新人教版九年数学下第二十六章 反比例函数知识点总结

合集下载

人教版九年级数学反比例函数知识点归纳

人教版九年级数学反比例函数知识点归纳

人教版九年级数学反比例函数知识点归纳本文介绍了新人教版九年级数学下册第26章反比例函数的知识点和研究目标。

其中,重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用。

难点是反比例函数及其图象的性质的理解和掌握。

基础知识包括反比例函数的概念和反比例函数的图象。

反比例函数的图象与x轴、y轴无交点,称取点关于原点对称。

反比例函数的图象的形状是双曲线,与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。

图象关于原点对称,对称性是反比例函数的重要性质。

如图1所示,设点P(a,b)在双曲线上。

作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积等于三角形PAO和三角形PBO的面积之和。

由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上。

作QC⊥XXX的延长线于C,则三角形PQC的面积为(图2)。

需要注意的是,双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论。

直线与双曲线的关系有两种情况:一种是两图象必有两个交点,另一种是两图象没有交点;当有交点时,这两个交点关于原点成中心对称。

反比例函数与一次函数有联系。

求函数解析式的方法有两种:待定系数法和根据实际意义列函数解析式。

需要注意学科间知识的综合,但重点放在对数学知识的研究上。

在解决问题时,可以充分利用数形结合的思想。

对于例题,若y是x的反比例函数,则应选C或A。

对于已知函数的图象在第二、四象限内和y随x的增大而减小的情况,可以求出k的值。

已知一次函数y=ax+b的图象经过第一、二、四象限时,可以确定它的图象位于第三象限。

若反比例函数经过点(a,b),则直线不经过的象限为第四象限。

若P (2,2)和Q(m,n)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过第一、三、四象限。

对于函数的增减性问题,需要分别讨论。

y轴作垂线,得到三个小矩形和一个三角形,它们的面积之和为20平方单位,求函数的解析式.2)已知函数y=f(x)的图象如图所示,其中ABCD为一矩形,E为函数图象上一点,且E在ABCD内部.若矩形ABCD的长为4,宽为2,求函数的解析式.答案:(1)设函数解析式为y=ax²+bx+c,由题意可列出方程组:a+b+c=54a+2b+c=2016a+4b+c=80解得a=2,b=-4,c=7,因此函数的解析式为y=2x²-4x+7.2)设函数解析式为y=f(x)=kx+m,由题意可得:f(0)=m=2f(2)=2k+m=4f(4)=4k+m=0解得k=-1/2,m=2,因此函数的解析式为y=-1/2x+2.1) 在图中,通过每个点作两条垂线段,分别与x轴和y轴围成一个矩形。

人教版九年级下册数学第26章 反比例函数第 建立反比例函数模型解实际问题

人教版九年级下册数学第26章 反比例函数第  建立反比例函数模型解实际问题

感悟新知
例市1煤气公司要在地下修建一个容积为104m3的 圆柱形煤气储存室.
知1-练
储存室的底面积S (单位:m2)与其深度d(单位:m)有怎 样的函数关系?
公司决定把储存室的底面积S定为500m2,施工队施工
时应该向地下掘进多深?
(3)当施工队按(2)中的计划掘进到地下15m时,公司临
时改变计划,把储存室的深度改为15m.相应地,储
(他2拉)的某面家条面y粗馆1的m2s0m师2傅收益精湛,
面条总长是多少?
感悟新知
知1-讲
知识点 1 实际问题中的反比例函数解析式
下列问题中,如何利用函数来解答,请列出关系式 (1)京沪线铁路全程为1463km,乘坐某次列车所用时间t (单位:h)随该列车平均速度v(单位:km/h)的变化 而变化;
感悟新知
解:(1)煤的总量为:0.6×150=90吨,


x y 90, 90
(2)函数的图y象为x:.
知2-练
感悟新知
总结
知2-讲
针对具体的反比例函数解答实际问题,应明确其 自变量的取值范围,所以其图形是反比例函数图形的 一部分.
感悟新知
例水3池内原有12m3的水,如果从排水管中每小
知2-练
感悟新知
2 一司机驾驶汽车从甲地去乙地,他以80km/h的平均 速度用6h到达目的地.
3 (1)当他按原路匀速返回时,汽车的速度v与时间t有 4 怎样的函数关系? 5 (2)如果该司机必须在4h之内回到甲地,那么返程时 6 的平均速度不能小于多少?
解:(1) (v2)12408k0m; /h. t
时流出xm3的水,那么经过yh就可以把水放完.
(1)求y与x之间的函数关系式;

部编人教版数学九年级下册优质课件 第26章 反比例函数小结课

部编人教版数学九年级下册优质课件 第26章 反比例函数小结课

解:当 0≤x≤2 时,含药量不低于 2 毫克,即 2x≥2,
解得 x ≥1,∴1≤ x ≤2; 8
当 x>2 时,含药量不低于 2 毫克,即x ≥ 2, y/毫克
解得 x ≤ 4. ∴2< x ≤4.
4
所以服药一次,治疗疾病的有效时间是
1+2=3 (小时).
O
2 x/小时
重点解析
重难点5:反比例函数的综合应用
当 k<0 时,双曲线的两个分支 分别在第二、第四象限
知识梳理
反 比 例 函 数
性质 应用
当 k>0 时,在每一个象限内,y 随 x 的 增大而减小
当 k<0 时,在每一个象限内,y 随 x 的 增大而增大
建立反比例函数模型,运用反比例函 数的图象和性质解答
知识梳理
1.反比例函数的概念
定义:形如__y___k_x__ (k 为常数,k≠0) 的函数称为反
D. y3<y2<y1
重点解析
比较反比例函数值的大小,在同一象限内可根据 反比例函数的性质比较;在不同象限内,不能按 其性质比较,函数值的大小只能根据特征确定.
y
A B
O
x
C
重点解析
重难点3:与反比例函数 k 有关的问题
本题源自《教材
重点解析
2 (2,0)
本题源自《教材
重点解析
C
4
y
y=
2 x
重点解析
(2) 求当 x > 2 时,y 与 x 的函数解析式;
解:当 x > 2时,y 与 x 成反比例函数关 系, y k .
设x 由于点 (2,4) 在反比例函数的图象 上, 4 k , 所以 2 解得 k =8.

九年级数学人教版第26章反比例函数整章知识详解

九年级数学人教版第26章反比例函数整章知识详解

有的土地面积s(单位:平方千米/人)随全市总人口
n(单位:人)的变化而变化.
1.68×104
【解析】 s=
1.68×104
n
或 s·n =
九年级数学第26章反比例函数
1.由上面的问题我们得到这样的三个函数
v=
1463 t
y=
1000 x
s=
1.68×104 n
2.上面的函数解析式形式上有什么的共同点?
都是
y=
k x
的形式,其中k是常数.
3.反比例函数的定义
一般地,形如 y= k (k为常数,k≠0) 的函数称为反比例
函数.
x
4.反比例函数的自变量x的取值范围是_不__等__于__0__的__一__切__实__数
九年级数学第26章反比例函数
等价形式:(k≠0)
y k
y=kx-1
x
xy=k
y是x的反比例函数

的图象上,∴点的坐标应满
xy=-6;满足条件的是C.
九年级数学第26章反比例函数
4.下列关系中是反比例函数的是( )
(A) y= k
x
(B) y= x
2
(C) y= 5
3x
(D)y= 5 -1
x
【解析】选C.∵B、D都不符合 y= k
x
们都
(k≠0)的形式,因而它
不是反比例函数;A不一定是反比例函数,因为k可能为零;C是
2
答案:答案不惟一,如(-2,-1)
九年级数学第26章反比例函数
5.已知反比例函数 y= 2k+4 的图象在第一、三象限,反
x
比例函数 y= k-3 在x>0时,y随x的增大而增大,则k的

人教版数学九年级下册第二十六章《反比例函数》知识总结及考点分析

人教版数学九年级下册第二十六章《反比例函数》知识总结及考点分析

第26章 反比例函数一、教学内容:反比例函数 教学目标:1. 理解反比例函数、图像及其主要性质,能根据所给信息确定反比例函数表达式,画出反比例函数的图像,并利用它们解决简单的实际问题。

2. 初步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。

二、重点、难点: 重点:1.能根据所给信息确定反比例函数表达式,画出反比例函数的图像,并利用它们解决简单的实际问题。

2、反比例函数的图像特点及性质的探究3、通过观察图像,归纳总结反比例函数图像 难点:1、理解反比例函数的概念2、画反比例函数的图像,并从图像中获取信息3、从反比例函数的图像中归纳总结反比例函数的主要性质 4.反比例函数的应用。

三、知识要点1、经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式2、一般地,如果两个变量x ,y 之间的关系可以表示成y=xk 〔k 为常数,k 不等于0〕的形式,那么称y 是x 的反比例函数.从y=xk中可知,x 作为分母,所以不能为零3、画反比例函数图像时要注意以下几点a 列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于标点b 列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线c 在连线时要用“光滑的曲线〞,不能用折线 4、反比例函数的性质反比例函数 ()0≠=k xky k 的取值范围0>k 0<k图像性质①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图像的两个分支分别在第一、三象限,在每一个象限内y 随x 的增大而减小①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图像的两个分支分别在第二、四象限,在每一个象限内y 随x 的增大而增大注意:1〕反比例函数是轴对称图形和中心对称图形;2〕双曲线的两个分支都与x 轴、y 轴无限接近,但永远不能与坐标轴相交; 3〕在利用图像性质比拟函数值的大小时,前提应是“在同一象限〞内。

人教版数学九年级下册:第二十六章 《反比例函数》知识点总结

人教版数学九年级下册:第二十六章 《反比例函数》知识点总结

新人教版九年数学下第二十六章 反比例函数知识点总结26.1知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。

(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

26.2知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

26.4知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数xky =(0k ≠) k 的符号0k > 0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。

人教版九年级下册数学课本知识点总结

人教版九年级下册数学课本知识点总结

人教版九年级下册数学课本知识点总结第二十六章反比例函数一、反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图像与x轴、y轴无交点.二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x≠,函数值0y≠,所以它的图像与x 轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

三、反比例函数及其图像的性质1.函数解析式:()2.自变量的取值范围:3.图像:(1)图像的形状:双曲线,越大,图像的弯曲度越小,曲线越平直。

越小,图像的弯曲度越大。

(2)图像的位置和性质:当时,图像的两支分别位于一、三象限;在每个象限内,y随x 的增大而减小;当时,图像的两支分别位于二、四象限;在每个象限内,y随x 的增大而增大。

(3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支。

图像关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上。

.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。

如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|。

人教版初三下册数学第26章知识点:反比例函数的图象及性质

人教版初三下册数学第26章知识点:反比例函数的图象及性质

人教版初三下册数学第26章知识点:反比例函数的图象及性质查字典数学网初中频道为您整理了人教版初三下册数学第26章知识点:反比例函数的图象及性质,希望帮助您提供多想法。

和小编一起期待学期的学习吧,加油哦!反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。

它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。

画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数图象要注意自变量的取值范围是k≠0,因此不能把两个分支连接起来。

k≠0(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。

反比例函数的性质:y=k/x(k≠0)的变形形式为xy=k(常数)所以:(1)其图象的位置是:当k﹥0时,x、y同号,图象在第一、三象限;当k﹤0时,x、y异号,图象在第二、四象限。

(2)若点(m,n)在反比例函数y=k/x(k≠0)的图象上,则点(-m,-n)也在此图象上,故反比例函数的图象关于原点对称。

(3)当k﹥0时,在每个象限内,y随x的增大而减小;当k﹤0时,在每个象限内,y随x的增大而增大;一般说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,其实就是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

人教版数学九年级下册第26章 反比例函数(21页)

人教版数学九年级下册第26章 反比例函数(21页)
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函
数.其中 x 是自变量,a,b,c 分别是二次项系数、一次
项系数和常数项.
教学目标
1.了解反比例函数的概念,能判断一个给定的函数是否
为反比例函数.
2.会用待定系数法求反比例函数解析式.
3.能根据实际问题中的条件确定反比例函数的解析式.


在反比例函数 = (k 为常数,k≠0)中,只有一个待
定系数 k,因此只要给出一组 x,y 的对应值,就可以
求出待定系数 k 的值,从而确定反比例函数的解析式.
用待定系数法求反比例函数解析式的一般步骤:
设:根据题意,设反比例函数的解析式为 =

(k≠0).



列:把 x,y 的一对对应值代入 = 中,得到一个
课堂导入
生活中我们常常通过控制电阻的变化来实现舞台
灯光的效果. 在电压 U 一定时,当 R 变大,电流 I 会
变小,灯光就会变暗;相反,当 R 变小,电流 I 会变
大,灯光就会变亮. 你能写出这些量之间的关系式吗?
新知探究
知识点1:反比例函数的概念
下列问题中,变量间具有函数关系吗?如果有,请写出
求这个函数的表达式
k
(k≠0)
解:设这个反比例函数的解析式为 y =
x
∵当x=3时,y=2
k
,解得:k=6
∴2=
3
∴这个反比例函数的解析为 y =
6
x
3.已知y与x+2成反比例,且当 x 1时,y = 3.
(1)求y与x之间的函数解析式;
(2)当 x = 0 时,求y的值.

九年级下册数学二十六章知识点

九年级下册数学二十六章知识点

九年级下册数学二十六章知识点提高数学考试成果诀窍方法之一是,在考试前进行高水平高效率的复习,花时间去攻克自己不熟识的题目,不断地把生疏转化为熟识。

下面是我整理的九年级下册数学二十六章学问点,仅供参考盼望能够关心到大家。

九年级下册数学二十六章学问点反比例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数的性质函数y=k/x称为反比例函数,其中k≠0,其中X是自变量,1.当k0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k0时,函数在x0上同为减函数、在x0上同为减函数;k0时,函数在x0上为增函数、在x0上同为增函数。

3.x的取值范围是:x≠0; y的取值范围是:y≠0。

4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不行能与x轴相交,也不行能与y轴相交。

但随着x无限增大或是无限削减,函数值无限趋近于0,故图像无限接近于x轴5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

数学圆的对称性学问点1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。

学数学的最快方法课前预习阅读预习课文时,要预备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思索的问题顺手记下,对定义、公理、公式、法则等,可以在纸上进行简洁的复述,推理。

人教版初三数学9年级下册 第26章(反比例函数)小结与复习 课件(25张PPT)

人教版初三数学9年级下册 第26章(反比例函数)小结与复习 课件(25张PPT)
A、x<-1 B、x>2 C、-1<x<0或x>2 D、x<-1或0<x<2
求一次函数及反比例函数的解析式
如图,已知一次函数y kx b(k 0)的图象与x轴,y轴
分别交于A,B两点,且与反比例函数y
m(m x
0)的图
象交于点C,过点C作CD垂直于x 轴,垂足为D.
若OA OB OD 1. (1)求点A,B,D的坐标;
知 400 度近视眼镜镜片的焦距为 0.25 m,则 y 与 x 的函数
表达式为( C )
A.y=400 B.y= 1
x
4x
C.y=1x00 D.y=4010x
专项讲 解
一次ቤተ መጻሕፍቲ ባይዱ数与反比例函数综合应用
考情分析
• 反比例函数与一次函数结合主要考查 • 1.判断一次函数与反比例函数在同一坐标系
中的大致图像。 • 2.利用函数图像确定自变量的取值范围 • 3.求反比例函数与一次函数解析式、点的坐
2 反比例函数的图象和性质
(1)反比例函数的图象:反比例函数 y=kx(k≠0)的图 象是__双__曲__线__,且关于__原__点____对称.
(2)反比例函数的性质
函数
图象
k>0
y=kx (k≠0)
k<0
所在象限
性质
一、 三
象限 在每个象限内,y
(x,y 同 随 x 增大而减小
号)
二、 四
象限 在每个象限内,y
(2)求一次函数和反 比例函数的解析式.
与面积有关的问题
解:(1)将
A(2,
2)
代入
y
m x
中,得
m
4


y
4 x

人教版九年级数学下册知识点总结:第二十六章反比例函数

人教版九年级数学下册知识点总结:第二十六章反比例函数

人教版九年级数学下册知识点总结第二十六章、反比例函数知识点一:反比例函数的概念及其图象、性质1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下2种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.。

人教版九年级数学下第26章反比例函数小结(教案)

人教版九年级数学下第26章反比例函数小结(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个量的乘积保持不变的情况?”(例如:当汽车以恒定速度行驶时,行驶时间与路程的关系)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
五、教学反思
在今天的教学中,我发现学生们对反比例函数的概念和图像性质的理解存在一些困难。在讲解过程中,我注意到他们对于双曲线的形状和反比例关系之间的联系不太清晰。为了帮助学生更好地理解这一部分内容,我尝试使用了多媒体动画来展示反比例函数图像的形成过程,以及通过实际案例让学生感受反比例关系在生活中的应用。
-对于数形结合的思维,教师可以通过具体例子,如给出几个不同的k值,让学生观察图像变化,引导学生发现性质。
-在实际问题中,教师应引导学生从问题中抽象出反比例关系,如物理中的速度与时间的关系,通过具体案例让学生学会模型构建。
-对于图像变换,难点在于理解变换后的图像如何保持反比例关系不变,教师可以引导学生通过变换前的点(x, y)和变换后的点(x', y')之间的关系来进行探究。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y=k/x(k≠0)的函数,它描述了两个变量之间的反比关系。反比例函数在解决实际问题中有着广泛的应用,如物理中的速度与时间关系,经济学中的需求与价格关系等。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示反比例函数在实际中的应用,以及它如何帮助我们解决问题。
2.教学难点
-理解反比例函数图像为双曲线的几何意义,特别是双曲线与坐标轴的无限接近但永不相交的特性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
☆ 反比例函数()中,越大,双曲线越远离坐标原点;越小,双曲 线越靠近坐标原点。
☆ 双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对
称图形,对称轴是直线y=x和直线y=-x。
新人教版九年数学下第二十六章 反比例函数知识
点总结
26.1知识点1 反比例函数的定义 一般地,形如(k为常数,)的函数称为反比例函数,它可以从以 下几个方面来理解: ⑴x是自变量,y是x的反比例函数; ⑵自变量x的取值范围是的一切实数,函数值的取值范围是; ⑶比例系数是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①(), ②(), ③(定值)(); ⑸函数()与()是等价的,所以当y是x的反比例函数时,x也是y 的反比例函数。 (k为常数,)是反比例函数的一部分,当k=0时,,就不是反比例 函数了,由于反比例函数()中,只有一个待定系数,因此,只要一组 对应值,就可以求出k的值,从而确定反比例函数的表达式。 26.2知识点2用待定系数法求反比例函数的解析式 由于反比例函数()中,只有一个待定系数,因此,只要一组对应 值,就可以求出k的值,从而确定反比例函数的表达式。 26.3知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于 第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数 中自变量函数中自变量,函数值,所以它的图像与x轴、y轴都没有交 点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。 再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取; ②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的 曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相 交。 26.4知识点4反比例函数的性质 ☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增 减情况,如下表:
反比例函数图像的位置和函数的增减性,是有反比例函数系数k的符号 决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减 性,也可以推断出k的符号。如在第一、第三象限,则可知。 ☆反比例函数()中比例系数k的绝对值的几何意义。 如图所示,过双曲线上任一点P(x,y)分别作x轴、y轴的垂线,E、F 分别为垂足, 则
反比例 函数
的 符号
()
图像
性质
①的取值范围是, ①的取值范围是,
y的取值范围是 y的取值范围是
②当时,函数图像 ②当时,函数图像
的两个分支分别在 的两个分支分别在
第一、第三象限, 第二、第四象限,
在每个象限内,y 在每个象限内,y随x的增大而减 随x来自增大而增小。大。
注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则, 笼统地说,当时,y随x的增大而减小“,就会与事实不符的矛盾。
相关文档
最新文档