钢产品带来的危害,并掌握脱氧的有效方式,再对脱氧工艺予以有效运用与完善,以此来提升钢液脱氧处理的实际效果。

这样就能够在确保钢产品质量的基础上,减少投入成本,让炼钢生产能够安全、高效地进行。

关键词:炼钢;转炉;脱氧工艺
1?炼钢过程中的质量影响因素分析
炼钢过程中要进行质量和设备的控制,炼钢各个环节都要进行原料的供给以及操作条件的合理组织等等,以此让炼钢的基本要素达到要求。

在炼钢过程中对炼钢质量形成影响的主要因素有钢炉,本文主要是从转炉的背景下进行研究分析的,氧气转炉中的氧气含量以及铁水的处理等等,因此以下主要是对氧气的存在对钢液产生的影响以及处理办法进行研究分析,旨在提升钢铁的强度和质量。

2?氧在炼钢中的产生以及危害分析
在钢液当中,氧气一般是以一种非金属夹杂物的形式存在,有的也是以溶解氧气的方式存在,氧基本来自于原料和吹氧炼钢的生产过程中。

无论是哪一种,炼钢的方式方法要想除去其中的一些化学杂质,如碳、磷、硅、锰等等元素就需要使用其中的氧气,产生一种氧化反应,让氧气和相关的杂质之间有效的结合在一起,由此产生氧化合物,让杂质被析出。

钢液中氧的存在是不可避免的,因此在吹氧炼钢的过程中,要伴随着钢液中氧化和杂质含量的降低对钢液当中氧气的含量会有提升性的促进作用,如果钢液中的氧气没有经过有效的处理,氧含量非常高的钢液在凝固的过程中就会和已有的钢液发生反应,结晶,并且出现氧化亚铁,这种氧化亚铁物质在钢液中存在,铸坯被破坏,对钢产品的质量会产生直接性的影响,严重还会出现变形的现象,有热脆产生,还可能会让钢铁出现进一步的氧化现象。

钢液当中出现非常多的氧含量会让硫的危害被加重,进而相继的发生化学反应,生成各种氧化杂质,在夹杂钢体当中,这些现象的出现都会对钢产品的力学性能产生危害。

在钢液冷凝的过程中,钢液溶解氧和钢液中的碳也会发生反应,以此形成一种为一氧化碳气泡的物质,在析出之后气泡在钢液当中发生反应,造成钢液的沸腾现象,钢液当中含氧量非常高所造成的后果就是一氧化碳的起泡增加,由此钢液的沸腾也就会更加明显。

钢液在脱氧过程中的程度不同就会有不同的沸腾现象出现,基本按照沸腾可以分为几种不同的钢,主要有镇静钢、半镇静钢以及沸腾钢。

钢液中若是有一氧化碳气泡,钢锭在内部组成上的各种物质也会疏松变得,由此造成密度下降的现象,钢的强度被破坏。

基于这样的问题就需要使用脱氧的处理办法,这些措施的使用能够将钢液进行更多的脱氧处理,不断的让钢液中的氧含量得到有效的降低。

一般来讲,如果是镇静钢,含氧量需要在0.005%以内,沸腾钢的含氧量在0.025%-0.030%,要想更好的对钢液的沸腾进行有效的控制就需要做进一步的分析,让钢坯和钢锭的成分都能够刚组织的要求相符合,最大程度上保障钢产品的强度和质量。

3?对炼钢生产中转炉炼钢脱氧工艺方式的研究分析
在炼钢脱氧方法当中,会使用到沉淀脱氧发和扩散脱氧法两种,脱氧的解百纳操作也需要使用到脱氧剂,一般来讲,脱氧剂中的化学元素主要有铝、硅、锰等等,脱氧反应这些物质和氧气发生作用,直接形成氧化合物,尽最大程度的降低钢液当中氧气的含量,能够提升钢的强度。

每一种脱氧剂中的脱氧元素作用不同,力度也不同,以上所分析的锰元素在脱氧方面就比较弱,一般在沸腾钢的脱氧工作中被使用;铝是一种强化脱氧剂,一般使用在镇静脱氧当中,把这两种脱氧剂合成才能出现有效的脱氧剂,在钢液脱氧工作中起到较大的作用,让脱氧产物上浮,去除。

沉淀方式的脱氧法。

沉淀方式的脱氧方法使用起来非常简单,操作企业也更加方便,可以把脱氧剂直接的加入到钢液当中,发生脱氧的直接性反应,生成脱氧物,以此达到一种氧化于钢液快速分离的脱氧目的。

这种方式的脱氧率非常高,在时间上使用也比较短暂,对炼钢不发生影响。

沉淀方式的脱氧法也存在一定的劣势,就是在脱氧剂能力方面以及脱氧物的排除方面有非常高的要求,若是脱氧物不能上浮,也不能很好的排除,那么就会让钢液有氧化亚铁的还原产生,还会产生新的氧化物之,对钢液产生污染性作用。

因此此种方式的使用需要进行斟酌,了解炼钢的实际情况再去使用,避免对钢液产生直接性的污染。

结束语
随着钢铁行业竞争的日趋激烈,各钢铁企业开始加强对产品质量和生产成本的控制,如何改进和利用先进的生产工艺,提高产品质量,降低生产成本,已成为目前钢铁企业保持竞争力,获得生存与发展的关键。

在转炉炼钢生产中,氧的产生是不可避免的,我们首先应了解氧对炼钢生产和钢产品质量的危害,掌握各种脱氧方法,在此基础上加强对脱氧处理工艺的改进和利用,才能有效提高对钢液脱氧处理的效果。

在保证钢产品质量的同时,降低生产成本,使炼钢生产可以有序、高效地进行。

参考文献
[1]王荣,李伟东,孙群.转炉炼钢脱氧工艺的优化[J].鞍钢技术,2010,(5):47-50.
[2]杜增路.对炼钢生产中转炉炼钢脱氧工艺的探讨[J].世界有色金属,2017(4):35—36.
[3]徐伟,转炉炼钢脱氧工艺的优化研究[J].工程技术,2016(11):4 9.
[4]赵家七,邹长东,耿涛,等.炉渣脱氧改质工艺对铝镇静硅钢总氧含量的影响[J].炼钢,2016,32(2):12—17.
[5]孟庆龙,汪红有,杨丽.炼钢脱氧新材料钢砂铝的应用[J].河北冶金,2016(5):48—49.
[6]尹文祥,王伟.对炼钢生产中转炉炼钢脱氧工艺的探讨[J].科技尚品,2016(1):32.
[7]杜增路.对炼钢生产中转炉炼钢脱氧工艺的探讨[J].世界有色金属,2017(4):35—36.。

相关文档
最新文档