土力学土的抗剪强度

合集下载

土力学-土的抗剪强度

土力学-土的抗剪强度
而是变化的,并且随相应 作用面上的σ 而变化, 在一定范围内,τ随σ 持续增长。
σ =0时, τf未必是零。
2)库仑定律------又名抗剪强度定律
1776年,法国库仑经过一系列试验总结了土的强度规律: 砂 土:τf=σ tgφ …....① 粘性土:τf=σ tgφ + c ………② 式中:τf:剪切面(破坏面)上的剪应力, 即土的抗剪强度,破坏剪应力,Kpa σ :剪切面(破坏面)上的法向应力, Kpa φ :土的内摩擦角,度.不同土,φ 值不相同. c :土的粘聚力(内聚力),(注意C是有量纲的参数) Kpa
①,②二式即为著名的库仑定律。它表明在法向应力变 化范围不大的时候,τ与σ 成线性关系。如下图示。因 此库仑定律是莫尔理论的特例。以库仑定律表示的莫 尔破坏包线是一条直线。 即:τ=f (σ )=σ tgφ + c。 评价:库仑定律有着巨大的理论和实用价值。
土的极限平衡条件
土的强度破坏一般指剪切破坏.那么作用在土体中某 一个面上的实际剪力 和土体中相应面上的抗剪强度f 可能 存在以下三种关系:
极限平衡条件的应用
例4.2 判断土体中某点是否剪损的方法 情况1:已知1 3 c
方法(1):计算达极限平衡所需要的(1)限 方法(2):计算达极限平衡所需要的(3)限 方法(3):作图法 相离(弹性) 相切(极限) 相割(剪损) 方法(4):计算摩尔圆的最大倾角max
与 比较.
情况2:已知x z c
如果把这两条σ -τ曲线画在同一个坐标系中,比较 τ与τf的相对大小,则可判断土体中任一点所处的应 力状态(或者说可判别沿 某个面是否发生剪切破坏)
1)相离关系(< f ):曲线I位于曲线II下方. 2)相切关系(=f ):曲线I与曲线II有一个公共点. 思考:切点一般并非剪应力最大的点,为什么? 何时切点是剪应力最大的点?

第六章 土的抗剪强度

第六章 土的抗剪强度
2
τ
f c tg
D A B
τ=τf 极限平衡条件 莫尔-库仑破 坏准则
O
σ
剪切破坏面
极限应力圆 破坏应力圆
粘性土的极限平衡条件
σ1= σ3tg2(45+φ/2)+2ctg (45+φ/2)
σ3= σ1tg2(45-φ/2)-2ctg (45-φ/2)
无粘性土的极限平衡条件
σ1= σ3tg2(45+φ/2)
2)固结不排水剪
正常固结和超固结试样对 土的固结不排水强度有很 大影响 正常固结饱和粘性土的试 验结果见图 超固结土的固结不排水剪 试验结果

超固结土的固结不排水剪试验


当试验固结压力小于Pc时,为 曲线,但可近似用直线ab代替; 当试验固结压力大于Pc时是直 线,说明试验进入正常固结状 态。bc线的延长线也通过坐标 原点。 对于超固结土,特别是高度超 固结土,由于剪切时产生负的 孔隙水压力,有效应力圆在总 应力圆的右侧;在正常固结段, 孔隙水压力是正的,有效应力 圆在总应力圆的左侧,有效应 力强度包线可取为一条直(图)

f tg c

有效应力法是用剪切面上的有效应力来 表示土的抗剪强度,即:
f tg c

饱和土的抗剪强度与土受剪前在法向应 力作用下的固结度有关。而土只有在有 效应力作用下才能固结。有效应力逐渐 增加的过程,就是土的抗剪强度逐渐增 加的过程。
总应力法与有效应力法的优缺点: 1.总应力法:优点:操作简单,运用方便。 (一般用直剪仪测定) 缺点:不能反映地基土在实际固结情况下的抗 剪强度。 2.有效应力法:优点:理论上比较严格,能 较好的反映抗剪强度的实质,能检验土体处于 不同固结情况下的稳定性。 缺点:孔隙水压力的正确测定比较困难。

土力学-土的抗剪强度

土力学-土的抗剪强度

液化时的冒砂现象
台中地震(1999)砂土液化造成的破坏
五、黏性土的抗剪强度
1. 主要特点和影响因素
(1)黏性土的抗剪强度主要来源于内摩擦力和黏聚力。 (2)峰值强度:超固结土>正常固结土>重塑土。残余强度:相同(与土 的受力历史无关)。 无论是黏性土还是砂土,残余强度对应于土体发生较大的剪切变形时, 此时,对黏性土:土粒间的联结破坏,黏聚力丧失,故其强度线通过原点; 对砂土:咬合作用丧失,以摩擦作用为主,内摩擦角降低。
1. 砂土抗剪强度的特点及主要影响因素
(1)颗粒较粗,相互之间为机械作用而无黏聚力:c =0。内摩擦 角 =29o~42o(大于休止角)。 颗粒表面的滑动摩擦 (2)砂土抗剪强度的主要来源于
剪切方向
颗粒之间的咬合作用 剪切过程中颗粒的重新排列
颗粒移动方向 摩擦
剪切面
咬合
剪切方向
(3)主要影响因素:颗粒矿物成分、形状和级配、沉积条件等。
土压力
滑移面 挡土墙
(3)挡土结构:确定墙后土体处于极 限状态时,作用在挡土结构上的土压力。
二、土的抗剪强度shear strength和破坏理论
1. 直接剪切试验和Coulomb定律
(1)直接剪切试验 取多个土样,分别施加不同竖向应力,剪切至破坏。结果表明, 破坏时的剪应力f与法向应力 呈线性关系。
σ
( 1f )i
n pi2 ( pi )2
土样数
c
1 i pi sin cos n n
pi
( 1f )i ( 3f )i 2
i
( 1f )i ( 3f )i 2
土样破坏时的大、小主应力
四、砂土的抗剪强度

土力学第四章抗剪强度

土力学第四章抗剪强度

时对试样施加垂直压力后,每小时测读垂直变形一次,直至变形
稳定。变形稳定标准为变形量每小时不大于0.005mm,在拔去固 定销,剪切过程同快剪试验。所得强度称为固结快剪强度,相应

第四章 土的抗剪强度
标称为固结快剪强度指标,以cR,υR表示。 (三)慢剪(S) 慢剪试验是对试样施加垂直压力后,待固结稳定后,再拔去固定 销,以小于0.02mm/min的剪切速度使试样在充分排水的条件下进 行剪切,这样得到的强度称为慢剪强度,其相应的指标称为慢剪
第四章 土的抗剪强度
直剪试验 为了考虑固结程度和排水条件对抗剪强度的影响,根据加荷速率的快 慢将直剪试验划分为快剪、固结快剪和慢剪三种试验类型。 (一)快剪(Q) 《土工试验方法标准》规定抗剪试验适用于渗透系数小于10-6cm / s 的细粒土,试验时在试样上施加垂直压力后,拔去固定销钉,立即以
第四章 土的抗剪强度
θ
3
1
第四章 土的抗剪强度
(二)土的极限平衡条件 根据这一准则,当土处于极限平衡状态即应理解为破坏状态,此时的 莫尔应力圆即称为极限应力圆或破坏应力圆,相应的一对平面即称为 剪切破坏面(简称剪破面)。
第四章 土的抗剪强度
下面将根据莫尔-库仑破坏准则来研究某一土体单元处于极限平衡状 态时的应力条件及其、小主应力之间的关系,该关系称为土的极限 平衡条件。
第四章 土的抗剪强度
②也可由式(4-9)计算达到极限平衡条件时所需要得大主应力 值为σ1f,此时把实际存在的大主应力σ3 =480kPa及强度指标c, υ代入公式(4-8)中,则得
由计算结果表明, σ3<σ3f , σ1 >σ1f ,所以该单元土体早已 破坏。
第四章 土的抗剪强度
4-3 确定强度指标的试验

土力学第五章土的抗剪强度

土力学第五章土的抗剪强度
第五章 土的抗剪强度
编辑ppt
本章主要内容
5.1 抗剪强度概述 5.2 土的抗剪强度试验 5.3 土的抗剪强度及破坏理论 5.4 砂类土的抗剪强度特征 5.5 粘性土的抗剪强度特征 5.6 特殊粘性土的抗剪强度特征 5.7 粘性土的流变特性 5.8 土的动力强度特性
编辑ppt
土工结构物或地基

▪渗透问题 ▪变形问题 ▪强度问题
随着轴向应变的增 加,松砂的强度逐渐增 加,曲线应变硬化。
体积开始时稍有 减小,继而增加,超 过它的初始体积 体积逐渐减小
编辑ppt
§ 5.5 粘性土的抗剪强度特征
一.不排水试验(UU试验)
在不排水条件下,施加周围压力增量σ3 , 然后在不允许水进出的条件下,逐渐施加附 加轴向压力q,直至试样剪破 工程背景:应用与饱和粘土、软粘土快速
土的破坏主要是由于剪切所引起的,剪切破坏是土体破坏的 主要特点。
与土体强度有关的工程问题:建筑物地基稳定性、填方或挖 方边坡、挡土墙土压力等。
编辑ppt
概述
崩塌
平移滑动
旋转滑动
流滑
编辑ppt
概述
乌江武隆县兴顺乡 鸡冠岭山体崩塌
• 1994年4月30日上午11时 45分
• 崩塌体积530万m3,30万 m3堆入乌江,形成长110m、 宽100m、高100m的碎石 坝,阻碍乌江通航达数月 之久。
剪应力τ= (σ1- σ3 )/2=130kPa 由于τ< τf,说明土单元中此编点辑p尚pt 未达到破坏状态。
§ 5.3 抗剪强度实验
按常用的试验仪器可将剪切试验分:
直接剪切试验 三轴压缩试验 无侧限抗压强度试验 十字板剪切试验四种
编辑ppt
一、直接剪切试验

(完整版)土的抗剪强度

(完整版)土的抗剪强度

一、土的抗剪性
土是由固体颗粒组成的,土粒间的连结强度远远小于土粒本身的强度,故在外力作用下土粒 之间发生相互错动,引起土中的一部分相对另一部分产生滑动。土粒抵抗这种滑动的性能, 称为土的抗剪性。 土的抗剪性是由土的内摩擦角 φ 和内聚力 c 两个指标决定。对于高层建筑地基稳定性分析、 斜坡稳定性分析及支护等问题,c、φ 值是必不可少的指标。 无粘性土一般没有粘结力,抗剪力主要由颗粒间的滑动摩擦以及凹凸面间镶嵌作用所产生的 摩擦力组成,指标"内摩擦角 φ"值的大小,体现了土粒间摩擦力的强弱,也反映了土的抗 剪能力; 粘性土的抗剪力不仅有颗粒间的摩擦力,还有相互粘结力,不同种类的粘性土,具有不同的 粘结力,指标"内聚力 c"值的大小,体现了粘结力的强弱。因此,对于粘性土的抗剪能力, 由内摩擦角 φ 和粘聚力 c 两个指标决定。
三、影响土体抗剪强度的因素分析
决定土的抗剪强度因素很多,主要为:土体本身的性质,土的组成、状态和结构;而 这些性质又与它形成环境和应力历史等因素有关;此外,还决定于它当前所受的应力状态。
土的抗剪强度主要依靠室内经验和原位测试确定,试验中,仪器的种类和试验方法以 及模拟土剪切破坏时的应力和工作条件好坏,对确定强度值有很大的影响。
一、直接剪切试验
直接剪切仪分为应变控制式和应力控制式两种,前者是等速推动试样产生位移,测定相应的 剪应力,后者则是对试件分级施加水平剪应力测定相应的位移,目前我国普遍采用的是应变 控制式直剪仪。
应变控制式直剪仪主要部件由固定的上盒和活动的下盒组成,试样放在盒内上下两块透 水石之间。试验时,由杠杆系统通过加压活塞和透水石对试件施加某一垂直压力 σ,然后等 速转动手轮对下盒施加水平推力,使试样在上下盒的水平接触面上产生剪切变形,直至破坏, 剪应力的大小可借助与上盒接触的量力环的变形值计算确定。假设这时土样所承受的水平向 推力为 T,土样的水平横断面面积为 A,那么,作用在土样上的法向应力则为σ=P/A,而 土的抗剪强度就可以表示为 f =T/A。ຫໍສະໝຸດ 主要内容第一节 概述

土力学-抗剪强度

土力学-抗剪强度

三轴剪切试验 3. 3.三轴剪切试验 ⑴试验仪器: 三轴仪(应力控制式,应变控制式)
� 应变控制式三轴仪:压力室,加压系统,量测系统 组成 � 应力控制式三轴仪
三三轴轴仪仪
△σ
σ3
σ3
应应变变控控制制 式式 三三轴轴仪仪 �� 压压力力室室 �� 量量测测系系统统
σ3
σ3
△σ
σ3
σ3
(2)试验成果
σ=
1 (σ 1 + σ 3 ) + 1 (σ 1 − σ 3 ) cos 2α 2 2 1 1 = (140 + 30 ) + (140 − 30 ) cos(2 × 57.5° ) = 61.76kPa 2 2 1 τ = (σ 1 − σ 3 ) sin 2α 2 1 = (140 − 30 ) sin (2 × 57 . 5 ° ) = 49 . 85 kPa 2
直 剪 仪
⑵试验成果
法向应力σ
σ =P A
剪应力τ
τ f =T A
(3)直剪试验优缺点
� � 优点: (1)简单方便。 (2)可用于大尺寸土样。 缺点 不一定是土样的最薄弱面。 ② 试验中不能严格控制排水条件,不能量测土样的孔隙水压 力。 ③ 上下盒错动,剪切过程中试样剪切面积逐渐减小,剪切面 上的剪应力分布不均匀
① 剪切破坏面固定为上下盒之间的水平面不符合实际情况,
2. 单轴压力试验(无侧限抗压强度试验) ⑴试验仪器:无侧限压力仪
量表 量力环
qu
升降 螺杆
试 样
加压 框架
σ1 = σ f
qu
无侧限压力仪
无无侧侧限限压压力力仪仪
⑵试验原理
无侧限抗压强度试验是三轴剪切试验的特例,即σ3=0

土力学-第七章土的抗剪强度

土力学-第七章土的抗剪强度
7.3.2 三轴压缩试验
土力学
天津城市建设学院土木系岩土教研室
7.3 土的抗剪强度试验
7.3.2 三轴压缩试验 抗剪强度包线
土力学
分别在不同的周围压力3作用下进行剪切,得到3~4 个 不同的破坏应力圆,绘出各应力圆的公切线即为土的抗剪 强度包线

抗剪强度包线

c

天津城市建设学院土木系岩土教研室
2 2
土力学
圆心坐标[1/2(1 +3 ),0]
应力圆半径r=1/2(1-3 )

A(, )
O
3

2 1/2(1 +3 )
1
土中某点的应 力状态可用莫 尔应力圆描述
天津城市建设学院土木系岩土教研室
7.2 土的抗剪强度理论
7.2.2 莫尔—库伦强度理论及极限平衡条件 土的极限平衡条件
f
f f ( )

f f ( )
这是一条曲线,称为莫尔包络线,简 称莫尔包线(破坏包线、抗剪强度包 线)。 理论和实践证明,土的莫尔包线通常 可用直线代替,该直线方程就是库伦公 式表达的方程。
c

莫尔—库伦强度理论:由库伦公式表示莫尔包线的强度理论。
天津城市建设学院土木系岩土教研室
天津城市建设学院土木系岩土教研室
7.3 土的抗剪强度试验
7.3.3 无侧限抗压强度试验 量表 量力环
qu
土力学
升降 螺杆
试 样
加压 框架
qu
无侧限压缩仪
无侧限抗压强度试验是三轴剪切试验的特例,对试样不施加周围压力, 即3=0,只施加轴向压力直至发生破坏,试样在无侧限压力条件下,剪切破 坏时试样承受的最大轴向压力qu,称为无侧限抗压强度

土力学第五章 土的抗剪强度

土力学第五章 土的抗剪强度
3 (ds sin ) ( sin ) ds ( cos ) ds 0

m
1
3
1 (ds cos ) ( cos ) ds ( sin ) ds 0
求得
( 1 3 ) ( 1 3 ) cos 2
1
2
3


A

sin
1 ( 1 3 ) 2 1 ( 1 3 ) c cot 2
c cot
3
( 3 1 ) / 2
1
D

17
5.2 土的抗剪强度
四、土的极限平衡条件
sin 1 ( 1 3 ) 2 1 ( 1 3 ) c cot 2
解 (5) 1 500, 3 200时 作图法

300 200 100
(kPa)
33.690

200 500

(kPa)
应力圆位于抗剪强度线下,不破坏
24
5.2 土的抗剪强度
四、土的极限平衡条件
例 题 解 (5) 1 500, 3 200时
解法1、极限平衡状态 计算法
1 3 tan2 (45 / 2) 2c tan(45 / 2)
5.1 5.2 5.3 5.4 5.5 5.6 5.7
概述 土的抗剪强度 土的剪切试验 砂土和粘土的静剪切特性 砂土的动剪切特性 粘土的时间效应特性 原位剪切特性
1
5.1 概述
土的抗剪强度:土体抵抗剪切破坏的最大能力
主应力线
最大剪应力线
2
5.1 概述
附加应力 z 等值线
附加应力 xz 等值线

土力学 土的抗剪强度

土力学 土的抗剪强度
水,待固结完成后,再快速施加水平剪应 力使试样剪切破坏。
慢剪试验——在试样施加垂直压力 后,允许试样充分排
水,待固结完成后,以缓慢的速率施加水 平剪应力使试样剪切破坏。
直接剪切试验优缺点
直接剪切仪具有构造简单,操作方使等优点,但它存 在若干缺点,主要有:
① 剪切面限定在上下盒之间的平面,而不是沿土样 最薄弱的面剪切破坏;
② 剪切面上剪应力分布不均匀,土样剪切破坏时先 从边缘开始,在边缘发生应力集中现象;
总应力指标: c, 有效应力指标 : c´,´
在剪切试验中试样内的有效应力(或孔隙水应力)将随剪切前试样 的固结程度和剪切中的排水条件而异。因此,同一种土如用不同的方 法进行试验,求出的总应力强度指标是不同的,即便剪破面上的法向 总应力相同,也未必就有相同的强度。当采用有效应力表示试验结果
时,不同试验方法引起的强度差异是通过´项来反映,而有效应力强
1
2 2 1
3
1 sin 1 sin
2c
1 sin 1 sin
1
3
tan 2
(45o
2
)
2c
tan(45o
2
)
3
ห้องสมุดไป่ตู้
1
tan2 (45o
2
)
2c
tan(45o
)
2
1
3
tan2 (45o
)
2
3
1
tan2 (45o
2
)
最大剪应力 处不发生破 坏?
破裂面、破裂角
破裂角
说明破坏面与最大主
应力 1的作用面的夹角为 (450+ /2)。如前所述,
极限平衡状态时,大、小主应力之间的关系,称为莫尔—库伦破坏准则。 将抗剪强度包线与莫尔应力圆画在同一张坐标图上。它们之间的关系有 以下三种情况。

土力学 土的抗剪强度

土力学  土的抗剪强度

吉林大学建设工程学院
各种破坏准则
土质学与土力学
63—25
吉林大学建设工程学院
库仑定律(剪切定律)
1776年,库仑根据砂土剪切试验得到如下曲线,后推到粘性土中
f
砂土
f


c
粘土


土质学与土力学
63—26
吉林大学建设工程学院
库仑定律说明: 砂土
(1)土的抗剪强度由土的内摩擦力和内聚 力两部分组成; (2)内摩擦力与剪切面上的法向应力成正 比,其比值为土的内摩擦系数 tan ; (3)表征抗剪强度指标:土的内摩擦角φ 和内聚力c。
63—33
吉林大学建设工程学院
3 1
土质学与土力学
莫尔理论的缺点:
忽略了中间主应力σ2的影响。 为了消除或弥补这种缺陷,可考虑采用下面的形式:

1 2 1 2 sin 2c cos 2 2 2 3 2 2 2 2 3
按 试 验 仪 器 分Fra bibliotek土质学与土力学
63—10
吉林大学建设工程学院
土的抗剪强度试验—直接剪切试验
试验仪器:直剪仪(应力控制式,应变控制式)
土质学与土力学
63—11
吉林大学建设工程学院
土质学与土力学
63—12
吉林大学建设工程学院
土质学与土力学
63—13
吉林大学建设工程学院
直接剪切试验
在法向应力作用下,剪应力与剪切位移关系曲线如图所示,可以显 示出峰值强度和残余强度。 a
高速:最大运动速度可达30cm/s 高压:最大压力可达500kPa
土质学与土力学
63—20
吉林大学建设工程学院

土力学与地基基础(土的抗剪强度及地基承载力)

土力学与地基基础(土的抗剪强度及地基承载力)
第五章 土的抗剪强度和地基承载力 一、土的抗剪强度
土的抗剪强度: 的极限能力, 土的抗剪强度:指土体抵抗剪切破坏的极限能力,数值上 等于剪切破坏时滑动面上的 等于剪切破坏时滑动面上的剪应力。土体的破坏通常都是 剪切破坏。 剪切破坏。 土体破坏过程: 土体破坏过程: 如果土体内某一部分的剪应力达到土的抗剪强度, 某一部分的剪应力达到土的抗剪强度 如果土体内某一部分的剪应力达到土的抗剪强度,在该部 分就开始出现剪切破坏,随着荷载的增加,剪切破坏的范 分就开始出现剪切破坏,随着荷载的增加,剪切破坏的范 围逐渐扩大,最终在土体中形成连续的滑动面 连续的滑动面, 围逐渐扩大,最终在土体中形成连续的滑动面,地基发生 整体剪切破坏而丧失稳定性。以下是滑坡和地基破坏 滑坡和地基破坏示意 整体剪切破坏而丧失稳定性。以下是滑坡和地基破坏示意 图。
△σ σ3 σ3 σ3 σ3 σ3 △σ σ3
τ ϕ c σ
(σ1-σ3)f σ σ
(σ1-σ3)f σ σ
试验类型 不固结不排水试验(UU UU试验) UU
抗剪强度线为水平线
τ
f
cu 、ϕu
适于排水不良的土
= cu =
1 (σ 1 − σ 3 ) 2
ϕu = 0
ccu 、ϕcu
固结不排水试验(CU CU试验) CU
由三角函数关系, 由三角函数关系,经化简后得 粘性土极限平衡条件如下: 粘性土极限平衡条件如下:
1 1 (σ 1 − σ 3 ) = c ⋅ ctgϕ + (σ 1 + σ 3 ) sin ϕ 2 2 无粘性土( 无粘性土(c=0)极限平衡条件: )极限平衡条件:
σ1 = σ3 tan2 (45o + ) + 2c ⋅ tan(45o + )

土力学之土的抗剪强度及其参数确定

土力学之土的抗剪强度及其参数确定

土力学之土的抗剪强度及其参数确定土的抗剪强度是土力学中的重要参数之一,用于描述土体抵抗剪切应力的能力。

土的抗剪强度参数的确定需要考虑土体的物理性质、结构特征以及应力应变关系等因素。

一、土的抗剪强度的定义及简述土的抗剪强度是指在外部施加作用力(剪切应力)下,土体抵抗变形产生的剪切应变的能力。

一般来说,土体内的剪切应力可被分为两个分量:正应力(垂直于剪切面的作用力)和剪应力(平行于剪切面的作用力)。

土体的抗剪强度可以用剪应力与正应力的比值来表示。

土的抗剪强度可通过下列几种方式进行确定:1.直剪试验:直剪试验是最常用的测试土体抗剪强度的方法之一、在直剪试验中,通过施加垂直和平行剪切面的正应力,在一定的剪切速率下测量剪切应力与正应力的关系。

通过实验数据可以得到土体的抗剪强度参数。

2.土压力计试验:通过在土体中插入测量设备,如土压力计、陀螺式测斜仪等,测量垂直于剪切面的正应力和剪应力,从而计算土体的抗剪强度。

3.环剪试验:环剪试验是一种应用于饱和土的试验方法,通过测量环剪试件在应变恢复下的剪应力和正应力,计算土体的抗剪强度。

4.塑性指数试验:土体的塑性指数试验也可以用来间接推算土的抗剪强度。

通过测量土体在不同水分含量下的变形特性,计算土壤塑性指数,从而得知土的剪切强度。

二、土的抗剪强度参数的确定土的抗剪强度参数包括内摩擦角(φ)和剪切强度指数(C)。

内摩擦角是衡量土体粒子内摩擦阻力的参数,剪切强度指数是衡量土体的整体抗剪强度的参数。

内摩擦角的确定可以通过直剪试验等实验方法得到。

在直剪试验中,通过分析剪切应力与正应力之间的关系,可以得到剪切线斜率的正切值,即为内摩擦角的正切值。

内摩擦角的具体数值可以根据土壤类型和试验条件进行确定。

剪切强度指数是一个比较复杂的参数,通常需要通过直剪试验等实验方法来测定。

在直剪试验中,通过测量不同正应力下的剪应力和正应力的关系,可以计算出剪切强度指数。

剪切强度指数的具体数值也需要根据具体的试验条件来确定。

土力学-第五章土的抗剪强度2简化

土力学-第五章土的抗剪强度2简化
1、峰值强度指标与残余强度指标 2、总应力指标与有效应力指标 3、土的强度指标在工程中的应用
44
1、峰值强度与残余强度指标
直剪和三轴试验中:
f 峰值强度指标
r 残余强度指标 f r

f
r
45

峰值强度指标与残余强度指标
峰值强度 :一般问题

残余强度
• • •

凡是可以确定(测量、计算)孔隙水压力u的情况,都应当使用有
效应力指标c, 采用总应力指标时,应根据现场土体可能的固结排水情况,选用
不同的总应力强度指标。
47
抗剪强度指标的选用
应优先采用三轴试验指标
土的抗剪强度指标随试验方法、排水条件的不同而异, 对于具体工程问题,应该尽可能根据现场条件决定采用实验 室的试验方法,以获得合适的抗剪强度指标。
τ
2 3 p 1 p v
常规三轴试验
v 1 3 constant 3
3 1 加压方式2-应变控制
σ
3
1 3
1
σ
16
τ

c tan
Mohr包线
c
σ
特 点
对饱和粘土,可控制孔隙水压,以模拟实际土层的排水条件。
(2) 抗剪强度:固结排水>固结不排水>不固结不排水。
对于同一种土,在不同的排水条件下进行试验,总应 力强度指标完全不同。 有效应力强度指标不随试验方法的改变而不同,抗剪 强度与有效应力有唯一的对应关系
(3) 在工程应用时,应选择与实际工程中排水条件相近的指标。
43
四、土的强度指标及其在工程中的应用
• 优 点
(1)仪器构造简单,操作方便, 在工程上应用广泛。 (2)可方便地用于卵石土、砾 石土等大颗粒土的抗剪强度指标的 确定。 • 缺 点

土力学 第五章 土的抗剪强度

土力学 第五章 土的抗剪强度

(a) 图5-2a 砂土的试验结果
(b) 图5-2b 粘性土的试验结果
整理课件
5.2 一、土的抗剪强度(8)
上述土的抗剪强度数学表达式,也称为库仑定律,它 表明在一般应力水平下,土的抗剪强度与滑动面上的法向
应力之间呈直线关系,其中 c、 称为土的抗剪强度指标。
这一基本关系式能满足一般工程的精度要求,是目前研究 土的抗剪强度的基本定律。
(图5-1b)
(图5-1c)
整理课件
5.1 土的强度概念(10)
整理课件
整5理.1课土件的强度概念(11)
加拿大特朗斯康谷仓(1)
加拿大特朗斯康谷仓
加拿大特朗斯康谷仓平面呈矩形,长59.44m,宽 23.47m,高31.00m,容积36368m3。谷仓为圆筒仓,每 排13个圆筒仓, 5排,一共65个圆筒仓组成。谷仓的基础 为钢筋混凝土筏基,厚61cm,基础理深3.66m。
5.2 一、土的抗剪强度(13)
整理课件
二、土的极限平衡条件与强度理论(1)
1 、土中一点的应力状态
设某一土体单元上作用着的大、小主应力分别为1 和 3 , 根据材料力学理论,此土体单元内与大主应力 1 与 作用平面成 a 角的平面上的正应力 和剪应力可分别表 示如下:
a 1 2 (1 3 ) 1 2 (1 3 )c o s2 (5 5 a )
原始粘聚力主要是由于土粒间水膜受到相邻土粒之间 的电分子引力而形成的,当土被压密时,土粒间的距离减 小,原始粘聚力随之增大,当土的天然结构被破坏时,原 始粘聚力将丧失一些,但会随着时间而恢复其中的一部分 或全部。
固化粘聚力是由于土中化合物的胶结作用而形成的, 当土的天然结构被破坏时,则固化粘聚力随之丧失,而且 不能恢复。毛细粘聚力是由于毛细压力所引起的,一般可 忽略不计。

《土力学》5 土的抗剪强度

《土力学》5 土的抗剪强度

土力学5土的抗剪强度《土力学》第五章 土的抗剪强度 第一节 土的抗剪强度及其破坏准则一、土的强度与破坏形式概念:土的抗剪强度指土对剪切破坏的极限抵抗能力,土体的强度问题实质是土的抗剪能力问题。

二、土的抗剪强度规律——库仑定律(Coulomb ) (二)库仑定律表达式:C f +=φστtan式中各项含义:f τ-------------土的抗剪强度,KPaσ-------------剪切面上的法向应力,KPa ; φ--------------土的内摩擦角, C--------------土的粘聚力,KP(三)土的抗剪强度指标——φ、C φ——土的内摩擦角(°)C ——土的粘聚力(KPa ) C=0 Cφ、C 与土的性质有关,还与实验方法、实验条件有关。

因此,谈及强度指标时,应注明它的试验条件。

三、受剪面的破坏准则1、f ττ<时,土体受剪面是稳定的,处于弹性平衡状态;2、f ττ>时,土体受剪面已经破坏;3、f ττ=时,受剪面正好处于将要破坏的临界状态,称受剪面为极限平衡状态直剪试验的理论依据:土体受剪面在破坏时测得的τ和δ应在库仑直线上,测定若干个τ 和δ ,可绘制直线求出 φ和 C 值。

第二节 土的极限平衡条件一、土中一点的应力状态:与第一应力平面成α角的任一平面上,其应力ασ 、ατ 分别为:ασσσσσα2cos 223131-++=ασστα2sin 231-=摩尔应力圆:以231σσ+ 为圆心,以231σσ-为半径的圆的方程,即单位体上个截面的应力可绘成一应力圆。

单位体与摩尔应力圆关系:圆上一点,单元体上一面,转角2倍,转向相同。

二、摩尔——库仑准则( 准则) (一) 应力圆与库仑直线的关系(1)应力圆与库仑直线相离, f ττ< ,稳定状态(2)应力圆与库仑直线相切,单位体上有一个截面的剪应力刚好等于抗剪强度,处于极限平衡状态。

其余截面 f ττ<(3)应力圆与库仑直线相割:该单元体面剪切破坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、莫尔-库仑强度理论 4. 破坏判断方法
1= 常数:
1,3
x
z
2
x
2
z
2
2 xz
根据应力状态计算出 大小主应力σ1、σ3
c O 3 3f 3
判断破坏可能性
由σ1计算σ3f 比较σ3与σ3f
σ3>σ3f 安全状态 σ3=σ3f 极限平衡状态
σ3<σ3f 不可能状态
1
3 f
1tg
2
45
2
2c
tg
平面示意图
5520m
2210m
2264m
滑滑坡坡堆堆积积区体
2340m
2165m
14
§5 土的抗剪强度 §5.1 土体破坏与强度理论
二、工程中土体的破坏类型 2. 各种类型的滑坡
2000年西藏易贡巨型滑坡
湖水每天上涨
50cm ?
天然坝 坝高290 m
滑坡堰塞湖 库容15亿方
15
§5 土的抗剪强度 §5.1 土体破坏与强度理论
c
f
(c、 )三轴= (c、 )直剪 巧合吗?
c
三轴试验结 果
与的组合满足库仑公式才破坏
34
§5 土的抗剪强度 §5.1 土体破坏与强度理论
四、莫尔-库仑强度理论 2. 极限平衡应力状态
极限平衡应力状态:
有一对面上的应力状态达到 = f
土的强度包线: 所有达到极限平衡状态的莫尔园的公切线。
f
35
§5 土的抗剪强度 §5.1 土体破坏与强度理论
三、土的强度机理
2、摩擦强度 tg
(1)滑动摩擦
N T= Ntgφu
滑动摩擦
T
滑动摩擦角 u
粗粉 细砂 中砂 粗砂
30
20 0.02 0.06
0.2 0.6
2
颗粒直径 (mm)
由颗粒之间发生滑动时 颗粒接触面粗糙不平所 引起,与颗粒大小,矿 物组成等因素有关
安全状态 极限平衡状态 不可能状态
sin
1 3
1 3 2c ctg 42
§5 土的抗剪强度 §5.1 土体破坏与强度理论
四、莫尔-库仑强度理论
5. 滑裂面的位置
1f
45°+/2
与大主应力面夹角: α=45 + /2
3
破坏面为什么不在最大剪应 力作用面上?
破裂面
c
O
3
f c tan
2 90
32
§5 土的抗剪强度 §5.1 土体破坏与强度理论
四、莫尔-库仑强度理论 1. 应力状态与莫尔圆
+zx z
- 1
x
xz
+zx
r
O 3 x
-xz
p
2
z 1
大主应力: 1 p r
σz按顺时针方向旋转α
小主应力: 3 p r
σx按顺时针方向旋转α
圆心: p ( x z ) / 2
半径:
r
(
x
z
)
/
22
2 xz
莫尔圆:代表一个土单元(某点)的应力状态; 圆上一点:代表一个面上的两个应力与
p (1 3) / 2
q (1 3) / 2 r
33
§5 土的抗剪强度 §5.1 土体破坏与强度理论
四、莫尔-库仑强度理论 1. 应力状态与莫尔圆
f
直剪试验的莫尔圆与库仑抗剪强 度线的关系如何?为什么?
四、莫尔-库仑强度理论 3. 莫尔—库仑强度理论
(1)土单元的某一个平面上的抗剪强度f是该面上作用的法向应
力的单值函数, f =f() (莫尔:1900年) (2)在一定的应力范围内,可以用线性函数近似:f = c +tg (3)某土单元的任一个平面上 = f ,该单元就达到了极限平衡
应力状态
37
§5 土的抗剪强度 §5.1 土体破坏与强度理论
四、莫尔-库仑强度理论
P
A
库仑公式
S T
f c tan
固定滑裂面 一般应力状态如何判断是否破坏?
借助于莫尔圆
30
§5 土的抗剪强度 §5.1 土体破坏与强度理论
四、莫尔-库仑强度理论
1. 应力状态与莫尔圆
三维应力状态
z
zx
二维应力状态
zx
z
x
x
xy
xz
y yz
ij=
x xy xz yx y yz
S
下盒
S T
22
§5 土的抗剪强度 §5.1 土体破坏与强度理论
三、土的强度机理 1. 直剪试验
试验结果
f :
土的抗剪强度
tg:
摩擦强度-正比于压力
c:
粘聚强度
库仑公式
f c tan
c: 粘聚力
:内摩擦角
c O
抗剪强度指标
σ = 300KPa σ = 200KPa σ = 100KPa
S
23
一、土的强度特点 二、工程中土体的破坏类型 三、土的强度机理 四、莫尔-库仑强度理论
21
§5 土的抗剪强度 §5.1 土体破坏与强度理论
三、土的强度机理
1、直剪试验(库仑 1776)
试验方法
施加 σ(=P/A)
施加 S
量测 (=T/A)
P
上盒
A
σ = 300KPa σ = 200KPa σ = 100KPa
四、莫尔-库仑强度理论 3. 莫尔—库仑强度理论
莫尔-库仑强度理论表达式-极限平衡条件
1 3
sin
1
3
2
c ctg
1
1 3 3 2c ctg
2
1 3
2
f c tan
c
O
3
1
c ctg 1 3
2
38
§5 土的抗剪强度 §5.1 土体破坏与强度理论
四、莫尔-库仑强度理论 3. 莫尔—库仑强度理论
24
§5 土的抗剪强度 §5.1 土体破坏与强度理论
三、土的强度机理 2. 摩擦强度 tg
(2)咬合摩擦
AC B
剪切面
AC B
• 是指相邻颗粒对于相对移动的约束作用 • 当发生剪切破坏时,相互咬合着的颗粒A
必须抬起,跨越相邻颗粒B,或在尖角处 被剪断(C),才能移动 • 土体中的颗粒重新排列,也会消耗能量
平移滑动
旋转滑动
流滑
10
§5 土的抗剪强度 §5.1 土体破坏与强度理论
二、工程中土体的破坏类型 2. 各种类型的滑坡
乌江鸡冠岭山体崩塌
• 1994年4月30日
• 崩塌体积400万方
• 10万方进入乌江
• 死4人,伤5人,失踪12人
• 击沉拖轮、驳轮各一艘,渔
船2只
• 1994年7月2-3日降雨引起再
5530 高程(m)
2000年西藏易贡巨型滑坡
立面示意图
坡高 堆积体宽 总方量
3330 m 约2500m 约3亿方
4000
2200 0
2000
4000 滑距(m)
6000
8000
13
§5 土的抗剪强度 §5.1 土体破坏与强度理论
二、工程中土体的破坏类型 2. 各种类型的滑坡
2000年西藏易贡巨型滑坡
2
2 1f
43
§5 土的抗剪强度
§5.1 土体破坏与强度理论 §5.2 抗剪强度测定试验 §5.3 应力路径与破坏主应力线 §5.4 抗剪强度指标 §5.5 动强度与砂土的振动液化
45
2
41
§5 土的抗剪强度 §5.1 土体破坏与强度理论
四、莫尔-库仑强度理论 4. 破坏判断方法
(1 + 3)/2 = 常数:圆心保持不 变
1,3
x
z 2
x
z 2
2
2 xz
根据应力状态计算出 大小主应力σ1、σ3
也可比较圆的直径
c O
判断破坏可能性
由σ1、σ3计算 与比较
< = >
18
§5 土的抗剪强度 §5.1 土体破坏与强度理论
二、工程中土体的破坏类型 3. 地基的破坏
p
滑裂面
地基
19
§5 土的抗剪强度 §5.1 土体破坏与强度理论
二、工程中土体的破坏类型
土压力 边坡稳定 地基承载力
挡土结构物破坏 各种类型的滑坡 地基的破坏
核心 强度理论
20
§5 土的抗剪强度 §5.1 土体破坏与强度理论
一、土的强度特点 二、工程中土体的破坏类型 三、土的强度机理 四、莫尔-库仑强度理论
28
§5 土的抗剪强度 §5.1 土体破坏与强度理论
四、莫尔-库仑强度理论
1. 应力状态与莫尔圆 2. 极限平衡应力状态 3. 莫尔-库仑强度理论 4. 破坏判断方法 5. 滑裂面的位置
29
§5 土的抗剪强度 §5.1 土体破坏与强度理论
3= 常数:
1,3
x
z
2xΒιβλιοθήκη z22 2 xz
根据应力状态计算出 大小主应力σ1、σ3
σ1<σ1f σ1=σ1f σ1>σ1f
安全状态 极限平衡状态 不可能状态
由σ3计算σ1f 比较σ1与σ1f
1 f
3tg
2
45
2
2c
tg
45
2
判断破坏可能性
c
O
3
1 1f 1
40
§5 土的抗剪强度 §5.1 土体破坏与强度理论
zx zy z
x xz
ij = zx z
31
§5 土的抗剪强度 §5.1 土体破坏与强度理论
相关文档
最新文档