模具设计第6章 浇注系统的结构与设计--6
第6章 注塑模具结构及设计(4)-成型零件设计
一、分型面的形式
二、分型面的选择 选择分型面的原则是: 1、分型面应选择在塑件外形最大轮廓处 当初步确定塑件的分型方向后,分型面应选在塑件外形最大 轮廓处,即通过该方向上塑件的截面积最大,否则塑件无法从 型腔中脱出。 2、应尽量减少塑件(型腔)在分型面上的投影面积 注塑机都规定其相应模具所允许的最大成型面积以及额定锁 模力,注射成型过程中,当塑件(包括浇注系统)在分型面上 的投影面积超过允许的最大成型面积时,将会出现涨模溢料现 象,这时注射成型所需的合模力也会超过额定锁模力。因此, 选择分型面时,应考虑对成型面积的影响。(教材P67图4-34)
6、3、2 结构设计 成型零件主要包括型腔、型芯、镶拼件、各种成型杆与成 型环。
塑件生产对成型零件的要求: 足够的强度、刚度、硬度(HRC30以上)、耐磨性; 足够的精度和适当的表面粗糙度(一般Ra<0.4μm);
一定的耐热疲劳性和耐腐蚀性,生产腐蚀性塑料还要特 别防护(选耐蚀材料或电镀硬铬)。
7、无损塑件外观 图示塑件,底部带有环形支撑面,若分型面 按图(a)中方案设计,会在环形支撑面处留下毛 边痕迹。如果改为图(b)中方案、毛边产生在塑 件端面,去除后对塑件外观无损。
8、对侧向抽芯的影响 一般注塑模的侧向抽芯,都是借助模具打开时的开模运 动。通过模具的抽芯机构进行抽芯,在有限的开模行程内, 完成的抽芯距离有限制。因此,对于带有互相垂直的两个 方向都有孔或凹槽的塑件,应避免长距离抽芯。
2、镶拼型芯结构 为便于加工,形状复杂的型芯可采用镶拼组合式结构, 如图所示。
采用组合式行行行可大大改善加工和热处理的工艺性。 但设计和制造这类型芯时,必须注意结构的合理性,应 保证型芯和小型芯镶块的强度、防止热处理变形,应避 免尖角与薄壁。
模具设计-浇注系统
模具设计-浇注系统浇注系统是指模具中从注射机喷嘴开始到型腔为止的塑料流动通道﹐其由主流道﹑分流道﹑浇口及冷料穴组成。
1.1.主流道主流道是指从注射机喷嘴与模具接触的部位起﹐到分流道为止的这一段。
主流道一般设计成圆锥形﹐角度为2°~4°。
1.2.分流道分流道是指主流道与浇口之间的这一段﹐它是熔融塑料由主流道流入型腔的过渡段﹐也是浇注系统中通过断面变化和塑料转向的过渡段﹐能使塑料得到平稳的转换。
1.2.1.分流道的形状有圆形﹑半圆形和梯形等几种﹐从减小压力和热量损失的角度考虑﹐圆形流道是最优越的流道形状。
当分型面是平面或曲面时﹐一般采用圆形流道;细水口模一般选用梯形流道﹐当流道只开在前模或后模时﹐则选用梯形流道。
1.2.2.当塑件采用多浇口进浇以及一模多腔早时﹐要充分考虑进胶的均匀性﹐尽可能做到平衡进胶。
1.2.3.设计分流道大小时﹐应充分考卢制品的大小﹑壁厚﹑材料流动性等因素﹐流动性不好的材料如PC料其流道应相应加大﹐并且分流道的截面尺寸一定要大于制品壁厚﹐同时应选择合适的长度。
流道长则温度降低明显﹐流道短则剩余应力大﹐容易产生“喷池”。
1.2.4.梯形流道﹕W一般为5—8mm﹐H一般为4—6mm﹐H/W=2/31.2.5.分流道表面不要求很光﹐表面粗糙度一般达Ra3.2~1.6即可﹐因为分流道的表面稍有不光滑﹐就能使熔料的冷却皮层固定﹐有利于保温﹔浇口的表面粗糙度不能高于Ra0.4﹐否则易产生摩擦阻力。
1.3.浇口浇口是指分流道与塑件之间的狭窄部分。
它能使分流道输送来的熔融塑料的流速产生加速度﹐形成理想的流态﹐顺序﹑迅速地充满型腔﹐同时还起眷封闭型腔防止熔料倒流的作用﹐并在成型后便于使浇口与塑件分离。
常见浇口类型有直接浇口﹑侧浇口﹑潜伏式浇口﹑点浇口等多种。
设计时对大型单一型腔制品成型效果好﹐需注意唧嘴底部与产品之间是否要隔一段距离。
1.3.2.侧浇口侧浇口设置于制品分型面处﹐制品允许有浇口痕迹才可采用﹐侧浇口包括边缘浇口和搭接浇口﹐其浇口尺寸与制品壁厚﹑大小﹑材料等诸多因素有关﹐一般规格如下图﹕边缘浇口与搭接浇口的选择如下图﹕ 选择浇口位置时﹐就防止制品产生滞留现象﹐应远离厚﹑薄交接处﹐从厚的地方进浇﹐避免浇口正对柱位﹑碰穿位﹐防止型芯因冲击而变形。
模具浇注系统的设计原理
模具浇注系统的设计原理模具浇注系统是一种工业生产中常用的设备,用于将液态材料注入模具中,形成所需的产品形状。
它具有精确控制浇注过程、提高生产效率和产品质量等优点。
模具浇注系统的设计原理主要包括浇注过程控制、模具设计和与其他设备的协同工作等方面。
首先,模具浇注系统的设计原理涉及浇注过程的控制。
控制浇注过程是保证产品准确性和质量的关键。
在浇注过程中,需要控制液态材料的流动速度、浇注时间、温度等因素,以确保产品形状和尺寸的准确性。
这一过程需要使用传感器和控制器等设备监测和调节浇注参数。
传感器可以实时监测液态材料的流动速度和压力等参数,并将这些数据传输给控制器。
控制器则根据传感器数据调整浇注设备的工作状态,以实现准确的浇注过程控制。
其次,模具浇注系统的设计原理还需要考虑模具的设计。
模具是决定产品形状和尺寸的关键因素之一。
模具的设计需要根据产品的要求确定模具的形状、材料和开发方式等。
模具浇注系统要根据模具的形状和尺寸进行相应的调整和优化,以确保浇注过程的准确性和稳定性。
例如,对于需求复杂形状的产品,可以采用多腔模具设计,以提高生产效率和产品质量。
此外,模具浇注系统的设计原理还涉及与其他设备的协同工作。
在工业生产中,模具浇注系统通常需要与其他设备进行联动工作,以实现自动化生产。
例如,模具浇注系统可以与机器人手臂或传送带等设备配合使用,实现自动化的生产流程。
这需要设计合理的工作流程和设备间的信号传输机制,以实现协同工作和生产效率的提高。
综上所述,模具浇注系统的设计原理涉及浇注过程控制、模具设计和与其他设备的协同工作等方面。
通过精确控制浇注过程、优化模具设计和与其他设备的协同工作,模具浇注系统可以提高生产效率和产品质量,满足工业生产的需求。
压铸模浇注系统设计ppt课件
14:33
7
6.2 浇注系统的分类
6.2.1 侧浇口 6.2.2 直接浇口 6.2.3 中心浇口 6.2.4 环形浇口 6.2.5 缝隙浇口 6.2.6 点浇口
14:33
8
6.2 浇注系统的分类
6.2.1 侧浇口
侧浇口开设在模 具的分型面上, 它可以开设在压 铸件最大轮廓处 的外侧(图a)或 内侧(图c),也 可以在压铸件的 侧面进料如图b所 示,侧浇口还可 以从压铸件的端 面搭接进料如图c 所示。
具设计者的一个任务。其次,浇口的切除比较困难,
一般采用机械加工方法切除。由于金属液从直浇道
大端进入型腔后直冲型芯,容易造成粘模,影响模
具的寿命。
11
直接浇口的浇注系统,一般仅适用于单型腔模具,多用于热压 室压铸机或立式冷压室压铸机上生产。
14:33
12
6.2.3 中心浇口
中心浇口是直接浇口的一种特殊形式,当有底的筒或盘壳类压铸件的底部中心或 接近中心部位有不大的通孔时,内浇口就开设在通孔处,中间设置分流锥,金属 液在压铸件底部以环状进入型腔。图a为深筒型压铸件的中心浇口,图b为壳类压 铸件的中心浇口。
设计时不仅要分析压铸件的结构特点、技术要求、合金种类及 其特性还要考虑压铸机的类型和特点。
浇注系统主要由直浇道、横浇道、内浇口和余料等组成。压铸 机的类型不同浇注系统的形式也有差异。
14:33
2
卧式冷压室压铸机模具用浇注系统--压室偏置
由直浇道1、横浇道2和内浇 口3组成,余料和直浇道合 为一体,开模时浇注系统和 压铸件随动模一起脱离定模。
分型面开设在压铸件 的底部,内浇口开设 在压铸件的底部的同 一侧,金属液进入型 腔后先把分型面封住 造成左端型腔内的气 体无法排除,压铸件 在区域1处产生包气 或充填不实的现象。
第6章 型腔布局与浇注系统的设计
第6章型腔布局与浇注系统的设计内容简介本章主要介绍普通型腔的总体布局、型腔个数确定、分型面形式与位置的选择、普通浇注系统的组成、浇注系统的设计、排气结构设计。
目的与要求(1)掌握型腔的合理布局与腔数的确定。
(2)掌握选择塑料模具分型面的基本原则,针对不同塑件能运用原则选择分型面。
(3)掌握浇注系统的设计原则,并会选择浇口在塑件上的位置,会设计浇注系统。
(4)会设计排气槽。
重点与难点1.重点(1)型腔布局及型腔数目的确定。
(2)分型面设计。
(3)浇口形式的选择及浇注系统设计。
(4)排气槽的设计。
2.难点(1)分型面的位置选择。
(2)浇口位置的选择。
授课过程塑料制件在模具中的位置是由型腔总体平面布置,型腔总体纵向布置来确定的。
6.1 型腔布置(塑料制件在模具中的位置)1.型腔总体平面布置(1)型腔数目的确定。
单型腔模具——在一次注射中只能生产一件塑料产品的模具。
多型腔模具——一副模具一次注射能生产两件或两件以上的塑料产品的模具。
一般可以按下面几点对型腔数目进行确定:①按塑件的精度要求确定型腔数目。
受塑件精度的限制,属于精密技术级的,如SJ1372-78中的1、2级,只能一模一腔;如属于精密级的,如SJ1372-78中的3、4级,最多可以一模四腔。
②按注射机的最大注射量、额定锁模力确定型腔数目。
受设备的技术条件限制,如最大注射量、锁模力、最大注射面积等与型腔个数n有关的技术参数校核。
按最大注射量确定型腔数目:n≤(km n-m j)/m按额定锁模力确定型腔数目:n≤(F n-pA j)/pA③按经济性确定型腔数目。
受成本核算的限制,成本最低的型腔数核算n =√NYt/60C1(2)型腔的排列①平衡式排列P90图6.2a、b②非平衡式排列P90图6.2c、d*型腔的排布应使每个型腔都能通过浇注系统从总压力中均等地分得所需足够压力,以保证塑料熔体能同时均匀地充填每一个型腔,从而使各个型腔的塑件内在质量均一稳定。
第6章A浇注系统设计[new](2)素材
• 凡在型腔中带有螺纹的部位不易直接布置内浇口,以 防螺纹被冲击而受浸蚀。
(3)除特大型铸件、箱体及框架类铸件和结构比较特殊 的铸件外,内浇口的数量以单道为主,多道浇口要在 形状上采取措施以防多道金属液流入型腔互相冲击, 产生涡流、裹气和夹渣等缺陷,如下图。
(4)薄壁复杂压铸件,宜采用较薄的内浇口,以保持必 要的充填速度。一般结构的压铸件以取较厚的内浇口 为主,使金属液充填平稳,有利于排气和有效地传递 静压力。 (5)根据铸件的设计要求,凡精度要求高、表面粗糙度 数值小且不加工的部位,不宜布置内浇口,以防在除 浇口后留下痕迹。 (6)布置内浇口时要考虑到内浇口的切除和清理。
一、按位置分
1)侧浇口 • 一般开设在分型面上,按铸件结构特点,可布置在压 铸件外侧或内侧。 • 适用于板类、盘类或型腔不太深的壳体类。不仅适用 于单型腔模,也适用于多型腔模。此种浇口去除方便, 适应性强,所以应用最为普遍。
• 由于金属液从型腔端面的中心部位流向分型面,因此有利于克服 深腔处气体不易排出的缺点,排气通畅。同时,从浇口到型腔各 部位的流程最短,流动距离基本接近,金属液分配均匀,也有利 于模具的热平衡。这种浇口形式使压铸件和浇注系统在分型面上 的投影面积最小,模具结构紧凑,金属液消耗量小,压铸机受力 均匀。其缺点是切除浇口比较困难,在大批量生产中,一般需采 用机械加工方法将浇口切除。
•
(2)内浇口的宽度和长度 • 内浇口的厚度确定后,根据内浇口的截面积即可计 算出内浇口的宽度。根据经验:矩形压铸件一般取 边长的0.6~0.8倍;圆形压铸件一般取直径 的0.4~0.6倍。 • 在整个浇注系统中,内浇口的截面积最小(除直接 浇口外),因此金属液充填型腔时,内浇口处的阻 力最大。为了减少压力损失,应尽量减少内浇口的 长度,内浇口的长度一般取2~3mm。也有资料 介绍越短越好。表6-5、6为内浇口宽度和长度的经 验数据。
模具基础知识
(2)法定继承人的顺序和范围
(3)代位继承
3.遗产处理
(1)有人继承或受遗赠的遗产的处理
(2)无人继承又无人受遗赠的遗产的处理
(3)遗留债务的清偿
(4)继承的诉讼时效
上一页 返回
第四节 合同
一、合同法的相关概念
1.合同法的概念
合同法是调整平等主体之间合同关系的法 律规范的总和。
上一页 下一页 返回
6.3 注射模设计基础
6.3.2 分型面的选择
分型面是决定模具结构形式的一个重要因素,它与模具的整 体结构、浇注系统的设计、塑件的脱模和模具的制造等有关。 因此,分型面的选择是注射模具设计中的一个关键步骤。
1. 分型面的形式 注射模具可以只有一个分型面,也可以有多个分型面。在多
上一页 下一页 返回
第二节 民事主体
(7)自然人民事行为能力的终止 (8)宣告失踪和宣告死亡 2.法人 法人是具有民事权利能力和民事行为能力,
依法独立享有民事权利和承担民事义务的 组织。简言之,法人是具有民事权利主体 资格的社会组织。 3.个体工商户 个体工商户,是指自然人以家庭的名义, 在法律允许的范围内,经核准上登一页记后下一,页从返回
上一页 下一页 返回
6.1 塑料成型工艺基础
6.1.3 塑料成型的工艺特性
塑料的成型工艺特性是塑料在成型加工过程中表现出来的特 有性质。只有对塑料的成型工艺特性有了一定的了解,才有 可能进行模具设计。
塑料成型的工艺特性主要有以下几个方面。 1. 收缩性 塑件从温度较高的模具取出冷却到室温后,其尺寸或体积会
(5)单方民事法律行为
3.债的担保
债的担保是为督促债务人履行债务,保障 债权得以实现的一种法律制度。
债的担保方式有:
塑料件模具设计--浇注系统设计
(6)轮辐式浇口
轮辐式浇口的适用范围类似 于盘形浇口,带有矩形内 孔的塑件也适用,但是它 将整个周边进料改成了几 小段直线进料。这种浇口 切除方便,流道凝料少, 型芯上部得到定位而增加 了型芯的稳定性。
31
(7)护耳式浇口
它在型腔侧面开设耳槽,熔体通过浇口冲击在 耳槽侧面上,经调整方向和速度后再进入型 腔,因此可以防止喷射现象,是一种典型的 冲击性浇口,它可减少浇口附近的内应力, 对于流动性差的塑料极为有效,浇口应设置 在塑件的厚壁处。
这种浇口的去除比较 困难,痕迹大
32
(8)点浇口
点浇口又称针点浇口或菱形浇口,是一 种截面尺寸很小的浇口,俗称小浇口。 这类浇口由于前后两端存在较大的压力 差,能较大地增大塑料熔体的剪切速率 并产生较大的剪切热,从而导致熔体的 表观粘度下降,流动性增加,有利于型 腔的充填。
33
(8)点浇口的设计形式
图a所示为直接式,直径为d的圆锥形的小端直接与塑件相 连。
图b所示为圆锥形的小端有一段直径为d、长度为l的点浇口 与塑件相连。这种形式的浇口直径d不能太小,浇口长度l 不能大长,否则脱模时浇口凝料会断裂而堵塞住浇口,影 响注射的正常进行。上述两种形式的点浇口制造方便,但 去除浇口时容易相伤塑件,浇口也容易磨损,仅适于批量 不大的塑件成型和流动性好的塑料。
非限制性浇口是整个浇口系统中截面尺寸最大的部位,它主 要对中大型筒类、壳类塑件型腔起引料和进料后的施压作用。
21
1、浇口的类型
(1)直接浇口(又称主流道形浇口)
在单型腔模中,熔体直接流入型腔,因 而压力损失小,进料速度快,成型比 较容易,对各种塑料都能适用。它传 递压力好,保压补缩作用强,模具结 构简单紧凑,制造方便。
注塑模具浇注系统由哪些部分组成
【注塑模具浇注系统】注塑模具浇注系统组成部分主要包括主流道、分流道、浇口以及冷料井等。
主流道主流道也称作主浇道、注道(Sprue)或竖浇道,是指自射出机射嘴与模具主流道衬套接触的部分起算,至分流道为止的流道。
此部分是熔融塑料进入模具后最先流经的部分。
分流道分流道也称作分浇道或次浇道。
随模具设计,可再区分为第一分流道(First Runner)以及第二分流道(Secondary Runner)。
分流道是主流道至浇口间的过渡区域,能使熔融塑料的流向获得平缓转换;对于多模穴模具,同时具有均匀分配塑料到各模穴的功能。
浇口浇口也称为进料口,是分流道和模穴间的狭小通口,也是最为短小肉薄的部分。
其作用在于利用紧缩流动面而使塑料达到加速的效果,高剪切率可使塑料流动性良好(由于塑料的切变致稀特性);黏滞加热的升温效果也有提升料温、降低黏度的作用。
在成型完毕后,浇口最先固化封口,有防止塑料回流,以及避免模穴压力下降过快,使成型品产生收缩凹陷的功能。
成型后,则方便剪除,以分离流道系统及塑件。
冷料井冷料井也称作冷料穴。
目的在于储存补集充填初始阶段较冷的塑料波前,防止冷料直接进入模穴,影响充填品质或堵塞浇口。
冷料井通常设置在主流道末端,当分流道长度较长时,在末端也应开设冷料井。
什么是模具的浇注系统?浇注系统是用来将注塑机喷嘴射出的塑料熔体导向模具型腔的一种系统。
注塑模具浇注系统作用是什么?其作用是将塑料熔体顺利地充满到模腔深处,以获得外形轮廓清晰,内在质量优良的塑料制件。
因此要求充模过程快而有序,压力损失小,热量散失少,排气条件好,浇注系统凝料易于与制品分离或切除。
>>>拓展阅读:常用的浇口形式1.直浇口即主流道浇口,属于非限制性浇口。
2.侧浇口国外将侧浇口称为标准浇口。
3.扇形浇口4.薄片浇口又称为平缝式浇口,浇口的分配流道与型腔侧边平行,其长度通常大于塑料制品宽度。
5.护耳浇口护耳浇口主要用于高透明的平板形塑料制品及变形要求很小的塑料制品。
压铸模设计第6章A 浇注系统设计[new]
• 下图为压铸件内浇 道设计方案示例
压铸件 内浇口 横浇道
大排气槽 溢流槽
2、内浇口尺寸 确定最合理的内浇口截面积,要结合生产中具体条件、 压铸件的结构尺寸等因素来定。内浇口面积的计算方法很 多,以下介绍两种计算方法: (1)流量计算法
(2)经验公式:
3.内浇口尺寸 • 内浇口的形状除点浇口、直接浇口为圆形,中心浇口、
A——压铸件表面积(cm2);
•
对于壁厚基本均匀的薄壁压铸件,凝固模数约等
于壁厚的二分之一。
(2)内浇口的宽度和长度
• 内浇口的厚度确定后,根据内浇口的截面积即可计 算出内浇口的宽度。根据经验:矩形压铸件一般取 边长的0.6~0.8倍;圆形压铸件一般取直径 的0.4~0.6倍。
• 在整个浇注系统中,内浇口的截面积最小(除直接 浇口外),因此金属液充填型腔时,内浇口处的阻 力最大。为了减少压力损失,应尽量减少内浇口的 长度,内浇口的长度一般取2~3mm。也有资料 介绍越短越好。表6-5、6为内浇口宽度和长度的经 验数据。
• 内浇口的设计主要是确定内浇口的位置、形状和尺寸。
1. 内浇口分类
• 按内浇口在铸件上的位置分,有顶浇口(铸件顶部无孔)、 中心浇口(铸件顶部有孔)和侧浇口;
• 按内浇口横截面形状分,有扁梯形、长梯形、环形、半 环形、缝隙形(缝隙浇口)、圆点形(点浇口)和压边形;
• 按引入金属液的方向分,有切线、割线、径向和轴向。
4.内浇口与压铸件和横浇道的连接方式
(二)直浇道设计
• 直浇道的结构因压铸机的类型不同而不同,设计直浇 道时必须首先了解所用压铸机的喷嘴结构与尺寸。
1、卧式冷压室压铸机直浇道的设计
卧式冷压室压铸机的直浇道通常由压室和浇口套组成。
浇注系统及排溢系统设计
浇注系统 的设计
溢流、排 气系统
掌握 掌握
把握老师所介绍的重点内容,掌握适用 于不同压铸机的三种直浇道的结构及基本 技术要求;结合不同结构压铸件浇注系统 的设计实例,理解消化浇注系统设计要点, 初步领会一些相关的设计技巧。
将溢流、排气系统与浇注系统作为一个 整体来考虑。通过对实例的分析理解,掌 握溢流槽的位置选择要求和排气槽的结构 形式。
压铸成形工艺与模具设计(第2版)——第6章
39
(4)金属液进入型腔后不宜正面冲击型芯或型壁,
尤其应避免冲击细小型芯或螺纹型芯,以减少动能损 失,防止冲蚀及产生粘模。
(5)尽量减少金属液在型腔中的分流。
(6)压铸件上精度、表面粗糙度要求较高且不加工 的部位,不宜设置内浇口。
(7)内浇口的设置应考虑模具温度场的分布,以便
压铸成形工艺与模具设计(第2版)——第6章
28
2)浇口套
浇口套一般镶在定模座板上, 采用浇口套可以节省模具钢 和便于加工。
浇口套一个端面A与喷嘴端面 相吻合,控制好配合间隙不 允许金属液窜入接合面;浇 口套的另一端面B与定模镶块 相接,接触面上的镶块孔比 浇口套孔大1-2mm。
应固定牢固,拆装方便。
压铸成形工艺与模具设计(第2版)——第6章
36
1.内浇口的形式
压铸成形工艺与模具设计(第2版)——第6章
37
2.内浇口的位置
内浇口位置的选择是设计浇注系统 时首先要考虑的问题。在确定内浇口位 置时要综合考虑压铸件的结构特征、壁 厚大小、收缩变形情况、合金种类、压 铸机特性、模具分型面以及压铸件使用 性能等方面的因素,分析金属液充填时 的流动状态、充填速度的变化,预计充 填过程中可能出现的死角、裹气和产生 冷隔的部位,以便布置合适的溢流和排 气系统。
模具设计第6章 浇注系统的结构与设计--6
❖
严格把控质量关,让生产更加有保障 。2020年10月 下午12时36分20.10.2412:36October 24, 2020
❖
作业标准记得牢,驾轻就熟除烦恼。2020年10月24日星期 六12时36分23秒12:36:2324 October 2020
❖
好的事情马上就会到来,一切都是最 好的安 排。下 午12时36分23秒下午12时36分12:36:2320.10.24
5 尽量减少或避免产生熔接痕 防止影响塑件的 熔接强度。
7 防止塑件翘曲变形 在流程较长或需开设两个 以上浇口时更应注意这一点。
8 合理设计冷料穴或溢料槽 因为它可影响塑件 质量。
9 整修方便 浇口位置和形式应结合塑件形状考 虑,做到整修方便并无损塑件的外观和使用。
10 浇注系统的断面积和长度应尽量取小值,以 减少浇注系统占用的塑料量,从而减少回收料。
❖
专注今天,好好努力,剩下的交给时 间。20.10.2420.10.2412:3612:36:2312:36:23Oct-20
❖
牢记安全之责,善谋安全之策,力务 安全之 实。2020年10月24日 星期六12时36分23秒 Saturday, October 24,10.242020年10月 24日星 期六12时36分 23秒20.10.24
难点: 1、浇口形式和位置的选择 2、平衡浇注系统设计。
概述第六章 浇注系统的结构与设计
当熔融塑料通过浇注系统流入模具的型腔时, 其流动过程大致如下:图6-1所示。
注:无流道注塑模 无浇注系统凝料、有隔热保温的冷料层
注:高压、高速注塑容易将型腔填充饱满
6.1.1 浇注系统的作用、分类和组成
1.浇注系统的作用与分类
注塑模具结构及设计(浇注系统)
分流道与浇口间尽量不采 用逐渐变窄的形式,会产 生相对大的压力损失
牛角浇口通常设计成如上图所示的形状, 一般都加“火山口”。
牛角(香蕉)浇口
动模潜伏浇口
潜伏浇口的另外一种形状
定模潜伏浇口浇口
动模顶杆潜伏浇口
对于壁薄制品,为了加大普通潜伏浇口的进料口面积, 减小压力损失,可将其加宽,变为矩形截面潜伏浇口
6,浇口位置尽量开在不影响塑件外观的部位,如塑件的边缘,底部,内侧等,并 尽可能便于模具加工。
7,流动比的校核。对于大型塑件,当壁厚相对较小而流动距离过长时,不但内 应力增加,还会因料温降低而造成填充不足,这时须采用增加壁厚或增加浇口 数量及改变浇口位置等措施缩短最大流动距离。最大流动距离由流动通道的最 大流动长度和其厚度之比所确定。流动比随塑料熔体的性质,温度,注射压力, 浇口的种类,形式和开设位置变化。
侧浇口实例
侧浇口剖视
定模渐变 动模渐变
定模平直
侧浇口也可开在制品的底边
不常用
动模平直
侧浇口俯视 前端不变
扇形浇口
前端变小
薄片式浇口
前端变大
中心浇口 中心浇口是直接从中心环形或数股进料,与直接浇口有类同优点。 依形式不同分为环形浇口,轮辐浇口,爪形浇口等
1.适用于筒形件的进料,可避免偏芯. 2.去浇口较麻烦.
●冷料井:也称作冷料穴,目的在于储存充填初始阶段较冷的塑料前 锋冷料,防止冷料直接进入模穴影响充填品质或堵塞浇口。冷料井通常 设置在主流道末端,当分流道长度较长时,在末端也应开设冷料井。
主流道末端的冷料井其直径稍大于主流道大端直径,以利于冷料的流 入,它的底部常设计成Z钩形,球形,锥型,圆环形等,使冷料井兼 有在开模时,与拉料杆一起将主流道从定模中拉出的作用。
压铸模浇注系统及排溢系统设计
上一页 下一页 返回
6.1 浇注系统设计
• (5)横浇道截面积在任何情况下都不应小于内浇口截面积。多腔压
上一页 下一页 返回
6.1 浇注系统设计
• ④ 形状复杂的薄壁铸件应采用较薄的内浇口,以保证有足够的充填 速度。对一般结构形状的铸件,为保证最终静压力的传递作用,应采
• ⑤ 内浇口设置位置应使金属液充填压铸模型腔各部分时流程最短, • (2)内浇口的分类。内浇口的分类如表6-2所示。
上一页 下一页 返回
• (4)采用切线缝隙浇口(见图6-21(d))。金属液从法兰外成切线注入 ,两端设置溢流槽和排气槽,充填条件良好,表面光洁,螺纹清晰, 成形良好,除去浇口方便,但螺纹部位仍位于分型面上,容易产生飞
上一页 下一页 返回
6.1 浇注系统设计
• (5)采用环形浇口(见图6-21(e))。金属液从一端成环形注入,另一 端设置溢流槽。排气条件尚好,螺纹较为清晰,但方形法兰四周局部 充填不良,螺纹位于分型面上,容易产生飞边,影响同轴度和圆柱度
6.1 浇注系统设计
• (3)内浇口的尺寸确定。内浇口最合理的截面积计算涉及多方面的 因素,目前尚无切实可行的精确计算方法。在生产实践中,主要结合
• 式中 Ag——内浇口截面积,m2 • G ——通过内浇口的金属液质量,kg
• ρ ——液态金属的密度,kg·m-3
• vg——充填速度,m/s • t ——型腔的充填时间,s。
上一页 下一页 返回
6.1 浇注系统设计
项目6 分型面的确定与浇注系统的设计
适用于宽度较大 的薄片塑件。 的薄片塑件。
4
平缝 浇口
h=0.20~1.5 B为型腔长 为型腔长 度的1/4至全 度的 至全 长 L=1.2~1.5
适用于大面积扁 平塑件,进料均匀 进料均匀, 平塑件 进料均匀, 流动状态好, 流动状态好,避 免熔接痕。 免熔接痕。
浇 口 的 形 式 及 特 点
盘形 5 浇口 环形) (环形)
n≤
x 2500 × − 24 ∆L
对于高精度塑件,通常最多采用一模四腔。 对于高精度塑件,通常最多采用一模四腔。
二、相关知识
(一)型腔数量的确定及布置 1.型腔(cavity )数量的确定
(4) 按经济性确定型腔数目 )
NYt n' = 60C1
式中 N ― 需要生产塑件的总数; 需要生产塑件的总数; Y ― 每小时注射成型加工费; 每小时注射成型加工费; t ― 成型周期; 成型周期; Cl ― 每一型腔的模具费用,元。 每一型腔的模具费用,
图1-1 灯座二维图形
图5-1 电池盒盖
二、相关知识
(一)型腔数量的确定及布置 1.型腔(cavity )数量的确定 (1) 按注射机的最大注射量确定型腔数量。 按注射机的最大注射量确定型腔数量。
nm + m j ≤ kmn
km n −m j m
n≤
式中
n ― 型腔数量; m ― 单个塑件的体积或质量, cm3 或 g ; mj ― 浇注系统凝量, cm3或 g ; k ― 注射机最大注射量利用系数,一般取 0.8 ; mn ― 注射机最大注射量,cm3 或 g ; (切记算出之数值不能四舍五入 只能取小 切记算出之数值不能四舍五入,只能取小 切记算出之数值不能四舍五入 只能取小)
UG NX 10.0模具设计教程第6章
2.创建区域和分型线 其操作步骤如图6-7所示。
分型线
8
8
3.创建曲面补片
其操作步骤如图6-8所示。
2 选择此面 1
创建补片曲面
3
4.创建分型面
其操作步骤如图6-9所示,可创建分型面。
2 可拖动此圆球改 变分型面大小
分型面 1
3
5.创建型腔和型芯 其操作步骤如图6-10所示。
3 1 型腔
型芯
第6章 分型设计
6.1 模具分型概述
6.2 入门引例 6.3 设计区域 6.4 创建区域和分型线 6.5 创建曲面补片 6.6 设计分型面 6.7 创建型腔和型芯 6.8 交换模型
6.9 备份分型/补片片 6.10 综合实例
6.1 模具分型概述
分型面 分型面是模具动模和定模的接触面,模具分开后由此可 取出塑件或浇注系统。分型面一般位于产品外形轮廓的 最大断面处 。 UG/Mold wizard 分型过程 模具分型过程如图6-1所示。
2
6.3 设计区域
设计区域的主要功能是完成产品模型上型芯区域面和型腔区域面 的定义以及对产品模型进行区域检查分析,包括对产品模型的脱 模角度进行分析。单击“分型刀具”工具条中的“区域分析”按 钮,系统弹出如图6-11所示的“检查区域”对话框。 1.“计算”选项卡
2.“面”选项卡
3.“区域”选项卡
3
3.“有界平面”方式创建分型面 如果所有分型线都位于同一平面内, 可采用有界平面创建分型面。
型芯
4.“扩大曲面”方式创建分型 型芯 面
可拖动圆球调整分型面大小
扩大的曲面 1
高亮显示分
有界平面 分型面
2
3
5.“条带曲面”方式创建分型面 “条带曲面”方式创建分型面,就是由无数条平行于XY坐标平面的 曲线,沿着一条或多条相连的引导线而生成分型面。若模型分型 型芯 线全部在一个平面内,则无需设计引导线,可直接通过“条带曲 面”方式创建分型面。
塑料模具课程设计说明书_2
塑料成型工艺及模具设计课程设计说明书题目: 塑料模具设计专业: 模具设计制造及其自动化班级: 机设07级**: ***学号: ****************: ***时间: 2011年1月5日目录第一部分产品的说明第二部分塑件分析第三部分注射机的型号和规格选择及校核第四部分型腔的数目决定及排布第五部分分型面的选择第六部分浇注系统的设计第七部分型零件的工作尺寸计算第八部分推出机构的设计第九部分模架的选用第十部分冷却系统设计第十一部分模具的动作过程第十二部分设计小结第十三部分参考资料第一部分产品的说明本塑件结构简单, 壁厚均匀, 模架结构较简单。
精度要求较高, 为四级精度, 材料为聚乙烯成型性能一般, 其他并无特殊要求。
图一: 塑件俯视图第二部分塑件的分析聚乙烯化学名称: PE材料分析:PE是乙烯经聚合制得的一种热固性树脂。
在工业上, 也包括乙烯与少量α-烯烃的共聚物。
聚乙烯无臭, 无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-70~-100℃),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸),常温下不溶于一般溶剂,吸水性小,电绝缘性能优良。
聚乙烯无臭, 无毒, 手感似蜡, 具有优良的耐低温性能(最低使用温度可达-70~-100℃), 化学稳定性好, 能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸), 常温下不溶于一般溶剂, 吸水性小, 但由于其为线性分子可缓慢溶于某些有机溶剂, 且不发生溶胀, 电绝缘性能优良;但聚乙烯对于环境应力(化学与机械作用)是很敏感的, 耐热老化性差。
聚乙烯的性质因品种而异, 主要取决于分子结构和密度。
塑件注射成型工艺参数的确定:根据该塑件的结构特点和得成型性能, 查相关手册得到ABS塑件的成型工艺参数:第三部分注射机的型号和规格选择及校核注射模是安装在注射机上的, 因此在设计注射模具时应该对注射机有关技术规范进行必要的了解, 以便设计出符合要求的模具, 同时选定合适的注射机型号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)主流道出口端应有圆角,圆角半径R约取 0.3~3mm或取0.65D2。
(4)主流道表壁的表面粗糙度应小于Ra0.63~ 1.25um。(高于▽7)。
(5)主流道长度应尽量短 通常,主流道长度可小于或等于60mm。
(6)注意喷嘴和主流道的对中。
通常,主流道进口端凹下的球面半径要比喷嘴球面半 径大1~2mm,凹下深度约3~5mm。主流道进口端直径一 般都要比喷嘴出口直径大0.5~1mm。
(4)分流道表壁的表面粗糙度不宜太小,以免冷料 带入模腔,一般要求达到Ra1.25~2.5μm(▽6) 即可.
(5)当分流道较长时,其末端应留有冷料穴。 (6)合理的布置形式:
排列紧凑,缩小模具板面尺寸 流程尽量短 锁模力力求平衡
6.3.2 多型腔模具的浇注系统流动平衡
(一)各型腔塑件相同时
1 流动支路平衡
6.1.2 浇注系统的设计原则
1 了解塑料的成型性能 了解塑料的流动特性及 温度、剪切速率对粘度的影响,保证塑件的质量。
2 排气良好 能将气体有序顺利排出,不产生涡 流和紊流,也避免形成凹陷、烧焦及气泡等缺陷。
3 流程短 以降低压力、热量损失,缩短填充时 间,防止型腔充填不满等缺陷。
4 防止型芯和嵌件变形 应尽量避免熔融塑料正 面冲击直径较小的型芯和金属嵌件,防止型芯弯曲变 形或嵌件移位。
6.2 主流道设计
直浇口式主流道
设计内容:主流道、主流道衬套、定位环设计 1 主流道设计
如图6-7所示
设计要点:
(1)截面积要利于注塑速度、利于充模成型。 截面直径过小:成型困难。 截面直径过大:生产率下降、降低制品质量。
通常,主流道进口端的截面直径约取为4~8mm (2)主流道应呈圆锥形,锥角约取2º~4º。对
第六章 浇注系统的结构与设计
内容简介: 本章主要讲述浇注系统的组成和设计,浇口形
式的选用与设计。
学习目的和要求: 1、掌握浇注系统的设计原则,会设计浇
注系统,能合理选择浇口在工件上的位置。 2、设计多型腔模具的浇注系统时,能使
其浇注系统流动达到平衡。
第六章 浇注系统的结构与设计
重点: 1、浇注系统的组成。 2、浇口形式的选用。
经验方法一:
经验方法二:
制品质量(g) ~20
20~40 40~150 150~300 300~500 500~1500
D2(mm) 3 4 5 6 8 10
R(mm) 0.5 1 1 2 2 2
2 主流道衬套设计
返回
设计主流道衬套时应注意以下事项: (1)主流道分开设计。 (2)主流道衬套应选用优质钢材(如T8A等),热
5 尽量减少或避免产生熔接痕 防止影响塑件的 熔接强度。
7 防止塑件翘曲变形 在流程较长或需开设两个 以上浇口时更应注意这一点。
8 合理设计冷料穴或溢料槽 因为它可影响塑件 质量。
9 整修方便 浇口位置和形式应结合塑件形状考 虑,做到整修方便并无损塑件的外观和使用。
10 浇注系统的断面积和长度应尽量取小值,以 减少浇注系统占用的塑料量,从而减少回收料。
难点: 1、浇口形式和位置的选择 2、平衡浇注系统设计。
概述第六章 浇注系统的结构与设计
当熔融塑料通过浇注系统流入模具的型腔时, 其流动过程大致如下:图6-1所示。
注:无流道注塑模 无浇注系统凝料、有隔热保温的冷料层
注:高压、高速注塑容易将型腔填充饱满
6.1.1 浇注系统的作用、分类和组成
1.浇注系统的作用与分类
返回
返回
2.浇注系统的组成 浇注系统一般是由主流道、分流道、浇口和
冷料穴四个部分组成。 (1)主流道 由注塑机喷嘴与模具接触的部
位起到分流道为止的一段流道,是熔融塑料进入 模具时最先经过的部位。
(2)分流道 主流道与浇口之间的一段流道, 它是熔融塑料由主流道流入型腔的过渡段,能使 塑料的流向得到平稳的转换。对多腔模分流道还 起着向各型腔分配塑料的作用。
浇注系统的作用是使塑料熔体平稳且有 顺序地填充到型腔中,并在填充和凝固过程 中把压力充分传递到各个部位,以获得组织 紧密、外形清晰的塑料制件。
普通浇注系统分直浇口和横浇口两种类 型,见图6-5、图6-6所示。直浇口适用于立 或卧式注塑机,其主流道一般是垂直于分型 面的;而横浇口只适用于角式注塑机,其主 流道平行于分型面。
(3)浇 口 是分流道与型腔之间的狭窄部 分,也是最短小的部分。它的作用有三点:
1)加速度充满型腔; 2)防止塑料倒流,出现缩孔和凹陷; 3)便于浇注系统凝料与塑件分离。 (4)冷料穴 收集每次注射成型周期产生冷料的料穴。 防止塑件熔接不牢或成型不满。 冷料穴一般设在主流道末端,当分流道较长 时,在它的末端也应开设冷料穴。 必要时,在型腔的对面也可以开设冷料穴。
处理后硬度为53~57HRC。 (3)衬套的长度应与定模配合部分的厚度一致。 (4)衬套与定模之间的配合采用H7/m6。Biblioteka 3 定位环设计返回
返回
设计定位环时应注意以下事项:
(1)定位环与注塑机定模固定板上的定位孔之 间采取比较松动的间隙配合,如H11/h11或H11/b11。
(2)对于小型模具,定位环与定位孔的配合长 度可取8~10mm,对于大型模具则可取10~15mm。
6.3 分流道设计
6.3.1直浇口式分流道
设计分流道时应注意以下事项:
(1)分流道布排应尽量平衡。 (2)分流道的截面形状可参考图6-13设计。其中: 圆形截面、梯形截面、U形截面、半圆形截面、矩形 截面。
(3)分流道长度Lf一般在8~30mm之间,也可根据 模腔数量适当加长,但不宜小于8mm。
(3)将与注塑机定位孔配合的直径dj以及与定 模上定位孔配合的直径dm做成通用或标准尺寸。
(4)易更换,且可以防止主流道衬套在注塑时 后退。
横浇口式主流道
横浇口式主流道结构比较简单。 其截面形状可为圆形、半圆形、椭圆形和梯形。 横浇口式主流道的末端可开设冷料穴,深度约取4~5mm。 主流道表壁的表面粗糙度应小于Ra0.32~0.63μm(▽8以上)。
2 熔体压降平衡
6.4 冷料井与拉料杆合理匹配
冷料穴:用来容纳注射间隔所产生的冷料的井穴 冷料穴 一般开设在塑料流动的转向处 冷料穴 标称直径与主流道大端直径相同或略大一些, 深度约为直径的1~1.5倍