四川大学高分子物理第五章 聚合物的结晶态

合集下载

2024年度四川大学内部高分子物理PPT课件

2024年度四川大学内部高分子物理PPT课件

定义
高分子物理是研究高分子物质物理性 质的科学,是高分子科学的一个重要 分支。
特点
高分子物理的研究对象是具有高分子 量的聚合物,其物理性质与低分子物 质有很大差异,如高分子链的构象、 聚集态结构、相转变、粘弹性、导电 性、光学性质等。
4
高分子物理研究内容
高分子链结构
研究高分子链的化学结构、构象、链长及分 布等。
2024/3/23
13
凝胶化现象与凝胶体性质
凝胶化现象
当高分子溶液的浓度达到一定程度时 ,高分子链之间会相互交联形成三维 网络结构,从而使溶液失去流动性, 形成凝胶。
凝胶体性质
凝胶体具有独特的物理和化学性质, 如弹性、粘滞性、触变性等。这些性 质使得凝胶体在生物医学、材料科学 等领域具有广泛的应用前景。
耐疲劳性
高分子材料在交变应力作用下抵抗疲劳破坏的能力,通 常以疲劳寿命或疲劳极限表示。提高高分子材料的耐疲 劳性有助于增强其承受交变应力的能力,从而延长使用 寿命。
2024/3/23
26
THANKS FOR WATCHING
感谢您的观看
2024/3/23
27
2024/3/23
16
取向态结构与液晶态结构
取向态结构
高分子链在特定方向上呈现有序排列,而在 其他方向上保持无序。取向态结构具有各向 异性,表现为物理性质在不同方向上的差异 。
液晶态结构
高分子链在特定条件下形成介于晶体和非晶 态之间的中间状态。液晶态结构具有部分有 序性,表现出独特的物理性质,如光学性质 和流动性。
2024/3/23
14
CHAPTER 04
高聚物聚集态结构
2024/3/23
15
晶体规则排列,形成周期 性点阵结构。晶体结构具有长程有序性 ,表现出明显的各向异性。

四川大学高分子物理课件

四川大学高分子物理课件

颗粒
(粒子相)
有序区:分子链折叠,排列规整 尺寸 为2~4nm 粒界区:围绕有序区形成的,包含折叠链弯 曲部分、链端、缠接点,尺寸为1~2nm
粒间区:无规线团,尺寸为1~5nm
(粒间相)
特征:局部有序
这个模型可能解释结晶过程很快和非晶态聚合物 的密度大于完全无规的同系物的密度。
这个模型现已被一些学者所否定。
论 点:晶区、非晶区互相穿插,同时存在,一条大 分子链可能通过几个晶区和非晶区,晶区尺寸很小,分子 链在晶区规整排列,在非晶区无规堆砌。
贡献:可以解释一些实验事实,比如高聚物结晶的不完 全性→结晶度概念,出现内应力等 晶区 高聚物的晶态 非晶区 结晶缺陷区 共存的状态
(二)折叠链模型
图2—45 实验事实:晶相、非晶相可能分离,制得单晶。 论 点:大分子的折叠链形式排入晶格。长链分 子在一定条件下,其伸展部分倾向于相互靠近形成链束, 为减小表面能,链束自发地折叠成带状结构,进而排列 成晶片。 折叠方式有三种可能情况: (a) 近邻规整折叠 图2 —51 (b) 近邻松散折叠 跨层折叠 图2 —53
晶胞的平行六面体有七种类型, 形成了七大晶系
高聚物有各向异性,因此合成高聚物的晶格中无立方 晶系,而只有六大晶系。结晶条件…构象…晶型(同质多晶) 二、高聚物晶体的特点: 1、原则上是分子晶体,但晶胞中晶格单元是链节而不是
分子链;
2、高分子晶体是各向异性的晶体(具有方向性) c轴方向:是主链的中心轴 a、b轴方向:靠范德华力相连; 3、具有六大晶系——无立方晶系;
(二)无规线团模型
图2—63 Flory提出,影响很大,实验证据很多。 论 点:不同分子链之间,彼此纠缠,呈无规线 团状,非晶态高分子的排列完全是无序 的,是均相,并非两相。

聚合物结晶态与非晶态

聚合物结晶态与非晶态

(1)中子散射技术观测拉伸聚合物相同伸长、 不 同松弛时间的结构变化。
(2)同步辐射SAXS /WAXS和介电谱技术可以用 来研究结晶高分子非晶区的结构及其动力学松弛行 为。
(3)结晶高分子中柔性非晶相和刚性非晶相的比 例可以根据示差扫描量热( DSC ) 结果进行估算。
完 毕! 谢 谢!
聚合物
非结晶性 聚合物
结晶性聚 合物
结条 晶件
非晶 态
晶态
结晶能力是内因,条件外 因。具有结晶能力的聚合 物,即可是晶形的,也可 是非晶形的。
分子链的对称 性与规整性
温度、时间
(1)缨束状模型
Hale Waihona Puke (2)折叠链模型实际高聚物结晶大 多 是晶相与非晶相 共存的, 而各种结 晶模型都有其片 面 性,R.Hosemann 综合了各种结晶模 型,提出了一种折 衷的模型,称为隧 道-折叠链模型。 这个模型综合了在 高聚物晶态结 构中
聚合物
玻璃化转变温度85℃,
熔点285℃,长期使用
温度为200℃-220℃。
6. 结晶度与材料性能
提 非晶区高弹态 高 结 晶 度 非晶区玻璃态
弹性模量 硬度 拉伸强度 断裂伸长率 冲击强度
~ 弹性模量
变脆 拉伸强度 断裂伸长率 冲击强度
相同结晶度时,晶体尺寸越大,脆性越大,力学性能越差。
6. 结晶度与材料性能
6. 结晶度与材料性能
例如:聚醚醚酮(poly
ether ether ketone, PEEK)
Tm
树脂结晶度间于
结晶性聚 合物
15%~35%,玻璃化转变 温度143℃,熔点334℃, 可在250℃下长期使用;
Tg
聚苯硫醚 (polyphenylene sulfide,

高分子物理课件 - 四川大学 - 冉蓉 - 第五章 晶态高聚物

高分子物理课件 - 四川大学 - 冉蓉 - 第五章  晶态高聚物

* 结晶高聚物最重要的证据为x射线衍射花样—— 同心环(德拜环)和衍射曲线。 * 非晶的x射线衍射花样——弥散环。 下图是等规立构的聚苯乙烯和无规立构的聚苯乙 烯的x射线衍射花样:
3、高聚物晶体中分子链的构象:
结晶过程中高聚物的密度↑ ,比容↓ ,分子链采 取位能最低的特定构象排入晶格。
1)、锯齿形构象:
4、分子量:
分子量小,结晶速率快
分子量大,结晶速率慢
5、压力、应力、溶剂、杂质
压力、应力↑
压力 应力
加速结晶
PE,Tm=137℃,一般当温度>Tm时,不结 晶,而在150MPa高压下,PE在160℃的温度 下可结晶。 应力使分子链朝某个方向排列,加速结晶—— 应力诱导结晶 NR,室温观察不到结晶,拉伸立刻产生结晶。
3)、不同高聚物的结晶速率不等: 结晶速率——体积收缩一半时对应的时间 (
t1/ 2 )的倒数。 t1/ 2 ——半结晶期
聚合物
聚异戊二烯
t1/ 2
0.42

5 × 103
尼龙-66
二、 高聚物结晶的温度依耐性:
晶核形成 与低分子一样包括 晶体长大 结晶的温度范围 Tg~Tm 而实际的结晶温度范围是: Tg~T1 ( T1< Tm) 此即是结晶过冷的现象。
不同成核和生长类型的Avrami指数值
生长类型 三维生长 (球状晶体) 二维生长 (球状晶体) 一维生长 (球状晶体) 均相成核 n=生长维数+1 异相成核 n=生长维数
n=3+1=4 n=2+1=2 n=1+1=2
n=3+0=3 n=2+0=2 n=1+0=1
“退火”(热处理方法):
将成形后的制品升温到接近熔点的某一温度,以加速次 期结晶。

高分子物理——第五章 聚合物的结晶态

高分子物理——第五章 聚合物的结晶态

(二)、立构规整性聚合物易结晶
1、聚α-烯烃的定向聚合物—等规PP、等规PS、 定向PMMA等,具有一定的结晶能力,且与其规 整度有关
(三)、共聚 无规共聚物减弱或丧失结晶能力,如乙丙橡胶
嵌段共聚物能结晶的嵌段可形成自己的晶区 接枝共聚物其结晶能力↓
(四)、其它结构因素
1、刚柔性适当结晶能力强
PE>PET>PC
(一)、高聚物结晶的时间依赖性: —Avrami方程
V0 t0 开始
Vt t 中间
t 时体积收缩=
V∞ t∞ 终了(达到平衡)
以体积收缩对时间t作图 等温结晶曲线
t 小时
天然橡胶的等温结晶曲线 结论:结晶过程的完成需要很长时间, 结晶终点不明确。
用Avrami方程描述聚合物的等温结晶过程:
vt dv t ktl dt
每个几何点代表的具体内容称为晶体的结构单元
晶格:组成晶体的 质点在空间呈有规 则的排列,并每隔 一定距离重复出现, 有明显的周期性, 这种排列情况称为 晶格,晶格是由晶 胞构成的。
(3)试验证明,在晶体中可以找到一个个大小 和形状一样的平行六面体,以代表晶体结构的基本
重复单元,这种在空间中具有周期排列的最小单元
球晶的形成
球晶对性能的影响:
其大小直接影响聚合物的力学强度,球晶越大, 材料的冲击强度↓,越容易破裂。
对透明性有很大影响:使聚合物呈现乳白色而不 透明,球晶尺寸越大,透明性越差;如果晶相和非晶 相密度非常接近,则仍然透明;如果球晶尺寸或晶粒 尺寸<可见光波长,材料也是透明的。
(三)、伸直链晶体 [如图2-29(a).(b)所示]
结晶最大 速度
1/t1/2 晶核生成
第五章 聚合物的结晶态 (Crystaline Polymer)

高分子物理知识重点(第五章)

高分子物理知识重点(第五章)

第五章 聚合物的分子运动和转变1.聚合物分子运动的特点: ①.运动单元的多重性 ②.分子运动的时间依赖性 ③.分子运动的温度依赖性2.运动单元的多重性: A.具有多种运动模式 B.具有多种运动单元A.具有多种运动模式:由于高分子的长链结构,分子量不仅高,还具有多分散性,此外,它还可以带有不同的侧基,加上支化,交联,结晶,取向,共聚等,使得高分子的运动单元具有多重性,或者说高聚物的分子运动有多重模式B.具有多种运动单元:如侧基、支链、链节、链段、整个分子链等* 各种运动单元的运动方式①.链段的运动: 主链中碳-碳单键的内旋转, 使得高分子链有可能在整个分子不动,即分子链质量中心不变的情况下, 一部分链段相对于另一部分链段而运动②.链节的运动: 比链段还小的运动单元③.侧基的运动: 侧基运动是多种多样的, 如转动, 内旋转, 端基的运动等④.高分子的整体运动: 高分子作为整体呈现质量中心的移动⑤.晶区内的运动: 晶型转变,晶区缺陷的运动,晶区中的局部松弛模式等3.分子运动的时间依赖性: 在一定的温度和外力作用下, 高聚物分子从一种平衡态过渡到另一种平衡态需要一定时间的,这种现象即为分子运动的时间依赖性; 因为各种运动单元的运动都需克服内摩擦阻力, 不可能瞬时完成4.松弛现象:除去外力,橡皮开始回缩,其中的高分子链也由伸直状态逐渐过渡到卷曲状态,即松弛状态。

故该过程简称松弛过程。

5.松弛时间τ : 形变量恢复到原长度的1/e 时所需的时间 6.分子运动的温度依赖性:①.温度升高,使分子的内能增加:运动单元做某一模式的运动需要一定的能量, 当温度升高到运动单元的能量足以克服的能垒时,这一模式的运动被激发。

②.温度升高使聚合物的体积增加:分子运动需要一定的空间, 当温度升高到使自由空间达到某种运动模式所需要的尺寸后, 这一运动就可方便地进行。

7.黏弹行为的五个区域: ①.玻璃态 ②.玻璃化转变区 ③.高弹态(橡胶-弹性平台区) ④.粘弹转变区 ⑤.粘流态8.图- -:模量-温度曲线----各区的运动单元、特点、名字、描述玻璃化转变为高弹态,转变温度称为玻璃化温度Tg高弹态转变为粘流态,转变温度称为粘流温度Tf* 非晶聚合物:()()t -τΔx t =Δx 0e①.从相态角度来看,玻璃态,高弹态,粘流态均属液相,即分子间的相互排列均是无序的。

高分子物理习题答案..

高分子物理习题答案..

高分子物理习题集-答案第一章高聚物的结构4、高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度?答:构型:分子中由化学键所固定的原子或基团在空间的几何排列。

这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

构象:由于单键内旋转而产生的分子在空间的不同形态。

构象的改变速率很快,构象时刻在变,很不稳定,一般不能用化学方法来分离。

不能。

提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。

构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现,而且分子中的单键内旋转是随时发生的,构象瞬息万变,不会出现因构象改变而使间同PP(全同PP)变成全同PP(间同PP);而改变构型必须经过化学键的断裂才能实现。

5、试写出线型聚异戊二烯加聚产物可能有那些不同的构型。

答:按照IUPAC有机命名法中的最小原则,CH3在2位上,而不是3位上,即异戊二烯应写成CH2CCH3CH CH21234(一)键接异构:主要包括1,4-加成、1,2-加成、3,4-加成三种键接异构体。

CH2nCCH3CH CH21,4-加成CH2nCCH3CH CH21,2-加成CH2nC CH3CH CH23,4-加成(二)不同的键接异构体可能还存在下列6中有规立构体。

①顺式1,4-加成CH 2CH 2CH 2CH 2C CH 3C HCH 3C CH②反式1,4-加成2CH 2CH 2CH 2C CH 3C HCH 3C CH③1,2-加成全同立构CH 2C C CH 3C C HHH HCH CH 2CH CH 3C C H HCH 2CHCH 3④1,2-加成间同立构C C CH 3CC HH HHCH 3C C H HCH 3RRRR=CHCH 2⑤3,4-加成全同立构CH 2C CH3C CC C HH H HC C H HCH 2C CH 3CH 2C CH3HHH⑥3,4-加成间同立构C C CC HH H HC CH HRRRR=CH 2HH H C CH 36.分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙-66)、聚丙烯酸各有那些分子间作用力? 答:分子间作用力的本质是:非键合力、次价力、物理力。

高分子物理实验-结晶聚合物的结晶熔融行为

高分子物理实验-结晶聚合物的结晶熔融行为

第二部分
偏光显微镜观察聚合物结晶形态
指导教师:张萍 程俊梅 实 验 室: 高分子学院3-319 课 时:3学时
引言
聚合物结晶后其光学性能会发生各向异性 变化,因而可用偏光显微镜观察较大尺寸晶体 的结晶形态。由于结晶聚合物材料的实际使用 性能与材料内部的结晶形态、晶体大小密切相 关,所以对聚合物结晶形态的研究具有重要的 理论和实际意义。
二、实验原理
双折射现象
双折射(double refraction):
光束在非晶体光轴方向上入射时, 入射光分解为两束光而沿不同方 向折射的现象。它们为振动方向 互相垂直的线偏振光。
二、实验原理
平面/线偏振光(polarized light)
光是一种电磁波,电磁波是横波; 振动面:光波前进方向和振动方向构成的平面; 自然光:振动面在各个方向上均匀分布的光。 平面/线偏振光:振动面只限于某一固定方向的光。
即仪器常数K的标定
ΔH=KA
热量标定:
K—仪器常数,
K= ΔH标/ΔH测。
(K等于标准物的标准熔融
热ΔH标与测得的标准物
熔融热ΔH测之比)
DSC实验影响因素
仪器影响因素 实验影响因素
样品因素
气氛的影响
升温速率的影响 试样量的影响 试样的粒度的影响 装填方式的影响
实验步骤
制样
开机
打印 结果
数据 处理
四、实验要求
1. 预习报告
认真预习偏光显微镜工作原理;黑十字及消光环的 成因;制样方法。
2.实验步骤:
放置载玻片,接通制样台电源,压片法制样,样品冷却; 调节显微镜,观察样品结晶形态,切断电源。
3.注意事项
样品尺寸:为绿豆粒大小即可; 如果是粉料,取放时应防止其撒开,导致样 品中有气泡。

川大高物课件第五章

川大高物课件第五章

Vi
Vs
VR
当M>Ma时,直线与纵轴平行,VR与M无关,这时 VR=Vo,Ma称为填料渗透极限。
当M<Mb时,直线向下弯曲,VR与M的关系变得 不敏感。溶质分子相当小时,其VR已接近Vo+Vi。这 种填料只能测Mb<M<Ma范围的分子,即Mb~Ma称为 载体的分离范围。 有了校正曲线,就容易将GPC色谱图中的横 坐标VR→M而得到试样的MWD (Δn~M)
5.2.3 分级实验方法
选用合适的高分子—溶剂体系。
1、降温分级法
TC1 M1 TC2 M2 TC3 …… M3 ……
M 大→小,被分离
2、加入沉淀剂法
改变溶液与沉淀剂的比例 T一定时,在高分子溶液中加入沉淀剂,M大者先 沉淀,M小者后沉淀,得到M大→小的各级分。 γ表示沉淀剂在溶剂—沉淀剂中所占的体积分数。 刚开始产生相分离的γ值称为沉淀点,记为γ* 需时间一个月。 1,2属沉淀分级法。
3、当Χ→∞,Χ1C→1/2,△M1=0,此时TC为最大,即为 溶液的特征温度—θ温度。故θ温度也是分子量趋于∞时高 分子—溶剂体系的TC。 1 11 1
T 2
将X 1c 1 1 1 代入上式整理后得 : 2 x 2x
1 1 1 1 1 [1 ( )] Tc 1 x 2x
第二节 基于相平衡的分级方法
分级
研究MWD的核心工作是分离(分级)
5.2.1 高分子溶液的相分离
高分子溶液在一定
条件下可以分相 稀相 浓相 临界共溶温度(TC) T B
TC(LCST)
两相区
单相区
TC(UCST)
A
Φ2
UCST LCST
T↓<TC T↑>TC

高分子物理第五章

高分子物理第五章

聚合物的力学状态和热转变
➢力学状态——聚合物的力学性能随温度变化的特征状态
➢热形变曲线(热机械曲线,Thermomechanic Analysis,
TMA):对聚合物样品,施加一个恒定外力,得到的形变与温度
的关系曲线
➢ 结构不同的聚合物ε-T曲线的形式不同
主要有:
线型无定形态聚合物的温度形变曲线 结晶聚合物的温度形变曲线
链段开始运动,可以通过单键的内旋转改变构象, 甚至可以使部分链段产生滑移。
•即链段运动的 减少到与实验测量时间同一个数量级 时观察到链段运动的宏观表现——玻璃化转变, 聚合物进入了高弹态。
高弹态:
•当聚合物受到拉伸力时,分子链通过单键的内旋转 和链段运动改变构象从蜷曲状态到伸展状态(宏观 上表现为很大的形变),当外力除去时,又回复到原 来状态(宏观上表现为弹性回缩),这种受力后形 变很大而且又可以回复的力学性质高弹性,它是非 晶聚合物处在高弹态下特有的力学特征。
结构/性能/分子运动关系:结构是决定分子运动的 内在条件,性能是分子运动的宏观表现。
Rubber 在低温下变硬
PMMA, T>100C, 变软
尽管结构无变化,但对于不同温度或外力,分子 运动是不同的,物理性质也不同。
原因——分子运动不同,聚合物显示不同的物理性质
第5章 聚合物的分子运动和转变
讨论分子热运动的意义:
使运动单元活化
温度对高分 子运动的 作用
(T升高,分子运动能增加,当克服位垒后,
运动单元处于活化状态。)
使聚合物体积膨胀
(加大了分子间的自由空间)
随T升高加快松弛过程,或
者,缩短
(3) Temperature dependence

第五章四川大学高分子流变ppt课件

第五章四川大学高分子流变ppt课件
.
3、挤出量
由于双螺杆啮合过程中存在四个间隙,从而产生四种漏流。因此, 双螺杆挤出机的实际挤出量(Q)必然较理论挤出量(Qc)低, 即实际挤出量为
Q 2 iN U c Q t 2 Q f 2 i(Q c Q s)
.
对于螺杆几何形状对挤出量的影响
改变四面体间隙(以螺纹壁面角 表示)
压延间隙( c )
2、螺杆结构的组成
螺 :螺纹元件、控合盘元件和齿形元件等螺杆元件
杆 3、功能 挤 出 :输送、熔化、分配混合和分散混合、熔体脱出挥发物以及加压

.
组合式螺杆料筒
.
4、螺杆元件及其主要功能
首先,螺纹元件是输送物料的元件
同 正向螺纹元件 反向螺纹元件 向
啮 正向螺纹元件


定义:螺纹是右旋的,其输送方向与挤出机方向相同,但其螺
.
2 硬PVC的熔化
实验原料: 100份PVC树脂 2.5份二碱式硬脂酸铅 0.4份硬脂酸钙 0.3份蜡
实验仪器:锥形双螺杆挤出机 实验目的:研究硬PVC的熔化
.
实验结果 首先,在宏观上,从螺槽取样分析,可识别固体床和熔体池的特性
对于所研究的加工条件范围,熔化发生很突然,它是在熔化区开 始的一个C形室内
第五章 双螺杆挤出机内的流动
.
Contents
1 反向啮合双螺杆挤出机内的流动
高速同向(旋转)啮合双螺杆
2
挤出机内的流动
3
低速同向(旋转)啮合双螺杆 挤出机内的流动
4 非啮合型双螺杆挤出机内的流动
.
概述
1、定义

:一般是指在一根两相交孔组成“”截面的料筒内由两根

相互啮合或相切的阿基米德螺杆构成的挤出装置

高分子物理复习材料by四川大学冉蓉(精)

高分子物理复习材料by四川大学冉蓉(精)

高分子物理习题集第一章高聚物的结构1.简述高聚物结构的主要特点。

2.决定高分子材料广泛应用的基本分子结构特征是什么?3.高分子凝聚态结构包括哪些内容?4.高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度?5.试写出线型聚异戊二烯加聚产物可能有那些不同的构型。

6.分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙 -66 、聚丙烯酸各有那些分子间作用力?7.下列那些聚合物没有旋光异构,并解释原因。

A .聚乙烯 B .聚丙烯 C . 1, 4-聚异戊二烯 D . 3, 4-聚丁二烯 E .聚甲基丙烯酸甲酯 F .硫化橡胶8.何谓大分子链的柔顺性?试比较下列高聚物大分子链的柔顺性,并简要说明理由。

9. 写出下列各组高聚物的结构单元,比较各组内几种高分子链的柔性大小并说明理由 :1 聚乙烯,聚丙烯,聚苯乙烯;2 聚乙烯,聚乙炔,顺式 1,4聚丁二烯;3 聚丙烯,聚氯乙烯,聚丙烯腈;4 聚丙烯,聚异丁稀;5 聚氯乙烯,聚偏氯乙烯;6 聚乙烯,聚乙烯基咔唑,聚乙烯基叔丁烷;7 聚丙烯酸甲酯,聚丙烯酸丙脂,聚丙酸戌酯;8 聚酰胺 6.6,聚对苯二甲酰对苯二胺;9 聚对苯二甲酸乙二醇酯,聚对苯二甲酸丁二醇酯。

C H 2C H C lnC H C H 2nNC H 2nC C H 3C H C H 2C H 2nC H 2H O nO10.为什么真实的内旋高分子链比相应的高斯链的均方末端距要大些? 11.分子量不相同的聚合物之间用什么参数比较其大分子链的柔顺性? 12.试从统计热力学观点说明高分子链柔顺性的实质。

13.用键为单位统计大分子链的末端距与用链段为单位统计末端距有何异同?那种方法更复合实际情况?14.一个高分子链的聚合度增大 100倍,其链的尺寸扩大了多少倍? 15. 假定聚丙烯中键长为 0.154nm , 键角 109.5o , 无扰尺寸 A=483510nm -⨯, 刚性因子(空间位阻参数1.76σ=,求其等效自由结合链的链段长度 b 。

2000—2014年四川大学《高分子化学及物理》考研试题

2000—2014年四川大学《高分子化学及物理》考研试题

四川大学2000年攻读硕士学位研究生考试试题考试题目:高分子化学及物理考试代号:545#适用专业:高分子化学与物理研究方向:本专业各方向(试题共2页)高分子物理部分(共50分)一、名词解释(每小题3分,共15分)1、构型与构象2、自由结合链3、溶度参数4、介电损耗5、玻璃化转变二、在Flory稀溶液理论中,过量化学为△μE产生的根本原因有哪些?θ溶液是理想溶液吗?为什么?(6分)三、试简述共混高聚物聚集态结构的主要特点。

如何提高聚苯乙烯的抗冲击强度而又不对其使用温度造成较大的不利影响?为什么?(7分)四、试分别画出在单轴拉伸情况下,玻璃态聚合物和结晶态聚合物发生屈服,并发展大形变条件下典型的应力-应变曲线,这两种大形变的本质是什么?这两类聚合物的拉伸有何共同特点和区别?(8分)五、根据加工条件对高聚物熔体剪切粘度的影响,在聚乙烯和聚碳酸酯的成型加工中,应分别采取何种加工条件以降低它们的加工粘度?为什么?(6分)六、什么是力学损耗?为什么在交变应力的作用下,高聚物会产生内耗?为什么在相同的外界条件下,丁腈橡胶的内耗大于顺丁橡胶?(8分)第1页四川大学2001年攻读硕士学位研究生考试试题考试题目:高分子化学及物理考试代号:545#适用专业:高分子化学与物理(试题共2页)(请将试题附在考卷内交回)高分子化学部分(共50分)一、名词解释(每小题3分,共15分)1、凝胶点2、动力学链长3、竞聚率4、阻聚剂5、计量聚合二、简要回答下列问题(每小题6分,共18分)1、氯乙烯悬浮聚合控制分子量的主要措施是什么?说明原因2、在Ziegler-Natta催化聚合过程中,为什么对单体和溶剂的纯度有严格要求?3、乳液聚合的典型配方由哪四部分组成?其中乳化剂的作用使什么?三、有下列单体,已知其Q、e值,现用1,3-丁二烯分别与它们进行自由基共聚合反应。

单体Q e丁二烯 2.39 -1.05 甲基丙烯酸甲酯0.74 0.40丙烯腈0.60 1.20丙烯酸甲酯0.42 0.60醋酸乙烯酯0.026 -0.22马来酸酐0.32 2.251、排出它们进行交替共聚倾向大小的顺序。

大学本科高分子物理第五章《聚合物的转变与松弛》课件

大学本科高分子物理第五章《聚合物的转变与松弛》课件
链重心开始出现相对位移。模量再次急速下降。 聚合物既呈现橡胶弹性,又呈现流动性。对应的 转温度Tf称为粘流温度。
E: Liquid flow region 粘流态:大分子链受
外力作用时发生位移,且无法回复。行为与小分 子液体类似。
三态两区
18
线形无定形高聚物随T增大,会出现三种不同的 力学状态。
玻璃态与高弹态之间的转变叫玻璃化转变(玻 璃—橡胶转变),其区域如曲线B区,对应的温 度叫玻璃化温度,以Tg表示,是链段运动的最低 温度; 高弹态与粘流态之间 的转变叫橡胶流动转变,该 区曲线上的D区,在其对应的温度叫粘流温度, 以Tf表示,是整个大分子链开始运动的最低温度。
13
The relationship between modulus and temperature
14
Mechanical Method
Strain-temperature
Modulus-temperature
非晶高聚物(非交联)的力学状态
15
Mechanical properties and transition of polymers
Glass region
Viscosity flow transition
Liquid flow region
Glass transition Rubber-elastic plateau region
Tg – glass transition temperature 玻璃化转变温度 Tf – viscosity flow temperature 粘流温度
19
Applications of the three states
Tb~Tg
Tg~Tf
Tf~Td 20

聚合物分子运动和转变—结晶行为和结晶动力学(高分子物理课件)

聚合物分子运动和转变—结晶行为和结晶动力学(高分子物理课件)

h0 ht ~ t
h
温度恒 定
测定方法:将高聚物和跟踪液(水银)装入一膨胀计中,
加热到高聚物熔点以上使高聚物全部熔融。记录膨胀计
内毛细管液面柱的高度,如以 h0、h、h t 分别表示起
始、最终和
t
时间的读数,以
ht h0
h h
(未收缩体积分
数)对 t 作图,可得 S 曲线。
h0 ht ~ t
hh
(3) 杂质
促进结晶,起晶核作用 ,称为成核剂 三种情况 可溶性添加剂,延缓结 晶 — 稀释剂
对结晶无影响
(4)溶剂
一些结晶速度很慢的结晶聚合物(PET)浸入适当的有机 溶剂中,促进聚合物的结晶:小分子容积渗入到松散堆砌的 聚合物内部,使聚合物溶胀,相当于在高分子链间加入了一 些润滑剂,从使得高分子链获得了在结晶过程中必须具备的 分子运动能力,促使聚合物发生结晶。这一过程被称为溶剂 诱发结晶。
t 1
1/ 2
,单位为
s-1,min-1,h-1。
测量方法特点:简单,重复性好。
体系充装水银,热容量大,达热平衡所需要时间长对结晶速
度较快的高聚物不适用(可使用 DSC 方法)。
(2) PLM
Diameter (μm)
55 50 45 40 35 30 25 20 15 10
5 0
0
121℃ 123℃ 124℃ 125℃
t1/2

温结晶过程,可以得到一组结晶

速度值,然后以其对温度作图, 即可得结晶速度-温度曲线。
玻 璃
流 体







流 体 晶粒生长
速率
结晶过程分为晶核生成和晶粒生长 两个阶段。由于两过程对温度的依 赖性不同,高聚物结晶速率与温度 的关系呈单峰形

聚合物在气体辅助注射成型中结晶形态的控制

聚合物在气体辅助注射成型中结晶形态的控制

聚合物在气体辅助注射成型中结晶形态的控制冯建明【摘要】在气体辅助注射成型(GAIM)中,该文通过外场(温度场和剪切场)调控来控制聚丙烯/聚碳酸酯微纤制品内部的形态结构,并采用2D-SXAS和SEM对制品的结晶形态及取向行为进行分析,同时测试样品的机械性能建立了外场-形态结构-力学性能的关系,通过上述实验建立理论到实践的综合性实验课程.实践表明,该课程不仅容易操作且实用性强,能够强化学生的理论知识,更重要的是能够将理论与实践相结合,培养学生的专业素养和创新能力.【期刊名称】《实验科学与技术》【年(卷),期】2017(015)006【总页数】4页(P24-27)【关键词】气体辅助注射成型,;聚丙烯,;聚碳酸酯,;形态结构【作者】冯建明【作者单位】四川大学高分子科学与工程学院, 四川成都 610065【正文语种】中文【中图分类】TQ320.66气体辅助注射成型 (GAIM)是在常规注射成型 (CIM)的基础上发展而来的一种新型的成型加工方法,具有成型周期短、节省原料、降低锁模力、减少残余应力及制件尺寸稳定性好等优点[1-2],受到了广泛关注。

在气辅成型过程中,首先将一定量的聚合物熔体注入模具型腔中,其次将高压惰性气体 (通常为N2)注入模具型腔,穿透并推动聚合物熔体,直至熔体充满整个模具型腔,之后在高压气体的保压作用下熔体逐渐冷却固化,最后排出气体并开模取出制件,气辅成型的主要过程如图1所示[3]。

目前,该成型技术已应用于制备汽车部件、电子器件、家电、办公自动化设备、建筑材料等塑料制品领域。

与CIM相比,由于引入了气体穿透,聚合物熔体在GAIM成型过程中经历了更为复杂的外场作用,即GAIM的成型过程是在刚性模壁和柔性高压气体的双重约束界面的作用下完成的,使得熔体流动过程更为复杂。

并且更多的工艺参数 (如熔体温度、模具温度、气体压力、气体延迟时间和气体注射时间等)被引进[4-6],这样,CIM的成型工艺不能简单地运用于GAIM,需对GAIM做深入的探讨研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一些没有取代基或取代基较小的碳 链高分子采取这种构象排入晶格。
如 PE、PET、PVA、PA。
结晶中聚乙烯的链构象
(2)螺旋型构象
带有较大侧基的高分子,为减少空间位阻,降低 位能,通常采用螺旋构象。 HPq H—螺旋构象 P—每个等同周期重复单元的数目
等同周期:在高分子链上具有相同结构的两 点间的最小距离。
1、结构简单、对称性非常好的聚合物—PE、PTFE,
性聚合物。
(二)、立构规整性聚合物易结晶
1、聚α-烯烃的定向聚合物—等规PP、等规PS、 定向PMMA等,具有一定的结晶能力,且与其规 整度有关 (三)、共聚 无规共聚物减弱或丧失结晶能力,如乙丙橡胶 嵌段共聚物能结晶的嵌段可形成自己的晶区 接枝共聚物其结晶能力↓
在高压高温下结晶
由完全伸展的分子链平行规整排列而成
其晶体Tm最高
被认为是高分子热力学最稳定的一种聚集态结构。
(四)、纤维晶和串晶
聚合物在外场(搅拌、拉伸、剪切)作用下结晶, 得到高分子链伸展,并与流动方向平行排列的纤维晶。 其长度大大超过分子链长度。 高分子溶液在剪应力(搅拌)或拉伸应力(流动) 下结晶得到一种类似串珠的结构,称为串晶。串晶是 纤维晶和片晶的复合体—多晶体,即以纤维晶为中心 在周围附生着片状晶体。
q—每个等同周期中螺旋的数目
PTFE 晶体中分子链构象呈螺旋型构象 H136 因为PTFE的螺旋构象,使碳原子被F所包围,F原 子相互排斥,有自润滑性,因此具有冷流性。又由于它 的螺旋硬棒状结构,因此熔点高,可耐三酸两碱。
(3)结晶条件变化→分子链构象变化或链堆 砌方式的改变→晶系改变。
PTFE: 在19℃ 三斜→六方 这就是典型的同质多晶现象。 (4) 聚合物一旦结晶,排列在晶相中的高分子链 构象就不能再改变。
2、中心论点
晶体中高分子链可以有规则的进行折叠 3、发展 随着对高聚物结晶形态研究的逐步深入,近年
来还发现某些特定条件下,进行结晶可以得到部分
伸直完全伸直链结构的晶体。
此外还发现高分子链不仅可以在一个晶片中进
行折叠,还可以在一个晶片中折叠一部分又伸出晶 面到另一个晶片中去参加折叠。
三、插线板模型 Flory认为,分子链做近邻折叠的可能很小。 此模型实质为一种非折叠模型 此模型得到了许多中子散射实验的支持。
a
βα γ
b
三个晶角:α,β,γ
对高分子,C轴为分子链轴方向
根据六面体几何数据不同,可将晶体分为不同类型。
晶体结构=空间点阵+结构单元
立方晶系
α = β = γ = 90°
六方晶系 α = γ = 90° β =120 ° a=b=c
四方晶系
α = β = γ = 90°
a=b=c
a=b=c
三斜晶系 单斜晶系 正交晶系 α = β = γ = 90° α = γ = 90° α = β = γ = 90° α = β = γ = 90° a=b=c a=b=c a=b=c a=b=c
球晶对性能的影响:
其大小直接影响聚合物的力学强度,球晶越大, 材料的冲击强度↓,越容易破裂。
对透明性有很大影响:使聚合非晶 相密度非常接近,则仍然透明;如果球晶尺寸或晶粒 尺寸<可见光波长,材料也是透明的。
(三)、伸直链晶体 [如图2-29(a).(b)所示]
图1 串晶电镜照片及示意图
二、 高分子在晶体中的构象和晶胞
(一)、晶体结构的几个术语
(1)、晶
体:物质内部质点在三维空间呈周期排列
分子量增加
CO2的分子晶体 大分子在晶体中的排列 小分子在晶体中的排列
(2)、空间点阵:组成晶体的质点抽象成几何点,由 这些等同的几何点的集合所形成的格子。点阵结构中, 每个几何点代表的具体内容称为晶体的结构单元
第二节
聚合物结晶形态和结构
一、 聚合物的结晶形态
晶型:结晶的微观结构,由晶体中高分 子链的构象及其排布所决定。
高聚物结晶的形态学
• 研究对象:单个晶粒的大小,形状以及他们的 聚集方式。 • 主要研究工具:光学显微镜,电子显微镜等 • 高聚物的主要结晶形态:单晶、球晶、树枝状 晶、孪晶、伸直链片晶、纤维状晶、串晶等。
结论:结晶过程的完成需要很长时间, 结晶终点不明确。
用Avrami方程描述聚合物的等温结晶过程:
v
vt

dv v
0 kt dt
l
t
vt v n exp kt v0 v


这就是描述结晶过程的Avrami方程。K称 为结晶速度(率)常数,n为Avrami指数(与 成核机理和生长方式有关)。
第三节 高聚物的结晶过程
(能)
结晶性聚合物
结晶的能力
(取决于高聚物的结构)
不同结晶条件
结晶 非晶
研究高聚 物的结晶 过程
(不能)
非结晶性聚合物 任何条件下都 无法结晶
能否实现结晶
属于结晶动力学内容
(取决于时间,温度,溶液,外力等)
一、 高分子结构与结晶能力
必要条件——结晶能力
结晶能力的大小主要取决于高分子结构
晶格:组成晶体的 质点在空间呈有规 则的排列,并每隔 一定距离重复出现, 有明显的周期性, 这种排列情况称为 晶格,晶格是由晶 胞构成的。
(3)试验证明,在晶体中可以找到一个个大小
和形状一样的平行六面体,以代表晶体结构的基本 重复单元,这种在空间中具有周期排列的最小单元 称为晶胞。
c
有六个晶胞参数 三个晶轴:a,b,c
图2 聚乙烯单晶的电子衍射照片
图3 不同形态 PEO的电镜照片
多层晶体的形 成
多层晶体的形成 过程中,螺旋位 错起着十分重要 的作用
(二)、 球晶 浓溶液冷却 熔体冷却(不存在 应力或流动)
球晶
直径 0.5至100微米
球晶是聚合物 结晶的一种最 常见的特征形 式
图1 捆束状球晶的电镜照片及示意图
第五章
聚合物的结晶态
(Crystaline Polymer)
第一节
结晶高聚物的结构模型
一、缨状微束模型(两相结构模型)
这是人们多年来所接受和
公认的结晶高聚物的结构
模型。这一模型的依据为:
通过X-射线衍射证实:除
了有晶相的衍射环外,还
有非晶相造成的弥散环。
1)中心论点:
晶区、非晶区互相穿插,同时存在,一条大分子链可能通过几个 晶区和非晶区,晶区尺寸很小,分子链在晶区规整排列,在非晶 区无规堆砌。 2)贡献: 可以解释一些实验事实,比如高聚物结晶的不完全性→结晶 度概念,出现内应力等 晶区
二、 聚合物结晶的动力学 结晶动力学----解决结晶速度和分析结晶过程 中的问题 结晶的充分条件—温度与时间 晶体类别 结晶条件 与 高分子链结构 晶体大小 晶体形态 晶体含量
密切有关 对材料和制品 有很大影响
测定聚合物等温结晶方法:
依据: 伴随结晶过程会发生热力学或物理性质的变化 1)偏光显微镜法(PLM)--测量球晶直径与时间 的关系 2)DSC—热效应 3)膨胀计法—体积变化
图2 球晶电镜照片及示意图
图3 球晶环状消光图案的光学原理示意图
球晶的生长过程
控制球晶大小的方法:
(1)控制晶体形成的速度: 熔体迅速冷却生 成的球晶小;熔体缓慢冷却生成的球晶大 (2)加入成核剂,生成的球晶小
(3)采用共聚的方法:共聚破坏链的规整性生 成的球晶小
(4)少数弹性体与塑料共混,限制了塑料中大 球晶的形成
t1/ 2
ln 2 k
1/ n
ln 2 k n t1/ 2
k越大,t1/2越小,结晶速度快;相反亦反。
Avrami方程所处理的是结晶总速度。
(二)、结晶高聚物结晶速度的温度依赖性 在结晶过程中,使高分子链获得必要的分子 运动能力,对排列成三维有序的晶态结构是十 分关键的。 对各种聚合物的1/t1/2~T的关系研究表明: 1、1/t1/2~T都呈单峰形 2、结晶温度范围在Tg~Tm之间 3、在某一温度下,1/t1/2 出现极大值,即 有一个最佳结晶温度Tmax.
(四)、其它结构因素
1、刚柔性适当结晶能力强 PE>PET>PC 天然橡胶柔性很好,但结晶能力很弱。
2、分子间作用力使分子链柔性↓ ,结晶能力 ↓ 适当的分子间作用力,有利于巩固已形成的结晶结构 3、支化使分子对称性↓,结晶能力↓
4、交联限制了链段运动,减弱或失去结晶能力
5、 M大小。同一聚合物M小,结晶能力大,结晶速度 快。M大则相反。 问题:哪些链结构是不能结晶的呢?那些聚合物不能结晶?
3
vt v 由方程如何得到k和n呢? n ln kt 两边取对数得
vt v lg ln lg k n lgt v0 v

v0 v
结晶后期—偏离方 程的直线部分—次 期结晶
斜率:n
lg k 截距:
结晶前期—符 合方程的直线 部分—主期结 晶
以(ht-h∞)/ (h0-h∞)对时间t作图得到反S曲线
规定:体积收缩进行到一半时所需要的时间 倒数为此温度下的结晶速度
(一)、高聚物结晶的时间依赖性: —Avrami方程
V0
t0
Vt
t
V∞ t∞ 终了(达到平衡)
开始
中间
t 时体积收缩=
以体积收缩对时间t作图
等温结晶曲线
t 小时
天然橡胶的等温结晶曲线
聚合物的七种结晶形态
单层聚合物单晶——极稀溶液结晶
多层聚合物结晶——稀溶液结晶
聚合物球晶——浓溶液结晶,熔体结晶 聚合物串晶——应力作用下结晶 伸直链晶体——高压下结晶 单链单晶——特殊条件下结晶
聚合物宏观单晶体——单体单晶固态聚合
Seven crystalline morphologies of polymer
相关文档
最新文档