2019年云南省高考文科数学试题与答案
(完整word版)2019年高考数学试卷全国卷1文科真题附答案解析
2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设312iz i-=+,则||(z = ) A .2B .3C .2D .12.(5分)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(UBA = )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}3.(5分)已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5151(0.61822--≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm5.(5分)函数2sin ()cos x xf x x x+=+的图象在[π-,]π的大致为( ) A .B .C .D .6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生7.(5分)tan 255(︒= ) A .23-B .23-+C .23D .23+8.(5分)已知非零向量a ,b 满足||2||a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 9.(5分)如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+ D .112A A=+10.(5分)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .312.(5分)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)
2019年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学一、选择题1.已知集合A={x|x>-1},B={x|x<2},则A∩B等于()A.(-1,+∞) B.(-∞,2)C.(-1,2) D.∅答案 C解析A∩B={x|x>-1}∩{x|x<2}={x|-1<x<2}.2.设z=i(2+i),则等于()A.1+2i B.-1+2iC.1-2i D.-1-2i答案 D解析∵z=i(2+i)=-1+2i,∴=-1-2i.3.已知向量a=(2,3),b=(3,2),则|a-b|等于()A. B.2 C.5 D.50答案 A解析∵a-b=(2,3)-(3,2)=(-1,1),∴|a-b|==.4.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.答案 B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为=.5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.6.设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)等于()A.e-x-1 B.e-x+1C.-e-x-1 D.-e-x+1答案 D解析当x<0时,-x>0,∵当x≥0时,f(x)=e x-1,∴f(-x)=e-x-1.又∵f(x)为奇函数,∴f(x)=-f(-x)=-e-x+1.7.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面答案 B解析对于A,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A不正确;对于B,根据两平面平行的判定定理与性质知,B正确,对于C,平行于同一条直线的两个平面可能相交,也可能平行,所以C不正确;对于D,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D不正确,综上可知选B.8.若x1=,x2=是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω等于()A.2 B. C.1 D.答案 A解析由题意及函数y=sin ωx的图象与性质可知,T=-,∴T=π,∴=π,∴ω=2.9.若抛物线y2=2px(p>0)的焦点是椭圆 4+=1的一个焦点,则p等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.10.曲线y=2sin x+cos x在点(π,-1)处的切线方程为()A.x-y-π-1=0 B.2x-y-2π-1=0C.2x+y-2π+1=0 D.x+y-π+1=0答案 C解析设y=f(x)=2sin x+cos x,则f′(x)=2cos x-sin x,∴f′(π)=-2,∴曲线在点(π,-1)处的切线方程为y-(-1)=-2(x-π),即2x+y-2π+1=0.11.已知α∈,2sin 2α=cos 2α+1,则sin α等于()A. B. C. D.答案 B解析由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=,所以2sin α=1-sin2α,解得sin α=,故选B.12.设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q 两点.若|PQ|=|OF|,则C的离心率为()A. B. C.2 D.答案 A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将x2+y2=a2记为②式,①-②得x=,则以OF为直径的圆与圆x2+y2=a2的相交弦所在直线的方程为x=,所以|PQ|=2. 由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=,故选A.二、填空题13.若变量x,y满足约束条件则z=3x-y的最大值是________.答案9解析作出已知约束条件对应的可行域,如图中阴影部分(含边界)所示,由图易知,当直线y=3x-z过点C时,-z最小,即z最大.由解得即C点坐标为(3,0),故z max=3×3-0=9.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98.15.△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=________.答案解析∵b sin A+a cos B=0,∴=,由正弦定理,得-cos B=sin B,∴tan B=-1,又B∈(0,π),∴B=.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案26-1解析依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则x+x+x=1,解得x=-1,故题中的半正多面体的棱长为-1.三、解答题17.如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.(1)证明由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,B1C1∩EC1=C1,B1C1,EC1⊂平面EB1C1,所以BE⊥平面EB1C1.(2)解由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.如图,作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以四棱锥E-BB1C1C的体积V=×3×6×3=18.18.已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为=0.21.产值负增长的企业频率为=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)=×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=i(y i-)2=×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,s==0.02×≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.20.已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.解(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.(2)由题意可知,若满足条件的点P(x,y)存在,则|y|·2c=16,·=-1,即c|y|=16,①x2+y2=c2,②又+=1.③由②③及a2=b2+c2得y2=.又由①知y2=,故b=4.由②③及a2=b2+c2得x2=(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).21.已知函数f(x)=(x-1)ln x-x-1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.证明(1)f(x)的定义域为(0,+∞).f′(x)=+ln x-1=ln x-(x>0).因为y=ln x在(0,+∞)上单调递增,y=在(0,+∞)上单调递减,所以f′(x)在(0,+∞)上单调递增.又f′(1)=-1<0,f′(2)=ln 2-=>0,故存在唯一x0∈(1,2),使得f′(x0)=0.又当0<x<x0时,f′(x)<0,f(x)单调递减,当x>x0时,f′(x)>0,f(x)单调递增,因此,f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=-2,又f(e2)=e2-3>0,所以f(x)=0在(x0,+∞)内存在唯一根x=α.由1<x0<α得0<<1<x0.又f=ln--1===0,故是f(x)=0在(0,x0)的唯一根.综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.22.[选修4-4:坐标系与参数方程]在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.解(1)因为M(ρ0,θ0)在C上,当θ0=时,ρ0=4sin =2.由已知得|OP|=|OA|cos =2.设Q(ρ,θ)为l上除P的任意一点,连接OQ,在Rt△OPQ中,ρcos=|OP|=2. 经检验,点P在曲线ρcos=2上.所以,l的极坐标方程为ρcos=2.(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P在线段OM上,且AP⊥OM,故θ的取值范围是.所以,P点轨迹的极坐标方程为ρ=4cos θ,θ∈.23.[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0. 所以,a的取值范围是[1,+∞).祝福语祝你考试成功!。
2019届云南省高考复习质量监测六文科数学试卷【含答案及解析】
2019届云南省高考复习质量监测六文科数学试卷【含答案及解析】姓名 ____________ 班级 ________________ 分数 ___________、选择题1.已知集合^ .一 , ;_.一 1- ,则集合-,】的真子集的个数是()A - ■' __________________________________________B ■C : __________________________________________D •3. 某工厂共有甲、乙、丙三个车间,甲车间有 -名职工,乙车间有 • I,名职工,丙 车间有 名职工,现采用分层抽样的方法从该厂抽取容量为 -人的样本,甲车间抽取!人,丙车间抽取, 人,则该工厂共有的职工人数是( )A . -人B . • II 人 C. ■.人 D口】人4. 对于命题 -:和命题心且•为真命题”的充要条件是()A .-或:, 为真命题B ._ I-''且为真命题C . •;或■. 为假命题D.一丁’或为假命题5. 在等差数列 :中,-| ,则其前.项和.的值是() A .B .|C.2. 已知-是虚数单位,复数 ( )A .第一象限 ___________________C.第三象限 ____________________满足l+2r则■在复平面上对应的点位于B .第二象限 _____________________________________D .第四象限6.设_二三:,的内角 、,■! , I 的对边分别为「,,,:,若,-,I-- — "1 ,八—…,则_二的面积为()A ■ < ---------------------------------------------------------------B -—--------------------------------------------------------- C ? ------------------------------------------------------------------------ D. 「.一 |7.一个算法程序如图所示,则输出的 的值为(8.已知双曲线一- 一'("「,"•.))与直线'=1::有交点,则双曲线/ h 2的离心率的范围是( )A. I •」-1 _______________________________________B. I1_____________________________ C .I 一, ' I _______________________D.{.1.-I ■,若■是实数,且)___________ B.1A • ________________________________________ 9. 设向量■;. . . ' I U 討,则网的最小值为(A . j --------------------------------------------B.113.填空题用篱笆围成一个面积为」,的矩形菜园,则最少需要篱笆的长度为严.10.A.C.过原点且倾斜角为厂的直线被圆L —= —二所截得的弦长为(/ B.?■ ------------------------------------------- D. / -如图给出一个“三角形数阵”,已知每一列的数成等差数列,从第三行起,每一行7.行第丿列的数为的(亍,11.的数成等比数列,每一行的公比都相等,记第C. 4 —D.-412. 已知定义在0, —I上的函数/(X)< 2 J的导函数为广⑴ ,且对于任意的,都有I ■'' I -- ,则下列结论正确的是()14. 已知2x~'V-° ,则卄:的最小值是 _________________________________________________[X- v -+-1S 015. 某空间几何体的三视图如图所示,则该空间几何体的体积为16. 已知函数佝满足「一 | -I ,且是偶函数,当. -时, 「…,若在区间_ _内,函数-< -I ■ I --有°个零点,则实数& 的取值范围是___________________ .三、解答题17. 已知数列门]的前•项和、满足1,二沁广1(I )求数列的通项公式;(II )若函数r j \ .i:i i' !■ ■■.; I (亠I ,:;•「..,文代養心蓬)的周期为:,且在—处取得最大值,最大值为,求函数/(V)的解析式.18. 去年“十一”期间,昆曲高速公路车辆较多.某调查公司在曲靖收费站从座以下小型汽车中按进收费站的先后顺序,每间隔辆就抽取一辆的抽样方法抽取|辆汽车进行抽样调查,将他们在某段高速公路的车速(.* )分成六段:[60,65), [6^70), ^75),[恋酣),[甜曲),面一90)后,得到如图的频率分布直方图.心率互为倒数,而直线],-过椭圆L 的一个焦点.(I )求椭圆I 的方程;(I )调查公司在抽样时用到的是哪种抽样方法? (II )求这.辆小型汽车车速的众数和中位数的估计值;(III )若从这 ,辆车速在,>:的小型汽车中任意抽取 车车速都在| • I :的概率.辆,求抽出的-辆的底面是矩形,二二为等边三角形,且平面 I 分别为 .和o 1的中点.(II )证明:平面 Pi',::" I,平面 心「; (III )若矩形 的周长为:•,设..,当’•为何值时,四棱锥/的体积最大?20.已知椭圆' -(■ ),其离心率与双曲线(I )证明:三| 平面—「;19. 如图,四棱锥(II )如图•,,以椭圆.的左顶点为圆心作圆,设圆与椭圆i 交于两点茴,.一,求T的最小值,并求出此时圆的方程.21. 已知函数T(I )求函数-厂 的单调区间;(II )若不等式-I. 在区间上恒成立,求实数的取值范围;/...、缶】疋In2 lii3hi n1/丄、(III )求证: (••)•?+ V/ 弘 2(I )求曲线「的普通方程和曲线 「 的直角坐标方程;(II )设曲线 G 与 G 的公共点为 虫,R ,求卩小| |PB |的值.24.已知函数 /(.v)=|.v-l| ,列Q 二一卜+ 3| + 打,口E R •(I )解关于•的不等式 心6 ; (II )若函数-_ - I ■的图象恒在函数「!的图象的上方,求实数:'的取22.如图,厂交圆于F , 两点, .,连接并延长交圆于点B:「;;切圆于丨、,一为,三上一点且 ,作弦垂直一::,垂足为T •23.已知曲线'的参数方程为:上对应的点为 ,•以原点匚为极点,以•( 为参数),当轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为8 cos “1 — rr>s ?0 (I )求证:•.为圆的直径;(II )若.「-三,,求证:刖两点茴,.一,求T的最小值,并求出此时圆的方程.值范围.参考答案及解析第1题【答案】J【解析】试题分析:由題育可知站訂0612}共有M个元素,所臥集含甌的頁子集的个数2S-1 = 7 ,故选D.第2题【答案】【解析】试题分折;因湖匕玄“、所以二=匕空=(1+2订(-订=-2F U-p 、二在复平面上对应的点二i坐标为(2-1),位于第四象限内故选乩第3题【答案】C【解析】45 15试题分析:由题竜可知,乙车间抽取的职工^15人,根据分层抽祥的规则可知—-,所以300该工厂共有的职工人数是齐=92 ,故选e第4题【答案】【解析】试题分析;輿使P且勺为直命题」应育卫目均为真翕题,即二p.r 都是假斋题』所以.勺或F 为假命题,7 且目为真命题打的充要条件是“ p或暫拘假命题",故选D.第5题【答案】p【解析】试酚析:由等差数列的前“项和公式可得焉=叫* %)」°仏)二叩冥5 = 50 ,隔・* 2 2第6题【答案】【解析】试题分析:由正弦定理可知―^=-^7;,所以「'亂吁吁=2逅?点=旺_2-2=生$in B §mC $mE $uiB- 4 6 12 '所次AABC 的面积为S = -bc S m^--x2x2V2^^+>^-7)+ L 故洗氐2 24第7题【答案】C I【解析】试题分析:执f亍程J?可知也百1.川不G件:伽會0严= L冲=L Lin-1 +21 x l = 5,11 = 2,:m = 2+22^3 = l<n=3, fi;?^=3^2J X14=H5>100,K =4.是,所以输出打二4」故选C.第8题【答案】【解析】试题分析:如图所示,殿曲线的渐近线方程,若双曲^4-4=1(心。
2019年云南省高考数学一模试卷及答案(文科)
ABC 交 AC 于点 D,BD=2,则△ABC 面积的最小值为
.
16.(5 分)已知 P,A,B,C,D 是球 O 的球面上的五个点,四边形 ABCD 为梯形,AD∥
BC,AB=DC=AD=2,BC=4,PA⊥PD,平面 PAD⊥平面 ABCD,则球 O 的表面积为
三、解答题:解答应写出文字说明,证明过程或演算步骤。
=2 成立的点 M 只
有一个. (1)求椭圆 E 的方程; (2)过点(﹣1,0)的两直线 l1,l2 分别与椭圆 E 交于点 A,B 和点 C,D,且 l1⊥l2, 求证:12(|AB|+|CD|)=7|AB||CD|.
21.(12 分)已知 e 是自然对数的底数,函数 f(x)= 与 F(x)=f(x)﹣x+ 的定义
D.向右平行移动 个单位
8.(5 分)已知 α,β 都为锐角,若 tanβ= ,cos(α+β)=0,则 cos2α 的值是( )
A.
B.
C.
D.
9.(5 分)已知 M 是抛物线 C:y2=2px 上的任意一点,以 M 为圆心的圆与直线 x=﹣1 相
切且经过点 N(1,0),设斜率为 1 的直线与抛物线 C 交于 P(共 19 页)
(1)设 500 件 A 型产品性能质量评分的中位数为 M,直接写出 M 所在的分组区间; (2)请完成下面的列联表(单位:件)(把有关结果直接填入下面的表格中);
17.(12 分)数列{an}中,a1=2,(n+1)(an+1﹣an)=2(an+n+1). (1)求 a2,a3 的值; (2)已知数列{an}的通项公式是 an=n+1,an=n2+1,an=n2+n 中的一个,设数列{ }
2019年云南高考数学文试卷
2019年云南高考数学文试卷为方便考生即时估分,###高考频道将在2019年6月7日17:00考后陆续公布2019年云南高考数学文试卷信息。
考生可点击进入云南高考频道《》查看云南高考数学文试卷信息。
高考时间全国统考于6月7日开始举行,具体科目考试时间安排为:6月7日9:00至11:30语文;15:00至17:00数学。
6月8日9:00至11:30文科综合/理科综合;15:00至17:00外语,有外语听力测试内容的应安排在外语笔试考试开始前实行。
各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。
具体考试科目时间安排报教育部考试中心备案后发布。
全国统考科目中的外语分英语、俄语、日语、法语、德语、西班牙语等6个语种,由考生任选其中一个语种参加考试。
答题规范选择题:必须用2B铅笔按填涂示例将答题卡上对应的选项涂满、涂黑;修改答题时,应使用橡皮轻擦干净并不留痕迹,注意不要擦破答题卡。
非选择题:必须用0.5毫米黑色墨水签字笔在各题规定的答题区域内答题,切不可答题错位、答题题号顺序颠倒、超出本题答题区域(超出答题卡黑色边框线)作答,否则答案无效。
如修改答案,就用笔将废弃内容划去,然后在划去内容上方或下方写出新的答案;或使用橡皮擦掉废弃内容后,再书写新的内容。
作图:须用2B铅笔绘、写清楚,线条及符号等须加黑、加粗。
选考题:先用2B铅笔将所选考试题的题号涂黑,然后用0.5毫米黑色墨水签字笔在该题规定的答题区域内对应作答,切不可选涂题号与所答内容不一致,或不填涂、多填涂题号。
特别提醒:考生不要将答题卡折叠、弄破;严禁在答题卡的条形码和图像定位点(黑方块)周围做任何涂写和标记,禁止涂划条形码;不得在答题卡上任意涂画或作标记。
试题答案###为了能让广大考生即时方便获取云南高考数学文试题答案信息,特别整理了《云南高考数学文试题及答案发布入口》供广大考生查阅。
考生也可点击进入《###2019年全国各地高考试题及答案解析专题》查询2019年云南高考数学文试卷信息!【CTRL+D收藏】历年真题以下是###为大家整理的2018年高考真题及答案word压缩文件,其中报考【全国卷I、全国卷Ⅱ、全国卷Ⅲ及自命题地区卷】,大家可点击下载。
2019年云南省高考文科数学模拟试题与答案(二)
2019年云南省高考文科数学模拟试题与答案(二)(试卷满分150分,考试时间120分钟)注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.考试结束,考生必须将试题卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}3,1{=A ,},30|{N x x x B ∈<<=,则=B AA .}1{B .}2,1{C .}3,2,1{D . }3,1{2. 在复平面内,复数i1iz =+所对应的点位于A. 第一象限B.第二象限C.第三象限D.第四象限 3. 下列函数中,既是奇函数又是增函数的为 A .y =x +1 B .y =-x3C .y =1xD .y =x |x |4.已知命题:p 若(,0)2x π∀∈-,tan 0x <,命题()0:0,q x ∃∈+∞,0122x =,则下列命题为真命题的是A.p q ∧B. ()()p q ⌝∧⌝C. ()p q ∧⌝D. ()p q ⌝∧5.如右图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的的体积为 A .π238+ B .π+38C .π24+D .π+4 6. 已知sin 2cos 0αα-=,则sin 3cos sin ααα=-A .15-B.12-C .15D .27. 图中的程序框图所描述的算法称为欧几里得辗转相除法,若输入m =209,n =121,则输出m 的值等于A. 10B.11C.12D.138.已知双曲线()222210,0x y a b a b-=>>的一条渐近线平行于直线:2l y x =+,一个焦点在直线l上,则双曲线的方程为A.22122x y -= B. 22144x y -= C. 22133x y -= D. 221x y -= 9. 已知数列{}n a 的前n 项和2621nn S a a =-⋅=,则A.164B.116C.16D.6410.将函数()2sin(2)6f x x π=-的图象向左平移6π个单位,再向上平移1个单位,得到()g x 图象,若12()()6g x g x +=,且[]12,2,2x x ππ∈-,则12x x -的最大值为 A .π B .2π C.3π D .4π11.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 12.函数的图象不可能是A. B.C. D.二、填空题:本大题共4小题,每小题5分,共20分.13. 若实数,x y 满足2045x y x y +-≥⎧⎪≤⎨⎪≤⎩则z y x =-的最小值为 .14. 边长为2的等边ABC ∆的三个顶点A ,B ,C 都在以O 为球心的球面上,若球O 的表面积为1483π,则三棱锥O ABC -的体积为 . 15. 若中心在原点,对称轴为坐标轴的双曲线的渐近线方程式为x y 2±=,则该双曲线的离心率为 。
(完整word)2019年高考全国卷3文科数学及答案(word精校版)
2019年普通高等学校招生全国统一考试全国卷3文科数学考试时间:2019年6月7日15:00——17:00 使用省份:云南、广西、贵州、四川、西藏本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =I ( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z =( )A .1i --B .1+i -C .1i -D .1+i 3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14C .13D .124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.8 5.函数()2sin sin2f x x x =-在[0,2π]的零点个数为( )A .2B .3C .4D .56.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( ) A . 16 B . 8 C .4 D . 2 7.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则( )A .a=e ,b =-1B .a=e ,b =1C .a=e -1,b =1D .a=e -1,1b =-8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于( )A.4122-B. 5122-C. 6122-D. 7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF△的面积为( )A .32B .52 C .72 D .92 11.记不等式组6,20x y x y +⎧⎨-≥⎩…表示的平面区域为D .命题:(,),29p x y D x y ∃∈+…;命题:(,),212q x y D x y ∀∈+„.下面给出了四个命题 ①p q ∨ ②p q ⌝∨ ③p q ∧⌝ ④p q ⌝∧⌝这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则( )A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分。
2019年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则|z|=()A.2B.C.D.12.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=()A.﹣2﹣B.﹣2+C.2﹣D.2+8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.9.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+10.(5分)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为()A.2sin40°B.2cos40°C.D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A =﹣,则=()A.6B.5C.4D.312.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1二、填空题:本题共4小题,每小题5分,共20分。
【精品】云南省近两年(2018,2019)高考文科数学试卷以及答案(word解析版)
绝密★启用前云南省2018年高考文科数学试卷本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i(2+3i)=A .32i -B .32i +C .32i --D .32i -+ 2.已知集合{}1,3,5,7A =,{}2,3,4,5B =则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为 A .0.6 B .0.5 C .0.4 D .0.36.双曲线22221(0,0)x y a b a b -=>>A.y = B.y =C.y = D.y x = 7.在ABC △中,cos 2C =1BC =,5AC =,则AB = A.BC8.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 ABCD10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A.1 B.2CD1 12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)【后附:极详细的解析、分析、考点、答案解释等】
【后附:极详细的解析、分析、考点、答案解释等】2019年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题1. 已知集合A={−1,0,1,2},B={x|x2≤1},则A∩B=()A.{−1,0,1}B.{0,1}C.{−1,1}D.{0,1,2}2. 若z(1+i)=2i,则z=()A.−1−iB.−1+iC.1−iD.1+i3. 两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.1 6B.14C.13D.124. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著. 某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.85. 函数f(x)=2sinx−sin2x在[0,2π]的零点个数为()A.2B.3C.4D.56. 已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3= ()A.16B.8C.4D.27. 已知曲线y=ae x+xlnx在点(1, ae)处的切线方程为y=2x+b,则()A.a=e,b=−1B.a=e,b=1C.a=e−1,b=1D.a=e−1,b=−18. 如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,则()A.BM=EN,且直线BM, EN是相交直线B.BM≠EN,且直线BM, EN是相交直线C.BM=EN,且直线BM, EN是异面直线D.BM≠EN,且直线BM, EN是异面直线9. 执行下边的程序框图,如果输入的ε为0.01,则输出s的值等于()A.2−124B.2−125C.2−126D.2−12710. 已知F是双曲线C:x24−y25=1的一个焦点,点P在C上,O为坐标原点,若|OP|= |OF|,则△OPF的面积为()A.32B.52C.72D.9211. 记不等式组{x+y≥6,2x−y≥0表示的平面区域为D.命题p:∃(x,y)∈D,2x+y≥9;命题q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题①p∨q②¬p∨q③p∧¬q④¬p∧¬q这四个命题中,所有真命题的编号是()A.①③B.①②C.②③D.③④12. 设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log314)>f(2−32)>f(2−23)B.f(log314)>f(2−23)>f(2−32)C.f(2−32)>f(2−23)>f(log314)D.f(2−23)>f(2−32)>f(log314)二、填空题已知向量a→=(2,2),b→=(−8,6),则cos<a→,b→>=________.记S n为等差数列{a n}的前n项和,若a3=5,a7=13,则S10=________.设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限,若△MF1F2为等腰三角形,则M的坐标为________.学生到工厂劳动实践,利用3D打印技术制作模型. 如图,该模型为长方体ABCD−A1B1C1D1挖去四棱锥O−EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为0.9g/cm3. 不考虑打印损耗,制作该模型所需原料的质量为________g.三、解答题为了了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服用甲离子溶液,B组小鼠给服用乙离子溶液,每只小鼠给服的溶液体积相同,摩尔浓度相同,经过一段时间后,用某种科学方法测算出残留在小鼠体内的离子百分比,根据试验数据分析得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).△ABC的内角A,B,C的对边分别为a,b,c.已知asin A+C2=bsinA.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE= BF=2,∠FBC=60∘,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.已知函数f(x)=2x3−ax2+2.(1)讨论f(x)的单调性.(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M−m的取值范围.已知曲线C:y=x22,D为直线y=−12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.如图,在极坐标系Ox中,A(2, 0),B(√2, π4),C(√2, 3π4),D(2, π),弧AB^,BC^,CD^所在圆的圆心分别是(1, 0),(1, π2),(1, π),曲线M1是弧AB^,曲线M2是弧BC^,曲线M3是弧CD^.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=√3,求P的极坐标.设x,y,z∈R,且x+y+z=1.(1)求(x−1)2+(y+1)2+(z+1)2的最小值;(2)若(x−2)2+(y−1)2+(z−a)2≥13成立,证明:a≤−3或a≥−1.参考答案与试题解析2019年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题1.【答案】A【考点】一元二次不等式的解法交集及其运算【解析】此题暂无解析【解答】解:因为B={x|x2≤1},所以B={x|−1≤x≤1},又因为A={−1,0,1,2},所以A∩B={−1,0,1}.故选A.2.【答案】D【考点】复数的运算复数的基本概念【解析】此题暂无解析【解答】解:由z(1+i)=2i得,z=2i 1+i=2i(1−i) (1+i)(1−i)=1+i.故选D.3.【答案】D【考点】排列、组合的应用古典概型及其概率计算公式【解析】此题暂无解析【解答】解:根据题意,两位男同学和两位女同学随机排成一列,共有A44=4×3×2×1=24种方式,两位女同学相邻有2×A33=2×3×2×1=12种方式,所以两位女同学相邻的概率是1224=12,故选D.4.【答案】C【考点】容斥原理古典概型及其概率计算公式【解析】此题暂无解析【解答】解:分析如图,∴70100=0.7.故选C.5.【答案】B【考点】二倍角的正弦公式函数的零点【解析】此题暂无解析【解答】解:由题意得,f(x)=2sinx−sin2x=2sinx−2sinxcosx=2sinx(1−cosx),令f(x)=0,因为x在区间[0,2π]内,所以当sinx=0时,x可以取0,π,2π,当1−cosx=0时,x取0,2π,综上可得零点有3个.故选B.6.【答案】C【考点】等比数列的前n项和【解析】此题暂无解析【解答】解:由a5=3a3+4a1以及等比数列的基本性质,得q4−3q2−4=0,解得q2=4,又各项均为正数的等比数列,故q=2.根据S4=a1+a2+a3+a4=15,解得a1=1,故a3=a1q2=4.故选C.7.【答案】D【考点】利用导数研究曲线上某点切线方程【解析】此题暂无解析【解答】解:由题意得,y′=ae x+lnx+1,所以ae+1=2,解得,a=e−1,又2+b=ae,所以b=−1,故选D. 8.【答案】B【考点】空间中直线与直线之间的位置关系【解析】此题暂无解析【解答】解:建立如图所示坐标系,连接BE,BD,设四边形ABCD边长为2,由图可知,B(0,2,0), E(1,0,√3), N(1,1,0), M(32,0,√32),所以|BM→|=√(32−0)2+(0−2)2+(√32−0)2=√94+4+34=√7,|EN→|=√(1−1)2+(1−0)2+(0−√3)2=√0+1+3=2,∴ EN≠BM,∴BM→=(32,−2,√32),BN→=(1,−1,0),BE→=(1,−2,√3).∵BM→=12BE→+BN→,由平面向量基本定理可知,点B , M , E ,N四点共面,∴BM与EN相交.故选B.9.【答案】C【考点】程序框图【解析】此题暂无解析【解答】解:模拟执行程序,可得:x=1,s=0,不满足条件x<ε,执行循环体,x=12,s=1;不满足条件x<ε,执行循环体,x=14,s=1+12;不满足条件x<ε,执行循环体,x=18,s=1+12+14;不满足条件x<ε,执行循环体,x=116,s=1+12+14+18;不满足条件x<ε,执行循环体,x=132,s=1+12+14+18+116;不满足条件x<ε,执行循环体,x=164,s=1+12+14+18+116+132;不满足条件x<ε,执行循环体,x=1128,s=1+12+14+18+116+132+164;满足条件x<ε,退出循环,输出s=1+12+14+18+116+132+164=1×(1−127)1−12=2−12.故选C.10.【答案】B【考点】双曲线的应用【解析】此题暂无解析【解答】解:由题意得,c=3,因为点P在双曲线C上,所以可设P(−√20+4y25, y),因为|OP|=|OF|,所以(−√20+4y25)2+y2=32,解得,|y|=53,所以△OPF的面积为=12×3×53=52,故选B.11.【答案】A【考点】逻辑联结词“或”“且”“非”简单线性规划【解析】此题暂无解析【解答】解:由题意可作出可行域D,如图所示,可求得交点坐标为(2, 4),而2x+y≥9经过可行域,故命题p为真命题,而2x+y≤12经过可行域但并不是所有点都满足条件,故命题q为假命题,①p∨q为真命题;¬p为假命题,故②¬p∨q为假命题;¬q为真命题,故③p∧¬q为真命题;④¬p∧¬q为假命题,故为真命题的是①③,故选A.12.【答案】C【考点】指数函数与对数函数的关系偶函数函数单调性的性质【解析】此题暂无解析【解答】解:由偶函数的性质得,f (log 314)=f (−log 34)=f (log 34),又∵ log 34>1,1>2−23>2−32>0, ∴ log 34>2−23>2−32>0,∵ f(x)在(0,+∞)上单调递减, ∴ f (2−32)>f (2−23)>f (log 314). 故选C .二、填空题【答案】−√210【考点】平面向量的夹角 【解析】 此题暂无解析 【解答】解:由题意得, cos <a →,b →>=a →⋅b→|a →|⋅|b →|=−√210.故答案为:−√210.【答案】100【考点】等差数列的前n 项和 【解析】 此题暂无解析 【解答】解:根据等差数列的基本性质,由a 3=5,a 7=13,可得a 1=1,d =2, 由S n =na 1+n(n−1)2d,n ∈N ∗,可得S 10=100,故答案为:100.【答案】(3, √15)【考点】椭圆中的平面几何问题 【解析】 此题暂无解析 【解答】解:由题意得,F 1(−4, 0),F 2(4, 0), M 为C 上一点且在第一象限, 所以可设M(t, √180−5t 29)(t >0),又因为△MF 1F 2为等腰三角形, 所以|MF 1|=|F 1F 2|, 所以(t +4)2+180−5t 29=64,解得,t =3或t =−21(舍去), 所以M 的坐标为(3, √15). 故答案为:(3, √15). 【答案】 118.8【考点】柱体、锥体、台体的体积计算 【解析】 此题暂无解析 【解答】解:由题意得,挖去的四棱锥的底面GHEF 是一个菱形, 面积S =12HF ×GE =12cm 2,所以四棱锥的体积V =13Sℎ=13×12×3=12cm 3,所以该模型的体积为V 剩余=6×6×4−12=132cm 3,又因为原料密度为0.9gcm 3,所以该模型所用原料质量为132×0.9=118.8g . 故答案为:118.8. 三、解答题【答案】解:(1)由已知得:0.70=a +0.20+0.15, 故a =0.35,所以b=1−0.05−0.15−0.70=0.10.故a=0.35,b=0.10.(2)甲离子残留百分比的平均值的估计值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为:3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 【考点】众数、中位数、平均数频率分布直方图【解析】此题暂无解析【解答】解:(1)由已知得:0.70=a+0.20+0.15,故a=0.35,所以b=1−0.05−0.15−0.70=0.10.故a=0.35,b=0.10.(2)甲离子残留百分比的平均值的估计值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为:3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 【答案】解:(1)由题设及正弦定理得,sinAsin A+C2=sinBsinA,因为sinA≠0,所以sin A+C2=sinB,由A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2,因为cos B2≠0,故sin B2=12,因此B=60∘.(2)由题设及(1)知△ABC的面积S△ABC=√34a,由正弦定理得,a=csinAsinC=sin(120∘−C)sinC=√32tanC+12,由于△ABC为锐角三角形,故0∘<A<90∘,0∘<C<90∘,由(1)知A+C=120∘,所以30∘<C<90∘,故12<a<2,从而√38<S△ABC<√32,因此,△ABC的面积的取值范围是(√38, √32).【考点】三角恒等变换综合应用正弦定理运用诱导公式化简求值【解析】此题暂无解析【解答】解:(1)由题设及正弦定理得,sinAsin A+C2=sinBsinA,因为sinA≠0,所以sin A+C2=sinB,由A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2,因为cos B2≠0,故sin B2=12,因此B=60∘.(2)由题设及(1)知△ABC的面积S△ABC=√34a,由正弦定理得,a=csinA sinC=sin(120∘−C)sinC=√32tanC +12,由于△ABC为锐角三角形,故0∘<A<90∘,0∘<C<90∘,由(1)知A+C=120∘,所以30∘<C<90∘,故12<a<2,从而√38<S△ABC<√32,因此,△ABC的面积的取值范围是(√38, √3 2).【答案】(1)证明:由已知得AD//BE,CG//BE,所以AD//CG,故AD,CG确定一个平面,从而A,C,G,D四点共面,由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE,又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM,如图所示,因为AB//DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG. 由已知,四边形BCGE是菱形,且∠EBC=60∘,得EM⊥CG,故CG⊥平面DEM,因此DM⊥CG在Rt△DEM中,DE=1,EM=√3,故DM=2,所以四边形ACGD的面积为4.【考点】直线与平面垂直平面与平面垂直的判定【解析】此题暂无解析【解答】(1)证明:由已知得AD//BE,CG//BE,所以AD//CG,故AD,CG确定一个平面,从而A,C,G,D四点共面,由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE,又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM,如图所示,因为AB//DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60∘,得EM⊥CG,故CG⊥平面DEM,因此DM⊥CG,在Rt△DEM中,DE=1,EM=√3,故DM=2,所以四边形ACGD的面积为4.【答案】解:(1)f′(x)=6x2−2ax=2x(3x−a)令f′(x)=0,得x=0或x=a3,若a >0,当x ∈(−∞,0)∪(a3,+∞)时,f ′(x)>0, 当x ∈(0,a3)时,f ′(x)<0,故f(x)在(−∞,0),(a3,+∞)单调递增,在(0,a3)单调递减, 若a =0,f(x)在(−∞,+∞)上单调递增,若a <0,则当x ∈(−∞,a3)∪(0,+∞)时,f ′(x)>0; 当x ∈(a3,0)时,f ′(x)<0,故f(x)在(−∞,a3),(0,+∞)单调递增,在(a3,0)单调递减.(2)当0<a <3时,由(1)知,在(0,a3)单调递减,在(a3,1)单调递增,所以f(x)在[0,1]的最小值为f (a3)=−a 327+2, 最大值为f(0)=2或f(1)=4−a ,于是 m =−a 327+2,M ={4−a,0<a <22,2≤a <3,所以M −m ={2−a +a 327,0<a <2a 327,2≤a <3,当0<a <2时,可知2−a +a 327单调递减,所以M −m 的取值范围是(827,2), 当2≤a <3时,a 327单调递增,所以M −m 的取值范围是[827,1), 综上,M −m 的取值范围是[827,2).【考点】利用导数研究函数的最值利用导数研究函数的单调性 【解析】 此题暂无解析【解答】解:(1)f ′(x)=6x 2−2ax =2x(3x −a) 令f ′(x)=0,得x =0或x =a3,若a >0,当x ∈(−∞,0)∪(a 3,+∞)时,f ′(x)>0, 当x ∈(0,a3)时,f ′(x)<0,故f(x)在(−∞,0),(a3,+∞)单调递增,在(0,a3)单调递减, 若a =0,f(x)在(−∞,+∞)上单调递增,若a <0,则当x ∈(−∞,a3)∪(0,+∞)时,f ′(x)>0; 当x ∈(a3,0)时,f ′(x)<0,故f(x)在(−∞,a3),(0,+∞)单调递增,在(a3,0)单调递减.(2)当0<a <3时,由(1)知,在(0,a3)单调递减,在(a3,1)单调递增, 所以f(x)在[0,1]的最小值为f (a3)=−a 327+2,最大值为f(0)=2或f(1)=4−a ,于是 m =−a 327+2,M ={4−a,0<a <22,2≤a <3,所以M −m ={2−a +a 327,0<a <2a 327,2≤a <3,当0<a <2时,可知2−a +a 327单调递减,所以M −m 的取值范围是(827,2), 当2≤a <3时,a 327单调递增,所以M −m 的取值范围是[827,1), 综上,M −m 的取值范围是[827,2).【答案】(1)证明:设D(t,−12), A(x 1,y 1),则x 12=2y 1,由于y ′=x ,所以切线DA 的斜率为x 1, 故y 1+12x 1−t=x 1, 整理得2tx 1−2y 1+1=0,设B(x 2,y 2),同理可得2tx 2−2y 2+1=0, 故直线AB 的方程为2tx −2y +1=0, 所以直线AB 过定点(0,12).(2)解:由(1)得直线AB 的方程为y =tx +12, 由{y =tx +12,y =x 22可得x 2−2tx −1=0, 于是x 1+x 2=2t,y 1+y 2=t(x 1+x 2)+1=2t 2+1, 设M 为线段AB 的中点,则M(t,t 2+12),由于EM →⊥AB →,而EM →=(t,t 2−2), AB →与向量(1,t)平行, 所以t +(t 2−2)t =0,解得t =0或t =±1, 当t =0时,|EM →|=2,所求圆的方程为x 2+(y −52)2=4;当t =±1时,|EM →|=√2,所求圆的方程为x 2+(y −52)2=2.【考点】直线恒过定点利用导数研究曲线上某点切线方程 平行向量的性质 点与圆的位置关系 中点坐标公式 斜率的计算公式 【解析】 此题暂无解析 【解答】(1)证明:设D(t,−12), A(x 1,y 1),则x 12=2y 1,由于y ′=x ,所以切线DA 的斜率为x 1, 故y 1+12x 1−t=x 1, 整理得2tx 1−2y 1+1=0,设B(x 2,y 2),同理可得2tx 2−2y 2+1=0, 故直线AB 的方程为2tx −2y +1=0, 所以直线AB 过定点(0,12).(2)解:由(1)得直线AB 的方程为y =tx +12, 由{y =tx +12,y =x22可得x 2−2tx −1=0, 于是x 1+x 2=2t,y 1+y 2=t(x 1+x 2)+1=2t 2+1, 设M 为线段AB 的中点,则M(t,t 2+12),由于EM →⊥AB →,而EM →=(t,t 2−2), AB →与向量(1,t)平行, 所以t +(t 2−2)t =0,解得t =0或t =±1,当t =0时,|EM →|=2,所求圆的方程为x 2+(y −52)2=4; 当t =±1时,|EM →|=√2,所求圆的方程为x 2+(y −52)2=2.【答案】解:(1)由题设可得,弧AB^,BC ^,CD ^所在圆的极坐标方程分别为 ρ=2cosθ,ρ=2sinθ,ρ=−2cosθ.所以M 1的极坐标方程为ρ=2cosθ(0≤θ≤π4), M 2的极坐标方程为ρ=2sinθ(π4≤θ≤3π4),M 3的极坐标方程为ρ=−2cosθ(3π4≤θ≤π). (2)设P(ρ, θ),由题设及(1)知, 若0≤θ≤π4,则2cosθ=√3,解得θ=π6; 若π4≤θ≤3π4,则2sinθ=√3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则−2cosθ=√3,解得θ=5π6.综上,P的极坐标为(√3,π6)或(√3, π3)或(√3, 2π3)或(√3, 5π6).【考点】圆的极坐标方程【解析】此题暂无解析【解答】解:(1)由题设可得,弧AB^,BC^,CD^所在圆的极坐标方程分别为ρ=2cosθ,ρ=2sinθ,ρ=−2cosθ.所以M1的极坐标方程为ρ=2cosθ(0≤θ≤π4),M2的极坐标方程为ρ=2sinθ(π4≤θ≤3π4),M3的极坐标方程为ρ=−2cosθ(3π4≤θ≤π).(2)设P(ρ, θ),由题设及(1)知,若0≤θ≤π4,则2cosθ=√3,解得θ=π6;若π4≤θ≤3π4,则2sinθ=√3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则−2cosθ=√3,解得θ=5π6.综上,P的极坐标为(√3,π6)或(√3, π3)或(√3, 2π3)或(√3, 5π6).【答案】(1)解:由于[(x−1)+(y+1)+(z+1)]2=(x−1)2+(y+1)2+(z+1)2+2[(x−1)(y+1)+(y+1)(z+1)+(z+1)(x −1)]≤3[(x−1)2+(y+1)2+(z+1)2]故由已知得(x−1)2+(y+1)2+(z+1)2≥43,当且仅当x=53, y=−13, z=−13时等号成立,所以(x−1)2+(y+1)2+(z+1)2的最小值为43.(2)由于[(x−2)+(y−1)+(z−a)]2=(x−2)2+(y−1)2+(z−a)2+2[(x−2)(y−1)+(y−1)(z−a)+(z−a)(x −2)]≤3[(x−2)2+(y−1)2+(z−a)2]故由已知得(x−2)2+(y−1)2+(z−a)2≥(2+a)23,当且仅当x=4−a3,y=1−a3,z=2a−23时等号成立,因此(x−2)2+(y−1)2+(z−a)2的最小值为(2+a)23.由题设知(2+a)23≥13,解得a≤−3或a≥−1.【考点】一般形式的柯西不等式【解析】此题暂无解析【解答】(1)解:由于[(x−1)+(y+1)+(z+1)]2=(x−1)2+(y+1)2+(z+1)2+2[(x−1)(y+1)+(y+1)(z+1)+(z+1)(x −1)]≤3[(x−1)2+(y+1)2+(z+1)2]故由已知得(x−1)2+(y+1)2+(z+1)2≥43,当且仅当x=53, y=−13, z=−13时等号成立,所以(x−1)2+(y+1)2+(z+1)2的最小值为43.(2)由于[(x−2)+(y−1)+(z−a)]2=(x−2)2+(y−1)2+(z−a)2+2[(x−2)(y−1)+(y−1)(z−a)+(z−a)(x −2)]≤3[(x−2)2+(y−1)2+(z−a)2]故由已知得(x−2)2+(y−1)2+(z−a)2≥(2+a)23,当且仅当x=4−a3,y=1−a3,z=2a−23时等号成立,因此(x−2)2+(y−1)2+(z−a)2的最小值为(2+a)23.由题设知(2+a)23≥13,解得a≤−3或a≥−1.。
2019年高考文科数学全国卷Ⅰ文数(附参考答案和详解)
绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(全国卷Ⅰ)数学(文史类)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019全国卷Ⅰ·文)设3i12iz -=+,则||z =( )A.2D.1【解析】因为3i (3i)(12i)17i12i (12i)(12i)5z ----===++-,所以||z =故选C.【答案】C2.(2019全国卷Ⅰ·文)已知集合{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,{2,3,6,7}B =,则U B A =I ð( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【解析】因为{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,所以{1,6,7}U A =ð. 又{2,3,6,7}B =,所以U B A =I ð{6,7}.故选C.【答案】C3.(2019全国卷Ⅰ·文)已知2log 0.2a =,0.22b =,0.30.2c =,则( )A.a b c <<B.a c b <<C.c a b <<D.b c a <<【解析】由对数函数的单调性可得22log 0.2log 10a =<=,由指数函数的单调性可得0.20221b =>=,0.300.2100.2c <==<,所以a c b <<.故选B.【答案】B4.(2019全国卷Ⅰ·文)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A.165cmB.175cmC.185cmD.190cm【解析】设某人身高为m cm ,脖子下端至肚脐的长度为n cm , 则由腿长为105 cm,可得1050.618105m ->≈,解得169.890m >. 由头顶至脖子下端的长度为26 cm,可得260.618n >≈,解得42.071n <. 所以头顶到肚脐的长度小于2642.07168.071+=.68.072110.1470.618≈≈. 所以此人身高68.071110.147178.218m <+=. 综上,此人身高m 满足169.890178.218m <<. 所以其身高可能为175 cm.故选B. 【答案】B5.(2019全国卷Ⅰ·文)函数2sin ()cos x xf x x x +=+在[π,π]-的图象大致为( )A. B.C. D.【解析】因为22sin()sin ()()cos()()cos x x x xf x f x x x x x --+-==-=--+-+,所以()f x 为奇函数,排除选项A.令πx =,则22sin ()0cos 1f πππππππ+==>+-+,排除选项B ,C.故选D.【答案】D6.(2019全国卷Ⅰ·文)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,,1000L ,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A.8号学生 B.200号学生 C.616号学生 D.815号学生【解析】根据题意,系统抽样是等距抽样,所以抽样间隔为100010100=. 因为46除以10余6,所以抽到的号码都是除以10余6的整数,结合选项知正确号码为616.故选C. 【答案】C7.(2019全国卷Ⅰ·文)tan255=o ( )A.2--B.2-+C.2D.2【解析】1tan 45tan 3075tan(tan255tan(4530)2180)tan 71tan 45tan 305+++=+===+=-=ooo o o o o o o o .故选D. 【答案】D.8.(2019全国卷Ⅰ·文)已知非零向量a ,b 满足||2||=a b ,且()-⊥a b b ,则a 与b 的夹角为( )A.π6B.π3C.2π3 5π6【解析】设a ,b 的夹角为θ,因为()-⊥a b b ,所以()0-=g a b b ,即2||0-=g a b b .又||||cos ,||2||θ==g g a b a b a b , 所以222||cos ||0θ-=b b ,所以1cos 2θ=. 又因为0θπ≤≤,所以3πθ=.故选B.【答案】B9.(2019全国卷Ⅰ·文)如图是求112122++的程序框图,图中空白框中应填入( )A.12A A=+ B.12A A =+C.112A A=+ D.112A A=+【解析】对于选项A ,第一次循环,1122A =+;第二次循环,112122A =++,此时3k =,不满足2k ≤,输出112122A =++的值.故A 正确;经验证选项B ,C ,D 均不符合题意.故选A.【答案】A10.(2019全国卷Ⅰ·文)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130o ,则C 的离心率为( )A.2sin40oB.2cos40oC.1sin50oD.1cos50o【解析】由题意可得tan130ba-=︒,所以11|cos130|cos50e ====︒︒.故选D.【答案】D11.(2019全国卷Ⅰ·文)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则bc=( )A.6B.5C.4D.3【解析】因为sin sin 4sin a A b B c C -=,所以由正弦定理得2224a b c -=,即2224a c b =+.由余弦定理得222222222(4)31cos 2224b c a b c c b c A bc bc bc +-+-+-====-,所以6bc=.故选A. 【答案】A12.(2019全国卷Ⅰ·文)已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A.2212x y +=B.22132x y +=C.22143x y += D.22154x y += 【解析】设椭圆的标准方程为22221(0)bx y a b a +=>>,由椭圆定义可得11||||||4AF AB BF a ++=. 因为1||||AB BF =, 所以1||2||4AF AB a +=. 又22||2||AF F B =, 所以23||||2AB AF =,所以12||3||4AF AF a +=. 又因为12||||2AF AF a +=,所以2||AF a =. 所以A 为椭圆的短轴端点.如图,不妨设(0,)A b ,又2(1,0)F ,222AF F B =u u u u r u u u u r ,所以3,22b B ⎛⎫- ⎪⎝⎭.将B 点坐标代入椭圆方程22221(0)b x y a b a +=>>,得2229144b ba +=,所以22223,2a b a c ==-=.所以椭圆C 的方程为22132x y +=.故选B.【答案】B第Ⅱ卷二、填空题:本题共4小题,每小题5分。
2019年全国统一高考数学试卷(文科)以及答案解析(全国1卷)
绝密★启用前2019年高考普通高等学校招生全国统一考试(全国1卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则|z|=()A.2B.C.D.12.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=()A.﹣2﹣B.﹣2+C.2﹣D.2+8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.9.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+10.(5分)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为()A.2sin40°B.2cos40°C.D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A =﹣,则=()A.6B.5C.4D.312.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1二、填空题:本题共4小题,每小题5分,共20分。
云南省2019年高考数学一模试卷(文科)含答案解析
云南省2019年高考数学一模试卷(文科)(解析版)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合S={1,2,a},T={2,3,4,b},若S∩T={1,2,3},则a﹣b=()A.2 B.1 C.﹣1 D.﹣22.设i是虚数单位,复数化简是()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i3.已知平面向量=(x,1),=(2,﹣3),如果,那么x=()A.B.﹣C.D.﹣4.函数y=sin2x﹣2sin2x+1的最大值为()A.2 B.C.3 D.5.若运行如图所示程序框图,则输出结果S的值为()A.94 B.86 C.73 D.566.如图是底面半径为1,高为2的圆柱被削掉一部分后剩余的几何体的三视图(注:正视图也称主视图,侧视图也称左视图),则被削掉的那部分的体积为()A .B .C .﹣2D .27.直线y=2x +1与圆x 2+y 2﹣2x +4y=0的位置关系为( ) A .相交且经过圆心 B .相交但不经过圆心C .相切D .相离8.为得到函数y=sin (2x ﹣)的图象,只需将函数y=sin2x 的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位9.在数列{a n }中,a 1=,a 2=,a n a n+2=1,则a 2019+a 2019=( )A .B .C .D .510.在长为3m 的线段AB 上任取一点P ,则点P 与线段两端点A 、B 的距离都大于1m 的概率是( )A .B .C .D .11.设F 1,F 2是双曲线C :的两个焦点,点P 在C 上,且=0,若抛物线y 2=16x 的准线经过双曲线C 的一个焦点,则|||的值等于( )A .2B .6C .14D .1612.已知函数f(x)的定义域为实数集R,,则f(10)﹣f(﹣100)的值为()A.﹣8 B.﹣16 C.55 D.101二、填空题(每题5分,满分20分,将答案填在答题纸上)13.曲线f(x)=2﹣xe x在点(0,2)处的切线方程为.14.若x,y满足约束条件,则z=3x+y+2的最大值为.15.已知三棱锥P﹣ABC的顶点P、A、B、C在球O的表面上,△ABC是边长为的等边三角形,如果球O的表面积为36π,那么P到平面ABC距离的最大值为.16.△ABC中,内角A、B、C对的边分别为a、b、c,如果△ABC的面积等于8,a=5,tanB=﹣,那么=.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.等比数列{a n}的前n项和为S n,a1+a2+a3=26,S6=728.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:.18.某校高二年级共有1600名学生,其中男生960名,640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A等(优秀),在[60,80)的学生可取得B等(良好),在[40,60)的学生可取得C等(合格),在不到40分的学生只能取得D等(不合格),为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ)请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?附:.19.如图,在三棱锥A﹣BCD中,CD⊥BD,AB=AD,E为BC的中点.(Ⅰ)求证:AE⊥BD;(Ⅱ)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求三棱锥D﹣ABC的体积.20.已知焦点在y轴上的椭圆E的中心是原点O,离心率等于,以椭圆E的长轴和短轴为对角线的四边形的周长为,直线l:y=kx+m与y轴交于点P,与椭圆E交于A、B两个相异点,且.(Ⅰ)求椭圆E的方程;(Ⅱ)若,求m2的取值范围.21.已知常数a≠0,f(x)=alnx+2x.(1)当a=﹣4时,求f(x)的极值;(2)当f(x)的最小值不小于﹣a时,求实数a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,BC是⊙O的直径,EC与⊙O相切于C,AB是⊙O的弦,D是的中点,BD 的延长线与CE交于E.(Ⅰ)求证:BCCD=BDCE;(Ⅱ)若,求AB.[选修4-4:坐标系与参数方程]23.(2019云南一模)在直角坐标系xOy中,直线l的参数方程为(t为参数).在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=.(I)直接写出直线l、曲线C的直角坐标方程;(II)设曲线C上的点到直线l的距离为d,求d的取值范围.[选修4-5:不等式选讲]24.=|x﹣2|+|x+1|+2|x+2|.(Ⅰ)求证:f(x)≥5;(Ⅱ)若对任意实数都成立,求实数a的取值范围.2019年云南省高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合S={1,2,a},T={2,3,4,b},若S∩T={1,2,3},则a﹣b=()A.2 B.1 C.﹣1 D.﹣2【分析】由S,T,以及S与T的交集确定出a与b的值,即可求出a﹣b的值.【解答】解:∵S={1,2,a},T={2,3,4,b},且S∩T={1,2,3},∴a=3,b=1,则a﹣b=3﹣1=2,故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.设i是虚数单位,复数化简是()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【分析】复数的分子、分母同乘复数单位i,分母实数化,把式子化简到最简形式.【解答】解:复数===1﹣i.故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.已知平面向量=(x,1),=(2,﹣3),如果,那么x=()A.B.﹣C.D.﹣【分析】根据平面向量的坐标表示与共线定理,列出方程求出x的值.【解答】解:平面向量=(x,1),=(2,﹣3),且,∴﹣3x﹣1×2=0,解得x=﹣.故选:B.【点评】本题考查了平面向量的坐标表示与共线定理的应用问题,是基础题目.4.函数y=sin2x﹣2sin2x+1的最大值为()A.2 B.C.3 D.【分析】使用二倍角公式和两角和的正弦公式化简,根据正弦函数的性质得出最大值.【解答】解:y=sin2x+cos2x=sin(2x+).∴y的最大值是.故选:B.【点评】本题考查了三角函数的恒等变换,正弦函数的图象与性质,属于基础题.5.若运行如图所示程序框图,则输出结果S的值为()A.94 B.86 C.73 D.56【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S值并输出,模拟程序的运行过程,即可得到答案.【解答】解:模拟执行程序,可得i=1,S=1i=2,S=4不满足条件i>5,i=3,S=10,不满足条件i>5,i=4,S=22,不满足条件i>5,i=5,S=46,不满足条件i>5,i=6,S=94,满足条件i>5,退出循环,输出S的值为94.故选:A.【点评】本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.6.如图是底面半径为1,高为2的圆柱被削掉一部分后剩余的几何体的三视图(注:正视图也称主视图,侧视图也称左视图),则被削掉的那部分的体积为()A.B.C.﹣2 D.2【分析】根据几何体的三视图,得出该几何体是半圆锥体与直三棱锥的组合体,求出该几何体的体积,再求出圆柱的体积,即可求出被削掉的那部分体积.【解答】解:根据几何体的三视图,得;该几何体是底面半径为1,高为2的半圆锥体,与底面为等腰三角形高为2的三棱锥的组合体,其体积为πr2h+Sh=π×12×2+××2×1×2=;又圆柱的体积为πr2h=π×12×2=2π,所以被削掉的那部分的体积为2π﹣=.故选:B.【点评】本题考查了由三视图求几何体的体积的应用问题,也考查了三视图与实物图之间的关系问题,解题时应用三视图中的数据还原出实物图的数据,再根据相关的公式求表体积的应用问题,是基础题目.7.直线y=2x+1与圆x2+y2﹣2x+4y=0的位置关系为()A.相交且经过圆心B.相交但不经过圆心C.相切 D.相离【分析】先求出圆心和半径r,再求出圆心到直线的距离d,由d=r得直线y=2x+1与圆x2+y2﹣2x+4y=0的位置关系为相切.【解答】解:∵圆x2+y2﹣2x+4y=0的圆半径r==,圆心(1,﹣2),圆心(1,﹣2)到直线y=2x+1的距离d===r,∴直线y=2x+1与圆x2+y2﹣2x+4y=0的位置关系为相切.故选:C.【点评】本题考查直线与圆的位置关系的求法,是基础题,解题时要认真审题,注意直线与圆的位置关系的合理运用.8.为得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【分析】把函数y=sin(2x﹣)变为y=sin[2(x﹣)],然后由x得变化得答案.【解答】解:∵y=sin(2x﹣)=sin[2(x﹣)],∴要得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象向右平移个长度单位.故选:B.【点评】本题主要考查三角函数的平移,三角函数的平移原则为左加右减上加下减,是基础题.9.在数列{a n}中,a1=,a2=,a n a n+2=1,则a2019+a2019=()A.B.C.D.5【分析】a1=,a2=,a n a n+2=1,可得:a4n﹣3=,a4n﹣1=2,a4n﹣2=,a4n=3.即可得出.【解答】解:∵a1=,a2=,a n a n+2=1,∴a3=2,a5=,…,可得:a4n﹣3=,a4n﹣1=2.同理可得:a4n﹣2=,a4n=3.∴a2019+a2019=3+=.故选:C.【点评】本题考查了数列的递推关系,考查了推理能力与计算能力,属于中档题.10.在长为3m的线段AB上任取一点P,则点P与线段两端点A、B的距离都大于1m的概率是()A.B.C.D.【分析】由题意可得,属于与区间长度有关的几何概率模型,试验的全部区域长度为3,基本事件的区域长度为1,代入几何概率公式可求【解答】解:设“长为3m的线段AB”对应区间[0,3]“与线段两端点A、B的距离都大于1m”为事件A,则满足A的区间为[1,2]根据几何概率的计算公式可得,故选:B【点评】本题主要考查了几何概型,解答的关键是将原问题转化为几何概型问题后应用几何概率的计算公式求解.11.设F1,F2是双曲线C:的两个焦点,点P在C上,且=0,若抛物线y2=16x的准线经过双曲线C的一个焦点,则|||的值等于()A.2 B.6 C.14 D.16【分析】求得抛物线的准线方程x=﹣4,可得双曲线的c=4,由向量垂直的条件和勾股定理,可得PF12+PF22=F1F22=4c2=64,①由双曲线的定义可得|PF1﹣PF2|=2a=6,②,运用平方相减即可得到所求值.【解答】解:抛物线y2=16x的准线为x=﹣4,由题意可得双曲线的一个焦点为(﹣4,0),即有c=4,由=0可得PF1⊥PF2,由勾股定理可得,PF12+PF22=F1F22=4c2=64,①由双曲线的定义可得|PF1﹣PF2|=2a=6,②①﹣②2,可得2PF1PF2=28,即有|||的值等于14.故选:C.【点评】本题考查双曲线的定义、方程和性质,考查向量垂直的条件以及勾股定理,同时考查抛物线的方程和性质的运用,属于中档题.12.已知函数f(x)的定义域为实数集R,,则f(10)﹣f(﹣100)的值为()A.﹣8 B.﹣16 C.55 D.101【分析】根据所给解析式凑数计算f(10)和f(﹣100).【解答】解:f(10)=f(100﹣90)=lg100=2,f(﹣100)=f(﹣10﹣90)=﹣(﹣10)=10.∴f(10)﹣f(﹣100)=2﹣10=﹣8.故选:A.【点评】本题考查了函数值的计算,属于基础题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.曲线f(x)=2﹣xe x在点(0,2)处的切线方程为x+y﹣2=0.【分析】求得函数的导数,求出切线的斜率,由斜截式方程可得所求切线的方程.【解答】解:f(x)=2﹣xe x的导数为f′(x)=﹣(1+x)e x,可得在点(0,2)处的切线斜率为k=﹣1,即有在点(0,2)处的切线方程为y=﹣x+2,即为x+y﹣2=0.故答案为:x+y﹣2=0.【点评】本题考查导数的运用:求切线的方程,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,正确求导和运用直线方程是解题的关键.14.若x,y满足约束条件,则z=3x+y+2的最大值为5.【分析】先作出约束条件,满足的可行域,再求z=3x+y+2的最大值.【解答】解:作出约束条件,满足的可行域:∵O(0,0),A(1,0),B(0,1),z=3x+y+2,∴z O=3×0+0+2=2,z A=3×1+0+2=5,Z B=3×0+1+2=3,∴z=3x+y+2的最大值为5.故答案为:5.【点评】本题考查简单的线性规划的应用,是中档题.解题时要认真审题,仔细解答.15.已知三棱锥P﹣ABC的顶点P、A、B、C在球O的表面上,△ABC是边长为的等边三角形,如果球O的表面积为36π,那么P到平面ABC距离的最大值为.【分析】求出球心O到平面ABC的距离,即可求出P到平面ABC距离的最大值.【解答】解:△ABC是边长为的等边三角形,外接圆的半径为1,球O的表面积为36π,球的半径为3,∴球心O到平面ABC的距离为=2,∴P到平面ABC距离的最大值为.故答案为:.【点评】本题考查P到平面ABC距离的最大值,考查勾股定理的运用,考查球的表面积,属于中档题.16.△ABC中,内角A、B、C对的边分别为a、b、c,如果△ABC的面积等于8,a=5,tanB=﹣,那么=.【分析】求出sinB,利用三角形的面积公式求出c的长度,进一步利用余弦定理求出b的长度,在应用正弦定理和等比性质求出结果.【解答】解:△ABC中,∵tanB=﹣,∴sinB=,cosB=﹣.又S==2c=8,∴c=4,∴b==.∴==.故答案为:.【点评】本题考查的知识点:三角形的面积公式,余弦定理和正弦定理的应用,等比性质的应用.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.等比数列{a n}的前n项和为S n,a1+a2+a3=26,S6=728.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:.【分析】(Ⅰ)设等比数列{a n}的公比为q,从而可得,从而解方程即可;(Ⅱ)由(Ⅰ)可得,从而写出,,从而证明.【解答】解:(Ⅰ)设等比数列{a n}的公比为q,由728≠2×26得S6≠2S3,故q≠1,故,解得,∴.(Ⅱ)证明:由(Ⅰ)可得,;∴,,∴.【点评】本题考查了等比数列的性质应用及前n项和公式的应用.18.某校高二年级共有1600名学生,其中男生960名,640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A等(优秀),在[60,80)的学生可取得B等(良好),在[40,60)的学生可取得C等(合格),在不到40分的学生只能取得D等(不合格),为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ)请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?附:.【分析】(Ⅰ)利用频率分布直方图中的数据,求出不合格的概率,然后求解不合格的人数.(Ⅱ)由列联表中数据,代入公式,求出K2的值,进而与临界值比较,即可得出结论.【解答】解:(Ⅰ)抽取的100名学生中,本次考试成绩不合格的有x人,根据题意得x=100×[1﹣10×(0.006+0.012×2+0.018+0.024+0.026)]=2.…(2分)据此估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数为(人).…(4分)(Ⅱ)根据已知条件得2×2列联表如下:…(10分)∵,所以,没有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”.…(12分)【点评】本题考查独立性检验的应用,考查数据处理能力、运算求解能力和应用意识,本题解题的关键是正确运算出观测值,理解临界值对应的概率的意义,要想知道两个变量之间的有关或无关的精确的可信程度,只有利用独立性检验的有关计算,才能做出判断,本题是一个基础题.19.如图,在三棱锥A﹣BCD中,CD⊥BD,AB=AD,E为BC的中点.(Ⅰ)求证:AE⊥BD;(Ⅱ)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求三棱锥D﹣ABC的体积.【分析】(Ⅰ)设BD的中点为O,连接AO,EO,证明AO⊥BD,CD⊥BD,EO⊥BD.推出BD⊥平面AOE,然后证明AE⊥BD.(Ⅱ)利用三棱锥D﹣ABC与C﹣ABD的体积相等,求出S△ABD,然后求解三棱锥C﹣ABD 的体积即可.【解答】(Ⅰ)证明:设BD的中点为O,连接AO,EO,∵AB=AD,∴AO⊥BD,又∵E 为BC的中点,∴EO∥CD,∵CD⊥BD,∴EO⊥BD.…(3分)∵OA∩OE=O,∴BD⊥平面AOE,又∵AE⊂平面AOE,∴AE⊥BD.…(6分)(Ⅱ)解:由已知得三棱锥D﹣ABC与C﹣ABD的体积相等.…(7分)∵CD⊥BD,平面ABD⊥平面BCD,∴CD⊥平面ABD,BD==.由已知可得:S△ABD=BD=.∴三棱锥C﹣ABD的体积.所以,三棱锥D﹣ABC的体积为.…(12分)【点评】本题考查几何体的体积的求法,直线与平面垂直的性质定理的应用,考查转化思想以及计算能力,空间想象能力.20.已知焦点在y轴上的椭圆E的中心是原点O,离心率等于,以椭圆E的长轴和短轴为对角线的四边形的周长为,直线l:y=kx+m与y轴交于点P,与椭圆E交于A、B两个相异点,且.(Ⅰ)求椭圆E的方程;(Ⅱ)若,求m2的取值范围.【分析】(Ⅰ)设椭圆E的方程为,通过离心率,以及a,b,c的关系,利用以椭圆E的长轴和短轴为对角线的四边形的周长为,求出a,b,即可得到椭圆E的方程.(Ⅱ)求出P(0,m),设A(x1,kx1+m),B(x2,kx2+m),通过直线与椭圆方程联立,利用△>0,推出不等式,k2﹣m2+4>0.由,得到,然后求解m2的取值范围.【解答】解:(Ⅰ)根据已知设椭圆E的方程为,焦距为2c,由已知得,∴.…(3分)∵以椭圆E的长轴和短轴为对角线的四边形的周长为,∴,∴a=2,b=1.∴椭圆E的方程为.…(6分)(Ⅱ)根据已知得P(0,m),设A(x1,kx1+m),B(x2,kx2+m),由得(k2+4)x2+2mkx+m2﹣4=0,由已知得△=4m2k2﹣4(k2+4)(m2﹣4)>0,即k2﹣m2+4>0.且.…(9分)由得﹣x1=3x2,即x1=﹣3x2.∴,∴,即m2k2+m2﹣k2﹣4=0.当m2=1时,m2k2+m2﹣k2﹣4=0不成立.∴,∵k2﹣m2+4>0,∴,即.∴1<m2<4,所以m2的取值范围为(1,4).…(12分)【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查分析问题解决问题的能力,转化思想的应用.21.已知常数a≠0,f(x)=alnx+2x.(1)当a=﹣4时,求f(x)的极值;(2)当f(x)的最小值不小于﹣a时,求实数a的取值范围.【分析】(1)求出f(x)的导数,得到函数的单调区间,求出函数的极小值即可;(2)问题转化为alnx+2x+a≥0,令g(x)=alnx+2x+a,g′(x)=+2,通过讨论g(x)的单调性,求出a的范围即可.【解答】解:(1)f(x)的定义域是(0,+∞),a=﹣4时,f(x)=﹣4lnx+2x,f′(x)=2﹣=,令f′(x)>0,解得:x>2,令f′(x)<0,解得:x<2,∴f(x)在(0,2)递减,在(2,+∞)递增,=f(2)=4﹣4ln2;∴f(x)极小值(2)f(x)的最小值不小于﹣a,即alnx+2x+a≥0,令g(x)=alnx+2x+a,g′(x)=+2,a≥0时,g(x)在(0,+∞)递增,无最小值,不合题意,a<0时,令g′(x)>0,解得:x>﹣,令g′(x)<0,解得:x<﹣,∴g(x)在(0,﹣)递减,在(﹣,+∞)递增,=g(﹣)=aln(﹣)≥0,∴g(x)最小值解得:﹣2≤a<0.【点评】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,BC是⊙O的直径,EC与⊙O相切于C,AB是⊙O的弦,D是的中点,BD 的延长线与CE交于E.(Ⅰ)求证:BCCD=BDCE;(Ⅱ)若,求AB.【分析】(Ⅰ)根据切线的性质、直径所对的圆周角是直角得到角之间的关系,由三角形相似判定定理和性质,证明结论成立;(Ⅱ)根据等弧所对的圆周角相等得∠ABD=∠CBD,由直径所对的圆周角、三角形全等判定定理得△BDC≌△BDF,得到CD=FD,BC=BF,根据勾股定理、射影定理求出CD、BC,由割线定理得求出AB.【解答】证明:(Ⅰ)∵BC是⊙O的直径,EC与⊙O相切于C,D是AC弧的中点,∴∠CBD=∠ECD,∠BDC=∠CDE=∠BCE=90°,∴△BCD∽△CED.…(3分)∴,∴BCCD=BDCE.…(5分)解:(Ⅱ)设BA的延长线与CD的延长线交于F,∵D是AC弧的中点,∴∠ABD=∠CBD,∵BC是⊙O的直径,∴∠BDC=∠BDF=90°,∴△BDC≌△BDF.∴CD=FD,BC=BF,在Rt△CDE中,.∴.∵∠BDC=∠BCE=90°,∴CD2=BDDE,∴,∴,∴BF=4.…(8分)由割线定理得(FB﹣AB)FB=FDFC,即,解得.∴.…(10分)【点评】本题考查圆的切线性质,圆周角的性质,三角形相似、全等的判定定理,以及割线定理等应用,属于综合题.[选修4-4:坐标系与参数方程]23.(2019云南一模)在直角坐标系xOy中,直线l的参数方程为(t为参数).在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=.(I)直接写出直线l、曲线C的直角坐标方程;(II)设曲线C上的点到直线l的距离为d,求d的取值范围.【分析】(I)将直线的参数方程相减消去参数t,得到直线l的普通方程,将曲线的极坐标方程两边平方,得出曲线C的普通方程;(II)求出曲线C的参数方程,把参数方程代入点到直线的距离公式,利用三角函数的性质解出d的最值.【解答】解:(I)∵(t为参数),∴x﹣y=﹣3,即x﹣y+3=0.∴直线l的直角坐标方程是x﹣y+3=0.∵ρ=,∴ρ2=,即ρ2+2ρ2cos2θ=3.∴曲线C的直角坐标方程为3x2+y2=3,即.(II)曲线C的参数方程为(α为参数),则曲线C上的点到直线l的距离d==.∴当cos()=1时,d取得最大值,当cos()=﹣1时,d取得最小值.∴d的取值是[,].【点评】本题考查了参数方程,极坐标方程与普通方程的转化,参数方程在求距离中的应用,属于基础题.[选修4-5:不等式选讲]24.=|x﹣2|+|x+1|+2|x+2|.(Ⅰ)求证:f(x)≥5;(Ⅱ)若对任意实数都成立,求实数a的取值范围.【分析】(Ⅰ)通过讨论x的范围,得到关于f(x)的分段函数,从而求出f(x)的最小值即可;(Ⅱ)根据基本不等式的性质求出a的范围即可.【解答】(Ⅰ)证明:∵,∴f(x)的最小值为5,∴f(x)≥5.…(5分)(Ⅱ)解:由(Ⅰ)知:15﹣2f(x)的最大值等于5.…(7分)∵,“=”成立,即,∴当时,取得最小值5.当时,,又∵对任意实数x,都成立,∴.∴a的取值范围为.…(10分)【点评】本题考查了绝对值不等式的问题,考查基本不等式的性质,是一道中档题.。
2019普通高等高等学校统一招生(新课标I)(文数)(含详细答案及解析)(全国1卷高考数学真题)
绝密★启用前 2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x ++在[-π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生7.tan255°=A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C的方程为A .2212x y += B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
云南数学文试卷解析普通高等学校招生全国统一考试
y=x 上并且在第一象限是解决这个问题旳关
键.
【精讲精析】选 D. 由题意知圆心在直线 y=x 上并且在第一象限 , 设圆心坐标为 (a,a)(a>0),
则 a ( a 4)2 (a 1)2 , 求出 a=1,a=9. 所以 C1(1,1),C 2(9,9), 所以由两点间旳距离公式
可求出 C1C2 8 2 .
(C)
a 2>
2
b
(
D)
a
3>
3
b
【思路点拨】本题要把充要条件旳概念搞清,注意寻找旳是通过选项能推出 推不出选项旳选项 .
a>b,而由 a>b
【精讲精析】选 A. 即寻找命题 P 使 P a b,a b 推不出 P,逐项验证可选 A.
(6) 设 Sn 为等差数列 an 旳前 n 项和,若 a1 1 ,公差 d 2 , Sk 2 Sk 24 ,则 k
借助 n 次独立重复试验发生 k 次旳概率计算公式求解即可 .
【精讲精析】记 A 表示事件:该地旳 1 位车主购买甲种保险:
【思路点拨】解本题一个掌握展开式旳通项公式,另一个要注意
r
nr
Cn Cn .
【精讲精析】 0. 由 Tr 1 C2r0 (
x )20 得 x 旳系数为
C
2 20
,
x
9 旳系数为
C
18 20
,
而
C2108
C220 .
(14) 已知 a∈( , ) ,sin α = 5 ,则 tan2 α=
2
5
【思路点拨】 本题考查到同角三角函数旳基本关系式, 再由正切值求余弦值时, 要注意角旳
a1 和公比 q 旳方程,求出 a1 和 q,
2019年云南高考数学文答案
2019年云南高考数学文答案为方便考生即时估分,###高考频道将在2019年6月7日17:00考后陆续公布2019年云南高考数学文答案信息。
考生可点击进入云南高考频道《》查看云南高考数学文答案信息。
高考时间全国统考于6月7日开始举行,具体科目考试时间安排为:6月7日9:00至11:30语文;15:00至17:00数学。
6月8日9:00至11:30文科综合/理科综合;15:00至17:00外语,有外语听力测试内容的应安排在外语笔试考试开始前实行。
各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。
具体考试科目时间安排报教育部考试中心备案后发布。
全国统考科目中的外语分英语、俄语、日语、法语、德语、西班牙语等6个语种,由考生任选其中一个语种参加考试。
答题规范选择题:必须用2B铅笔按填涂示例将答题卡上对应的选项涂满、涂黑;修改答题时,应使用橡皮轻擦干净并不留痕迹,注意不要擦破答题卡。
非选择题:必须用0.5毫米黑色墨水签字笔在各题规定的答题区域内答题,切不可答题错位、答题题号顺序颠倒、超出本题答题区域(超出答题卡黑色边框线)作答,否则答案无效。
如修改答案,就用笔将废弃内容划去,然后在划去内容上方或下方写出新的答案;或使用橡皮擦掉废弃内容后,再书写新的内容。
作图:须用2B铅笔绘、写清楚,线条及符号等须加黑、加粗。
选考题:先用2B铅笔将所选考试题的题号涂黑,然后用0.5毫米黑色墨水签字笔在该题规定的答题区域内对应作答,切不可选涂题号与所答内容不一致,或不填涂、多填涂题号。
特别提醒:考生不要将答题卡折叠、弄破;严禁在答题卡的条形码和图像定位点(黑方块)周围做任何涂写和标记,禁止涂划条形码;不得在答题卡上任意涂画或作标记。
试题答案###为了能让广大考生即时方便获取云南高考数学文试题答案信息,特别整理了《云南高考数学文试题及答案发布入口》供广大考生查阅。
考生也可点击进入《###2019年全国各地高考试题及答案解析专题》查询2019年云南高考数学文答案信息!【CTRL+D收藏】历年真题以下是###为大家整理的2018年高考真题及答案word压缩文件,其中报考【全国卷I、全国卷Ⅱ、全国卷Ⅲ及自命题地区卷】,大家可点击下载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年云南省高考文科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A .16B .14C .13D .124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.85.函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2B .3C .4D .56.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A .16B .8C .4D .27.已知曲线e ln x y a x x =+在点(1,ae )处的切线方程为y =2x +b ,则A .a =e ,b =–1B .a =e ,b =1C .a =e –1,b =1D .a =e –1,1b =-8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B. 5122-C. 6122-D. 7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为 A .32B .52C .72D .9211.记不等式组6,20x y x y +≥⎧⎨-≥⎩表示的平面区域为D .命题:(,),29p x y D x y ∃∈+≥;命题:(,),212q x y D x y ∀∈+≤.下面给出了四个命题①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是 A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量(2,2),(8,6)==-a b ,则cos ,<>=a b ___________.14.记S n 为等差数列{a n }的前n 项和,若375,13a a ==,则10S =___________.15.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(本小题共12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 18.(本小题共12分)ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.19.(本小题共12分)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2, ∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.20.(本小题共12分)已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 21.(本小题共12分)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. (二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.23.[选修4–5:不等式选讲](10分) 设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.参考答案一、选择题1.A 2.D 3.D 4.C 5.B 6.C 7.D 8.B 9.C10.B11.A12.C二、填空题 13.14.100 15. 16.118.8三、解答题17.解:(1)由已知得0.70=a +0.20+0.15,故a =0.35.b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为 2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 18.解:(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知ABC △的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2C c Aa CC︒-===+.由于ABC △为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△.因此,ABC △面积的取值范围是82⎛⎝⎭. 19.解:(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)取CG 的中点M ,连结EM ,DM.因为AB ∥DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE ⊥CG .由已知,四边形BCGE 是菱形,且∠EBC =60°得EM ⊥CG ,故CG ⊥平面DEM . 因此DM ⊥CG .在Rt △DEM 中,DE =1,EM DM =2. 所以四边形ACGD 的面积为4.20.解:(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3a x =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增, 所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -. 于是3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭. 当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 21.解:(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-. 整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=.于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行, 所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.22.解:(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2c o s 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤ ⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=;若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=;若3ππ4θ≤≤,则2cos θ-=5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭. 23.解:(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,11 当且仅当x =53,13y =-,13z =-时等号成立. 所以222(1)(1)(1)x y z -++++的最小值为43. (2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+-- 2223(2)(1)()x y z a ⎡⎤≤-+-+-⎣⎦, 故由已知得2222(2)(2)(1)()3a x y z a +-+-+-≥, 当且仅当43a x -=,13ay -=,223a z -=时等号成立.因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +. 由题设知2(2)133a +≥,解得3a ≤-或1a ≥-.。