先进航空发动机关键制造技术研究
航空发动机效率提升研究及优化措施分析
航空发动机效率提升研究及优化措施分析航空发动机效率的提升是航空产业发展的重要课题之一。
随着对环境保护和能源效率的需求不断增加,航空发动机的效率优化成为了关键的研究领域。
本文将讨论航空发动机效率的相关概念、研究方法以及现有的优化措施,并对未来的发展进行前瞻性展望。
首先,我们需要明确航空发动机效率的概念。
航空发动机效率是指在单位时间内产生的动力输出与所消耗的燃料能量之间的比值。
通过提高航空发动机的效率,可以减少燃料的消耗量,降低航空运输对能源的依赖,同时也能减少对环境的污染。
目前,航空发动机效率提升的研究主要集中在以下几个方面:1. 燃料燃烧效率的提高:通过改进燃烧室的设计和燃料注入系统,优化燃料与空气的混合过程,可以提高燃料的燃烧效率。
此外,采用燃料增压系统和高效的压缩机,可以提高整个燃烧过程中的压缩比,进一步提高燃烧效率。
2. 减少内部损失:航空发动机内部存在着多种损失,如摩擦损失、冷却损失、机械损失等。
通过改进涡轮机的结构和材料,减少叶轮和导叶之间的摩擦损失;优化冷却系统,提高冷却效率,减少冷却损失;采用先进的机械设计和材料,降低机械损失。
这些措施可以显著减少内部损失,提高航空发动机的效率。
3. 废气再利用:航空发动机在燃烧过程中会产生大量废气。
通过在废气排放中回收能量,如采用废气涡轮增压、废气余热回收等技术,可以提高发动机的能量利用率,进一步提高效率。
除了以上的研究领域,航空发动机效率提升还面临着一些挑战。
首先,高效率往往伴随着高温和高压,在设计和制造方面会面临更高的要求;其次,航空发动机的能效提升需要综合考虑安全性、可靠性和经济性等方面的因素,需要协调各种技术和指标的平衡。
未来,航空发动机效率提升的发展方向是多方面的。
一方面,随着新材料、新工艺的出现,航空发动机的设计和制造将更加先进和精细化,进一步提高效率;另一方面,航空发动机将更加智能化,通过数据分析和预测,实现优化运行和维护,进一步提升效率。
航空发动机叶片关键技术发展现状分析
航空发动机叶片关键技术发展现状分析航空发动机叶片是航空发动机的重要组成部分,直接影响着发动机的性能和效率。
随着航空工业的不断发展,对于航空发动机叶片的要求也越来越高,因此其关键技术的发展成为了航空发动机领域的热点之一。
本文将对航空发动机叶片关键技术的发展现状进行分析,并展望未来的发展方向。
一、材料技术航空发动机叶片的材料是决定其性能的关键。
在过去,镍基高温合金一直是航空发动机叶片的主要材料,因为其具有良好的高温强度和抗氧化性能。
随着航空发动机工作温度的不断提高,传统的镍基高温合金已经不能满足发动机叶片的性能要求。
人们开始研发新型的高温合金材料,如含铱的单晶高温合金、含有强化相的高温合金等。
这些新材料具有更高的工作温度和良好的高温强度,能够更好地适应发动机叶片的工作环境。
除了材料的改进,还有一些新型材料的应用也在不断推进,比如碳纤维复合材料。
碳纤维复合材料具有优异的高温强度、轻质化和抗腐蚀等性能,逐渐成为航空发动机叶片的新材料选择。
碳纤维复合材料的成型工艺、连接方式、性能预测等方面的技术问题还有待解决,需要进一步的研究和发展。
二、制造技术航空发动机叶片的制造技术一直是航空工业发展的重要方向之一。
传统的叶片制造采用的是铸造和数控加工工艺,虽然能够满足一定的叶片质量和形状要求,但在材料利用率、制造周期、成本和精度等方面还存在着一定的不足。
近年来,随着增材制造技术的逐渐成熟,人们开始尝试使用增材制造技术来制造航空发动机叶片。
增材制造技术可以实现对叶片内部结构的优化设计,提高材料的利用率;同时可以实现叶片的快速制造,减少制造周期和成本。
目前,增材制造技术在航空发动机叶片制造领域的应用还处于起步阶段,但其潜力巨大,未来有望成为叶片制造的重要技术。
在叶片表面处理方面,热障涂层技术一直是航空发动机叶片的重要技术之一。
热障涂层不仅可以提高叶片的抗氧化性能,增加寿命,还可以降低叶片的工作温度,提高发动机的热效率。
目前,随着热障涂层技术的不断发展,新型的多层复合热障涂层、纳米涂层等新技术不断出现,为航空发动机叶片的表面处理提供了更多的选择。
激光加工工艺在航空发动机叶片制造中的应用研究
激光加工工艺在航空发动机叶片制造中的应用研究概述:航空发动机叶片是发动机的关键部件之一,对于发动机性能和寿命具有重要影响。
传统的叶片制造方法存在一些缺陷,包括加工效率低、工艺复杂和精度难以保证等问题。
随着激光技术的不断发展,激光加工工艺逐渐被引入航空发动机叶片制造中,为提高制造效率和质量提供了新的解决方案。
一、激光切割工艺的应用激光切割是激光加工中最常见的工艺之一。
传统的叶片切割过程需要使用锯片或者铣床进行加工,存在加工效率低、切割精度难以保证和产生切割毛刺的问题。
而激光切割工艺可以通过调整激光功率和切割速度,实现高速、高精度的叶片切割。
同时,激光切割还可以避免切割毛刺的产生,提高叶片的表面质量。
二、激光焊接工艺的应用叶片的制造过程中需要进行各部件的焊接,传统的焊接方法往往存在焊接接头强度不高、焊接变形严重和焊接精度难以控制等问题。
而激光焊接工艺具有高能量密度、小熔区和热影响区、焊缝宽度可控等优势,可以有效解决传统焊接方法存在的问题。
通过激光焊接技术,可以实现叶片各部件的高质量焊接,提高叶片的整体强度和稳定性。
三、激光打孔工艺的应用叶片在制造过程中需要进行各种孔的加工,传统的孔加工方法往往存在加工精度难以保证、孔壁质量差等问题。
激光打孔工艺可以通过调整激光功率和加工参数,实现高精度的叶片孔加工。
激光打孔具有加工速度快、孔壁质量好和无需后续加工等优势,可以提高叶片的加工效率和质量。
四、激光刻蚀工艺的应用激光刻蚀是一种通过激光束直接蚀刻叶片表面的工艺。
传统的刻蚀方法往往存在加工时间长、刻蚀深度难以控制和操作复杂等问题。
而激光刻蚀工艺可以通过调整激光功率和刻蚀参数,实现高精度、高效率的叶片表面刻蚀。
激光刻蚀具有加工速度快、刻蚀深度可控和操作简单等优势,可以实现叶片表面的纹理加工和功能性图案的刻蚀。
五、激光熔化成形工艺的应用激光熔化成形是通过激光束对叶片材料进行熔化,并利用表面张力和气流的作用实现材料的流动和成形。
航空发动机关键制造技术
件 制 造 过 程 的 专 业 化 成 套 制 造 技 术
等 。 本 期 主 题 策 划 了 复 合 材 料 加 工
技 术 、 整 体 叶 盘 制 造 技 术 、 以 及 新 技 术 新 工 艺 新装 备 希 期 读 者对 这
,
些 关 键 技 术 能 有 所 了 解 。 策 划 人 : 李 华 翔
造 中 主 要 用 于 压 气 机 及 涡 轮 机 的 各
类 机 匣 、 压 气 机 盘 及 涡 轮 盘 、 涡 轮
轴 和 压 气 机 轴 等 复 杂 构 件 的 加 工 。 高 效 精 密 切 削 、 变 形 补 偿 、 自 适 应
加工 ,
以 及 抗 疲 劳 制 造 等 技 术 的 研
特 别 策 划 航空 发 动机 关键制 造技 术 :
先进 航 空 发 动 机关 键 制 造 技 术 包 括 轻 量 化 整 体 化新 型 冷 却 结 构
、
件 制 造 技 术 新 材 料 构 件 制 造 技 ,
术 航 空 发 动 机 制 造 新 技 术 新 工 ,
艺 航空 发 动 机零 部件 的 无 损 检 测 ,
技 术 , 以 及 造 技 术 。
轻量 化 、 整 体 化 新 型 冷 却 结 构 件 制 造 技 术 包 括 : 整 体 叶 盘 制 造 技 术 , 整 体 叶 环 ( 无 盘 转 子)制 造 技 术 , 大 小 叶 片 转 子 制 造 技 术 , 发 动 机 机 匣 制 造 技 术 , 宽 弦 风 扇 叶 片 制 造 技
究 和 应 用 在 新 代 一 发 动 机 的 加 工 中
需 求 迫 切 。
另 外 还 有 特 种 加 工 技 术 特 种 ,
焊 接 技 术 热 障 涂 层 技 术 快 速 原
用于航空发动机的涡轮叶片材料及制造技术研究
用于航空发动机的涡轮叶片材料及制造技术研究航空发动机是现代航空业中最重要的装备之一,而其涡轮叶片则是发动机的核心组件之一。
涡轮叶片的材料和制造技术的不断研究和改进,不仅能够提升发动机的性能,还可以降低发动机的制造成本和使用成本。
本文将从涡轮叶片的材料和制造技术两个方面进行探讨。
一、涡轮叶片材料研究涡轮叶片是承受高温高压气流冲击和引导气流流动的组件,因此涡轮叶片的材料需要具备较高的耐热、耐腐蚀和抗疲劳裂纹扩展等性能。
目前,用于航空领域的涡轮叶片材料主要包括高温合金、陶瓷基复合材料和光学玻璃等几种。
1. 高温合金高温合金是涡轮叶片最常用的材料之一,其具有较高的强度、耐热性、抗氧化和耐腐蚀性能,可用于承受高温高压环境下的作业。
高温合金主要是以镍、钴、铁为基础,加入包括铬、钼、钨、铝、钛等的多种元素制成。
2. 陶瓷基复合材料陶瓷基复合材料是一种高强度、高耐热性和耐腐蚀性的新型材料,由于其结构和性能均可根据需求进行调节,因此在航空领域被广泛应用。
目前,陶瓷基复合材料主要包括碳化硅、氮化硅、碳化钛、氧化铝和氮化铝等。
3. 光学玻璃光学玻璃作为一种透明的高强度材料,具有较高的耐热、耐磨和耐腐蚀性能,因此可以用于航空领域的高温高压环境中。
其中,钠钙玻璃和氟化物玻璃是最常用的两种光学玻璃。
二、涡轮叶片制造技术研究合适的涡轮叶片材料是涡轮叶片的基础,而制造技术则直接决定着叶片的质量和性能。
目前,涡轮叶片的常见制造技术包括精密铸造技术、热等静压成型技术、超声波焊接技术等。
1. 精密铸造技术精密铸造技术是现代涡轮叶片制造中最常见的一种技术,其主要原理是在对模具进行预处理和设计后,在高温下将熔融金属注入模具中,并通过精密控制形成叶片的整体结构。
精密铸造技术能够在保证叶片性能的同时,大大降低叶片制造的成本。
2. 热等静压成型技术热等静压成型技术是一种通过将原料放入容器中直接加热处理以制造高质量涡轮叶片的技术。
在加热的过程中,原料将保持某种特定的形状和结构,并在以后的冷却过程中形成较高质量的叶片。
大型飞机用发动机的特点及关键制造技术.
论坛56航空制造技术·2008 年第13 期发展大型飞机对于保障国家安全,提升国家综合实力,改变经济发展模式,促进科技进步等都具有非常重要的作用。
研制和发展大型飞机,是国家工业、科技水平和综合实力的集中体现,对增强我国的综合实力和国际竞争力具有极为重要的意义。
大飞机的技术扩散率高达60%,开展大飞机研制能够带动新材料、现代制造、先进动力、电子信息、自动控制、计算机等领域关键技术的群体突破,拉动众多高技术产业的发展。
作为大型飞机的心脏——大型发动机,其研制的技术难度和投资的风险非常高。
我国在《国家中长期科学和技术发展规划纲要》和《“十一五”规划纲要》中已经把大型飞机列为重大专项工程,而且要求配装拥有自主知识产权的大涵道比涡扇发动机。
本文结合大飞机用发动机的特点对其关键制造技术作了初步探讨和分析,并对我国研制和生产大飞机用发动机提出了几点参考建议。
大飞机用发动机的性能特点所谓大飞机,是指起飞总重量超过100t 的运输类飞机,包括军用和民用大型运输机,也包括150座以上的干线客机。
大飞机的发动机应该具备高可靠性、长寿命、节能环保以及低成本运行等基本要求,在发动机的结构上,具有大涵道比、零件整体化、轻量化等特点并尽可能多地采用复合材料。
与军用战斗机发动机相比,大飞机用发动机的主要特点具体表现为:(1)安全可靠性高。
安全性主要指低的空中停车率(现已降至0.002~0.005次/1000飞行小时)。
为满足这一要求,大飞机用发动机普遍采用了较大的核心机尺寸和较低的涡轮前工作温度。
大型飞机用发动机的特点及关键制造技术Characteristics of Aeroengine for Large Aircraft and Its ManufacturingTechnology西安航空发动机(集团)有限公司马建宁西北工业大学现代设计与集成制造技术教育部重点实验室张定华王增强李山吴宝海国外的成功经验和先进制造技术的发展表明,我国大飞机用航空发动机的研制必须将专业的制造技术与信息技术、管理技术进行有机地结合,并将计算机技术综合应用于设计、制造、检测、管理、销售、使用、服务等发动机研制的全过程。
先进航空发动机关键制造技术研究
先进航空发动机关键制造技术研究摘要:航空发动机是飞机的核心部分。
在21世纪,航空发动机的设计和制造技术体现出了国家的科技发展水平,随着科学技术的不断发展,国家对航空领域的重视程度越来越高,所以通过对我国现有的发动机制造水平进行研究,能够对先进的航空发动机制造技术进行分析,研究出先进的发动机制造技术,促进我国航空领域的不断发展。
关键词:航空发动机;关键技术;制造研究引言:航空发动机技术具有高技术、高投入、高风险的特性,一般来说,单台发动机的研发时间一般在十年到二十年左右,所耗费的资金大约是10亿到20亿。
从这些数据就能够看出航空发动机的重要性和难度。
我国的航空发动机技术的发展与先进国家相比,仍然存在着很大的距离,因此,要想令我国的发动机技术水平得到提升,就需要投入大量的经费去进行技术方面的研究,只有这样才能够令先进航空发动机关键制造技术得到更好的发展。
一、我国航空发动机的发展我国航空发动机经历了一个非常漫长的过程,航空发动机的作用就是为飞机提供推动力,在所有航空器进行工作的过程当中,航空发动机都是一个非常核心的部位,自从飞机研发成功之后,飞机的发动机也得到了飞速的发展,我国的航空业逐渐形成了各种各样、多种类、大范围的特点。
从我国航空发动机的发展历程来看,发动机经历了两个时期,一个是活塞发动机时期,另外一个是燃气涡轮发动机时期,从活塞发动机时期到燃气涡轮发动机十期,可以看出航空领域发生了质的飞跃。
我国进行航空发动机的研制工作是在新中国成立之后,新中国刚刚成立的时候,我国的科学技术水平简直就是一张白纸,从最初的模仿、改造到现在可以独立研发出高水平的航空发动机,我国的科技人员经历了一个非常漫长且坎坷的过程。
我国是世界上最大的发展中国家,航空发动机的事业直接体现出一个国家的国力标准和经济发展程度,如果一个国家没有先进的航空发动机事业,那么这个国家的航空事业便不会有大的成就,航空工业也不会得到迅速的发展。
二、航空发动机的制造工艺特点航空发动机的制造工艺特点主要有以下几个方面,分别是材料难加工,切除率大、形状与结构复杂、加工精度高。
航空航天先进制造技术与研发方案设计
航空航天先进制造技术与研发方案设计第1章先进制造技术概述 (3)1.1 航空航天工业背景 (3)1.2 先进制造技术发展现状 (4)1.3 航空航天先进制造技术的挑战与机遇 (4)第2章材料科学与航空航天制造 (5)2.1 高功能金属材料 (5)2.1.1 钛合金 (5)2.1.2 镍基高温合金 (5)2.1.3 金属基复合材料 (5)2.2 复合材料及其制造技术 (5)2.2.1 碳纤维增强复合材料 (5)2.2.2 玻璃纤维增强复合材料 (5)2.2.3 复合材料制造技术 (5)2.3 新型航空航天材料发展趋势 (6)2.3.1 陶瓷基复合材料 (6)2.3.2 纳米材料 (6)2.3.3 智能材料 (6)2.3.4 生物基复合材料 (6)第3章高精度加工技术 (6)3.1 数控加工技术 (6)3.1.1 数控铣削加工 (6)3.1.2 数控车削加工 (6)3.1.3 数控磨削加工 (6)3.2 激光加工技术 (7)3.2.1 激光切割 (7)3.2.2 激光焊接 (7)3.2.3 激光打标与雕刻 (7)3.3 电火花加工技术 (7)3.3.1 精密电火花成形加工 (7)3.3.2 电火花线切割加工 (7)3.3.3 多轴联动电火花加工 (7)第4章高效自动化装配技术 (7)4.1 自动化装配系统 (7)4.1.1 自动化装配系统组成 (8)4.1.2 自动化装配原理 (8)4.1.3 航空航天制造业应用案例 (8)4.2 技术在装配中的应用 (8)4.2.1 分类及特点 (8)4.2.2 路径规划与控制 (8)4.2.3 航空航天装配应用案例 (8)4.3 虚拟现实与增强现实技术在装配中的应用 (8)4.3.1 虚拟现实与增强现实技术原理 (8)4.3.2 虚拟现实与增强现实在装配中的应用 (9)4.3.3 航空航天装配应用案例 (9)第5章铸造与锻造技术 (9)5.1 铸造技术及其在航空航天领域的应用 (9)5.1.1 铸造技术概述 (9)5.1.2 航空航天领域铸造技术的应用 (9)5.2 锻造技术及其在航空航天领域的应用 (9)5.2.1 锻造技术概述 (9)5.2.2 航空航天领域锻造技术的应用 (9)5.3 高温合金锻造技术 (10)5.3.1 高温合金锻造技术概述 (10)5.3.2 高温合金锻造工艺 (10)5.3.3 高温合金锻造技术在航空航天领域的应用 (10)第6章焊接与连接技术 (10)6.1 激光焊接技术 (10)6.1.1 激光焊接原理与特点 (10)6.1.2 激光焊接在航空航天领域的应用 (10)6.1.3 激光焊接技术的发展趋势 (10)6.2 电子束焊接技术 (11)6.2.1 电子束焊接原理与特点 (11)6.2.2 电子束焊接在航空航天领域的应用 (11)6.2.3 电子束焊接技术的发展趋势 (11)6.3 超声波焊接技术 (11)6.3.1 超声波焊接原理与特点 (11)6.3.2 超声波焊接在航空航天领域的应用 (11)6.3.3 超声波焊接技术的发展趋势 (11)6.4 气动连接技术 (11)6.4.1 气动连接原理与特点 (11)6.4.2 气动连接在航空航天领域的应用 (11)6.4.3 气动连接技术的发展趋势 (12)第7章表面处理与涂层技术 (12)7.1 表面处理技术 (12)7.1.1 机械表面处理技术 (12)7.1.2 化学表面处理技术 (12)7.1.3 激光表面处理技术 (12)7.2 涂层技术 (12)7.2.1 热喷涂技术 (12)7.2.2 物理气相沉积技术 (12)7.2.3 化学气相沉积技术 (12)7.3 防腐蚀与耐磨涂层技术 (13)7.3.1 防腐蚀涂层技术 (13)7.3.2 耐磨涂层技术 (13)7.3.3 复合涂层技术 (13)第8章检测与质量控制技术 (13)8.1 无损检测技术 (13)8.1.1 超声波检测技术 (13)8.1.2 射线检测技术 (13)8.1.3 磁粉检测技术 (13)8.1.4 涡流检测技术 (14)8.2 在线监测与故障诊断技术 (14)8.2.1 振动监测技术 (14)8.2.2 声学监测技术 (14)8.2.3 温度监测技术 (14)8.2.4 油液监测技术 (14)8.3 质量控制与管理技术 (14)8.3.1 统计过程控制技术 (14)8.3.2 质量管理体系 (14)8.3.3 数字化质量监控技术 (14)8.3.4 智能化质量控制技术 (15)第9章绿色制造与可持续发展 (15)9.1 航空航天工业绿色制造概述 (15)9.2 低碳制造技术 (15)9.3 循环经济与资源再利用技术 (15)第10章研发方案设计与案例分析 (15)10.1 研发方案设计流程与方法 (15)10.1.1 研发方案设计概述 (15)10.1.2 研发方案设计流程 (16)10.1.3 研发方案设计方法 (16)10.2 航空航天先进制造技术集成与应用案例 (16)10.2.1 高功能复合材料制造技术 (16)10.2.2 高精度加工技术 (16)10.2.3 数字化制造与智能制造技术 (16)10.2.4 绿色制造技术 (16)10.3 航空航天制造企业研发战略与未来展望 (16)10.3.1 航空航天制造企业研发战略 (16)10.3.2 航空航天先进制造技术的未来发展趋势 (16)10.3.3 航空航天制造业面临的挑战与机遇 (16)10.3.4 航空航天制造企业研发方向与布局 (16)第1章先进制造技术概述1.1 航空航天工业背景航空航天工业是国家战略性高技术产业,具有极高的技术含量和综合集成能力。
先进航空发动机设计与制造技术综述.
先进航空发动机设计与制造技术综述进入21世纪,世界航空发动机技术取得了巨大进步,并呈现加速发展的趋势。
美国推重比10一级涡扇发动机F119作为第四代战斗机F22的动力装备部队,是当今航空动力技术最具标志性的成就。
在此基础上,美国持续实施了多个技术研究计划,正在推动世界航空发动机技术继续向前发展。
本文从未来高性能航空发动机采用的高级负荷压缩系统、高温升燃烧室、高效冷却涡轮叶片、推力矢量等方面,对其先进设计和制造技术的发展方向和趋势进行初步的分析研究。
高级负荷压缩系统高压压气机技术发展的目标是单级压比高、级数少、推重比高、飞行性能好。
对高级负荷的压缩系统,低展弦比设计、气动前掠设计、整体叶盘、整体叶环、压气机稳定性主动控制等技术是其中具有代表性的新技术。
1低展弦比叶片设计及制造低展弦比叶片即宽弦叶片,它与窄弦叶片相比,增宽了弦长,使压气机的长度缩短,抗外物损伤能力、抗疲劳特性和失速裕度有所提高。
还可使压气机零件数减少,降低生产和制造费用成本(图表1。
90年代以来,英国罗·罗(R·R公司、美国普惠公司和GE 公司、法国SNECMA公司不断研制和改进高压压气机钛合金宽弦叶片的气动和结构性能,广泛应用于大涵道比涡扇发动机和高推重比小涵道涡扇发动机上。
GE 公司TECH56技术计划的验证机和F119发动机、EJ200发动机都采用了这种宽弦叶片。
叶片的低展弦比设计,结合整体叶盘技术使得高压压气机在减少级数和提高叶片强度的同时,具有更好的气动稳定性。
低展弦比叶片需要解决的关键技术问题是因重量增加而导致的轮盘与叶根结合处和轮盘本身的离心力增大问题。
IHPTET计划在大型涡扇和涡喷发动机验证机上验证了该技术,该技术还将在F135和F136发动机上采用。
目前,低展弦比叶片已成为先进航空发动机压缩系统的关键技术,与3D气动掠形、空心结构、整体叶盘结构和更轻的钛金属基复合材料技术相结合,是未来的发展重点。
航空发动机关键部件结构及制造工艺的发展
航空发动机关键部件结构及制造工艺的发展随着现代航空技术的不断发展,航空发动机作为航空飞行的动力源,其质量和可靠性十分重要。
航空发动机关键部件是决定发动机性能和寿命的关键因素,因此,这些部件的结构和制造工艺的发展是航空工业发展的重要方向。
一、涡轮叶片涡轮叶片是航空发动机中最关键的部件之一,也是制造过程中最复杂和难度最大的部件之一。
涡轮叶片是直接与高温高压燃气流接触的部件,因此需要具备很高的耐热性、耐疲劳性和耐腐蚀性。
同时,涡轮叶片的表面需要具备良好的光滑度和精度,以提高发动机的效率。
涡轮叶片的结构和制造工艺的发展主要包括以下几个方面:1. 材料的改进。
传统涡轮叶片主要采用单晶高温合金,但由于其成本较高,稳定性较差,近年来逐渐被新型双晶高温合金所代替。
双晶高温合金具有更好的抗裂纹扩展性和更高的持久寿命。
2. 制造工艺的改善。
传统涡轮叶片的制造需要多道工序,包括粉末冶金、热加工、热处理、机加工等,制造周期长、成本高。
近年来,基于增材制造技术的3D打印技术已经开始应用于涡轮叶片的制造,大大缩短了制造周期和降低了成本。
3. 涂层技术的应用。
涡轮叶片表面需要涂层来保护其表面光洁度和韧性。
现代涂层技术已经实现了表面均匀性和耐腐蚀性的同时,还能够提高叶片的热传导性和减少表面氧化,提高了叶片的使用寿命和性能。
二、轴承和齿轮航空发动机中的轴承和齿轮是发动机能否正常工作的关键部件。
轴承和齿轮的制造工艺的发展同样具有重要的意义。
1. 材料的改进。
轴承和齿轮的材料需要具备优异的机械性能和耐疲劳性能。
现代材料技术不断推陈出新,不断开发出具备更高性能的新型材料,如钛合金、高强度钢等。
2. 表面处理技术的发展。
轴承和齿轮的滚动表面需要具备优异的光洁度和精度,以实现更低的摩擦和更高的效率。
现代表面处理技术,如电火花加工、化学蚀刻等,可以大大提高轴承和齿轮的表面光洁度和精度。
三、燃烧室航空发动机中的燃烧室是将燃料和空气混合后爆炸燃烧产生动力的部件,是保持发动机高效能和低排放的关键部件。
航空发动机数字化装配仿真关键技术研究
航空发动机数字化装配仿真关键技术研究摘要:随着我国航空事业发展得如火如荼,数字化技术也逐渐受到人们的重视。
本文主要阐述了飞机发动机装配中存在的一些问题,目前已经有一些可行的装配工艺、工装结构和流水线布置方法,以确保装配的可行性,减少有关缺陷的发生,并及时地检查装配工艺设计的合理性,优化装配工艺。
关键词:航空发动机;数字化装配;关键技术;可靠性研究引言:为了改善发动机的可靠性、使用寿命和主要性能指标,在飞机发动机生产的各个阶段,都必须致力于改进相关的装配技术和设备的质量。
由于受到多种人为因素的制约,使得常规手工制造的产品质量难以适应航空发动机的要求。
在此基础上,运用虚拟现实技术,对所设计的产品进行了三维建模,从而达到了产品的可装配性和经济性。
采用先进的数字化装配技术,改善飞机发动机的生产效率,改善飞机的零部件质量,是飞机发动机生产技术发展的一个重要趋势。
在飞机发动机生产技术中,数字化装配具有以下优点:①可以有效地改善飞机发动机的装配效率和产品的质量。
为适应现代工业生产的高速发展,我国航空发动机集中化的发展提出了新的要求。
②在此基础上,对国内的数字化柔性装配技术的发展起到了积极的推动作用。
1.航空发动机数字化装配的意义飞机发动机装配包括零件装配和总装装配。
有关的研究显示,飞机的装配费用约为40%,装配工作时间约为50%,装配作业的实施是决定飞机引擎效能的关键因素。
为了确保飞机的正常工作,机匣、盘、轴、叶片、喷口等零件应具备精确装配与联接、高同轴、平衡性能和稳定性;其次,空气、燃油及滑油等必须具备良好的密封性和清洁能力;同时还需要各种附属设备和管道具有良好的抗振动、抗磨损、绝缘等特性。
由于飞机引擎各项技术性能、推重比、可靠性等技术指标的不断提高,使得现有的装配技术很难适应飞机发动机研制方式的转变,目前所面对的问题是:装配工艺设计及验证依赖技术人员经验和现场物理试装,须反复迭代修改,生产周期长;采用人工装配,导致装配的精确度不高,生产效率提高速度慢;由于人工因素的存在,导致了作业的可信度和装配品质的稳定性差,容易出现错装、漏装等问题。
先进航空发动机技术研究与开发
先进航空发动机技术研究与开发随着时代的进步和技术的发展,航空发动机技术的不断进步是航空工业中不可或缺的一部分。
发动机作为整个飞机的“心脏”,它的性能关系到飞机的安全性和经济性。
因此,先进航空发动机技术的研究和开发具有非常重要的意义。
一、先进航空发动机技术的发展历程航空发动机的发展历程可以分为四个阶段。
第一阶段是直线活塞式内燃机时期,主要应用于轻型飞机和舰载机。
第二阶段是喷气式内燃机时期,主要应用于民用和军用喷气飞机,如战斗机、轰炸机、客机等。
第三阶段是涡扇式喷气发动机时期,其特点是高效、低噪声、低污染,应用于现代喷气客机和商用飞机等。
第四个阶段是高温合金材料、先进材料和复合材料的应用时期,主要应用于高速飞机、超音速飞行和太空航行。
随着航空飞行的不断推进,先进航空发动机技术研究和开发也从传统的涡轮扇发动机、涡轮螺旋桨发动机、高温高速喷气发动机等方向不断向复合材料、新型燃烧室、先进气体涡轮、高效推进、发动机控制系统等方向拓展。
二、先进航空发动机技术的特点和优势先进航空发动机技术的特点主要包括:高效、高速、高可靠性、低噪声、低污染和多功能化等因素。
这些特点是基于目前现代航空工业的需求,能够更好地适应高速和高温环境,减轻飞机重量和燃料消耗,提高飞机的安全性和经济性。
其中,高效是指发动机的热效率、压缩效率和推力重量比等都要比传统发动机高。
高效发动机能够在较低的燃料消耗下提供更高的推力,从而减少运营成本。
高速是指发动机能够适应高速和高温的环境,以满足高速飞行的需求。
高可靠性是指发动机的工作时间、寿命和故障率都要比传统发动机高。
低噪声和低污染是指发动机要具备低噪声和低污染的特点,以保护环境和减少对居民的干扰。
多功能化是指发动机在不同工作条件下,能够执行不同的任务和应用。
三、先进航空发动机技术的研究和开发航空发动机技术的研究和开发需要投入大量的人力、物力和财力,但对航空工业的发展意义重大。
目前,国际上很多航空工业制造企业都在积极进行先进航空发动机的技术研究和开发。
先进制造技术在航空航天中的应用研究
先进制造技术在航空航天中的应用研究航空航天领域一直以来都是人类探索未知、追求进步的前沿阵地。
在这个充满挑战和机遇的领域中,先进制造技术的应用发挥着至关重要的作用。
它不仅推动了航空航天装备的性能提升和创新发展,还为实现更加高效、可靠和经济的航天任务提供了有力支持。
先进制造技术涵盖了众多领域和工艺,如增材制造(3D 打印)、复合材料制造、超精密加工、智能制造等。
这些技术的不断发展和应用,为航空航天制造业带来了革命性的变化。
增材制造技术,也就是3D 打印,在航空航天领域的应用日益广泛。
与传统的减材制造方法相比,3D 打印能够实现复杂形状零部件的一体化成型,大大减少了零件数量和装配工序,从而减轻了飞行器的重量。
例如,在发动机制造中,通过 3D 打印可以制造出具有复杂内部冷却通道的涡轮叶片,提高发动机的性能和效率。
此外,3D 打印还能够快速生产出定制化的零部件,满足特殊任务和紧急需求,缩短了研发周期和生产成本。
复合材料制造技术也是航空航天领域的重要发展方向。
复合材料具有高强度、高刚度、低密度等优异性能,能够显著减轻飞行器的结构重量。
目前,碳纤维增强复合材料、玻璃纤维增强复合材料等在飞机机身、机翼等部件中得到了广泛应用。
通过先进的复合材料成型工艺,如自动铺丝、自动铺带等技术,可以实现大型复合材料构件的高精度制造,提高了飞行器的结构强度和耐久性。
超精密加工技术对于航空航天零部件的制造至关重要。
航空发动机中的关键零部件,如涡轮盘、叶片等,需要达到极高的精度和表面质量要求。
超精密加工技术能够实现纳米级的加工精度,确保零部件的性能和可靠性。
同时,在卫星等航天器的制造中,超精密加工技术可以制造出高精度的光学元件、传感器等,提高航天器的观测和探测能力。
智能制造技术则为航空航天制造业带来了全新的生产模式和管理方式。
通过数字化设计、数字化制造和智能化的生产管理系统,可以实现从设计到生产的全流程数字化集成,提高生产效率和质量控制水平。
先进大涵道比涡扇发动机技术发展研究
先进大涵道比涡扇发动机技术发展研究引言先进大涵道比涡扇发动机技术一直是航空工程领域的研究热点之一。
大涵道比涡扇发动机具备高效能、低噪音、低排放等优势,被广泛应用于民用和军用航空领域。
本文将对先进大涵道比涡扇发动机技术的发展历程、关键技术和未来发展趋势进行研究分析。
一、先进大涵道比涡扇发动机技术的发展历程涡扇发动机是20世纪后半叶航空发动机领域的重大突破之一。
它采用了旋涡增速器、涡轮增压器、涡轮喷气发动机和螺旋桨航空发动机等技术,具备了高推力、高效率和低油耗的优势。
上世纪50年代,随着喷气式飞机的兴起,涡扇发动机开始迅速发展。
其后,随着材料技术、制造技术和计算机技术的进步,大涵道比涡扇发动机逐渐成为主流发动机技术。
二、关键技术1. 高压缩比涡轮高压缩比是提高涡扇发动机燃烧效率和推进效率的关键。
在大涵道比涡扇发动机中,高压缩比涡轮是实现高效能的核心。
目前,先进材料和先进制造技术的发展,使得高压缩比涡轮具备了更高的工作温度和更好的耐久性。
2. 先进燃烧技术为了提高燃料的燃烧效率和降低排放,先进大涵道比涡扇发动机采用了先进的燃烧技术,如超音速燃烧和低排放燃烧技术。
这些技术可以有效地提高发动机的燃烧效率,减少对环境的污染。
3. 高温材料高温材料是大涵道比涡扇发动机的关键材料之一。
发动机工作温度的提高对材料的性能提出了更高的要求。
研发高温合金和陶瓷复合材料是大涵道比涡扇发动机技术发展的重要方向。
4. 先进控制技术先进控制技术可以提高大涵道比涡扇发动机的稳定性和安全性,并且降低维护成本。
自动化控制系统的应用可以使发动机在各种工况下都能够实现最佳性能,提高整机的可靠性。
三、未来发展趋势1. 电动涡扇发动机随着电力技术的发展,电动涡扇发动机成为未来的发展趋势之一。
电动涡扇发动机具有无污染、低噪音和低成本等优势,可以有效地改善航空发动机的环保性能。
2. 特种材料的应用随着材料科学的不断进步,特种材料的应用将成为大涵道比涡扇发动机技术发展的重要方向。
航空发动机性能改善技术的研究与评估
航空发动机性能改善技术的研究与评估随着航空业的不断发展,航空发动机的性能要求不断提高,这也促使着航空发动机性能改善技术的不断发展。
航空发动机性能改善技术研究的目的是提高发动机的可靠性、寿命、燃油效率和环保性能,使得飞机在飞行过程中能够更加高效、可持续地运行,同时也利于节省成本。
1. 航空发动机性能改善技术之先进材料现代航空发动机的材料使用越来越高,因为新材料可以减少发动机的重量,同时提高可靠性和寿命。
例如,采用陶瓷材料生产发动机喷口可使得发动机温度更高、出现的部分电波更少,并且更加环保;采用复合材料的涡轮叶片和轴承对于减轻重量并提高耐用性也有非常明显的贡献。
另外,航空发动机制造过程中,所采用的材料质量也会对发动机性能的提升起到关键的作用。
例如,在研究和开发航空发动机时,采用微缩制造技术和3D打印技术,以及特殊合金材料,有望达到高精度的加工要求,并大大提高发动机的芯片集成质量。
2. 航空发动机性能改善技术之喷油系统优化喷油系统被认为是航空发动机性能的关键部件之一。
目前,许多航空发动机厂商都在尝试采用不同的喷油系统优化方法,以提高发动机的燃油效率。
例如,油滴控制和前置涡轮增压技术,可以提高发动机的燃烧效率和转速,从而降低燃油耗费并提高性能。
此外,在喷油系统中使用的气体是对航空发动机性能影响最大的。
以常用的气体——空气为例,新研发的低温高压技术可以使发动机燃烧更加完全、减少二氧化碳和氮氧化物的排放量。
3. 航空发动机性能改善技术之智能控制系统随着机器智能和物联网技术的发展,智能控制系统正逐渐被应用于航空发动机性能改善技术中。
该技术可以有效地监测发动机状况,及时发现问题并采取措施,从而使得发动机的发动、运行和维护更加安全、可靠和高效。
例如,在智能控制系统中可以应用机器视觉技术,对航空发动机的状况进行扫描,便利相关人员进行快速有效的维护。
此外,智能控制系统还可以对发动机的电子系统进行监测,以确保电子系统的正常工作;同时,还可以有效地避免机械损伤和其他故障问题的发生。
航空发动机关键技术分析及其发展趋势研究
航空发动机关键技术分析及其发展趋势研究近年来,随着经济全球化趋势的不断加深和交通运输的不断发展,航空业的发展对于世界经济的发展起到越来越重要的作用,而航空发动机则是航空业的核心技术。
为此,本文将对航空发动机关键技术及其发展趋势进行研究和分析。
一、航空发动机的基本结构及原理航空发动机是航空器的关键部件,它为航空器提供推进力,使其能够飞行。
航空发动机的基本结构包括进气道、压缩机、燃烧室、高压涡轮、低压涡轮、喷气口等组成。
进气道将空气引入压缩机,压缩机将气体压缩,进入燃烧室与燃料混合燃烧,释放出高温高压的气体,推动高压涡轮和低压涡轮旋转,最终通过喷气口产生向后推进力。
二、航空发动机的关键技术1.高温材料技术航空发动机要求能够在高温高压的环境下正常运行,因此高温材料技术是航空发动机技术发展的重要基础。
目前,航空发动机中使用的高温材料主要包括镍基高温合金、涂层材料、复合材料等。
这些材料具有良好的高温抗氧化和高强度特性,能够满足发动机高温高压环境下的要求。
2.数字化设计技术数字化设计技术是目前航空发动机设计中的重要技术。
通过数字化设计技术,可以将发动机设计、制造、测试等环节进行数字化建模,减少试验周期和成本,同时大大提高了发动机设计的精度和效率。
3.先进制造技术先进制造技术对于航空发动机的制造具有至关重要的作用。
目前,航空发动机制造中的先进技术主要包括高精度数控机床技术、航空发动机零部件3D打印技术、智能制造技术等。
这些技术能够提高发动机制造精度、效率和质量,同时降低成本和能源消耗。
三、航空发动机的发展趋势1.绿色环保化随着全球环保意识的不断提高,航空发动机的绿色化、环保化已成为近年来发动机技术发展的重要趋势。
绿色化的主要体现在发动机燃料的使用上,未来航空发动机将更加注重使用可再生燃料、生物燃料等低碳燃料,以降低对环境的影响。
2.数字化、智能化数字化、智能化是近年来航空发动机技术发展的另一重要趋势。
目前,航空发动机制造已经采用了智能制造技术,数字化技术已经广泛应用于发动机的各个环节。
航空发动机关键技术研究
航空发动机关键技术研究航空发动机是现代航空技术的核心组成部分,它对于航空工业的发展和飞行安全具有重要意义。
为了满足对高效、可靠和环境友好的航空发动机的需求,航空发动机关键技术的研究成为了重要的任务。
1. 高效燃烧技术高效燃烧技术是航空发动机关键技术中的重要一项。
高效燃烧技术可以提高燃油的利用效率,并降低尾气排放。
目前,航空发动机研究重点是改善燃烧室的设计,提高燃料的完全燃烧程度。
同时,还有研究开发低排放和无排放燃烧技术,以减少对环境的影响。
2. 轻量化材料的应用航空发动机关键技术的另一个重要方面是轻量化材料的应用。
轻量化材料可以降低发动机的重量,提高燃油效率,并增加飞行的航程。
目前,航空工业中常用的轻量化材料包括镍基高温合金、复合材料和新型钛合金等。
这些材料具有高强度、高温耐受和抗腐蚀等特点,能够满足航空发动机复杂的工作环境要求。
3. 高温材料的研究航空发动机长时间工作在高温和高压的恶劣环境中,因此,高温材料的研究是航空发动机关键技术研究的重要方向之一。
高温材料能够在高温条件下保持稳定的力学性能和热性能,确保发动机的可靠运行。
目前,高温合金、陶瓷和陶瓷复合材料等新型高温材料的研究已经取得了重要突破。
4. 空气动力学研究航空发动机的空气动力学研究是为了提高发动机的性能和效率。
通过深入研究发动机内部的复杂流场,可以优化叶片和导流件等关键部件的设计,改善空气动力学性能。
此外,还可以通过研究湍流等流动现象,改进发动机的燃烧过程,提高燃料的利用率。
5. 先进制造技术先进制造技术的发展对航空发动机关键技术研究起到了重要的支撑作用。
先进制造技术可以提高发动机部件的精度和质量,并缩短制造周期,降低成本。
目前,航空工业已经广泛应用了先进制造技术,例如3D打印、激光焊接和复合材料制造等。
这些技术的应用将进一步提高发动机部件的性能和可靠性。
总结起来,航空发动机关键技术的研究不仅关系到航空工业的发展,也关系到飞行的安全性和环境的可持续发展。
航空发动机制造的关键技术研究
精密铸造技术
熔模精密铸造
利用易熔材料制成模型,在模型 表面涂覆多层耐火涂料并撒砂, 经干燥、硬化后形成型壳,再熔 化模型获得铸型,最后浇注金属
液获得铸件。
陶瓷型精密铸造
采用陶瓷材料制作铸型,具有高 温强度高、热稳定性好、耐磨损 等优点,适用于高温合金等难加
工材料的铸造。
定向凝固技术
通过控制凝固过程中的温度梯度 和凝固速度,使晶粒沿特定方向 生长,从而获得具有优异力学性
2023
PART 04
加工与装配技术
REPORTING
数控加工技术
高效切削技术
采用高速切削、超硬刀具 等先进技术,提高加工效 率和精度。
复杂型面加工技术
针对航空发动机复杂型面 零件,研究多轴联动、高 精度插补等加工技术。
数控编程技术
开发高效、智能的数控编 程软件,实现复杂零件加 工过程的自动化和智能化 。
研究内容与方法
研究内容
本研究将针对航空发动机制造中的关键技术进行深入研究, 包括高性能材料制备技术、精密铸造技术、先进加工技术、 无损检测技术等方面。
研究方法
本研究将采用理论分析、数值模拟、实验研究等方法对航空 发动机制造中的关键技术进行研究。同时,还将结合国内外 相关研究成果和工程实践经验,对关键技术进行综合评价和 优化设计。
射线检测
采用X射线或伽马射线照射被检测物体,通过成像技术显示内部 结构和缺陷。
涡流检测
利用电磁感应原理,通过测量被检测物体表面涡流的变化来识别 缺陷。
高温测试技术
高温环境模拟
通过特殊设计的加热装置和控制系统,模拟航空发动机实际工作过 程中的高温环境。
高温测量技术
采用耐高温传感器和测量系统,实时监测发动机在高温环境下的性 能参数。
先进航空发动机关键制造技术发展现状与趋势
先进航空发动机关键制造技术发展现状与趋势一、轻量化、整体化新型冷却结构件制造技术1 整体叶盘制造技术整体叶盘是新一代航空发动机实现结构创新与技术跨越的关键部件,通过将传统结构的叶片和轮盘设计成整体结构,省去传统连接方式采用的榫头、榫槽和锁紧装置,结构重量减轻、零件数减少,避免了榫头的气流损失,使发动机整体结构大为简化,推重比和可靠性明显提高。
在第四代战斗机的动力装置推重比10发动机F119和EJ200上,风扇、压气机和涡轮采用整体叶盘结构,使发动机重量减轻20%~30%,效率提高5%~10%,零件数量减少50% 以上。
目前,整体叶盘的制造方法主要有:电子束焊接法;扩散连接法;线性摩擦焊接法;五坐标数控铣削加工或电解加工法;锻接法;热等静压法等。
在未来推重比15~20 的高性能发动机上,如欧洲未来推重比15~20的发动机和美国的IHPTET 计划中的推重比20的发动机,将采用效果更好的SiC陶瓷基复合材料或抗氧化的C/C复合材料制造整体涡轮叶盘。
2 整体叶环(无盘转子)制造技术如果将整体叶盘中的轮盘部分去掉,就成为整体叶环,零件的重量将进一步降低。
在推重比15~20 高性能发动机上的压气机拟采用整体叶环,由于采用密度较小的复合材料制造,叶片减轻,可以直接固定在承力环上,从而取消了轮盘,使结构质量减轻70%。
目前正在研制的整体叶环是用连续单根碳化硅长纤维增强的钛基复合材料制造的。
推重比15~20 高性能发动机,如美国XTX16/1A变循环发动机的核心机第3、4级压气机为整体叶环转子结构。
该整体叶环转子及其间的隔环采用TiMC金属基复合材料制造。
英、法、德研制了TiMMC叶环,用于改进EJ200的3级风扇、高压压气机和涡轮。
3大小叶片转子制造技术大小叶片转子技术是整体叶盘的特例,即在整体叶盘全弦长叶片通道后部中间增加一组分流小叶片,此分流小叶片具有大大提高轴流压气机叶片级增压比和减少气流引起的振动等特点,是使轴流压气机级增压比达到3 或3 以上的有发展潜力的技术。
航空发动机技术的研究与发展趋势分析
航空发动机技术的研究与发展趋势分析第一章:引言航空发动机是航空器最关键的部分之一,它影响着飞机的性能、安全性和经济性。
随着航空业的不断发展,航空发动机技术也得以不断提升,并在不断适应着新的需求。
本文将对航空发动机技术的研究与发展趋势进行分析。
第二章:航空发动机技术的发展历程20世纪初,航空发动机仅仅是一枚简单的活塞发动机。
在随后的几十年里,随着技术的不断发展,飞机的性能迅速提高。
20世纪50年代,推进涡轮喷气式航空发动机成为主流。
1990年代,高温合金和涂层技术的引入大大提高了航空发动机的可靠性和耐用性。
21世纪初,全新的复合材料技术和数字化设计技术的广泛应用为航空发动机的发展开辟了新的道路。
第三章:当前航空发动机技术的研究重点当前航空发动机技术的研究重点主要包括以下方面:1. 提高可靠性和安全性。
为了确保飞机的安全,航空发动机的可靠性和安全性是非常重要的。
研究人员一直致力于开发新的技术以提高发动机的可靠性和安全性,例如使用新的材料和涂层技术、改善设计和制造工艺等。
2. 提高效率。
航空发动机的效率是影响飞机性能和经济性的关键因素之一。
研究人员正在致力于开发新的技术以提高发动机的燃油效率和推力。
3. 环保技术。
随着环保意识的日益增强,环保技术成为航空发动机技术研究的一个重要方向。
其中,减少废气排放、改善噪声等环保技术是目前的热点研究领域。
第四章:未来航空发动机技术的发展趋势未来航空发动机技术的发展趋势主要体现在以下几个方面:1. 高温合金材料的应用。
高温合金材料是提高航空发动机性能的关键因素之一,未来将继续开发和应用各种新型高温合金材料,以使得发动机更具有耐久性和温度稳定性。
2. 燃烧技术的进一步改善。
未来燃烧技术的改善将是提高航空发动机燃油效率的关键。
目前,研究人员正在研究新的燃烧技术,例如低排放燃烧技术、超声速燃烧技术等。
3. 全数字化设计和制造技术的广泛应用。
全数字化设计和制造技术不仅可以提高航空发动机的设计和制造效率,还可以提高航空发动机的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
先进航空发动机关键制造技术研究
作者:霍羿达王志东马文浩
来源:《科学与财富》2020年第21期
摘要:航空发动机是飞机的核心部分。
在21世纪,航空发动机的设计和制造技术体现出了国家的科技发展水平,随着科学技术的不断发展,国家对航空领域的重视程度越来越高,所以通过对我国现有的发动机制造水平进行研究,能够对先进的航空发动机制造技术进行分析,研究出先进的发动机制造技术,促进我国航空领域的不断发展。
关键词:航空发动机;关键技术;制造研究
引言:
航空发动机技术具有高技术、高投入、高风险的特性,一般来说,单台发动机的研发时间一般在十年到二十年左右,所耗费的资金大约是10亿到20亿。
从这些数据就能够看出航空发动机的重要性和难度。
我国的航空发动机技术的发展与先进国家相比,仍然存在着很大的距离,因此,要想令我国的发动机技术水平得到提升,就需要投入大量的经费去进行技术方面的研究,只有这样才能够令先进航空发动机关键制造技术得到更好的发展。
一、我国航空发动机的发展
我国航空发动机经历了一个非常漫长的过程,航空发动机的作用就是为飞机提供推动力,在所有航空器进行工作的过程当中,航空发动机都是一个非常核心的部位,自从飞机研发成功之后,飞机的发动机也得到了飞速的发展,我国的航空业逐渐形成了各种各样、多种类、大范围的特点。
从我国航空发动机的发展历程来看,发动机经历了两个时期,一个是活塞发动机时期,另外一个是燃气涡轮发动机时期,从活塞发动机时期到燃气涡轮发动机十期,可以看出航空领域发生了质的飞跃。
我国进行航空发动机的研制工作是在新中国成立之后,新中国刚刚成立的时候,我国的科学技术水平简直就是一张白纸,从最初的模仿、改造到现在可以独立研发出高水平的航空发动机,我国的科技人员经历了一个非常漫长且坎坷的过程。
我国是世界上最大的发展中国家,航空发动机的事业直接体现出一个国家的国力标准和经济发展程度,如果一个国家没有先进的航空发动机事业,那么这个国家的航空事业便不会有大的成就,航空工业也不会得到迅速的发展。
二、航空发动机的制造工艺特点
航空发动机的制造工艺特点主要有以下几个方面,分别是材料难加工,切除率大、形状与结构复杂、加工精度高。
材料难加工,切除率大主要指的是航空发动机核心的转子部分,通常采用的是钛合金高温合金等非常难以加工的材料,在切削的过程当中,会加剧刀具切削刃的磨损程度。
另外,在加工的过程当中,很有可能有绝大部分的材料都会被切除掉,因此,如何在航空发动机核心转子部件的加工过程当中提高加工精度,令加工表面的更加完整就十分的重要[1]。
形状与结构复杂主要指的是在发动机中采用的是宽弦空心风扇叶片,这些结构非常的复杂,所以现有的制造工艺方法无法满足实际生产发动机的需要,因此必须针对不同的零件结构来进行工作,只有这样才能够探索新的工艺和新技术,不斷提高复杂构件的制作水平,从而降低航空发动机的成本。
加工精度高主要指的是航空发动机是航空器的核心组成部分,因此,航空发动机的精度直接决定了航空器的运行安全,因此,我国发动机零部件的生产过程中应该注重加工精度,只有这样才能够令航空发动机的研制水平得到提高,从而不断促进航空发动机研发水平的进步。
三、对我国先进发动机制造技术的建议
(一)不断提高发动机制造技术的技术水平
在航空发动机发展的过程当中,应该加大技术研究,只有这样才能够令先进的发动机技术被应用到航空发动机的研发过程当中,国家已经对先进的发动机技术研发进行了支持,通过这种方式能够促进我过高性能发动机的制造技术水平的不断提升,有利于促进我国高性能发动机制造技术的持续发展。
在高性能发动机研发的过程当中,需要科研人员吸收国外先进的制造业技术,并且脚踏实地,依据我国航空业发展的国情去发展我国的航空制造业技术。
我国的航空制造业技术与发达国家相比仍然存在着一定的差距,所以这就需要我国的科研人员以科学发展观为导向,学习先进的理论知识,不断提高自己的专业实践能力,从而令发动机制造的技术决定性掌握在自己的手里,不断形成我国特色的航空制造业体系,在航空制造业发展的过程当中发挥出自身的力量,不断促进我国航空发动机的设计与制造水平,从而改进在制造过程当中存在的不足现象,提高发动机制造技术含量[2]。
(二)探索航空发动机的研究项目
在航空发动机发展的过程当中,相应的科研人员一定要对未来的发展前景和创新环境条件进行探索,不断探索航空发动机的研究项目,在国家的大力支持下,和科研人员的不断努力中,在最短的时间内突破在航空发动机发展的过程当中面临的一系列的问题,从而令我国发动机制造技术能够实现质的飞跃。
在不断探索航空发动机的研究项目过程当中,以我国的工业技
术发展为基础,从而进行深入的剖析与研讨,航空发动机制造技术进行分析,令发动机制造的技术探索性能得到提高,从而令新一代的发动机性能得到改进。
(三)采用先进的航空发动机制造技术新工艺
在航空发动机制造技术发展的过程当中,新型结构件精密制胚技术、先进的切削技术、特种加工技术、特种焊接技术等技术都得到了一定的发展,因此,需要将这些技术应用到航空发动机制造的过程当中,只有这样才能够令航空发动机制造当中的关键技术水平得到更好的提升。
采用新型结构件精密支配技术,能够有效地避免毛坯件发生损坏的现象,从而令精铸件、精锻件、单晶和定向凝固精筑建以及快速凝固,令制胚毛胚在航空发动机的制造过程当中发挥出重要的作用[3]。
采用先进的切削技术,能够令典型的难加工材料——钛合金高温合金及金属基复合材料等新材料进行加工,通过先进的切削技术,能够确定加工的精度和表面完整性,所以在新一代航空发动机的切削加工的工作当中,利用先进的切削技术,能够提高加工效率和加工质量,令加工的自动化水平得到提高,从而能够研制出高精度、高刚性的磨削加工技术,不断促进航空发动机制造技术新工与水平的提升。
采用特种加工技术,能够避免外力因素的影响,从而为形成技术创新而开阔新的途径。
采用特种焊接技术,能够确保航空发动机的结构完整性,特种焊接技术能够令航空发动机制造当中的成本降低,同时也能够满足可靠性的要求,所以摩擦焊接技术在航空发动机制造过程当中已经成为了非常关键的一种技术。
采用热障涂层技术能够进行高温防护隔热,所以在航空发动机制造业发展的过程当中,热障涂层技术得到了广泛的应用。
四、结束语
在先进航空发动机关键技术制造研究的过程当中,一定要令发动机制造的技术决定性、技术探索性、技术突破性和技术发展性得到凸显,从而令我国航空发动机的技术水平能够得到提升。
航空发动机的技术水平直接影响着我国科研研发的方向以及科研研发的动力,因此,制造高性能的发动机是我国制造业未来发展的一个大方向,在发动机制造的研发过程当中,一定要投入大量的资金,国家应该要给予大力的支持,通过吸收国外先进的技术理念,脚踏实地,结合我国的国情,令我国现代化的航空技术水平能够得到提升,推动我国航空行业的发展,在经济社会发展的过程当中,航空发动机的设计与制造水平能够令我国航空领域的发展水平越来越高,从而不断提高我国的国际竞争力。
参考文献:
[1] 黄维,黄春峰,王永明,等. 先进航空发动机关键制造技术研究[J]. 国防制造技术,2009(03):42-48.
[2] 兰明亮,杨吉祥,徐和,等. 先进航空发动机关键制造技术研究[J]. 华东科技:学术版,2015(9):16-16.
[3] 张定华,黄新春. 航空发动机关键构件制造可靠性技术研究[J]. 航空制造技术,2015(17):26-29.。