电子电路仿真.
电子电路仿真实验报告
电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。
实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。
2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。
(2)进行仿真实验,记录各个参数数据。
(3)分析实验结果,了解电源电路的工作原理和性能。
3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。
结果表明,当开关频率增加时,电路的效果也增强。
(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。
4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。
掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。
通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。
几款主流电子电路仿真软件优缺点比较
几款主流电子电路仿真软件优缺点比较电子电路仿真技术是当今相关专业学习者及工作者必须掌握的技术之一,它有诸多优点:第一,电子电路仿真软件一般都有海量而齐全的电子元器件库和先进的虚拟仪器、仪表,十分方便仿真与测试;第二,仿真电路的连接简单快捷智能化,不需焊接,使用仪器调试不用担心损坏;大大减少了设计时间及金钱的成本;第三,电子电路仿真软件可进行多种准确而复杂的电路分析。
随着电子电路仿真技术的不断发展,许多公司推出了各种功能先进、性能强劲的仿真软件。
既然它们能百家争鸣,那么肯定是在某些方面各有优劣的。
下面就针对几款主流电子电路仿真软件的优缺点进行比较。
(1) Multisim在模电、数电的复杂电路虚拟仿真方面,Multisim是当之无愧的一哥。
它有形象化的极其真实的虚拟仪器,无论界面的外观还是内在的功能,都达到了的最高水平。
它有专业的界面和分类,强大而复杂的功能,对数据的计算方面极其准确。
在我们参加电子竞赛的时候,特别是模拟方向的题目,我们用得最多的仿真软件就是Multisim。
同时,Multisim不仅支持MCU,还支持汇编语言和C语言为单片机注入程序,并有与之配套的制版软件NI Ultiboard10,可以从电路设计到制板layout一条龙服务。
Multisim的缺点是,软件过于庞大,对MCU的支持不足,制板等附加功能比不上其他的专门的软件。
(2)TinaTina的界面简单直观,元器件不算多,但是分类很好,而且TI公司的元器件最齐全。
在比赛时经常用到TI公司的元器件,当在Multisim找不到对应的器件时,我们就会用到Tina来仿真。
Tina的缺点是,功能相对较少,对TI公司之外的元器件支持较少。
(3) ProteusProteus作为一款集电路仿真、PCB设计、单片机仿真于一体软件,它不仅含有大量的基于真实环境的元器件,支持众多主流的单片机型号及通用外设模型,还提供最优秀的实时显示效果,它的动态仿真是基于帧和动画的,因此提供更好的视觉效果。
电子电路设计中的仿真与验证方法
电子电路设计中的仿真与验证方法电子电路设计是一项关键的技术活动,涉及到各种电子设备和系统的开发。
在电子电路设计的过程中,一项非常重要的任务就是进行仿真与验证。
通过仿真与验证,设计工程师可以在实际制造和测试之前,通过计算和模型来验证电路的性能和可靠性。
下面将详细介绍电子电路设计中的仿真与验证方法。
1. 仿真方法- 模拟仿真:模拟仿真是一种基于连续时间的方法,通过建立电路的数学模型,并使用模拟器进行计算来模拟电路的工作原理和性能。
在模拟仿真中,设计工程师可以调整参数和条件,观察电路的输出响应,以便对电路进行优化和改进。
- 数值仿真:数值仿真是一种基于离散时间的方法,通过将时间和电压等连续信号离散化成数字,然后使用计算机进行数值计算来模拟电路的工作原理和性能。
数值仿真方法通常使用电路仿真软件,如PSPICE、MATLAB等来进行电路的仿真计算。
2. 验证方法- 物理验证:物理验证是将电路设计转化为实际物理器件的过程。
设计工程师通过制造和测试电路板或芯片的方式,来验证电路的性能和可靠性。
物理验证包括电路布局布线、元器件选择、电路板制造和测试等环节。
- 逻辑验证:逻辑验证是验证电路的逻辑正确性和功能。
设计工程师通过使用逻辑仿真软件,如Verilog、VHDL等,来验证电路的逻辑设计是否符合要求。
逻辑验证方法通常通过对电路进行状态模拟和时序分析来实现。
- 时序验证:时序验证是验证电路的时序要求和时序约束是否满足的过程。
设计工程师通过使用时序仿真软件,如Synopsys、Cadence等,来验证电路的时序设计是否满足时序要求。
时序验证方法通常通过对电路进行时钟域分析和时序路径分析来实现。
3. 仿真与验证流程- 确定设计目标:在进行仿真与验证之前,首先需要明确电路的设计目标,包括电路的功能要求、性能指标和可靠性要求等。
- 建立电路模型:根据设计目标,设计工程师需要建立电路的数学模型或逻辑设计模型,包括电路拓扑结构、电路元器件和参数等。
如何正确使用电子电路仿真器
如何正确使用电子电路仿真器电子电路仿真器是一种电子工具,它能够通过软件模拟电路的工作原理和性能。
使用电子电路仿真器可以有效地帮助工程师在设计和验证电路时节省时间和成本。
本文将介绍如何正确使用电子电路仿真器,以帮助读者更好地应用该工具。
1. 选择合适的仿真软件在使用电子电路仿真器之前,首先需要选择适合的仿真软件。
市面上有许多不同的电子电路仿真软件,如Multisim、PSpice、LTspice等。
根据自己的需求和使用习惯,选择一款功能全面、易于操作、性能可靠的仿真软件。
2. 了解仿真器的基本操作使用电子电路仿真器前,需要了解仿真器的基本操作。
学习软件的使用手册或者观看教学视频可以帮助读者熟悉仿真器的界面、功能和操作流程。
3. 绘制电路原理图在仿真软件中,通过绘制电路原理图来模拟实际的电路。
首先,根据需要选择元件库中的元件,并将其拖放到工作区域。
然后,按照电路的连接关系,使用线段工具连接元件的引脚。
注意,绘制电路原理图时应保持逻辑清晰、布局合理。
4. 设置元件参数仿真器中的元件可以设置各种参数,如电阻、电容、电感、放大倍数等。
在仿真前,需要设置元件的参数,以使仿真结果更准确。
对于模拟电路仿真,可以采用理想元件或者实际元件模型进行仿真。
5. 设置仿真参数仿真参数是指仿真过程中的各种设置,如仿真时间、采样率、信号源参数等。
根据实际需求,可以设置仿真时间的长度和步进大小,以及信号源的波形、频率、幅度等。
合理设置仿真参数可以帮助读者更好地观察和分析电路的响应。
6. 运行仿真在电路原理图完成后,可以点击仿真按钮或者相应的命令,启动仿真过程。
仿真软件会根据电路的参数和仿真设置,模拟电路的工作状态。
在仿真过程中,可以观察电路的波形、频谱、稳态响应等,并对仿真结果进行分析。
7. 分析仿真结果在仿真结束后,可以对仿真结果进行分析。
通过观察波形和曲线,可以判断电路的稳定性、频率响应、功耗等性能指标是否满足设计要求。
如果仿真结果与预期有差异,可以针对不同的问题进行调试和优化。
什么是电路仿真如何进行电路仿真
什么是电路仿真如何进行电路仿真电路仿真是一种模拟电路行为和性能的方法,可以用计算机软件来模拟电子设备的工作原理和性能。
通过电路仿真,可以预测和分析电子设备的行为,优化电路设计,减少实际实验的时间和成本。
电路仿真可以分为两种类型:模拟仿真和数字仿真。
模拟仿真是通过模拟电路中的连续信号来分析电路的性能。
数字仿真是通过模拟电路中的离散信号来分析电路的性能。
在进行电路仿真之前,需要准备仿真软件和电路设计文件。
常用的仿真软件包括Multisim、LTspice和PSpice等。
电路设计文件可以是原理图或者网表文件。
进行电路仿真的步骤如下:1. 创建电路:在仿真软件中,根据设计要求创建电路。
可以通过拖拽电子元件和连接导线来完成电路的构建。
2. 设置元件参数:对每个电子元件进行参数设置,包括电阻、电容、电感等。
这些参数决定了电路的性能。
3. 添加电源:在电路中添加电源,以提供电压或电流。
电源类型可以是直流或交流源,根据实际需求设置参数。
4. 设定测量:选择需要测量的电路参数,例如电流、电压、功率等。
这些参数可以直接从电路中的特定节点进行测量。
5. 运行仿真:点击仿真软件中的运行按钮,开始进行电路仿真。
仿真软件会对电路进行求解,计算出电路中各个节点和元件的电压、电流等参数。
6. 分析结果:根据仿真结果,对电路的性能进行分析和评估。
可以通过绘制波形图、功率谱图等方式来可视化仿真结果。
7. 优化设计:根据仿真结果,对电路进行调整和优化。
可以修改元件参数、电源参数或者电路拓扑结构,以改善电路的性能。
8. 再次仿真:对优化后的电路进行再次仿真,进行性能验证和评估。
如果结果满足设计要求,则电路仿真完成。
电路仿真的优势在于可以快速、经济地评估电路设计的可行性和性能。
相比于传统的实际实验方法,电路仿真节省了时间和成本,提高了设计的效率。
同时,电路仿真还可以帮助设计人员理解电路的工作原理和性能,提供了一个安全和可控的环境进行实验和测试。
Multisim14电子电路仿真方法和样例
Multisim14 电子电路仿真方法和样例
2019 年 9 月
1
前言
本手册基于 Multisim14 仿真环境,从最基本的仿真电路图的建立开始,结合实际的例 子,对模拟和数字电路中常用的测试方法进行介绍。这些应用示例包括:常用半导体器件特 性曲线的测试、放大电路静态工作点和动态参数的测试、电压传输特性的测试、波形上升时 间的测试、逻辑函数的转换与化简、逻辑分析仪的使用方法等。
选定 sheet properties 即弹出图 2.3 所示界面,选中 Net names 下的 Show all(简述为
Optionsàsheet propertiesà Net namesàShow all,以下均用简述方法表述),即可在电路图中
显示出各个节点号。
4
图 2.2 移动连线
图 2.3 显示电路节点号
3
1. Multisim14 主界面简介
运行 Multisim14,自动进入电路图编辑界面。当前电路图的缺省命名为“Design1”,在 保存文件时可以选择存放路径并重新命名。Multisim14 主界面如图 1.1 所示。
图 1.1 Multisim14 用户界面
2. 仿真电路图的建立
下面以单管放大电路为例,介绍建立电路的步骤。其中三极管选用实际器件
此外,本手册侧重于测试方法的介绍,仅对主要步骤进行说明,如碰到更细节的问题, 可参阅《Multisim 14 教学版使用说明书》或其它帮助文档。
2
目录
几款主流电子电路仿真软件优缺点比较
几款主流电子电路仿真软件优缺点比较电子电路仿真技术是当今相关专业学习者及工作者必须掌握的技术之一,它有诸多优点:第一,电子电路仿真软件一般都有海量而齐全的电子元器件库和先进的虚拟仪器、仪表,十分方便仿真与测试;第二,仿真电路的连接简单快捷智能化,不需焊接,使用仪器调试不用担心损坏;大大减少了设计时间及金钱的成本;第三,电子电路仿真软件可进行多种准确而复杂的电路分析。
随着电子电路仿真技术的不断发展,许多公司推出了各种功能先进、性能强劲的仿真软件。
既然它们能百家争鸣,那么肯定是在某些方面各有优劣的。
下面就针对几款主流电子电路仿真软件的优缺点进行比较。
(1) Multisim在模电、数电的复杂电路虚拟仿真方面,Multisim是当之无愧的一哥。
它有形象化的极其真实的虚拟仪器,无论界面的外观还是内在的功能,都达到了的最高水平。
它有专业的界面和分类,强大而复杂的功能,对数据的计算方面极其准确。
在我们参加电子竞赛的时候,特别是模拟方向的题目,我们用得最多的仿真软件就是Multisim。
同时,Multisim不仅支持MCU,还支持汇编语言和C语言为单片机注入程序,并有与之配套的制版软件NI Ultiboard10,可以从电路设计到制板layout一条龙服务。
Multisim的缺点是,软件过于庞大,对MCU的支持不足,制板等附加功能比不上其他的专门的软件。
(2)TinaTina的界面简单直观,元器件不算多,但是分类很好,而且TI公司的元器件最齐全。
在比赛时经常用到TI公司的元器件,当在Multisim找不到对应的器件时,我们就会用到Tina来仿真。
Tina的缺点是,功能相对较少,对TI公司之外的元器件支持较少。
(3) ProteusProteus作为一款集电路仿真、PCB设计、单片机仿真于一体软件,它不仅含有大量的基于真实环境的元器件,支持众多主流的单片机型号及通用外设模型,还提供最优秀的实时显示效果,它的动态仿真是基于帧和动画的,因此提供更好的视觉效果。
电子电路中的电路模拟和电路仿真有什么区别
电子电路中的电路模拟和电路仿真有什么区别电子电路是现代科技的基础,而电路模拟和电路仿真是电子电路设计和测试中非常重要的两个环节。
虽然这两个概念听起来很相似,但它们在实际应用中有着明显的区别。
本文将介绍电路模拟和电路仿真的定义、原理、工具和应用,并详细讨论它们之间的区别。
一、电路模拟的概念和原理电路模拟是通过数学模型来表示电子电路的行为和性能,以便在计算机上对其进行仿真、分析和优化。
电路模拟使用的数学模型通常是基于电路的物理特性和传输方程来建立的,例如欧姆定律、基尔霍夫定律、电流-电压关系等。
通过对这些模型进行求解和计算,可以得到电路的响应、输出和性能参数等信息。
电路模拟通常采用基于时域或频域的方法进行分析。
时域分析基于电路中电压和电流的时间变化,它可以得到电路在不同时间点上的输出情况。
而频域分析则是基于电路的频率响应,通过计算电路中各个频率分量的幅度和相位来分析其频率特性。
二、电路仿真的概念和原理电路仿真是指利用计算机软件构建电路模型,并通过对这些模型的仿真运行,模拟实际电路的运行过程和性能。
通过电路仿真,我们可以获取电路在特定输入条件下的行为和输出结果,以及各种电路参数的变化情况。
电路仿真通常需要借助电子设计自动化(EDA)软件来实现。
这些软件提供了图形化界面,用户可以自由地绘制电路图、设置器件参数和仿真条件,并对电路进行仿真运行。
基于电路模型的数学方程和算法,仿真软件可以对电路进行精确的计算和模拟,得到电路的各种特性和性能,如电压、电流、功率、相位等。
三、电路模拟和电路仿真的区别尽管电路模拟和电路仿真在目的上是相似的,都是通过计算机来模拟电子电路的运行和分析其性能,但它们在方法和应用上存在着一些区别。
1. 方法:电路模拟主要依赖于数学模型的建立和计算,通过对模型的求解来获取电路的行为和性能。
而电路仿真的重点在于构建电路模型和设置仿真条件,通过计算机软件对电路进行仿真运行。
2. 精度:由于电路模拟是基于数学模型的解析计算,通常具有较高的精度。
电子电路multisim仿真实验报告
电子电路multisim仿真实
验报告
班级:XXX
姓名:XXX
学号:XXX
班内序号:XXX
一:实验目的
1:熟悉Multisim软件的使用方法。
2:掌握放大器静态工作点的仿真方法及其对放大器性能的影响。
3:掌握放大电路频率特性的仿真方法。
二:虚拟实验仪器及器材
基本电路元件(电阻,电容,三极管)双踪示波器波特图示仪直流电源
三:仿真结果
(1)电路图
其中探针分别为:
探针一探针二
(2)直流工作点分析。
(3)输入输出波形
A通道为输入波形B通道为输出波形
四:实验流程图
开始
选取实验所需电路元件
及测量工具
合理摆放元件位置并连
接电路图
直流特性分析
结束
五:仿真结果分析
(1)直流工作点
电流仿真结果中,基极电流Ib为7.13u,远小于发射极和集电极,而发射极和集电极电流Ie和Ic近似相等,与理论结果相吻合。
电压仿真结果中,基极与发射极的电位差Vbe经过计算约为0.625V,符合三极管的实际阈值电压,而Vce约为5.65V。
以上数据均满足放大电路的需求,所以电路工作在放大区。
(2)示波器图像分析
示波器显示图像中,A路与B路反相,与共射放大电路符合。
六:总结与心得
这次的仿真花费了大量时间,主要是模块的建立。
经过本次的电子电路仿真实验,使我对计算机在电路实验中的应用有了更为深刻的认识,对计算机仿真的好处有了进一步的了解。
仿真可以大大的减轻实验人员的工作负担,同时更可以极大的提升工作效率,事半功倍,所以对仿真的学习是极为必要的。
电子电路的仿真和验证方法
电子电路的仿真和验证方法随着科技的发展,电子电路在日常生活和工业领域扮演着越来越重要的角色。
在设计和开发电子电路时,仿真和验证方法是不可或缺的工具。
本文将详细介绍电子电路仿真和验证的方法和步骤,帮助读者更好地理解和应用这些技术。
一、仿真方法:电子电路仿真是通过软件工具模拟电路的行为和性能,以评估设计的有效性和可靠性。
以下是常用的电子电路仿真方法:1. 电路级仿真(Circuit-level simulation):这是最基本的仿真方法,使用电路仿真软件,如SPICE(Simulation Program with Integrated Circuit Emphasis),来模拟电路的各个元件和其相互之间的连接。
通过在仿真环境中设置输入信号和初始条件,可以观察电路的响应,并评估其性能和稳定性。
2. 时序仿真(Timing simulation):在数字电路设计中,时序仿真用于验证电路的时序行为。
主要针对时钟和触发器的工作,以及信号传输的延迟和时序关系。
时序仿真需要事先定义好测试向量和时钟频率,通过仿真结果来评估电路的时序性能。
3. 功能仿真(Functional simulation):功能仿真是验证电路功能的一种方法,主要用于数字电路设计。
通过比较预期输出和模拟结果之间的差异,来检测设计中的错误和缺陷。
功能仿真可以帮助设计人员在硬件制造之前发现并修复问题,从而提高电路的可靠性和效率。
4. 混合仿真(Mixed-level simulation):混合仿真结合了电路级仿真和功能仿真的优点,可以模拟电路内部的详细行为和整体功能。
这种仿真方法常用于复杂的电子系统设计,可以更全面地评估电路的性能和行为。
二、验证方法:电子电路验证是确认设计符合规格要求的过程,以确保电路在实际应用中能够正常工作。
以下是常用的电子电路验证方法:1. 仿真验证(Simulation-based verification):仿真验证是通过电路级或功能级仿真来验证电路的工作。
电子电路的仿真与设计
电子电路的仿真与设计电子电路在现代科技中起着至关重要的作用,无论是通信、信息技术、医疗设备还是太空探索和军事装备等领域,都离不开电子电路。
而电子电路设计的核心环节之一便是电路的仿真,通过仿真来验证电路的性能和稳定性,以便于在实际应用中避免出现故障。
本文将就电子电路的仿真与设计展开讨论。
一、电子电路仿真的重要性电子电路的仿真是电路设计中至关重要的一步,它可以有效地验证电路的性能和稳定性,以便于在实际应用中避免出现故障。
在电路设计的早期阶段,需要进行仿真分析来评估电路的可行性和性能指标是否符合要求。
通过仿真可以快速评估电路的参数变化对电路性能造成的影响,比如电路的频率响应和幅度响应等。
同时,仿真还可以确定电路中存在的问题,并通过调整电路参数来优化电路性能,从而达到更好的效果。
目前市面上有许多电子电路仿真工具,比如SPICE仿真软件、MATLAB仿真工具、Multisitm仿真工具等。
这些工具以其可模拟各种类型电路的特点受到广泛的应用。
二、电子电路设计的步骤电子电路设计的步骤通常包括以下几个方面:1. 电路功能需求分析在进行电路设计之前,需要了解电路的功能需求,包括电路的输入、输出、作用和响应等。
通过分析电路的功能需求,可以为电路设计提供更加准确的方向和目标,使电路设计更加高效和有效。
2. 电路参数计算在电路设计中,需要确定一些基本元件的参数,比如电阻、电容和电感等。
这些基本元件的参数取值将直接影响电路的性能和稳定性。
因此,需要进行准确的电路参数计算来保证电路的性能和稳定性。
3. 电路模型建立电路的模型是电路设计过程中的重要组成部分,它可以通过仿真分析来验证电路的性能和稳定性。
在建立电路模型时,需要根据电路的特点选取合适的元器件进行连接。
4. 电路参数仿真在电路设计过程中,需要进行电路参数仿真,通过仿真来验证电路的性能和稳定性。
在进行电路仿真时,需要演示各种情况下电路的工作状态,以确保电路的性能和稳定性。
电子电路仿真软件介绍
Multisim
总结词
强大的仿真和分析功能
详细描述
Multisim具有强大的仿真和分析功能,支持多种电路分析方法,如时域分析、频域分 析、噪声分析等。它能够准确模拟电路的行为和性能,帮助用户预测电路在实际应用中 的表现。同时,Multisim还提供了丰富的图表和数据报告功能,方便用户对仿真结果
进行可视化分析和处理。
03 电子电路仿真软件使用方 法
建立电路图
01
打开软件
启动电子电路仿真软件,打开一个 新的电路图项目。
连接元件
使用导线工具将元件连接起来,形 成完整的电路图。
03
02
添加元件
从元件库中选取所需的电子元件, 将其拖拽到电路图编辑区域。
调整元件参数
根据需要,修改元件的参数值,如 电阻、电容、电感等。
LTSpice
总结词
适用于教学和实践应用
详细描述
LTSpice不仅广泛应用于电子工程领域,还适用于教学和实践应用。学生可以使用LTSpice进行模拟电 路实验和学习,加深对电路原理和性能的理解。同时,工程师也可以使用LTSpice进行模拟电路设计 和优化,提高产品的性能和质量。
PSpice
总结词
设计、验证电路功能等。
03
常用的模拟电路仿真软件有Multisim、SPICE、
PSPICE等。
数字电路仿真
数字电路仿真是指对数字电子电路进行建模、分析和仿真的过程,通过软 件模拟电路的行为和性能。
数字电路仿真的应用包括预测电路的性能、优化电路设计、验证电路功能 等。
常用的数字电路仿真软件有ModelSim、Vivado等。
Multisim
总结词
广泛的行业应用
电子产品设计中的电路仿真技术
电子产品设计中的电路仿真技术在电子产品的设计过程中,电路仿真技术扮演着至关重要的角色。
电路仿真是指电路设计师通过软件模拟器,在计算机上建立一个与实际电路系统类似的“电路工作台”,从而通过虚拟实验的方式来验证原理图的正确性、性能和稳定性。
电路仿真的作用电路仿真技术能有效地降低电路设计的时间和成本。
设计师不再需要采用传统的实验室测试方法,而是可以在计算机软件上进行模拟实验,从而可以迅速、轻松地寻找到不同原理图的缺陷和错误,并进行修改。
同时,电路仿真还可以将复杂的电路系统线路进行合理的规划、分层、设计和优化,从而可以提高电路系统的整体性能和可靠性。
仿真设计的重要性电路仿真设计是电子产品设计过程中非常重要的一个步骤。
一方面,仿真设计可以评估和验证电路的功能、性能、可靠性和稳定性等参数,帮助设计师确定合适的电路方案和结构;另一方面,仿真设计还可以优化电路的性能指标,提高电路系统的稳定性和可靠性等。
仿真设计的优势与传统的电路设计方式相比,仿真电路的设计具有以下优势:首先,电路仿真可大大减少电路设计的时间和成本。
设计师可以在模拟软件上直接进行虚拟实验,快速找出电路方案的缺陷和错误,从而迅速提升电路设计的质量和效率;其次,电路仿真可避免直接测试时的风险。
由于电路设计可能存在多种不确定因素,采用实验室测试的方式可能会产生一些安全风险和实际测试时间浪费的问题。
而采用仿真设计可以有效避免这些风险,降低了测试成本和消耗的时间。
仿真设计的流程仿真电路的设计流程主要包括:电路设计、仿真参数设置、仿真运行、仿真数据分析等步骤。
其中,电路设计包括原理图设计和印刷线路板(PCB)设计两个部分。
电路设计的重点在于理清电路系统的结构、组成和参数设置,以及电路元件的合理安排和电路单元之间的连接。
使用虚拟实验室进行电路测试假设设计师需要测试一个具有多个电路组成的电路系统,由于该电路系统比较复杂,传统的电路实验需要大量的测试时间和实验设备,而通过使用仿真设计技术,则可以快速获得实验数据,从而实现对电路系统的提升和优化。
电子行业电子电路设计仿真测试
电子行业电子电路设计仿真测试1. 简介电子行业中的电子电路设计是指设计和开发各种电子设备所需的电路。
而仿真测试是为了验证电路设计的正确性和稳定性。
在电子行业中,电子电路设计和仿真测试是不可或缺的环节,它们直接影响着电子产品的性能和可靠性。
2. 电子电路设计电子电路设计是为了实现特定功能的电子设备所需的电路。
在电子电路设计中,主要包括以下几个方面:2.1 电路分析在电路设计的初期阶段,需要进行电路分析。
电路分析是为了确定电路的基本参数,包括电压、电流和功率等。
通过电路分析,可以更好地理解电路中各个组件的作用和相互关系。
2.2 电路设计在电路分析的基础上,进行电路设计。
电路设计是指选择适当的电子元件,并将其按照一定的连接方式组合成电路。
在电路设计中,需要考虑电路的功耗、抗干扰能力、稳定性等因素。
2.3 PCB布局设计PCB布局设计是将电路设计的结果转化为实际的电子设备。
在PCB 布局设计中,需要将电子元件放置在合适的位置,并进行连接。
良好的PCB布局设计可以降低电磁干扰,提高电路的可靠性和稳定性。
3. 电子电路仿真测试电子电路仿真测试是为了验证电路设计的正确性和稳定性。
在电子电路仿真测试中,可以使用专业的仿真软件进行电路模拟和测试。
3.1 电路模拟在电路仿真测试中,首先需要进行电路模拟。
电路模拟是通过仿真软件模拟电路的工作情况,包括电压波形、电流波形等。
通过电路模拟,可以验证电路的性能和功能。
3.2 电路分析在电路模拟的基础上,进行电路分析。
电路分析是为了更加详细地了解电路的性能和特点。
通过电路分析,可以得到电路的频率响应、增益等参数。
3.3 电路优化根据电路分析的结果,进行电路优化。
电路优化是为了改进电路的性能和功能,提高电路的可靠性和稳定性。
电路优化可以包括元件的替换、参数的调整等。
3.4 电路验证最后,进行电路验证。
电路验证是将优化后的电路再次进行模拟和分析,以确保电路的性能达到设计要求。
通过电路验证,可以验证电路设计的正确性和稳定性。
电子电路仿真实验报告
电子电路仿真实验报告一、实验目的1. 学习电子电路仿真实验的基本操作和方法。
2. 熟悉电子元器件如何实现电路中的各种功能。
3. 掌握几种基本电路的设计和仿真方法。
二、实验仪器和材料1. 电脑2. 软件:Multisim仿真软件3. 元器件:电阻、电容、二极管、三极管等。
三、实验原理在电子电路中,各种元器件按照一定的连接方式组成各种电路,实现信号的放大、变换、滤波等功能。
而在实验中,我们可以通过仿真软件来进行计算分析、虚拟实验等操作,为电路的设计和实现提供帮助。
本次实验将重点介绍三种基本电路的仿真方法和设计思路,包括放大电路、滤波电路和振荡电路。
每种电路都有自己的设计方法和指标,需要结合实际情况进行仿真和测试。
四、实验内容1. 放大电路仿真实验(1)单管共射放大电路单管共射放大电路是一种常见的放大器电路,可以实现信号放大和变换的功能。
在该电路中,输入信号经过电容和限流电阻进入基极,当输入信号变化时,导致基极电位的变化,进而影响集电极电位的变化,使得输出信号的幅值发生变化。
为了使单管工作稳定,需要额外加上一个偏置电路,保证输入信号不会进入截止区或饱和区。
该偏置电路通常由一个电阻和电源构成,根据实际需要可以调整电阻的取值来改变工作点。
如图所示,是一个单管共射放大电路的仿真电路图:其中Q1为NPN型三极管,Rb1为偏置电阻,Rb2为信号电阻,Re为发射极电阻,Rc为集电极电阻,C1为输入信号电容,C2为输出信号电容。
在仿真软件中,可以通过正弦信号源模拟输入信号,通过示波器实时监测输入信号和输出信号的变化。
为了得到高质量的输出信号,需要考虑以下几个因素:1)偏置电阻的取值应该适当,可以通过调整偏置电源来达到调节偏置电压的目的。
2)输入信号的电容取值应该适当,可以通过调节电容的容值来改变输入信号频率的响应情况。
3)集电极电阻和发射极电阻的取值应该适当,以达到适当的放大倍数和输出功率。
如图所示,是仿真软件中单管共射放大电路的实验效果:通过设置输入信号的频率,可以在示波器上观察到输出信号的变化,同时可以计算出输出信号的功率和放大倍数等重要指标。
电子工程中的电子电路设计与仿真
电子工程中的电子电路设计与仿真电子电路是电子工程的核心内容之一,它涉及到电子元器件的选型、电路的设计和仿真等方面。
在电子工程领域,电子电路设计与仿真是非常重要的步骤,可以帮助工程师在实际制作之前对电路进行验证和改进。
本篇文章将对电子电路设计与仿真的基本原理和方法进行阐述。
一、电路设计的基本原理电路设计主要包括两个方面:电子元器件的选型和电路拓扑结构的设计。
在进行电子元器件选型时,需要根据电路的功能需求选择合适的元器件,包括电阻、电容、电感、晶体管等等。
而电路拓扑结构的设计则是将不同的电子元器件按照一定的方式连接起来,实现特定的电路功能。
在电路设计过程中,需要考虑一些重要的指标。
比如,电路的功耗、带宽、稳定性和抗干扰性等等。
这些指标会对电路的性能产生重要的影响。
因此,设计师需要根据实际需求,合理地选择电子元器件并设计电路结构。
二、电路仿真的意义和方法电路仿真是指通过计算机软件模拟电路的工作过程,以验证电路的性能和可靠性。
它可以帮助设计师在实际制作电路之前对电路进行验证和改进。
相比于传统的实验方法,电路仿真具有成本低、效率高的优势。
电路仿真主要包括两个方面:电路图的画法和电路参数的设置。
在进行电路图的绘制时,设计师需要根据实际电路进行绘制,并设置各个电子元器件的参数。
而电路参数的设置则是指设置电子元器件的电阻、电容、电感等参数。
常用的电路仿真软件有多种,比如PSPICE、Cadence等等。
这些软件提供了直观的界面和强大的仿真功能,可以有效地辅助设计师进行电路仿真。
三、电子电路设计与仿真的案例分析为了更好地理解电子电路设计与仿真的过程,我们以放大电路为例进行案例分析。
放大电路是电子电路中常见的一种电路类型,可以将输入信号按照一定的放大倍数进行放大。
在设计放大电路时,需要考虑电路的放大倍数、带宽和稳定性等指标。
首先,我们需要选择合适的放大器芯片,并根据芯片的参数设计电路的拓扑结构。
然后,利用电路仿真软件对电路进行仿真。
Multisim10.0电子电路计算机仿真
Multisim10.0电子电路计算机仿真一.实验目的:1.熟悉并掌握Mulitisim10.0的仿真过程。
2.了解Mulitisim10.0的操作流程并掌握其基本操作。
3.学会使用Mnlitisim10.0绘制电路图,熟悉其基本界面和菜单栏,工具栏的功能。
4.通过Mulitisim10.0软件进一步加深对电路原理的理解。
5.学会电子电路计算机仿真的使用,尤其是示波器的连接与使用要求。
二.实验步骤:1.打开Multisim10.0,认识它的窗口界面,工具栏和菜单栏,熟悉掌握其基本功能,只有如此才能在设计电路原理图时做到手到擒来,熟练于心。
2.查找所需的元器件,修改参数,拖到合适的位置;3.对照原图连接电路,查看各元器件的参数是否正确;4.将示波器连接到输入与输出处,进行仿真,观察比较波形的状状;5.将原理图和波形图截取到文本文档中,填写实验报告。
三.实验目的:通过实习对课程所学内容有一个连贯性,综合性的认识,驼过实习可以加深对理论的理解,培养和提高独立动手能力和分析解决问题的能力。
在完成指定的实习任务后,应具备以下能力:(1)熟悉模块库使用(2)熟练掌握基本电力电子电路的仿真方法(3)掌握电力电子变流装置触发、主电路及驱动电路的构成及调试方法,能初步设计和应用这些电路(4)能够运用理论知识对实验现象、结果进行分析处理,解决实习中遇到的问题(5)能够综合实验数据,解释现象,编写实习报告四.实验内容:1.学会Mulitisim10.0的使用和操作。
首先我们在机器上安装Mulitisim10.0软件然后点击桌面上的Mulitisim10.0图标,由于软件比较大需要等待一定时间才会进入。
Mulitisim10.0界面和Office工作界面相似,标题栏、下拉菜单、项目窗口、快捷工具、状态栏等组成。
标题栏分为:文件工具按钮、器件工具按钮、调试工作按钮。
这些按钮下拉菜单中都,并经常用到。
现在放在下拉菜单中方便使用。
Multisim模拟电子技术仿真实验
Multisim模拟电子技术仿真实验Multisim是一款著名的电子电路仿真软件,广泛用于电子工程师和学生进行电子电路的设计和验证。
通过Multisim,用户可以方便地搭建电路并进行仿真,实现理论与实际的结合。
本文将介绍Multisim的基本操作和常见的电子技术仿真实验。
一、Multisim基本操作1. 下载与安装首先,需要从官方网站上下载Multisim软件,并按照提示完成安装。
安装完成后,打开软件即可开始使用。
2. 绘制电路图在Multisim软件中,用户可以通过拖拽组件来绘制电路图。
不同的电子组件如电阻、电容、二极管等都可以在Multisim软件中找到并加入电路图中。
用户只需将组件拖放到绘图区域即可。
3. 连接元件在绘制电路图时,还需要连接各个元件。
通过点击元件的引脚,然后拖动鼠标连接到其他元件的引脚上,即可建立连接线。
4. 设置元件的属性在建立电路连接后,还需要设置各个元件的属性。
比如,电阻的阻值、电容的容值等等。
用户可以双击元件,进入属性设置界面,对元件进行参数调整。
5. 添加仪器和测量在Multisim中,用户还可以添加各种仪器和测量设备,如示波器、函数发生器等。
这样可以帮助我们对电路进行更加深入的分析和测试。
二、常见的电子技术仿真实验1. RC电路响应实验RC电路响应实验是电子电路实验中最基础的实验之一。
它用于研究RC电路对输入信号的响应情况。
通过在Multisim中搭建RC电路,可以模拟分析电路的充放电过程,并观察输出电压对时间的响应曲线。
2. 放大器设计实验放大器是电子电路中常见的功能电路之一。
通过在Multisim中搭建放大器电路,可以模拟放大器的工作过程,并对放大器的增益、频率等特性进行分析和调整。
这对于学习和理解放大器的原理和工作方式非常有帮助。
3. 数字电路实验数字电路是现代电子技术中不可或缺的一部分。
通过在Multisim中搭建数字电路,可以模拟数字电路的逻辑运算、时序控制等功能,并对电路的工作波形进行分析和优化。
电子应用开发中电子电路仿真技术的作用分析
电子应用开发中电子电路仿真技术的作用分析摘要:模拟虚拟现实技术中,电子电路仿真技术非常重要,当电子电路处于运行状态的时候,仿真模拟与建模的过程中需要使用数学建模,结合数字模拟方法,此时要发挥计算机技术的支撑作用,通过塑造软件环境和硬件环境分析电路特性数据。
本文主要就电子应用开发中电子电路仿真技术的作用进行了分析。
关键词:电子应用开发;电子电路;仿真技术;作用引言电子电路仿真技术就是对电子配件、电路模块的一种虚拟显示,它以数学模型这一途径进行展示,再经过不断地数值推算,以此来掌握电路的工作情况。
电子电路仿真技术通过了严格数学模型展示、数值推算结果,因此准确性较高,为今后电子应用开发提供了有效的参数和技术支持。
1电子电路仿真技术的概述应用真实电子电路的过程中,可以采用电子电路仿真技术对真实的环境进行模拟并观察效果,在这个过程中,推演所获得的结果有较高的准确性,模型模拟效果的可信度更高,可以将电子电路的具体功能以及运行的特征应用仿真模拟技术体现出来,效果更加真实可靠。
虚拟仿真环境是用仿真模型塑造出来的,采用定量计算的方法和精准分析的方法来实现。
对于各项指标的把控都采用这两种方法,对于电子产品的设计以及优化调整指标以保证指标的精确度有一定的作用,使电子产品的生产和设计中都能够对目标要求予以满足。
应用电子电路仿真技术可以对电子电路集成化,并采用建模的方法模拟操作,对电子产品的所有板块电路实施统筹管理,无论是电子电路特性方面,还是使用普通方法研发方面,所具备的优势都是无法比拟的,这是由于电子产品设计的路程复杂,而且具有综合性的特点,需要将自动化技术、机电技术和电气技术集中应用,在电路器件的设计以及集成环节是重要非常的。
为了对产品设计合理控制以达到规定的标准,保证质量的准确性,就需要优化测试,不断地调整参数,当完成设计之后进行仿真模拟操作。
所以,电子电路仿真技术操作可以将电路设计的效果真实体现。
2电子应用开发中电子电路仿真技术的作用2.1提升电子产品的电力设计能力适合的温度是电子产品正常运转的必要条件,但电子产品又非常敏感,温度的些微变化都会影响器件的正常工作。
电子电路仿真软件推荐
电子电路仿真软件推荐电子电路仿真软件在电子工程领域起着至关重要的作用,能够帮助工程师们进行电路设计、测试和验证,提高工作效率和设计准确性。
本文将针对电子电路仿真软件进行推荐,并介绍它们的特点和应用范围。
一、MultisimMultisim是一款由美国国家仪器(NI)公司开发的电子电路仿真软件,具有强大的功能和广泛的应用性。
该软件提供了直观、易于使用的用户界面,使得用户能够轻松地进行电路设计和调试。
Multisim支持模拟电路和数字电路仿真,能够进行信号分析、模拟分析和混合信号仿真。
此外,它还提供了仿真实验室功能,使得用户可以进行实际电路实验的虚拟仿真。
Multisim是一款功能全面、易于上手的电子电路仿真软件,非常适合初学者和专业工程师使用。
二、LTspiceLTspice是一款由美国线性科技(Linear Technology)公司开发的免费电子电路仿真软件。
它是一款强大的模拟器,支持大规模的电路仿真和分析。
LTspice提供了丰富的元件库和模型,用户可以根据需要自定义元件和模型。
该软件具有快速仿真的特点,能够在短时间内对复杂电路进行仿真和验证。
此外,LTspice还支持直流稳态分析、交流分析和傅里叶分析等功能,能够满足不同的仿真需求。
由于其强大的性能和免费的特点,LTspice在电子工程界广受欢迎,特别是学生和研究人员。
三、Cadence PSpiceCadence PSpice是一款由美国Cadence Design Systems开发的电子电路仿真软件,是业界最为流行的仿真工具之一。
该软件支持模拟电路和混合信号仿真,并提供了准确的仿真结果和可靠的电路分析。
Cadence PSpice具有丰富的元件库和模型,用户可以快速设计和验证复杂的电路。
此外,它还提供了直流稳态、交流和传输特性分析等功能,能够满足不同电路设计的需求。
Cadence PSpice在电子工程领域有广泛的应用,尤其在电路设计和验证方面发挥着重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 电路设计的要求及目的1.1 电路设计的要求设计一个单相交流调压电路,要求触发角为45度.反电势负载E=40伏,输入交流U2=210伏。
L足够大,C足够大(1) 单相交流调压主电路设计,原理说明;(2) 触发电路设计,每个开关器件触发次序与相位分析;(3) 保护电路设计,过电流保护,过电压保护原理分析;(4) 参数设定与计算1.2 电路的设计目的电力电子仿真虽然是一门方向课,做课程设计是为了让我们运用学过的电路原理的知识,独立进行查找资料,选择方案,设计电路,撰写报告,制作电路等,进一步加深对变流电路基本原理的理解,提高运用基本技能的能力,为今后的学习和工作打下良好的基础,同时也锻炼了自己的实践能力。
通过设计报告更能熟悉MATLAB软件的使用,为以后运用打下基础。
2 电路设计方案选择2.1 原理框图2.2 电阻负载通过资料查阅可知 实际案有两种:电阻性负载或阻感性负载。
本次电路采用单相交流调压器带阻感负载时的电路图如图所示,在负载和交流电源间用两个反并联的晶闸管VT1,VT2相连。
图2-1 电阻负载单相交流调压电路2.3 电流的计算与分析当在ωt=α时刻开通晶闸管VT1,负载电流应满足如下微分方程式和初始条件:解方程得:式中,;θ为晶闸管导通角。
利用边界条件:时,可求得:以φ为参变量,利用上式可以把α和θ的关系用图的一簇曲线来表示,如图2所示。
VT2导通时,上述关系完同,只是i0极性相反,相位差180°图2-2 以α为参变量的θ和α关系曲线负载电压有效值:晶闸管电流有效值为:负载电流有效值:I的标么值为:设晶闸管电流VT则可绘出I和α的关系曲线,如图3所示VTNI和α的关系曲线图2-3 单相交流调压电路φ为参变量时VTN当α、φ已知时,可由该曲线查出晶闸管电流标幺值,进而求出负载电流有有效值I0及晶闸管电流有效值I T。
3 单相交流调压电路的设计3.1 主电路的设计所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。
交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。
此外,在高电压小电流或低电压大电流之流电源中,也常采用交流调压电路调节变压器一次电压。
本次课程设计主要是研究单相交流调压电路的设计。
由于交流调压电路的工作情况与负载的性质有很大的关系,因此下面就反电势电阻负载予以重点讨论。
图3-1分别为反电势电阻负载单相交流调压电路图及其波形。
图中的晶闸管VT1和VT2也可以用一个双向晶闸管代替。
在交流电源U2的正半周和负半周,分别对VT1和VT2的移相控制角进行控制就可以调节输出电压。
图3-1 输入输出电压及电流波形图正、负半周α起始时刻(α=0),均为电压过零时刻。
在ωt=α时,对VT1施加触发脉冲,当VT1正向偏置而导通时,负载电压波形与电源电压波形相同;在ωt=π时,电源电压过零,因电阻性负载,电流也为零,VT1自然关断。
在ωt=π+α时,对VT2施加触发脉冲,当VT2正向偏置而导通时,负载电压波形与电源电压波形相同;在ωt=2π时,电源电压过零,VT2自然关断。
当电源电压反向过零时,由于反电动势负载阻止电流变化,故电流不能立即为零,此时晶闸管导通角θ的大小,不但与控制角α有关,而且与负载阻抗角φ有关。
两只晶闸管门极的起始控制点分别定在电源电压每个半周的起始点。
稳态时,正负半周的相等,负载电压波形是电源电压波形的一部分,负载电流(电源电流)和负载电压的波形相似。
3.2 触发电路的设计晶闸管由关断到开通,必须具备两个外部条件:第一是承受足够的正向电压;第二是门极与阴极之间加一适当正向电压、电流信号(触发信号)。
门极触发信号有直流信号、交流信号和脉冲信号三种基本形式。
1 直流信号:在晶闸管加适当的阳极正向电压的情况下,在晶闸管门极与阴极间加适当的直流电压,则晶闸管将被触发导通。
这种触发方式在实际中应用极少。
因为晶闸管在其导通后就不需要门极信号继续存在。
若采用直流触发信号将使晶闸管门极损耗增加,有可能超过门极功耗;在晶闸管反向电压时,门极直流电压将使反向漏电流增加,也有可能造成晶闸管的损坏。
2 交流信号:在晶闸管门极与阴极间加入交流电压,当交流电压uc=ut时,晶闸管导通。
ut是保证晶闸管可靠触发所需的最小门极电压值,改变u。
值,可改变触发延迟角α。
这种触发形式也存在许多缺点,如:在温度变化和交流电压幅值波动时,触发延迟角不稳定,可通过交流电压u的值来调节,调节的变化范围较小(00≤α≤900)。
3脉冲信号:在晶闸管门极触发电路中使用脉冲信号,不仅便于控制脉冲出现时刻,降低晶闸管门极功耗,还可以通过变压器的双绕组或多绕组输出,实现信号的隔离输出。
因此,触发信号多采用脉冲形式。
晶闸管触发电路的作用是产生符合要求的门极触发脉冲,保证晶闸管在需要要的时刻有阻断转为导通。
广义上讲,晶闸管触发电路往往还包括对其触发时刻进行控制的相位控制电路,但这里专指脉冲的放大和输出环节。
晶闸管触发电路应满足下列要求:1)触发脉冲的宽度应保证晶闸管可靠导通,对反电动势负载的变流器应采用宽脉冲或脉冲列触发;2)触发脉冲应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增加为器件最大触发电流的3-5倍,脉冲前沿的陡度也许增加,一般需达1-2A/us;3)所提供的触发脉冲应不超过晶闸管门极的电压、电流和功率定额,且在门极伏安特性的可靠触发区域之内;4)应有的抗干扰性能、温度稳定性及与主电路的电气隔离。
根据以上要求分析,采用KC05移相触发器进行触发电路的设计。
KC05可控硅移相触发器适用于双向可控硅或两只反向并联可控硅的交流相位控制。
本次设计在MATLAB上进行仿真,连接电路图,晶闸管已经封装完毕如图所示:图3-2晶闸管电路图3.3 保护电路3.3.1 保护电路设计在电力电子电路中,除了电力电子器件参数选择合适、驱动电路设计良好外,采用合适的过电压、过电流、du/dt保护和di/dt 保护也是必要的。
3.3.2 过电压的产生及过电压保护电力电子装置中可能发生的过电压分为外因过电压和内应过电压两类。
外应过电压主要来自雷击和系统中的操作过程等外部原因,包括:1)操作过电压:由分闸、合闸等开关操作引起的过电压,快速直流开关的切断等经常性操作中的电磁过程引起的过压。
2)雷击过电压:由雷击引起的过电压。
内因过电压主要来自电力电子装置内部器件的开关过程,包括:1)换相过电压:由于晶闸管或者全控器件反并联的续流二极管在换相结束后不能立刻恢复阻断能力,因而有较大的反向电流流过,使残存的载流子恢复,当其恢复了阻断能力时,反向电流急剧减小,这样的电流突变会因线路电感而在晶闸管阴阳极之间或与续流二极管反并联的全控型器件两端产生过电压。
2)关断过电压:全控型器件在较高的频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。
过压保护要根据电路中过压产生的不同部位,加入不同的保护电路,当达到—定电压值时,自动开通保护电路,使过压通过保护电路形成通路,消耗过压储存的电磁能量,从而使过压的能量不会加到主开关器件上,保护了电力电子器件。
为了达到保护效果,可以使用阻容保护电路来实现。
将电容并联在回路中,当电路中出现电压尖峰电压时,电容两端电压不能突变的特性,可以有效地抑制电路中的过压。
与电容串联的电阻能消耗掉部分过压能量,同时抑制电路中的电感与电容产生振荡,过电压保护电路如图3-3所示。
图3-3 RC阻容过电压保护电路图3.3.3 晶闸管的过电流保护熔断器FU是最简单有效的且应用最普遍的过电流保护器件。
针对晶闸管热容量小、过电流能力差的特点,专门为保护大功率半导体变流元件而制造了快速熔断器,简称快熔。
其熔断时间小于20ms,能保证在晶闸管损坏之前快熔切断短路故障,达到保护晶闸管的目的(见图4-2)。
目前常用的快熔有:小容量RLS(螺旋式)系列、大容量RTK(插入式)系列、RS0(汇流排式)系列、RS3系列、RSF 系列等。
快熔断的选择:快熔的额定电压URN不小于线路正常工作电压的均方根值;快熔的额定电流IRN应按它所保护的元件实际流过的电流的均方根值来选择,而不是根据元件型号上标出的额定电流Ir(AV)来选择,一般应小于被保护晶闸管的额定有效值1.57 Ir(AV)。
即可按下式选择:1.57 Ir(AV)≥IRN≥ITM (管子实际最大电流有效值)通过上述公式我们选择熔断器为RS3-80,额定电压为250V,电流10A的快速熔断器。
当电力电子电路运行不正常或者发生故障时,可能会发生过电流。
当器件击穿或短路、触发电路或控制电路发生故障、出现过载、直流侧短路、可逆传动系统产生环流或逆变失败,以及交流电源电压过高或过低、缺相等,均可引起过流。
由于电力电子器件的电流过载能力相对较差,必须对变换器进行适当的过流保护。
采用快速熔断器是电力电子装置中最有效、应用最广的一种的过流保护措施。
图3-4 过电流保护电路图过电流保护电路如图3-4所示,其中交流侧接快速熔断器能对品闸管元件短路及直流侧短路起保护作用,但要求正常工作时,快速熔断器电流定额要大于晶闸管的电流定额,这样对元件的短路故障所起的保护作用较差。
直流侧接快速熔断器只对负载短路起保护作用,对元件无保护作用。
只有品闸管直接串接快速熔断器才对元件的保护作用最好,因为它们流过同一个电流.因而被广泛使用。
电子电路作为第一保护措施,快熔仅作为短路时的部分区段的保护,直流快速断路器整定在电子电路动作之后实现保护,过电流继电器整定在过载时动作。
图3-5 晶闸管过电流保护电路4 电路参数设定4.1 单相交流调压变流器参数设定要求触发角为45度,反电势负载E=40伏,输入交流U2=210伏。
分有LB 和没有LB两种情况分析,L足够大,C足够大。
4.2 单相交流调压变流器电路分析在单相交流调压电路原理图中,晶闸管VT1和VT2也可以用一个双向晶闸管代替。
在交流电源U2的正半周和负半周,分别对VT1和VT2的开通角进行控制就可以调节输出电压。
正负半周起始时刻(=0)均为电压过零时刻。
在稳态情况下应是正负半周的相等,可以看出,负载电压波形是电源电压波形的一部分,负载电流和负载电压的波形相同。
漏感对电路影响结果分析如下:(1)出现换相重叠角,整流输出电压平均值Ud降低。
(2)整流电路的工作状态增多(3)晶闸管的di/dt减小,有利于晶闸管的安全开通。
有时人为串入进线电抗器以抑制晶闸管的 di/d t。
(4)换相时晶闸管电压出现缺口,产生正的du/dt,可能使晶闸管误导通,为此必须加吸收电路。
(5)换相使电网电压出现缺口,成为干扰源。
5 系统仿真结果及结果分析5.1 仿真结果本单相交流调压电路仿真是在protal软件中的sim库环境下组建的电路模型,图4为单相交流调压电路的模型图,图中触发脉冲g1和触发脉冲g2分别是反向并联晶闸管模块VT1,VT2的触发脉冲电路。