雷达技术 第三章 雷达接收机8-11
雷达基本工作原理课件-新版.ppt
![雷达基本工作原理课件-新版.ppt](https://img.taocdn.com/s3/m/b608e9a580eb6294dd886c94.png)
微波传输线 发射脉冲
发射机
T/R 触发器
天线 回波
接收机
电源
船电
显示器
Fig1-2 (2)
回波 船首线 方位
精品
T/R
Receiver
Transmitter
第二节 雷达的基本组成、作用
一、基本组成七部分及作用:
1、定时器(触发电路、同步电路等): 是雷达的指挥中心,产生周期性的窄脉冲——触发脉冲 送:1)发射机:控制发射开始 2)接收机:控制近距离增益 3)显示器:控制计时开始
船舶导航雷达
精品
第一章 雷达基本工作原理
引言
Radar —Radio detection and ranging
—无线电探测和测距
雷达:发射微波并接收目标反射回波,对目标进行探测 和测定目标信息
现代雷达 IBS的重要组成部分 定位、导航、避碰
主要传感器
精品
雷达 罗经 计程仪 GNSS AIS ECDIS
二、船用雷达单元构成:
1、三单元雷达: 收发机(触发电路、发射机、接收机、收发开关) 显示器、天线、中频电源
2、二单元雷达: 天线收发机、显示器、精中品频电源
荧光屏的单位长度:在不同量程代表不同的距离
二. 雷达测方位原理
1、利用收发定向天线 ,只向一个方向发射雷达波且 只接收此方向上的目标的反射回波
2、天线旋转依次向四周发射雷达波,则可探知周围 物标的方位——天线的精品方向即目标的方向
触发器
天线
方位与 船首线
收发机 回波
显示器
ARPA
Fig1-2(1)
第二节 雷达的基本组成、作用
5、接收机:超外差式,将微弱回波信号放大千万倍以符合
导航雷达第三章雷达设备发射机双工器天线
![导航雷达第三章雷达设备发射机双工器天线](https://img.taocdn.com/s3/m/eada48044431b90d6c85c7d3.png)
1.气体放电管式
2.铁氧体环流器式
第三章 雷达设备工作原理-双工器 二、气体放电管式双工器 :
利用火花隙放电产生电弧形成短路截住大功率发射脉冲
天线
发射机
气体放 电管
接收机
气体放电管恢复时间(t)
从发射结束到气体恢复预游离状态后、回波可以通过时 的时间(接收系统可接收回波),通常为0.1~0.3s. 越短越 好,影响近距离目标探测能力。
微 波 传 输 系 统
发系 射统
接系 收统
显系 示统
至收发机 (b)系统结构示意图
回波箱
(a)系统组成方框图
绝缘支撑材料 图 3-4-1 微波传输与天线系统 绝缘支撑材料
第三章 雷达设备工作原理-微波天线及传输线
一、微波传输系统
在雷达收发机与天线之间传递微波信号的电路系统 称为微波传输系统。 波导(waveguide): 3 cm波段雷达采用 同轴电缆(coaxial cable):10 cm波段雷达多采用
3、双工器(收发开关):
发射时,关闭接收机入口,大功率射频脉冲送天线; 接收时,关闭发射机通路,微弱回波能量送接收机。
4、天线:定向收发天线,将发射机送来的射频脉冲聚成细束
集中向一个方向发射,并接收此方向物标反射回来 的雷达波(回波)送接收机。
5、接收系统(机):
超外差式,将微弱回波信号放大千万倍以符合 显示器要求。 V 几十V
转速过低,目标在屏幕上呈跳跃显示,不利于观测;转速过 高,目标回波脉冲积累数少,回波弱,不利于发现弱小目标。
(四)天线位置与雷达阴影扇形区域
盲区 前桅 烟囱 灵敏度降低弧 盲区 灵敏度降低弧 (a)俯视图 VBW 灵敏度降低弧
阴影扇形
电子科技大学-雷达原理XXXX
![电子科技大学-雷达原理XXXX](https://img.taocdn.com/s3/m/33ea74b702020740bf1e9b7b.png)
绪论——雷达的历史与发展
二次大战中和大战后
– 微波雷达(1941,英美S/X波段雷达) – PPI显示 – 超外差接收
绪论——现代雷达
AN TPS-75v长程对搜索雷达(台空军东引岛)
绪论——现代雷达
绪论——现代雷达
中国炮瞄雷达
绪论——现代雷达
美国炮瞄雷达
绪论——现代雷达
雷神GBR
绪论——现代雷达
雷神GBR
绪论——现代雷达
AN FPS-85 相控阵空间监视雷达
绪论——现代雷达
COSMO-SkyMed 雷达卫星
绪论——现代雷达
美军天基雷达
绪论——现代雷达
美军SBX雷达
天线噪声:主要包括热噪声和宇宙噪声,当接收机电阻与天线辐 射电阻匹配时,功率NA=kTABn
等效噪声带宽:
H ( f ) 2df
Bn 0 H ( f0 ) 2
雷达接收机——接收机噪声系数
噪声系数与噪声温度
噪声系数:
F Si / Ni Si No 1 NiG N 1 N 1 N
So / No So Ni G Ni
工作带宽
接收机频率变化范围 抗干扰性能:需要大带宽 高灵敏度:窄带宽
动态范围
接收机正常工作容许的输入信号强度的变化范围 从Si,min-接收机过载时的输入信号功率
中频的选择和滤波特性
接收机中频的选择:取决于发射波形、接收机工作带宽、前端器 件性能 滤波特性:匹配滤波
雷达接收机——主要技术指标
tr:电磁波往返时间
雷达的距离分辨力为:
R
c
2
雷达原理3- 雷达接收机
![雷达原理3- 雷达接收机](https://img.taocdn.com/s3/m/6b8ec1b2195f312b3169a5f3.png)
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机 3.1.2
1. 灵敏度 灵敏度表示接收机接收微弱信号的能力。 超外差式雷达接收机的灵敏度一般约为(10-12~10-14)W.
接收机的工作频带宽度主要决定于高频部件(馈线系统、高频放大器和 本机振荡器)的性能。 带宽是不是越宽越好?
第3章雷达接收机
3. 动态范围 动态范围表示接收机能够正常工作所容许的输入信号
强度变化的范围。 最小输入信号强度通常取为最小可检测信号功率Si min,
允许最大的输入信号强度则根据正常工作的要求而定。 使接收机开始出现过载时的输入功率与最小可检测功率
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
3.1 雷达接收机的组成和主要质量指标
3.1.1 超外差式雷达接收机的组成 l接收机的任务
发 射脉 冲 噪声
被 噪声 淹 没 的信 号
图3.3 显示器上所见到的信号与噪声
第3章雷达接收机 2. 接收机的工作频带宽度
接收机的工作频带宽度种类?
接收机的顺时带宽是指,该部件在特定的增益(有时是相位)容差内能 同时放大两个或两个以上信号的频带。
调谐带宽是指该部件在调整适当的电气或机械旋钮时可以工作,而不降 低指定性能的频带。
雷达接收机的工作原理
![雷达接收机的工作原理](https://img.taocdn.com/s3/m/0c23303954270722192e453610661ed9ad515504.png)
雷达接收机的工作原理雷达接收机是一种将雷达信号从接收天线传到解调器的机制,其主要作用是将来自雷达天线的电磁波转化为电信号,以供后续处理。
雷达接收机是雷达系统中至关重要的一部分,其主要工作就是接收反射信号,提取目标信息,然后对目标进行跟踪和定位。
雷达接收机的工作原理:雷达接收机的工作原理可以简单地分为两个步骤:第一步是将返回天线的电磁波转化为电信号,第二步是对电信号进行放大和滤波,然后将其输送到解调器以及其他处理单元进行处理。
第一步:将接收到的电磁波转化为电信号雷达接收机使用共振回路来将接收天线接收到的电磁波转化为电信号。
共振回路是一个可以与特定频率振荡的电容和电感组合的电路元件。
当接收天线接收到电磁波时,它会将电场和磁场分别指向接收天线的两个端口。
这些场产生的电压被输入到共振回路中,从而产生振荡电压。
第二步:对电信号进行放大和滤波在将来自天线的信号转化为电信号之后,雷达接收机会将其进一步将其放大和滤波。
接收到的电信号通常非常微弱,因此需要一个放大器来提高信噪比,同时也要进行滤波,以去除任何不需要的频率成分。
滤波的目的是去除噪声和干扰,从而提高雷达系统的灵敏度。
雷达接收机中的放大器和滤波器通常采用晶体管、IO 器件组成的电路。
这些电路可以根据不同的频率和信号强度条件进行优化,以提高雷达系统的性能。
总结:雷达接收机是雷达系统中至关重要的一个部件。
它负责将来自雷达天线的电磁波信号转化为电信号,并对其进行放大和滤波来去除噪声和干扰。
雷达接收机的主要任务是提取目标信息,从而实现目标跟踪和定位。
在雷达系统中,雷达接收机的性能往往是决定系统性能的关键因素之一。
因此,对于雷达系统的设计和优化而言,雷达接收机是一个非常关键的组成部分。
第三章 雷达接收机
![第三章 雷达接收机](https://img.taocdn.com/s3/m/c77af7100242a8956aece444.png)
临界灵敏度
Si,m inkT0BnF 0M
Si,m inkT0BnF0
令M=1
对数表示
Si,m in(dB m W )10lgS 1 i0 ,m i3 n(dB m W ) Si,m in(dB m W ) 114dB 10lgB n(M H z) 10lgF 0
一般接收机的灵敏度在-90~-110dBmW
1. 噪声系数只适用于接收机的线性电路和准 线性电路。(非线性电路,需要考虑输出信号 与噪声的交叉项)
2. 为使噪声系数具有单值确定性,规定输入 噪声以天线等效电阻在室温290K时产生的 热噪声为标准。噪声系数只由接收机本身 参数确定。
3. 噪声系数没有单位。通常用分贝表示
4. 无源四端网络的噪声系数
图3.13,P60
雷达接收机的高频部分
发射机
收发转换开关
接收机保护电路
收发开关
本机振荡
高频放大器
天线
混频器接收机保 低噪声高 护器来自放至主中放前置中放
本级振荡器
混频器
接收机的 “前端”
收发转换开关
功能:
发射时,使天线与发射机接通,同时与接收机断开, 避免高 功率发射信号进入接收机把高放或混频器烧毁。 接收时,使天线与接收机接通,同时与发射机断开,以免因发 射机旁路而使微弱的接收信号受损失。
F 0 1 T 0 F 1 1 T 0 F 2 G 1 1 T 0 F G 3 1 G 2 1 T 0 G 1 G F 2 n G 1 n 1 T 0
T e T 1 G T 2 1 G T 1 G 32 G 1 G 2 T nG n 1
接收机灵敏度
衡量接收机接收(检测)微弱信号的能力。
使接收机开始出现过载时的输入功率与最小 可检测功率之比
雷达原理与系统 ppt课件
![雷达原理与系统 ppt课件](https://img.taocdn.com/s3/m/8b5d5fd725c52cc58bd6beda.png)
2014年2月
2020/11/24
1
主要内容
1、绪论
2、雷达发射机
3、雷达接收机
4、雷达终端显示器与录取设备
5、雷达作用距离
6、目标距离的测量
7、目标角度的测量
8、目标速度的测量
2020/11/24
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
2020/11/24
5
1、绪论
1.1 雷达的任务 1.2 雷达的基本组成 1.3 雷达的工作频率 1.4 雷达的应用和发展 1.5 电子战和军用雷达的发展
2020/11/24
6
1.1 雷达的任务
1.1.1 雷达的任务
利用发射和接收电磁波信号的相关性,完成以下任务
1、发现目标,确定目标在空间中的位置、运动、航迹等 R,,,Vr
特种雷达:具有特定功能的雷达:如:雷达高度表/雷达引信
按照装载平台: 星载雷达,弹载雷达,机载雷达,舰载雷达,车载雷达,背负雷达 按照技术体制:收发关系和位置 单基地/双多基地,非协同探测(PCL),MIMO
天线技术 单波束/多波束,机械/电/混合扫描,
发射/接收机技术 相参/非相参收发,捷变频,频率分集,
2、识别目标,确定目标性质(F/E,目标类型,目标形状/散射特性等)
1.1.2 探测与定位的坐标系
球坐标系 以雷达自身为原点 R,,,Vr 正北为方位0,仰角以水平面为0 柱坐标系 以雷达自身为原点 D,,H,Vr 正北同上,以海面/地平面高度为0
近似(忽略曲率)转换关系: D R co,H sR sin
W
G 发射天线增益
雷达原理与对抗技术习题答案
![雷达原理与对抗技术习题答案](https://img.taocdn.com/s3/m/76158724a66e58fafab069dc5022aaea988f4176.png)
第一章1、雷达的基本概念:雷达概念(Radar),雷达的任务是什么,从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息答:雷达是一种通过发射电磁波和接收回波,对目标进行探测和测定目标信息的设备。
任务:早期任务为测距和探测,现代任务为获取距离、角度、速度、形状、表面信息特性等。
回波的有用信息:距离、空间角度、目标位置变化、目标尺寸形状、目标形状对称性、表面粗糙度及介电特性。
获取方式:由雷达发射机发射电磁波,再通过接收机接收回波,提取有用信息。
2、目标距离的测量:测量原理、距离测量分辨率、最大不模糊距离 答:原理:R=Ctr/2距离分辨力:指同一方向上两个目标间最小可区别的距离 Rmax=…3、目标角度的测量:方位分辨率取决于哪些因素答:雷达性能和调整情况的好坏、目标的性质、传播条件、数据录取的性能 4、雷达的基本组成:哪几个主要部分,各部分的功能是什么 答:天线:辐射能量和接收回波发射机:产生辐射所需强度的脉冲功率 接收机:把微弱的回波信号放大回收信号处理机:消除不需要的信号及干扰,而通过加强由目标产生的回波信号 终端设备:显示雷达接收机输出的原始视频,以及处理过的信息 习题:1-1. 已知脉冲雷达中心频率f0=3000MHz ,回波信号相对发射信号的延迟时间为1000μs ,回波信号的频率为3000.01 MHz ,目标运动方向与目标所在方向的夹角60°,求目标距离、径向速度与线速度。
685100010310 1.510()15022cR m kmτ-⨯⨯⨯===⨯=m 1.010310398=⨯⨯=λKHzMHz f d 10300001.3000=-=s m f V d r /5001021.024=⨯==λsm V /100060cos 500=︒=波长:目标距离:1-2.已知某雷达对σ=5m2 的大型歼击机最大探测距离为100Km,1-3.a)如果该机采用隐身技术,使σ减小到0.1m2,此时的最大探测距离为多少?1-4.b)在a)条件下,如果雷达仍然要保持100Km 最大探测距离,并将发射功率提高到10 倍,则接收机灵敏度还将提高到多少?1-5.KmKmR6.3751.010041max=⎪⎭⎫⎝⎛⨯=dBkSkSii72.051,511.010minmin-===∴⨯=⨯b)a)第二章:1、雷达发射机的任务答:产生大功率特定调制的射频信号2、雷达发射机的主要质量指标答:工作频率和瞬时带宽、输出功率、信号形式和脉冲波形、信号的稳定度和频谱纯度、发射机的效率3、雷达发射机的分类单级震荡式、主振放大式4、单级震荡式和主振放大式发射机产生信号的原理,以及各自的优缺点答:单级震荡式原理:大功率电磁震荡产生与调制同时完成,以大功率射频振荡器做末级优点:结构简单、经济、轻便、高效缺点:频率稳定性差,难以形成复杂波形,相继射频脉冲不相参主振放大式原理:先产生小功率震荡,再分多级进行调制放大,大功率射频功率放大器做末级优点:频率稳定度高,产生相参信号,适用于频率捷变雷达,可形成复杂调制波形缺点:结构复杂,价格昂贵、笨重是非题:1、雷达发射机产生的射频脉冲功率大,频率非常高。
第三章 脉冲压缩雷达简介
![第三章 脉冲压缩雷达简介](https://img.taocdn.com/s3/m/d0bb7a418bd63186bdebbc06.png)
∂∇第三章 脉冲压缩雷达简介3.1 脉冲压缩简介雷达的分辨理论表明:要得到高的测距精度和好的距离分辨力,发射信号必须具有大的带宽;要得到高的测速精度和好的速度分辨力,信号必须具有大的时宽。
因此,要使作用距离远,又具有高的测距、测速精度和好的距离、速度分辨力,首先发射信号必须是大带宽、长脉冲的形式。
显然,单载频矩形脉冲雷达不能满足现代雷达提出的要求。
而脉冲压缩技术可以获得大时宽带宽信号,使雷达同时具有作用距离远、高测距、测速精度和好的距离、速度分辨力。
具有大时宽带宽的信号通常被称作脉冲压缩信号。
脉冲压缩技术包括两部分:脉冲压缩信号的产生、发射部分和为获得较窄的脉冲对接收回波的处理部分。
在发射端,它通过对相对较宽的脉冲进行调制使其同时具有大的带宽,在接收端对接收的回波波形进行压缩处理得到较窄的脉冲。
3.2 脉冲压缩原理 3.2.1时宽-带宽积的概念发射脉冲宽度τ和系统有效(经压缩的)脉冲宽度0τ的比值称为脉冲压缩比,即0D ττ=(3-1)因为01B τ=,所以,式(3-1)可写成D Bτ=(3-2)即压缩比等于信号的时宽-带宽积。
在许多应用场合,脉冲压缩系统常用其时宽-带宽积表示。
大时宽带宽矩形脉冲信号的复包络表达式可以写成:(),/2/2()0,j t Ae T t T u t θ⎧-<<=⎨⎩其他(3-3)匹配滤波器输出端的信噪比为:()00S N EN =(3-4)其中信号能量为[13] :212E A T =(3-5)这种体制的信号具有以下几个显著的特点:(1)在峰值功率受限的条件下,提高了发射机的平均功率av P ,增强了发射信号的能量,因此扩大了探测距离。
(2)在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号变成窄脉冲,因此保持了良好的距离分辨力。
(3)有利于提高系统的抗干扰能力。
当然,采用大时宽带宽信号也会带来一些缺点[14][15],这主要有: (1)最小作用距离受脉冲宽度τ的限制。
《雷达基本工作原理》PPT课件(2024)
![《雷达基本工作原理》PPT课件(2024)](https://img.taocdn.com/s3/m/3dc0689b77a20029bd64783e0912a21614797fdb.png)
雷达抗干扰与隐身技术探讨
2024/1/28
15
常见干扰类型及抗干扰措施
有源干扰
通过发射与雷达信号相似的干扰信号,使雷达难以区分目标 回波和干扰信号。
2024/1/28
无源干扰
利用反射、散射等方式,使雷达信号偏离目标或产生虚假目 标。
16
常见干扰类型及抗干扰措施
01
02
03
信号处理技术
采用先进的信号处理技术 ,如脉冲压缩、动目标检 测等,提高雷达抗干扰能 力。
2024/1/28
雷达定义
利用电磁波的反射原理进行目标 探测和定位的电子设备。
发展历程
从20世纪初的萌芽阶段到二战期 间的广泛应用,再到现代雷达技 术的不断创新和发展。
4
雷达应用领域及重要性
应用领域
军事、民用航空、气象、海洋监测、 地质勘探等。
重要性
在各个领域发挥着不可替代的作用, 如保障国家安全、提高航空安全、预 测天气变化等。
强化信号处理部分
信号处理是雷达技术的核心,建议增加相关 课时和实验,深入讲解信号处理技术。
2024/1/28
33
课程安排建议和拓展学习资源推荐
• 引入新技术:随着科技的发展,新型雷达技术不断涌现,建议课程中加入新型雷达技术的介绍和 讨论。
2024/1/28
34
课程安排建议和拓展学习资源推荐
2024/1/28
02
在安检、反恐、生物医学等领域 具有潜在应用价值。
2024/1/28
30
06
总结回顾与课程安排建议
2024/1/28
31
关键知识点总结回顾
雷达基本概念
雷达是一种利用电磁波进行探测和测 距的电子设备,广泛应用于军事、民 用等领域。
2023年大学_《雷达原理》第三版(丁鹭飞耿富录著)课后答案下载
![2023年大学_《雷达原理》第三版(丁鹭飞耿富录著)课后答案下载](https://img.taocdn.com/s3/m/8af92005366baf1ffc4ffe4733687e21af45ff22.png)
2023年《雷达原理》第三版(丁鹭飞耿富录著)课后答案下载《雷达原理》第三版内容简介第1章绪论1.1 雷雷达传感器雷达传感器达的任务1.2 雷达的基本组成1.3 雷达的工作频率1.4 雷达的应用和发展1.5 电子战与军用雷达的发展主要参考文献第2章雷达发射机2.1 雷达发射机的任务和基本组成2.2 雷达发射机的主要质量指标2.3 单级振荡和主振放大式发射机2.4 固态发射机2.5 脉冲调制器主要参考文献第3章雷达接收机3.1 雷达接收机的组成和主要质量指标 3.2 接收机的'噪声系数和灵敏度3.3 雷达接收机的高频部分3.4 本机振荡器和自动频率控制3.5 接收机的动态范围和增益控制3.6 滤波和接收机带宽主要参考文献第4章雷达终端显示器和录取设备4.1 雷达终端显示器4.2 距离显示器4.3 平面位置显示器4.4 计算机图形显示4.5 雷达数据的录取4.6 综合显示器简介4.7 光栅扫描雷达显示器主要参考文献第5章雷达作用距离5.1 雷达方程5.2 最小可检测信号5.3 脉冲积累对检测性能的改善 5.4 目标截面积及其起伏特性 5.5 系统损耗5.6 传播过程中各种因素的影响 5.7 雷达方程的几种形式主要参考文献第6章目标距离的测量6.1 脉冲法测距6.2 调频法测距6.3 距离跟踪原理6.4 数字式自动测距器主要参考文献第7章角度测量7.1 概述7.2 测角方法及其比较7.3 天线波束的扫描方法7.4 三坐标雷达7.5 自动测角的原理和方法主要参考文献第8章运动目标检测及测速8.1 多卜勒效应及其在雷达中的应用8.2 动目标显示雷达的工作原理及主要组成 8.3 盲速、盲相的影响及其解决途径8.4 回波和杂波的频谱及动目标显示滤波器 8.5 动目标显示雷达的工作质量及质量指标 8.6 动目标检测(MTD)8.7 自适应动目标显示系统8.8 速度测量主要参考文献第9章高分辨力雷达9.1 高距离分辨力信号及其处理9.2 合成孔径雷达(SAR)9.3 逆合成孔径雷达(ISAR)9.4 阵列天线的角度高分辨力主要参考文献《雷达原理》第三版作品目录《雷达原理(第四版)》分为雷达主要分机及测量方法两大部分。
雷达接收机知识
![雷达接收机知识](https://img.taocdn.com/s3/m/b0a83e2f366baf1ffc4ffe4733687e21af45ff2d.png)
雷达接收机知识雷达接收机的任务是通过适当的滤波将天线上接收到的微弱高频信号从伴随的噪声和干扰中提取出来,并经过滤波、放大、混频、中放、检波后,送至信号处理机或由计算机控制的雷达终端设备。
一般来说,可以将雷达接收机分为超外差式、超再生式、晶体视放式和调谐高频(TRF)式等四种类型,其中超外差式雷达接收机具有灵敏度高、增益高、选择性好和适用性广等优点。
现代所有的雷达系统中都采用超外差式接收机。
接收机的基本组成超外差式雷达接收机的简化图如下图所示。
其主要组成部分有:(1)高频部分,又称为接收机的“前端”,其中包括接收机保护机、低噪声高频放大器、混频器和本机振荡器;(2)中频放大器,包括匹配滤波器;(3)检波器和视频放大器。
超外差式雷达接收机的一般组成框图如下图所示,检波或视频放大部分有四种情况:(a)、(b)两种情况只保留了信号的幅度信息,而没有相位信息,称之为非相参雷达接收机。
非相参雷达接收机通常需要采用自动频率微调(AFC)电路,把本机振荡器调谐到比发射频率高或低一个中频的频率。
其中,情况(a)采用对数放大器作为检波器,增大接收机的瞬时动态范围。
对数放大器是一种输入输出信号成对数关系的瞬时压缩动态范围的放大器。
在雷达、通信和遥测等系统中,接收机输入信号的动态范围通常很宽,信号幅度常会在很短的时间间隔内变化70~120 dB,但若要求输出信号保持在 20~40 dB 变化范围内,对数放大器正好可以满足这种要求,对数放大器能提供大于80 dB的有效动态范围。
情况(b)采用线性放大器和包络检波器,为后续检测电路和显示设备提供目标幅度信息。
包络检波器只适用于调幅信号,主要用于标准调幅信号的解调,从接收信号中检测出包络信息,它的输出信号与输入信号包络成线性关系。
情况(c)和情况(d)均保留了回波信号的相位信息,称之为相参接收机。
在相参接收机中,稳定本机振荡器(STALO)的输出是由产生发射信号的相参源(频率合成器)提供的。
雷达原理复习
![雷达原理复习](https://img.taocdn.com/s3/m/41d883d849649b6648d74760.png)
总噪声
1.简述现代雷达的发展趋势。(15分) A采用先进的组网技术,组网中的米波雷达是有良好的反隐身能力。 B超视距后向散射雷达:探测距离远,覆盖面积大 C双/多基地雷达:可实现探测的空间分集 D机械旋转探测向电子探测发展 F相控阵雷达连续出现,不仅用于战略也用于战术雷达 E高机动雷达适度发展 G低截获概率雷达是主动雷达的发展方向 2.现代雷达的隐身和反隐身技术有哪些? (10分) 现代雷达的隐身技术:A 降低飞行棋反身的RSC(雷达有效反射面)B 采用吸波材料 C 超低空飞行 反隐身技术:A超视距后向散射雷达 B极宽频带雷达 C采用双/多基地雷达 D采用组网技术F无载波雷达 3.什么是双/多基地雷达系统?与单基地雷达系统相比,双/多基地雷达系统的优缺点是什么? (15分) 双/多基地雷达系统是由分置于不同基地的一部或多部发射机和一部或多部接收机组成的统一的雷达系统。 优点:在抗后向有源干扰和抗反辐射方面有明显优势。可以监视探测的空间分集,以此来发现隐身飞行器。 缺点:不同的测量坐标系和技术实现的复杂性 时间和频率的同步需要从发射站提供基层传送到接收机 空间同步要保证一时刻收发天线波来覆盖同一空域
• • •
• • •
• •
1 请简述要提高雷达的探测距离,有哪些方法?(第三章)(分别从发射机、接收机和天 线角度进行说明) 发射机角度:A提高峰峰值功率B提高脉冲宽度C减少脉冲重复频率D提高占空比F增大 脉冲重复周期 接收机角度:A提高灵敏度B较少噪声电平C使接收机有足够的增益D减小识别系数F减 小带宽E降低噪声系数 天线角度:A增大天线尺寸B减小波束宽度C提高天线高度D增加天线发射仰角 2 什么是雷达接收机的灵敏度和噪声系数,并阐述其物理意义。 灵敏度:表示接收机接收微弱信号的能力,用最小’可检测信号功率Simin 表示。目前, 超外差式雷达接收机的Simin=-120~-140dBw,保证这个灵敏所需接收机的增益 gain =120~160dB ,主要由中频放大器来完成。 噪声系数:接收机输入端信号噪声比与输出端信号噪声比的比值 3 接收机的噪声系数主要取决于接收机的前几级还是后几级?为什么?要使接收机的总 噪声系数Fo减小,需减小Fi,增大Gi,而各级内部噪声的影响并不一样,级数越靠前, 对Fo影响越大,所以Fo 取决于最前几级,所以接收机要采用高增益低噪声高放。
导航雷达第三章雷达设备接收机
![导航雷达第三章雷达设备接收机](https://img.taocdn.com/s3/m/e5a0446c2b160b4e777fcf24.png)
第五节 雷达接收系统
变频器 高放 自双工器 混频器 中频 放大器 检波器 视频 放大器
至显示器
本振 MIC 人工调谐
自动调谐 (AFC)
触发脉冲 增益 海浪抑制
图3-5-1 接收系统框图
第三章 雷达设备-接收系统组成
(一)变频器: 把超高频回波信号变成中频(30、45、60 MHz)信号
第三章 雷达设备—雷达信息处理及显示系统
第六节 雷达信息处理及显示系统
PPI(Plane Position Indicator) : 模拟信号处理( 传统式) 光栅(TV)、液晶 : 数字信号处理 ( 现代式)
阳极 罩
阴极
栅极
电子枪
偏转线圈
电子束 管脚灯丝 管径 位移线 圈 Fig CRT
屏荧 光
两部分:本机振荡器、混频器 1)本机振荡器: 产生比磁控管振荡频率高一个中频的小功 率等幅连续振荡信号,即本振信号fL 2)混频器: 把回波信号(fS)与本振信号(fL)通过非线性元件混频 产生含许多新频率的信号,经过选频电路选出本振信号 与回波信号的差频——中频信号(fI) 混频晶体二极管
接收系统的调谐: 调整本振的输出频率fL ,以满足其与回波信号频率 fS始终相差一个中频;调谐不当将影响雷达图像质量。 包括:人工调谐和自动调谐(AFC) 调谐标准:显示器上调谐指示最大或回波饱满清晰。
放大时失真越小,雷达的观测精度就越高,但雷达保持较高的放 大倍数和灵敏度就越受到限制,适合近量程。
第三章 雷达设备—接收系统的主要技术指标
(四)恢复时间 从引起接收系统饱和或过载的强信号过后开始, 到接收系统刚刚恢复正常工作能力为止所经历的时间, 越短越好。
恶劣天气中的强海浪回波、强雨雪回波以及近 距离大型船舶的回波,应警惕其后方目标。
雷达原理复习总结
![雷达原理复习总结](https://img.taocdn.com/s3/m/95dd1a63ccbff121dd3683c6.png)
第一章 绪论(重点)1、雷达的基本概念雷达概念(Radar),雷达的任务是什么,从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息雷达概念:Radio Detection and Ranging 的缩写。
无线电探测和测距,无线电定位。
雷达的任务:雷达检测,目标定位,目标跟踪,目标成像,目标识别。
从雷达回波中可以提取目标的有用信息,获取方式: 目标信息 雷达提取 空间位置 距离 R=Ct/2 回波延时 方位 天线扫描 仰角速度 多普勒频移尺寸和形状 回波延时、多普勒频移2、目标距离的测量测量原理、距离测量分辨率、最大不模糊距离测量原理:通过接收信号的时间延迟进行测距 R=Ct/2 (t:滞后时间) 距离测量分辨率最大不模糊距离3、目标角度的测量角度分辨率角度分辨率:位于同一距离上的两个目标在方位角平面或仰角平面上可被区分的最小角度4、雷达的基本组成哪几个主要部分,各部分的功能是什么同步设备(Synchronizer):雷达整机工作的频率和时间标准。
发射机(Transmitter):产生大功率射频脉冲。
收发转换开关(Duplexer): 收发共用一副天线必需,完成天线与发射机和接收机连通之间的切换。
天线(Antenna):将发射信号向空间定向辐射,并接收目标回波。
接收机(Receiver):把回波信号放大,检波后用于目标检测、显示或其它雷达信号处理。
显示器(Scope):显示目标回波,指示目标位置。
天线控制(伺服)装置:控制天线波束在空间扫描。
电源第二章 雷达发射机1、雷达发射机的任务雷达发射机的任务:为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去。
2、雷达发射机的主要质量指标雷达发射机的主要质量指标:工作频率或波段,输出功率,总效率,信号形式,信号稳定度3、雷达发射机的分类雷达发射机的分类:1、按调制方式: ①连续波发射机 ②脉冲发射机2、按工作波段:①短波②米波③分米波④厘米波⑤毫米波3、按产生信号方式 :①单级振荡式 ②主振放大式4、按功率放大使用器件: ①真空管发射机 ②固态发射机4、单级振荡式和主振放大式发射机组成, 以及各自的优缺点。
雷达原理第三章-雷达接收机
![雷达原理第三章-雷达接收机](https://img.taocdn.com/s3/m/e23b8c49a300a6c30c229fac.png)
雷达接收机的组成
3. 失真
混频——频谱线性搬移——非线性器件——平方项 非线性器件——高次方项——产生组合频率——干扰、失真
(1)干扰哨声
特征:接收机音频出现哨叫 混频输入:仅有有用射频 f R F
f R F 非线性 器件
本振
中频
f IF
滤波器
主中频: fIFfRFfLO (二次方项)
组合频率 pfRF qfLO fIF F 付波道中频
一、 超外差式雷达接收机的组成 主要组成部分是:
按照雷达接收机中回波信号的频率变换过程,可以将超外差 式雷达接收机划分为高频、中频和视频三部分。
高频部分指接收机的微波电路,又称雷达接收机的高端,包 括接收机保护电路、低噪声高频放大器、混频器和本机振荡器。
中频部分指中频放大器、匹配滤波器、检波器。 视频部分为视频放大器等信号频率为视频的电路。第二混频 器及相关电路包含在中频放大器中。
3.视频部分: 检波:包络检波,同步(频)检波(正交两路), 相位检波。 放大:线形放大,对数放大,动态范围。
雷达接收机的组成
(一)关于低噪声放大器
低噪声放大器(Low Noise Amplifier,简称LNA)是射频接 收机前端的主要部分。
它主要有以下几个特点:
1、处于接收机的前端就要求它的噪声系数越小越好。 为了抑制后面几级噪声对系统的影响,还要求有一定的 增益,为了不使后级器件过载,产生非线性失真它的增 益又不能太大。在此放大器在工作频段内应该是绝对稳 定的。
1.高频部分:
T/R 及保护器:发射机工作时,使接收机输入端短路, 并对大信号限幅保护。 低噪声高放:提高灵敏度,降低接收机噪声系数,热 噪声增益。 Mixer,LD,AFC(自动频率微调):保证本振频率 与发射频率差频为中频,实现变频。
雷达原理习题答案
![雷达原理习题答案](https://img.taocdn.com/s3/m/4fa2f33aa300a6c30c229ff4.png)
雷达原理习题答案【篇一:2014雷达原理课后作业】xt>2014年春季第9周(4月23日)作业1. 请简述雷达系统为什么能够探测并定位远程运动目标。
3. 某单基地雷达发射矩形脉冲信号,工作频率为f0,发射脉冲前沿的初相为?0,有1个目标位于距离r处,请给出目标回波脉冲前沿的相位表达式(须有必要的推导过程)4. 请画出雷达发射脉冲串的射频信号波形示意图,并标明必要的雷达信号参数(如脉冲时宽等)。
5. cos(2?f0t +?0)与cos(2?f0t +12?fdt +?1)是否是相参信号?其中fd、?0与?1都是未知常数。
6. 有人说“雷达系统是一种通信系统。
”你是否认同此观点,并请给出2条以上理由。
7. 单基地雷达检测到目标回波延时为2?s,求目标的径向距离为多少公里。
8. 能使雷达发射机和接收机共享同一部天线的关键部件是什么?9. 解调后的雷达基带信号波形为什么可以用复数表示。
请画出iq正交解调的原理框图。
10. 请列举至少2项可能影响雷达目标回波信号相位信息的实际因素。
【篇二:雷达系统原理考纲及详解】class=txt>1、雷达基本工作原理框图认知。
测距:利用发射信号回波时延测速:动目标的多普勒效应测角:电磁波的直线传播、天线波束具有方向性 2、雷达面临的四大威胁电子侦察电子干扰、低空超低空飞行器、隐身飞行器、反辐射导弹3、距离和延时对应关系4、速度与多普勒关系(径向速度与线速度)5、距离分辨力,角分辨力6、基本雷达方程(物理过程,各参数意义,相互关系,基本推导)7、雷达的基本组成(几个主要部分),及各部分作用第二章雷达发射机1、单级振荡与主振放大式发射机区别2、基本任务和组成框图3、峰值功率、平均功率,工作比(占空比),脉宽、pri(tr),prf(fr)的关系。
第三章接收机1、超外差技术和超外差接收机基本结构(关键在混频)2、灵敏度的定义,识别系数定义3、接收机动态范围的定义4、额定噪声功率n=ktbn、噪声系数计算及其物理意义5、级联电路的噪声系数计算6、习题7、 agc,afc,stc的含意和作用afc:自动频率控制,根据频率偏差产生误差电压调整本振的混频频率,保证中频稳定不变【篇三:雷达基础理论习题】、填空题1.一次雷达的峰值功率为1.2mw,平均功率为1200w,重复频率为1000hz。
雷达原理雷达接收机
![雷达原理雷达接收机](https://img.taocdn.com/s3/m/825a64c570fe910ef12d2af90242a8956becaa2b.png)
雷达原理雷达接收机雷达接收机是雷达系统中的关键部分,主要负责接收并处理从雷达发射出去的电磁波信号。
雷达接收机的主要功能是将接收到的微波信号放大、混频、滤波、解调,最终转换成可用的信息信号。
雷达接收机的工作原理如下:1.接收天线:雷达接收机首先由接收天线接收到从目标反射回来的微波信号。
接收天线通常具有高增益和窄波束特性,以提高接收到的信号强度和抑制杂波干扰。
2.预处理:接收到的微波信号经过预处理电路,包括低噪声放大器(LNA)和频率变换器。
低噪声放大器用于放大微弱的接收信号,并尽量减小噪声干扰。
频率变换器则将接收信号的频率从射频(RF)范围转换到中频(IF)范围,以方便后续的信号处理。
3.混频:在中频范围内,接收机的局部振荡器产生与中频相匹配的信号,并将其与接收信号进行混频。
通过混频,接收信号的频率被转换到基带或中频范围,以便进行后续的信号处理。
4.滤波:混频后的信号经过滤波器进行频带选择和干扰抑制。
滤波器可以筛选出特定的频率范围内的信号,并削弱其他频率范围内的信号和干扰。
5.解调:接收机将滤波后的信号进行解调,以提取出原始的调制信息。
解调的方法通常有包络检波、相干解调等,根据雷达系统中所采用的调制方式而定。
6.基带处理:解调后的信号进一步进行基带处理,包括滤波、放大、时域处理等。
基带处理的目的是最大限度地恢复原始信息,并将其转换成可用的格式,如雷达回波信号的幅度、距离、方位角、速度等参数。
7.目标检测与跟踪:接收机还可能包括目标检测与跟踪的功能。
通过对接收到的信号进行处理和分析,可以实现对目标的检测和跟踪,并提供目标的位置、速度、特征等信息。
总结起来,雷达接收机主要通过预处理、混频、滤波、解调和基带处理等步骤,对从雷达接收到的微波信号进行处理和分析,最终提取出目标的相关信息。
接收机的性能和功能对整个雷达系统的探测能力和精度具有重要影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 雷达接收机的基本原理和组成
中频部分
(1)匹配滤波:(So / Noபைடு நூலகம் max (2)自动增益控制(AGC: Automatic Gain Control ) (3)灵敏度时间控制(STC: Sensitivity Time Control ) STC和AGC是雷达接收机抗过载、扩展动态范围 和保持接收机增益稳定的重要措施。(3.6节)
3.1 雷达接收机的基本原理和组成
• 视频部分
(1)检波:从已调信号中检出调制信号的过程 称为解调或检波。 用以完成这个任务的电路称为检波器。 分为:包络检波,相位检波, 同步(频)检波(正交两路)。 (2)放大:线性放大,对数放大,动态范围。
11
3.2 雷达接收机的主要质量指标
Si为输入额定信号功率;So为输出额定信号功率;
Ni=kT0Bn 为输入额定噪声功率;No 为输出额定噪声功率。 Ga为接收机额定功率增益,则So =Ga Si, F
No N iGa
, No
Ni Ga F
25
3.4 接收机的噪声系数和灵敏度
=?
实际接收机的输出额定噪声功率No由两部分组成, 其中一部分是NiGa,另一部分是接收机内部噪声在 输出端所呈现的额定噪声功率ΔN No=NiGa+ΔN=kT0BnGa+ΔN
3.4 接收机的噪声系数和灵敏度
3.4.1 接收机的噪声
噪声的分类:
内部噪声 来源 谱性质 电阻热噪声 外部噪声 天线热噪声、各种干扰、 宇宙噪声(雷电) 高斯白噪声 功率谱密度函数p(f)= N0/2 噪声的描述: 噪声系数 和 噪声温度
18
高斯色噪声 不包含所有的频谱分量
3.4 接收机的噪声系数和灵敏度
3.4.1 接收机的噪声 1. 电阻热噪声——内部噪声
导体中自由电子的无规则热运动形成的噪声。 导体温度 →自由电子热运动→ 噪声电流 →导体两端起伏电压 根据奈奎斯特定律, 电阻产生的起伏噪声电压均方值
un2 4kTRBn
k 为玻尔兹曼常数, k=1.38×10-23J/K; T 为电阻温度, 以绝对温度(K)计量, 对于室温17℃, T=T0=290K; R 为电阻的阻值; Bn为测试设备的通带。
第3章雷达接收机
3.1 雷达接收机的基本原理和组成 3.2 雷达接收机的主要质量指标 3.3 常规雷达接收机和现代雷达接收机(略) 3.4 接收机的噪声系数和灵敏度
3.5 雷达接收机的高频部分(略)
3.6 接收机的动态范围和增益控制 3.7 本机振荡器和自动频率控制 3.8 匹配滤波器和接收机带宽
3.1 雷达接收机的基本原理和组成
高频输入 接收机 保护器 低噪声高 频放大器 混频器 中频放大器 (匹配滤波器) 检波器 视 频 放大器 至终端设备
高 频 部 分 高频部分
本振
中频部分
视频部分
超外差式雷达接收机简化方框图
3.1 雷达接收机的基本原理和组成
接收机工作过程: 从天线接收的高频回波通过收发开关加至接收机保护器, 一 般是经过低噪声高频放大器后再送到混频器。在混频器中, 高频 回波脉冲信号与本机振荡器的等幅高频电压混频, 将信号频率降
9
3.1 雷达接收机的基本原理和组成
自动增益控制(AGC: Automatic Gain Control)
使放大电路的增益自动地随信号强度而调整的
自动控制方法。实现这种功能的电路简称AGC 环。 AGC环是闭环电子电路,是一个负反馈系统, 它可以分成增益受控放大电路和控制电压形成 电路两部分。
10
pno ( f )df pno ( f )
图3.21 噪声带宽的示意图
0
0
| H ( f ) |2 df H 2 ( f0 )
24
3.4 接收机的噪声系数和灵敏度
3.4.2 噪声系数和噪声温度
1. 噪声系数 接收机输入端信号噪声比与输出端信号噪声比的比值。
Si / N i F So / N o
“额定”信号功率
2 E E Sa s R s 4R 2R 2
Z=R+ jX Sa Es ~ Z*=R- jX
有源二端网络
21
3.4 接收机的噪声系数和灵敏度
2. 2 额定噪声功率
噪声源电压均方值 un 4kTRBn ,内阻抗为Z=R+jX。
2
当接收机的负载与噪声源内阻抗共轭匹配时,即 Z*=R-jX 时, 噪声源输出最大噪声功率, 称为“额定”噪声功率
2 PG G t t r (4 )3 R 4
灵敏度表示接收机接收微弱信号的能力。
问:接收机的灵敏度越高, 雷达的作用距离Rmax就越近还是越远? 提高灵敏度 → 减小噪声电平,增大接收增益。 一般的接收机灵敏度在-120~-140dBW -90~-110dBmW or -150~-170dBmW? 13
等效计算
将内部噪声的额定噪声功率ΔN等效成输入端的天线电阻在 温度Te时产生的热噪声, 即 ΔN=kTeBnGa 温度Te称为“等效噪声温度”或简称“噪声温度”
kTe BnGa Te F 1 1 kT0 BnGa T0
Te=(F-1)T0=(F-1)×290 (K)
27
3.4 接收机的噪声系数和灵敏度
No Ni Ga N N 噪声系数 F 1 Ni Ga Ni Ga kT0 BnGa
理想接收机 ΔN=0,F=1;
无源网络F=1/Ga
26
3.4 接收机的噪声系数和灵敏度
2. 等效噪声温度 接收机输入的外部噪声的额定功率为 Ni = kT0Bn 如何将接收机内部噪声也表示成外部噪声的形式?
为中频, 再由多级中频放大器对中频脉冲信号进行放大和匹配滤
波, 以获得最大的输出信噪比, 最后经过检波器和视频放大后送 至终端处理设备。
更为通用的超外差式雷达接收机的组成方框图如图 3.1所示。
3.1 超 外 差 式 雷 达 接 收 机 原 理 方 框 图
STC
AGC
AFC
3.1 雷达接收机的基本原理和组成
高频部分:
(1)T/R 及保护器:发射机工作时,使接收机输入端 短路,并对大信号限幅保护。 (2)低噪声高放:放大微弱信号,提高灵敏度,降低
接收机噪声系数,热噪声增益。
自动频率控制(Automatic Frequency Control,AFC): 保证本振频率与发射频率差频为中频,实现变频。
(3)混频器(Mixer),本振(Local Oscillator,LO),
灵敏度和噪声系数 工作频带宽度和滤波特性 动态范围和增益 频率源的频率稳定性和频谱纯度 幅度和相位的稳定性 正交鉴相器的正交度 A/D变换器的技术参数 抗干扰能力 频率源及发射激励性能 微电子话、模块化、系列化
12
3.2 雷达接收机的主要质量指标
1. 灵敏度
最小可检测信号功率Si min
Si min
2
3.1 雷达接收机的基本原理和组成
3.1.1 超外差式雷达接收机的组成 超外差式雷达接收机,把射频信号fs与本振信号fL相混,得 到中频信号fI。 混频器
fs
fI
3.1 雷达接收机的基本原理和组成
主要组成部分是: (1) 高频部分, 接收机“前端”, 包括收发转换开关、接收 机保护器、低噪声高频高增益放大器、混频器和本机振荡器; (2) 中频放大器, 位于中频的带宽B的匹配滤波器; (3) 检波器和视频放大器。
式中, RA为天线等效电阻,TA为天线噪声温度(K)。
3.4 接收机的噪声系数和灵敏度
2.1 额定信号功率
根据电路基础理论, 信号电动势为Es而内阻抗为Z=R+jX的信 号源, 当其负载阻抗与信号源内阻共轭匹配, 即其值为Z*=R-jX时,
信号源输出的信号功率最大 , 此时 , 输出的最大信号功率称为
例题:已知接收机内噪声在输出端的额定功率为0.1W, 额定功率增益为1012,测试带宽为5MHz,求等效输入
噪声温度和接收机噪声系数。
解:等效噪声温度为 ΔN=kTeBnGa 已知Bn=5×106Hz,Ga=1012,ΔN=0.1W, k=1.38×10-23J/K 则Te=1449.3K 噪声系数为 F 1
3.2 雷达接收机的主要质量指标
1. 1 灵敏度
无信号,超检测门限:虚警概率 Pfa 不超检测门限:正确不发现概率 1-Pfa
发射脉冲
有信号,超门限:发现概率 Pd 不超门限:漏警概率 1-Pd 门限设置上存在矛盾
噪声
被噪声淹 没的信号
雷达终端显示器14
3.2 雷达接收机的主要质量指标
1.2 噪声系数 接收机输入端信噪比与输出端信噪比的比值(功率比) ≥1,因为接收机存在噪声
ΔN1=(F1-1)kT0BnG1 No12= No1 G2=NiF1G1G2 ΔN2=(F2-1)kT0BnG2
目标回波 雷达接收机 功能:对雷达天线接收的微弱信号进行预选、 放大、变频、滤波、解调和数字化处理,同时 抑制杂波、干扰及噪声。 任务:不失真的放大所需的微弱信号,抑制不 需要的其他信号(噪声、干扰、杂波等)。
有源干扰 无源干扰
基本要求:低噪声、大动态、高稳定性、 较强的抗干扰能力。 发展方向:微电子化、模块化、数字化。
3.1 雷达接收机的基本原理和组成
自动频率控制(Automatic Frequency Control) 使输出信号频率与给定频率保持确定关系的自 动控制方法。实现这种功能的电路简称AFC环 。AFC环主要由鉴频器和受控本地振荡器等部 件构成。(3.7节) 鉴频器的作用是检测中频的频偏,并输出误差 电压。闭环时,输出误差电压使受控振荡器的 振荡频率偏离减小,从而把中频拉向额定值。 这种频率负反馈作用经过 AFC环反复循环调节 ,最后达到平衡状态 , 从而使系统的工作频 率保持稳定且偏差很小 。