机器视觉算法笔记

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、相机的信噪比、SNR=1时(光强可探测到的最小光强,绝对灵敏度),动态增益为光强.sat/光强.min(dB/位),量子效率是波长的函数:η=η(λ)--CCD比CMOS灵敏,动态范围大。

2、数据结构:图像、区域和亚像素轮廓

图像:彩色摄像机采集的是每个像素对应的三个采样结果(RGB三通道图像)、图像通道可被看作一个二维数组,设计语言中的表示图像的数据结构;两种约定:离散函数(点对点)R→R n、连续函数:R2→R n。

区域:可以表示一幅图像中一个任意的像素子集,区域定义为离散平面的一个任意子集:R ∈Z2,将图像处理闲置在某一特定的感兴趣区域(一幅图像可被看作图像所有像素点的矩形感兴趣区域)。二值图像特征区域:用1表示在区域内的点,用0表示不在区域内的点;行程表示法:每次行程的最小量的数据表示行程的纵坐标、行程开始和行程结束对应横坐标值。行程编码较二值图像节省存储空间(行程编码保存在16位整数,须要24个字节,而采用二值图像描述区域,每个像素点占1个字节,则有35个字节)。行程编码保存的只是区域的边界。为描述多个区域,采用链表或数组来保存采用形成编码描述的多个区域,每个区域的信息是被独立保存和处理的。

亚像素轮廓:比像素分辨率更高的精度(亚像素阈值分割或亚像素边缘提取)。轮廓基本上可被描述成多表型,然后用排序来说明哪些控制点是彼此相连的,在计算机里,轮廓只是用浮点数表示的横和纵坐标所构成的数组来表示。

3、图像增强:硬件采集的图像质量不好,可应用软件进行增强。

灰度值变换:由于光源照明的影响,局部的图像会产生对比度与设定值不一致,需要局部的去增强对比度。为提高变换速度,灰度值变换通常通过查找表(LUT)来进行(将灰度输入值变换后输出保存到查找表中),最重要的灰度值变换是线性灰度值比例缩放:f(g)=ag+b(ag 表示对比度,b表示亮度)。为了自动获取图像灰度值变换参数a、b的值,通过图像感兴趣区域的最大与最小灰度值设置出a、b的值(灰度值归一化处理)。灰度直方图表示某一灰度值i出现的概率。对于存在很亮和很暗的区域,图像归一化时需要去除一小部分最暗、最亮的灰度值(用2个水平线截取区域),再进行图像归一化处理,将对比度提高(鲁棒的灰度归一化处理)。

辐射标定:传感器收集的能量与图像实际灰度值的关系是非线性时候(一般需要是线性的,提高某些处理算法的精确度),对非线性相应求其逆响应的过程就是辐射标定。取q=?对响应函数求逆运算得到线性响应,求q的过程既是标定。

图像平滑:抑制由于多种原因产生的图像噪声(随即灰度值)。干扰后灰度值=图像灰度值+噪声信号(将噪声看作是针对每个像素平均值为0且方差是б2的随机变量),降噪方法之一、时域平均法,采集多幅图像进行平均,标准偏差将为原来的1/根号n,求的平均值后,将任意一幅图像减去平均,即为该幅图像的噪声;方法之二、空间平均操作法,通过像素数(2n+1)*(2m+1)的一个窗口进行平均操作,会使边缘模糊(计算量非常大,进行(2n+1)*(2m+1)次操作);方法之三、递归滤波器,在前一个计算出的值的基础上计算出新的值,较方法一速度快了30倍;满足所有准则(平滑程度准则t,以及XXs滤波)的高斯滤波器:高斯滤波器是可分的,所以可以非常高效率的被计算出来,能够更好地抑制高频部分。若更关注质量,则应采用高斯滤波器;若关注执行速度,首选使用均值滤波器。

傅里叶变换:将图像函数从空间域转变到频率域,可以再进行频率高低的滤波操作平滑。

4、插值算法:图像被放大不清晰时,通过插值增加放大的增多的像素

最近像素插值算法:最近像素插值算法(Nearest Neighbour Interpolation)是最简单的一种插值算法,当图片放大时,缺少的像素通过直接使用与之最接近的原有像素的颜色生成,也就是说照搬旁边的像素,这样做的结果是产生了明显可见的锯齿;

双线性插值算法:双线性插值算法(Bilinear Interpolation)输出的图像的每个像素都是原图中四个像素(2×2)运算的结果,这种算法极大程度上消除了锯齿现象;

双三次插值算法:双三次插值算法(Bicubic Interpolation)是上一种算法的改进算法,它输出图像的每个像素都是原图16个像素(4×4)运算的结果,这种算法是一种很常见的算法,普遍用在图像编辑软件、打印机驱动和数码相机上。

分形算法:分形算法(Fractal Interpolation)是Altamira Group 提出的一种算法,这种算法得到的图像跟其他算法相比更清晰、更锐利。

这些算法主要应用在图像变换操作中。

5、特征提取:区域的矩作为特征量,要对分割出来的区域进行操作,需要确定一个或多个特征量(特征),区域特征是能够从区域自身提取出来的特征;灰度值特征还需要图像中区域内的灰度值;轮廓特征是基于轮廓坐标的。

区域特征:区域的面积就是区域内所有点的总和,对于二值图像累加项较行程要多得多 ,1,00,1(,)1,)p q p q r c R u r c n n a ∈=-->∑求出重心(归一化的矩推导出重心

(p+q ≥2)时,有:,1,00,1(,)1

()(-)p q p q r c R u r n c n a ∈=-∑(二阶中心距)

通过计算椭圆的长轴、短轴与水平夹角或者矩形的长宽和方位为确定区域大小和方位。 在一定区域内,一个点集的凸包就是包含了区域内所有点的最小凸集(如果任意两点练成的直线上的所有点都在点集中,这个点集就是凸集),所以可以利用凸包来确定某区域(面积与该区域凸包比值为凸性);然后再跟踪区域边界获取一个轮廓,获取到轮廓线段的欧几里得距离,进行求和就得到轮廓长度L,加上面积a 引出紧性概念2/(4)c L a π=。

灰度值特征:先引出区域内最大最小灰度值,在两个不同参考区域内计算平均灰度值可测量出线性亮度变化,从而计算一个线性灰度值变换(平均灰度值是一个统计特征,另一个统计特征是灰度值的方差和标准偏差。(基于矩的灰度值特征与相应的局域矩的区域特性非常相似)使用区域的特征函数作为灰度值时,灰度值矩就被简化为区域矩(特征函数被用来解释1为像素在区域内,0为像素在区域外,在处理小物体上,灰度值矩能得到准确度更好地处理结果);定义一个模糊隶属关系:灰度值低于北京灰度值最小值的每个像素,其隶属关系值为0,高于前景灰度值最大值的每个像素,关系为1,灰度值落在此范围内,其隶属关系通过线性插值得到,而这一计算过程需要使用浮点图像,所以将隶属关系值按比例放大到一个b 位整数图像上(一般8位),再通过计算灰度值矩和中心灰度矩判断区域特征。 轮廓特征:亚像素精度轮廓长度的计算容易些,因为轮廓已经用于控制点(,)i i r c ,假设一个闭合轮廓通过11(,)(,)n n r c r c =来表示,R 表示轮廓围绕的亚像素精度区域,则(p,q )阶矩被定义为:,(,)p q p q r c R m r c d rd c ∈=

⎰⎰,与区域矩类似,可定义归一化的矩和中心距。轮

相关文档
最新文档