九年级数学圆锥练习题

合集下载

初中数学《圆锥》(题目及答案)

初中数学《圆锥》(题目及答案)

圆锥1、已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图5)所示),则sinθ的值为AA.513B.512C.1013D.12132、已知圆锥的底面半径为3,母线长为5,则此圆锥的表面积为(24π)3、小刚用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是(B)A.120πcm2 B.240πcm2 C.260πcm2 D.480πcm24、(安徽省)已知圆锥的底面半径是3,高是4,则这个圆锥侧面展开图的面积是( C )(A)12π(B)15π(C)30π(D)24π5、(贵阳市)一个形如圆锥的冰淇淋纸筒,其底面直径为6厘米,母线长为5厘米,围成这样的冰淇淋纸筒所需纸片的面积是( D )(A)66π平方厘米(B)30π平方厘米(C)28π平方厘米(D)15π平方厘米6、(成都市)在Rt△ABC中,已知AB=6,AC=8,∠A=90.如果把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S1;把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S2,那么S1∶S2等于( A )(A)2∶3 (B)3∶4 (C)4∶9 (D)5∶127、(绍兴市)如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为3,则圆柱的侧面积为( B )(A )30π (B )76π (C )20π (D )74π8、(温州市)圆锥的高线长是厘米,底面直径为12厘米,则这个圆锥的侧面积是 ( D )(A )48π厘米 (B )24π13平方厘米(C )48π13平方厘米 (D )60π平方厘米9、(北京市海淀区)如果圆锥母线长为6厘米,那么这个圆锥的侧面积是______18π_平方厘米10、(宁夏回族自治区)圆锥的母线长为5厘米,高为3厘米,在它的侧面展开图中,扇形的圆心角是_______288__度.11、(福州市)若圆锥底面的直径为厘米,线线长为5厘米,则它的侧面积为__________15π平方厘米(结果保留π).12、(云南省)已知,一个直角三角形的两条直角边的长分别为3厘米、4厘米、以它的直角边所在直角线为轴旋转一周,所得圆锥的表面积是_________24π平方厘米或36π平方厘米 _.13、 某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB 与底面半径OB 的夹角为α,tan α=43,则此圆锥的侧面积是_________60π_平方米(结果保留π).14、如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为 218cm π15、圆锥的母线长为3,底圆半径为1,则圆锥的侧面积为 3π16、如图,圆锥的底面半径OB=6cm ,高OC=8cm .则这个圆锥的侧面积是 60πcm 217、如图,一把遮阳伞撑开时母线长是2米,底面半径为1米,做这把遮阳伞需用布料的面积是 2平方米18、如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为2cm.解:L==2πR,解R=2cm135,用它做成一个圆锥的侧面,则此圆锥底19、(昆明市)如图,扇形的半径OA=20厘米,∠AOB=面的半径为( B )(A)3.75厘米(B)7.5厘米(C)15厘米(D)30厘米20、现有一张圆心角为108°,半径为40cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ的大小是18°【解】∵圆锥的底面半径为10cm,∴圆锥的底面周长为20π,∴20π=,解得:n=90°,∵扇形彩纸片的圆心角是108°∴剪去的扇形纸片的圆心角为108°﹣90°=18°.剪去的扇形纸片的圆心角为18°.21、如图,在图1所示的正方形铁皮上剪下一个圆形和扇形,使之恰好围成图2所示的一个圆锥模型.设圆的半径为r ,扇形的半径为R ,则圆的半径与扇形的半径之间的关系为( D )A .r R 2=B .r R 49=C .r R 3=D .r R 4=14.(2006•兰州)若圆锥经过轴的截面是一个正三角形,则它的侧面积与底面积之比是( )A .3:2B .3:1C .5:3D .2:1【解答】解:设圆锥底面圆的半径为r ,∴S 底=πr 2,S 侧=•2r •2πr=2πr 2,∴S 侧:S 底=2πr 2:πr 2=2:1.故选D .15、如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于 (C ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米图1 图2。

苏科版九年级数学上册2-8《圆锥的侧面积》专题能力达标突破训练 【含答案】

苏科版九年级数学上册2-8《圆锥的侧面积》专题能力达标突破训练 【含答案】

苏科版九年级数学上册2.8《圆锥的侧面积》专题能力达标突破训练1.用半径为30cm,圆心角为120°的扇形纸片恰好能围成一个圆锥的侧面,则这个圆锥底面半径为( )A.5cm B.10cm C.15cm D.20cm2.如图,从一块直径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )A.B.C.D.13.如图,已知扇形OAB的半径为6cm,圆心角的度数为120°,若将OA,OB重合后围成一圆锥侧面,那么圆锥的底面半径为( )A.2cm B.3cm C.6cm D.2cm4.用一个圆心角为120°,半径为6的扇形做成一个圆锥的侧面,则这个圆锥的底面圆的半径为( )A.2B.6C.2D.35.一个圆锥的侧面展开图是一个面积为的半圆,则该圆锥的高为( )A..1B.2C.D.6.如图所示,矩形纸片ABCD中,AB=4cm,把它分割成正方形纸片ABFE和矩形纸片EFCD 后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则底面圆的直径的长为( )A.2cm B.3cm C.4cm D.5cm7.圆柱的底面直径为2,侧面积为8π,则圆柱的高为( )A.2B.4C.6D.18.一个圆柱的侧面展开图是一个正方形,它的底面半径为10cm,则这个圆柱的高为( )A.10πcm B.20πcm C.10cm D.20cm9.如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧,交AB于点E,交AC于点F,将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高为( )A.2B.C.4D.10.如图,在纸上剪一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径r=1,扇形的半径为R,扇形的圆心角等于90°,则R的值是( )A.R=2B.R=3C.R=4D.R=511.如图是某几何体的三种视图,其表面积为( )A.2πB.3πC.4πD.5π12.某同学在数学实践活动中,制作了一个侧面积为60π,底面半径为6的圆锥模型(如图所示),则此圆锥的母线长为 .13.用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为 .14.圆锥形的烟囱冒的底面直径是80cm,母线长是50cm,制作100个这样的烟囱冒至少需要 cm2的铁皮(结果保留π).15.如图所示,已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则:(1)求出围成的圆锥的侧面积为多少?(2)求出该圆锥的底面半径是多少?16.如下示意图,是我市香菇培植场常见的半地下室栽培棚,它由两部分组成,地上部分为半圆柱形四周封闭的塑料薄膜保温棚;地下部分为长方体的培植室,室内长30米,宽1.2米的地面上存放菌棒培育香菇.(1)地下培植室内按标准排放菌棒,宽排放8袋,长每米排放4排,求能排放多少袋香菇菌棒?(2)要建这样的保温棚约需多少平方米的塑料薄膜?(不计余料及埋在土里的塑料薄膜,结果精确到0.1平方米)17.有一个直径为1m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.(1)求被剪掉阴影部分的面积:(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?18.在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为16cm的等腰直角三角形.(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);(2)请求出所制作圆锥底面的半径长.19.如图,在正方形网格中建立平面直角坐标系,一条圆弧经过网格点A(0,8)、B(﹣8,8)、C(﹣12,4),请在网格图中进行如下操作:(1)若该圆弧所在圆的圆心为D,则D点坐标为 ;(2)连接AD、CD,则⊙D的半径长为 (结果保留根号).∠ADC的度数为 °;(3)若扇形ADC是一个圆锥的侧面展开图,求该圆锥的底面圆的半径长.(结果保留根号)20.某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF围成圆锥时,AE,AF恰好重合.(1)求这种加工材料的顶角∠BAC的大小.(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)答案1.解:设圆锥的底面圆半径为rcm,依题意,得2πr=,解得r=10.故选:B.2.解:∵⊙O的直径为2,则半径是:1,∴S⊙O=π×12=π,连接BC、AO,根据题意知BC⊥AO,AO=BO=1,在Rt△ABO中,AB==,即扇形的对应半径R=,弧长l==,设圆锥底面圆半径为r,则有2πr=,解得:r=.故选:B.3.解:设这个圆锥的底面圆的半径是rcm,根据题意得2π•r=,解得r=2,即这个圆锥的底面圆的半径是2cm.故选:A.4.解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故选:A.5.解:由题意一个圆锥的侧面展开图是面积为的半圆面,因为π=πl2,所以母线长为l=1,又半圆的弧长为π,圆锥的底面的周长为2πr=π,所以底面圆半径为r=,所以该圆锥的高为h===,故选:D.6.解:设圆锥的底面的半径为rcm,根据题意得=2πr,解得r=1,所以底面圆的直径为2cm,故选:A.7.解:∵圆柱的底面直径为2,∴圆柱的底面周长为2π.∵侧面积为8π,∴圆柱的高为:8π÷2π=4,故选:B.8.解:∵圆柱的底面半径为10cm,则其底面周长为:2π×10=20π(cm),圆柱的高也是20π(cm),故选:B.9.解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,这个圆锥的高h==4,故选:D.10.解:扇形的弧长是:=,圆的半径r=1,则底面圆的周长是2π,圆锥的底面周长等于侧面展开图的扇形弧长则得到:=2π,∴=2,即:R=4,故选:C.11.解:由三视图可知几何体底面半径为1,高为的圆锥,圆锥的母线长为=2.所以所求几何体的表面积为:S侧+S底=π•1•2+π•12=3π,故选:B.12.解:设此圆锥的母线长为l,根据题意得×2π×6×l=60π,解得l=10,所以此圆锥的母线长为10.故答案为10.13.解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=.故.14.解:圆锥形的烟囱冒的侧面积=•80π•50=2000π(cm2),100个这样的烟囱冒至少需要100×2000π=π(cm2),故答案为π.15.解:(1)圆锥的侧面积==12π(cm2);(2)该圆锥的底面半径为r,根据题意得2πr=,解得r=2.即圆锥的底面半径为2cm.16.解:(1)宽排放8袋,长每米排放4排,共30米,所以培植室内能放8×4×30=960袋香菇菌棒;(2)塑料棚的全面积为18π+0.36π=18.36π≈57.7.∴要建这样的香菇保温棚需塑料薄膜57.7平方米.17.解:(1)如图,连接BC,∵∠BAC=90°,∴BC为⊙O的直径,即BC=1m,又∵AB=AC,∴.∴(平方米)(2)设底面圆的半径为r,则,∴.圆锥的底面圆的半径长为米.18.解:(1)如图所示:扇形CEF为所求作的图形;(2)∵△ABC是等腰直角三角形,且AC=BC=16cm,∴AB=16cm,由(1)可知CD平分∠ACB,∴CD⊥AB,∴CD=8cm,设圆锥底面的半径长为r,依题意得:2πr=,∴r=2cm,答:所制作圆锥底面的半径长为2cm.19.解:(1)点D的坐标为(﹣4,0);(2)如图,AD==4,即⊙D的半径长为4;∵AD=CD=4,AC==4,∴AD2+DC2=AC2,∴△ACD为直角三角形,∠ADC的度数为90°;故答案为(﹣4,0);4;90;(3)设该圆锥的底面圆的半径长为r,根据题意得2πr=,解得r=,即该圆锥的底面圆的半径长为.20.解:(1)设∠BAC=n°.由题意得π•DE=,AD=2DE,∴n=90,∴∠BAC=90°.(2)∵AD=2DE=10(cm),∴S阴=•BC•AD﹣S扇形AEF=×10×20﹣=(100﹣25π)cm2.。

九年级数学上册3.6圆锥的侧面积同步练习2

九年级数学上册3.6圆锥的侧面积同步练习2

3.6 圆锥的侧面积 同步练习【知识要点】1.圆锥可以看做是一个直角三角形绕它的一条直角边旋转一周所成的图形;斜边旋转而成的曲面叫做面锥的侧面.无论转到什么位置;这条科边都叫做圆锥的母线;另一条直角边旋转而成的面叫做圆锥的底面如果记圆锥的高线长为h;地面半径为r;母线长为l ;则h 2+r 2=2l .2.圆锥的侧面展开图是一个扇形;这个扇形的半径是圆锥的母线长l ;弧长是圆锥的底面周长C =2лr;侧面积S 侧=лr l .3.圆锥的侧面积与底面积的和叫圆锥的全面积(或表面积).S 全=2rl r ππ+ 课内同步精练 ●A 组 基础练习 1. 如图是小明制作的一个圆锥形纸帽的示意图;围成这个纸帽的纸的面积为 cm 2.2. 若圆锥的母线长为 20cm ; 底面半径是母线长的14;则这个圆锥的侧面积是 . 3. 已知圆锥的母线长是10cm;侧面展开图的面积是6o лcm 时;则这个圆锥的底面半径是 cm.4. 如果圆锥的母线长为5cm ;底面半径为3cm;那么圆锥的表面积为( )A. 15лcm 2B. 24лcm 2C. 30лcm 2D. 39лcm 25. 沿着圆锥的轴剖开的剖面的等腰三角形的顶角为600;这个圆锥的母线长为8cm ;则这个圆锥的高为( ) A.43cm B.83cm C.4cm D.8cm6. 已知圆锥的母线长是35;它的侧面展开图是圆心角为2160的扇形;那么这个圆锥的( )A .底面半径是15B .高是26C .侧面积是70л 二D .侧面积是735л7. 一个圆锥的侧面积是底面积的2倍;求这个圆锥的侧面展开图扇形的圆心角的度数.●B 组 提高训练8. 圆锥的侧面积是87лcm 2;其轴截面是一个等边三角形;则该轴截面的面积为( )A.83cm 2B. 43cm 2C. 83лcm 2D. 43лcm 29. 已知菱形的周长为20cm;有一角为600;若以较长对角线为轴把菱形旋转一周;所成的几何体的全面积为 .10. 已知圆锥的全面积为12cm 2;侧面积为8cm 2; 试求圆锥的高与母线之间的夹角.11. 如图;在等腰梯形ABCD 中;AB//CD; CD=50 cm; AB=140cm;高h=DE=40cm;以直线AB 为轴旋转一周;得到一个上、下是圆锥;中间是圆柱的组合体.求这个组合体的全面积.课外拓展练习●A组基础练习1. 已知圆锥的底面半径为2cm ;母线长为5cm ;则它的侧面积是cm2.2. 在△ABC中;AB=3 ; AC=4;∠A=900;把Rt△ABC绕直线AC旋转一周得到一个圆锥;其全面积为S1;把Rt△ABC绕AB旋转一周得到另一个圆锥;其全面积为S2;则S1: S2= .3. 一个圆柱形容器的底面直径为2cm;要用一块圆心角为2400的扇形铁板做一个圆锥形的盖子;做成的盖子要能盖住圆柱形容器;这个扇形的半径至少要有cm .4. 把一个半径为8cm的圆片;剪去一个圆心角为900的扇形后;用剩下的部分做成一个圆锥的侧面;那么这个圆锥的高为5. 用一个半径长为6cm 的半圆围成一个圆锥的侧面;则此圆锥的底面半径为()A. 2cmB. 3cmC. 4crnD. 6cm6. 圆锥的全面积和侧面积之比是3 :2;这个圆锥的轴截面的顶角是()A. 300B. 600C. 900D. 12007. 某圆锥的侧面积是8;与这个圆锥等底等高的圆柱的侧面积是2;则圆锥的母线长是高线长的( )A. 4倍B. 8倍C. 22倍D.15倍8. 已知扇形的圆心角为1200;面积为300лcm2.( 1 )求扇形的弧长;( 2 )若把此扇形卷成一个圆锥;则这个圆锥的轴截面面积是多少?●B组提高训练9.将一个半圆围成一个圆锥的侧面;则两条母线之间的最大夹角是()A. 1500B. 1200C. 900D. 60010. 已知两个母线相等的圆锥的侧面展开图恰好能拼成一个圆;且它们的侧面积之比为1∶2;则它们的高之比为().A.2:1B.3:2D.5:11. 如图;在△ABC 中;∠C =Rt ∠; AC > BC 若以AC 为底面圆半径;BC 为高的圆锥的侧面积为S 1;以BC 为底面圆半径;AC 为高的圆锥的侧面积为S 2;则( )A . S 1 = S 2 B.S 1 > S 2 C. S 1 < S 2 D. S 1、S 2的大小关系不确定12. 将半径为R 的圆分割成面积之比为l : 2 : 3的三个扇形作为三个圆锥的侧面;设这三个圆锥的底面半径依次为r 1、r 2、r 3;则r 1+r 2+r 3= .13.一个等边圆柱(轴截面是正方形的圆柱)的侧面积是S 1;另一个圆锥的侧面积是S 2;如果圆锥和圆柱等底等高;求12S S14. 圆锥的底面半径是R;母线长是3R;M 是底面圆周上一点;从点M 拉一根绳子绕圆锥一圈;再回到M 点;求这根绳子的最短长度.。

初三数学圆锥的侧面积和全面积试题

初三数学圆锥的侧面积和全面积试题

初三数学圆锥的侧面积和全面积试题1. 一圆锥的侧面展开图的圆心角为120°,该圆锥的侧面积与全面积之比值为( )A .B .C .D .【答案】A【解析】设圆锥的底面半径为r ,母线长为R ,扇形的弧长为l ,根据圆周长公式及弧长公式可得r 与R 的关系,再分别表示出圆锥的侧面积与全面积,即可求得结果.设圆锥的底面半径为r ,母线长为R ,扇形的弧长为l ,则∴,解得 ∴S 侧=×2r·R=·2r·3r=6r 2×=3r 2S 全面积=S 侧+S 底=3r 2+r 2=4r 2∴S 表:S 底=3r 2:4r 2=3:4故选A.【考点】弧长公式,圆锥的侧面积与全面积点评:计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.2. 若圆锥经过轴的剖面是正三角形,则它的侧面积与底面积之比为( )A .3:2B .3:1C .2:1D .5:3【答案】C【解析】设圆锥母线为ι,底面半径为r ,根据等边三角形的性质可得ι=2r ,再分别表示出圆锥的侧面积与底面积,即可求得结果.设圆锥母线为ι,底面半径为r ,由题意得ι=2r .∴S 侧=·2r·ι=r×2 r=2r 2∴S 侧:S 底=2r 2:r 2=2:1.【考点】圆锥的侧面积与全面积点评:等边三角形的判定和性质的应用是初中数学极为重要的知识,与各个知识点结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.3. 如图,将三角形绕直线ι旋转一周,可以得到图所示的立体图形的是( )【答案】B【解析】根据直角三角形旋转的性质即可判断.由图可得将三角形绕直线ι旋转一周,可以得到图所示的立体图形的是第二个,故选B.【考点】旋转的性质点评:旋转的性质是初中数学平面图形中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需熟练掌握.4.将一个半径为8cm,面积为32πcm2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为()A.4B.C.D.【答案】B【解析】设圆锥底面圆的半径为r,母线长为l,先根据圆锥的侧面积公式列方程求得底面圆的半径为r,再根据勾股定理即可求得结果.设圆锥底面圆的半径为r,母线长为l,由题意得r·l=32,解得则这个圆锥形容器的高故选B.【考点】圆锥的侧面积,勾股定理点评:方程思想在初中数学的学习中非常重要,是中考的热点,在各种题型中均有出现,要特别注意.5.已知圆锥的底面半径是2cm,母线长是5cm,则它的侧面积是.【答案】10cm2【解析】圆锥的侧面积公式:圆锥的侧面积=×底面周长×母线.由题意的S侧=2r·l·=×2×5=10(cm2).【考点】圆锥的侧面积点评:本题是圆锥的侧面积公式的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.6.圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、全面积的比是.【答案】1:2:3【解析】设轴截面(等边三角形)边长为a,则圆锥的底面半径为a,母线为a,再根据圆的面积公式和圆锥的侧面积公式即可得到结果.设轴截面(等边三角形)边长为a,则圆锥的底面半径为a,母线为a∴S底=·()2=a2,S侧=·2··a=a2.S全=S底+S侧=.∴S底:S侧:S全==1:2:3.【考点】等边三角形的性质,圆的面积公式,圆锥的侧面积公式点评:等边三角形的判定和性质的应用是初中数学极为重要的知识,与各个知识点结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.7.圆锥的高为3cm,底面半径为4cm,求它的侧面积和侧面展开图的圆心角.【答案】侧面积为20cm2,圆心角为288°【解析】先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式和弧长公式即可求得结果. 由勾股定理可得母线长为5cm,S侧=lr=20rcm2,圆心角=×360°=×360°=288°.【考点】勾股定理,圆锥的侧面积公式,弧长公式点评:计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.8.以斜边长为a的等腰直角三角形的斜边为轴,旋转一周,求所得图形的表面积.【答案】【解析】由题意知旋转后的几何体为以等腰直角三角形的斜边的一半为高,直角边为母线,等腰直角三角形的斜边的上的高为底面半径的上下两个圆锥,再根据圆锥的侧面积公式即可求得结果.由题意得圆锥的母线所以【考点】旋转的性质,圆锥的侧面积点评:旋转的性质是初中数学平面图形中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需熟练掌握.9.若△ABC为等腰直角三角形,其中∠ABC=90°,AB=BC=5cm,求将等腰直角三角形绕直线AC旋转一周所得到图形的面积.【答案】【解析】先画出图形,根据特殊角的锐角三角函数值求得底面圆半径,再根据圆锥的侧面积公式即可求得结果.绕直线AC旋转一周所得图形如图:在Rt△ABC中,OB=AB·cos45°=∴所得图形的面积为2S=2××2×OB×AB=2×5×5=.侧【考点】特殊角的锐角三角函数值,圆锥的侧面积公式点评:旋转的性质是初中数学平面图形中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需熟练掌握.10.如图,粮仓的顶部是圆锥形,这个圆锥的底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头重合部分,那么这座粮仓实际需用油毡的面积是多少?【答案】158.4m2【解析】设圆锥的底面半径为r,先根据圆锥的底面周长为36m求得底面半径,再根据圆锥的侧面积公式即可求得结果.设圆锥的底面半径为r,那么2r=36,解得r=∴圆锥的侧面积为2r·l·=36×8×=144(m2).∴实际需要油毡的面积为144+144×10%=158.4(m2).【考点】圆的周长公式,圆锥的侧面积公式点评:本题是圆的周长公式及圆锥的侧面积公式的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.。

九年级数学下册圆锥的侧面积 同步练习北师大版

九年级数学下册圆锥的侧面积 同步练习北师大版

圆锥的侧面积学习目标:经历探索圆锥侧面积计算公式的过程,了解圆锥的侧面积计算公式,并会应用公式解决问题.学习重点:圆锥的侧面展开图及侧面积的计算.圆锥的侧面展开图是扇形,其半径等于母线长,弧长等于圆锥底面圆的周长.设圆锥的底面半径为r,母线长为ι,则它的侧面积:S侧=πrι,S全=S侧+S底=πr(ι+r).学习难点:对圆锥的理解认识.圆锥是一个底面和一个侧面围成的,它可以看作是由一个直角三角形绕一条直角边所在直线旋转而成的图形.学习方法:观察——想象——实践——总结法.学习过程:一、例题讲解:【例1】已知圆锥的底面积为4πcm2,母线长为3cm,求它的侧面展开图的圆心角.【例2】若圆锥的底面直线为6cm,母线长为5cm,则它的侧面积为 cm.(结果保留π)【例3】在Rt△ABC中,已知AB=6,AC=8,∠A=90°.如果把Rt△ABC绕直线AC旋转一周得到一个圆锥,其全面积为S1;把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其全面积为S2.那么S1:S2等于()A.2:3 B.3:4 C.4:9 D.5:12【例4】圆锥的侧面积是18π,它的侧面展开图是一个半圆,求这个圆锥的高和锥角.【例5】一个圆锥的高为33cm,侧面展开图是半圆,求:(1)圆锥母线与底面半径的比;(2)锥角的大小;(3)圆锥的全面积.二、随堂练习1.已知圆锥的底面直径为4,母线长为6,则它的侧面积为 .2.粮仓的顶部是圆锥形,这个圆锥的底面直径是4m ,母线长3m ,为防雨需在粮仓的顶部铺上油毡,那么这块油毡的面积至少为( )A .6m 2B .6πm 2C .12m 2D .12πm 23.若圆锥的侧面展开图是一个半径为a 的半圆,则圆锥的高为( ) A .aB .33aC .3aD .23a三、课后练习:1.一圆锥的侧面展开图的圆心角为120°,该圆锥的侧面积与全面积之比值为( )A .43B .32C .54D .212.若圆锥经过轴的剖面是正三角形,则它的侧面积与底面积之比为( )A .3:2B .3:1C .2:1D .5:33.如图,将半径为2的圆形纸片沿半径OA 、OB 将其截成1:3两部分,用所得的扇形围成圆锥的侧面,则圆锥的底面半径为( )A .21B .1C .1或3D .21或234.如图,将三角形绕直线ι旋转一周,可以得到图所示的立体图形的是( )5.在△ABC 中,∠C=90°,AB=4cm ,BC=3cm .若△ABC 绕直线AC 旋转一周得到一个几何体,则此几何体的侧面积是( )A .6πcm 2B .12πcm 2C .18πcm 2D .24πcm 26.将一个半径为8cm,面积为32πcm2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为()A.4 B.43C.45D.2147.已知圆锥的母线长是10cm,侧面展开图的面积是60πcm2,则这个圆锥的底面半径是cm.8.已知圆锥的底面半径是2cm,母线长是5cm,则它的侧面积是.9.圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、全面积的比是.10.一个扇形,半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为.11.一个扇形,半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的全面积为.12.一个圆锥形的烟囱帽的侧面积为2000πcm2,母线长为50cm,那么这个烟囱帽的底面直径为()A.80cm B.100cm C.40cm D.5cm13.圆锥的高为3cm,底面半径为4cm,求它的侧面积和侧面展开图的圆心角.14.以斜边长为a的等腰直角三角形的斜边为轴,旋转一周,求所得图形的表面积.15.已知两个圆锥的锥角相等,底面面积的比为9:25,其中底面较小的圆锥的底面半径为6cm,求另一个圆锥的底面积的大小.16.轴截面是顶角为120°的等腰三角形的圆锥侧面积和底面积的比是多少?17.如图,已知圆锥的母线SB=6,底面半径r=2,求圆锥的侧面展开图扇形的圆心角α.18.一个圆锥的底面半径为10cm,母线长20cm,求:(1)圆锥的全面积;(2)圆锥的高;(3)轴与一条母线所夹的角;(4)侧面展开图扇形的圆心角.19.一个扇形如图,半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,求圆锥底面半径和锥角.20.一个圆锥的轴截面是等边三角形,它的高是23cm.(1)求圆锥的侧面积和全面积;(2)画出圆锥的侧面展开图.21.若△ABC为等腰直角三角形,其中∠ABC=90°,AB=BC=52cm,求将等腰直角三角形绕直线AC旋转一周所得到图形的面积.22.用一块圆心角为300°的扇形铁皮做一个圆锥形烟囱帽,圆锥的底面直径为1m,求这个扇形铁皮的半径.23.如图,粮仓的顶部是圆锥形,这个圆锥的底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头重合部分,那么这座粮仓实际需用油毡的面积是多少?24.如图,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形ABC,求:(1)被剪掉的阴影部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆半径是多少?(结果可用根号表示)25.小明要在半径为1m,圆心角为60°的扇形铁皮上剪取一块面积尽可能大的正方形铁皮.小明在扇形铁皮上设计了如图3-8-11的甲、乙两种方案剪取所得的正方形的面积,并计算哪个正方形的面积较大?(估算时3取1.73,结果保留两个有效数字)26.要将一块直径为2m的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.操作:方案一:在图3-8-14中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求:画出示意图).方案二:在图3-8-15中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画出示意图).探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.。

苏教版九年级数学上册第二章 2.8 圆锥的侧面积 同步练习题(含答案解析)

苏教版九年级数学上册第二章 2.8 圆锥的侧面积 同步练习题(含答案解析)

第二章 2.8 圆锥的侧面积一.选择题(共10小题)1.(2019•遵义)圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是()A.5cm B.10cm C.6cm D.5cm 2.(2019•云南)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π3.(2019•西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm 4.(2019•荆州)如图,点C为扇形OAB的半径OB上一点,将△OAC沿AC折叠,点O恰好落在上的点D处,且l:l=1:3(l表示的长),若将此扇形OAB围成一个圆锥,则圆锥的底面半径与母线长的比为()A.1:3B.1:πC.1:4D.2:9 5.(2019•巴中)如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.15πB.30πC.45πD.60π6.(2019•宁波)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE 和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm 7.(2019•金华)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2B.C.D.8.(2018•鄂尔多斯)如图,从一块直径为2的圆形铁皮上剪出一个圆心角为90°的扇形CAB,且点C,A,B都在⊙O上,将此扇形围成一个圆锥,则该圆锥底面圆的半径是()A.B.C.D.9.如图,从一块半径为2m的圆形铁皮上剪出一个半径为2m的扇形,则此扇形围成的圆锥的侧面积为()A.2πm2B.C.πm2D.10.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为()A.6cm B.3cm C.5cm D.3cm二.填空题(共9小题)11.(2019•鸡西)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.12.(2019•绥化)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.13.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.14.(2019•淮安)若圆锥的侧面积是15π,母线长是5,则该圆锥底面圆的半径是.15.(2019•安顺)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2,扇形的圆心角θ=120°,则该圆锥母线l的长为.16.(2019•杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于cm2(结果精确到个位).17.如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是cm.18.一圆锥的母线长为3,底面半径为1,则该圆锥的侧面积为.19.如图,圆锥侧面展开得到扇形,此扇形半径CA=9,圆心角∠ACB=120°,则此圆锥高的OC的长度是.三.解答题(共7小题)20.小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径OB=3cm,高OC=4cm,求这个圆锥形漏斗的侧面积.21.一个圆锥的侧面展开图是半径为8cm,圆心角为120°的扇形,求:(1)圆锥的底面半径;(2)圆锥的全面积.22.在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为16cm的等腰直角三角形.(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);(2)请求出所制作圆锥底面的半径长.23.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EO、FO,若DE=4,∠DP A=45°(1)求⊙O的半径.(2)若图中扇形OEF围成一个圆锥侧面,试求这个圆锥的底面圆的半径.24.如图,将弧长为6π,圆心角为120°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(接缝粘连部分忽略不计),求圆锥形纸帽的高.25.有一个直径为1m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.(1)求被剪掉阴影部分的面积:(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?26.如图,在梯形ABCD中,AD∥BC,∠C=90°,∠BAD=120°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分).(1)求这个扇形的面积;(2)若将这个扇形围成圆锥,求这个圆锥的底面积.答案与解析一.选择题(共10小题)1.(2019•遵义)圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是()A.5cm B.10cm C.6cm D.5cm【分析】设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π•5=,然后解方程即可母线长,然后利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为R,根据题意得2π•5=,解得R=10.即圆锥的母线长为10cm,∴圆锥的高为:=5cm.故选:A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2.(2019•云南)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.3.(2019•西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4.(2019•荆州)如图,点C为扇形OAB的半径OB上一点,将△OAC沿AC折叠,点O 恰好落在上的点D处,且l:l=1:3(l表示的长),若将此扇形OAB围成一个圆锥,则圆锥的底面半径与母线长的比为()A.1:3B.1:πC.1:4D.2:9【分析】连接OD,能得∠AOB的度数,再利用弧长公式和圆的周长公式可求解.【解答】解:连接OD交OC于M.由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.【点评】本题运用了弧长公式和轴对称的性质,关键是运用了转化的数学思想.5.(2019•巴中)如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.15πB.30πC.45πD.60π【分析】圆锥的侧面积:S侧=•2πr•l=πrl,求出圆锥的母线l即可解决问题.【解答】解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π,故选:D.【点评】本题考查圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的圆锥的侧面积公式.6.(2019•宁波)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE 和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm【分析】设AB=xcm,则DE=(6﹣x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【解答】解:设AB=xcm,则DE=(6﹣x)cm,根据题意,得=π(6﹣x),解得x=4.故选:B.【点评】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.(2019•金华)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2B.C.D.【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=AB,再证明△CBD 为等边三角形得到BC=BD=AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【解答】解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选:D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.8.(2018•鄂尔多斯)如图,从一块直径为2的圆形铁皮上剪出一个圆心角为90°的扇形CAB,且点C,A,B都在⊙O上,将此扇形围成一个圆锥,则该圆锥底面圆的半径是()A.B.C.D.【分析】连接BC,如图,利用圆周角定理得到BC为⊙O的直径,则AB=AC=,设该圆锥底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解方程即可.【解答】解:连接BC,如图,∵∠BAC=90°,∴BC为⊙O的直径,BC=2,∴AB=AC=,设该圆锥底面圆的半径为r,∴2πr=,解得r=,即该圆锥底面圆的半径为.故选:D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.9.(2019•张店区一模)如图,从一块半径为2m的圆形铁皮上剪出一个半径为2m的扇形,则此扇形围成的圆锥的侧面积为()A.2πm2B.C.πm2D.【分析】根据题意求得扇形的圆心角的度数,然后利用扇形面积公式求解即可.【解答】解:如图:连接OA,OB,作OD⊥AB于点D,由题意知:AB=2,OA=OB=2,所以AD=,∴∠BAO=30°,∴∠BAC=60°,∴扇形面积为:=2π,故选:A.【点评】本题考查了圆锥的计算,解题的关键是求得扇形的圆心角,难度不大.10.(2018秋•临洮县期末)如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为()A.6cm B.3cm C.5cm D.3cm【分析】设圆锥的底面圆半径为r,先利用圆的周长公式计算出剩下的扇形的弧长,然后把它作为圆锥的底面圆的周长进行计算即可.【解答】解:设圆锥的底面圆半径为r,∵半径为9cm的圆形纸片剪去一个圆周的扇形,∴剩下的扇形的弧长=•2π•9=12π,∴2π•r=12π,∴r=6.故选:A.【点评】本题考查了圆锥的有关计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长.也考查了圆的周长公式.二.填空题(共9小题)11.(2019•鸡西)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是150°.【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可.【解答】解:∵圆锥的底面圆的周长是45cm,∴圆锥的侧面扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.【点评】本题考查了圆锥的计算,解题的关键是根据圆锥的侧面展开扇形的弧长等于圆锥的底面周长来求出弧长.12.(2019•绥化)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为12.【分析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可.【解答】解:设圆锥的母线长为l,根据题意得:=2π×4,解得:l=12,故答案为:12.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.13.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.【分析】利用弧长=圆锥的底面周长这一等量关系可求解.【解答】解:连接AB,过O作OM⊥AB于M,∵∠AOB=120°,OA=OB,∴∠BAO=30°,AM=,∴OA=2,∵=2πr,∴r=故答案是:【点评】本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键.14.(2019•淮安)若圆锥的侧面积是15π,母线长是5,则该圆锥底面圆的半径是3.【分析】设该圆锥底面圆的半径是为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到×2π×r×5=15π,然后解关于r的方程即可.【解答】解:设该圆锥底面圆的半径是为r,根据题意得×2π×r×5=15π,解得r=3.即该圆锥底面圆的半径是3.故答案为3.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.(2019•安顺)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2,扇形的圆心角θ=120°,则该圆锥母线l的长为6.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π×2=,然后解关于l的方程即可.【解答】解:根据题意得2π×2=,解德l=6,即该圆锥母线l的长为6.故答案为6.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(2019•杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于113cm2(结果精确到个位).【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:这个冰淇淋外壳的侧面积=×2π×3×12=36π≈113(cm2).故答案为113.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是cm.【分析】连接OA,作OD⊥AB于点D,利用三角函数即可求得AD的长,则AB的长可以求得,然后利用弧长公式即可求得弧长,即底面圆的周长,再利用圆的周长公式即可【解答】解:连接OA,作OD⊥AB于点D.在直角△OAD中,OA=6,∠OAD=∠BAC=30°,则AD=OA•cos30°=3.则AB=2AD=6,则扇形的弧长是:=2π,设底面圆的半径是r,则2π×1=2π,解得:r=.故答案为:.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.18.一圆锥的母线长为3,底面半径为1,则该圆锥的侧面积为3π.【分析】圆锥的侧面积=π×底面半径×母线长;【解答】解:圆锥的侧面积=π×3×1=3π;故答案为:3π.【点评】考查圆锥的侧面积公式,掌握相应公式是关键.19.如图,圆锥侧面展开得到扇形,此扇形半径CA=9,圆心角∠ACB=120°,则此圆锥高的OC的长度是6.【分析】设这个圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解方程求出r,然后利用勾股定理计算出OC.【解答】解:设这个圆锥的底面半径为r,根据题意得2πr=,所以OC===6.答:此圆锥高的OC的长度为6.故答案为6.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三.解答题(共7小题)20.小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径OB=3cm,高OC=4cm,求这个圆锥形漏斗的侧面积.【分析】首先根据底面半径OB=3cm,高OC=4cm,求出圆锥的母线长,再利用圆锥的侧面积公式求出即可.【解答】解:根据题意,由勾股定理可知BC2=BO2+CO2.∴BC=5cm,∴圆锥形漏斗的侧面积=π•OB•BC=15πcm2.,【点评】此题主要考查了圆锥的侧面积公式求法,正确的记忆圆锥侧面积公式是解决问题的关键.21.一个圆锥的侧面展开图是半径为8cm,圆心角为120°的扇形,求:(1)圆锥的底面半径;(2)圆锥的全面积.【分析】(1)根据弧长公式求出底面周长,根据圆的周长公式计算即可;(2)根据扇形面积公式和圆的面积公式计算.【解答】解:(1)设圆锥的底面半径为rcm,扇形的弧长==,∴2πr=,解得,r=,即圆锥的底面半径为cm;(2)圆锥的全面积=+π×()2=cm2.【点评】本题考查的是圆锥的计算,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.22.在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为16cm的等腰直角三角形.(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);(2)请求出所制作圆锥底面的半径长.【分析】(1)根据题意作出图形即可;(2)根据勾股定理得到AB=16,由(1)可知CD平分∠ACB,根据等腰三角形的性质得到CD⊥AB,根据弧长的公式即可得到结论.【解答】解:(1)如图所示:扇形CEF为所求作的图形;(2)∵△ABC是等腰直角三角形,且AC=BC=16cm,∴AB=16cm,由(1)可知CD平分∠ACB,∴CD⊥AB,∴CD=8cm,设圆锥底面的半径长为r,依题意得:2πr=,∴r=2cm,答:所制作圆锥底面的半径长为2cm.【点评】本题考查了作图﹣应用与设计作图,等腰直角三角形的性质,弧长的计算,正确的作出图形是解题的关键.23.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EO、FO,若DE=4,∠DP A=45°(1)求⊙O的半径.(2)若图中扇形OEF围成一个圆锥侧面,试求这个圆锥的底面圆的半径.【分析】(1)利用垂径定理得到CE=DC=DE=2,OC=OE,则∠OEC=30°,然后利用含30度的直角三角形三边的关系求出OE即可;(2)利用圆周角定理得到∠EOF=2∠D=90°,设这个圆锥的底面圆的半径为r,利用弧长公式得到2πr=,然后解关于r的方程即可.【解答】解:(1)∵弦DE垂直平分半径OA,∴CE=DC=DE=2,OC=OE,∴∠OEC=30°,∴OC==2,∴OE=2OC=4,即⊙O的半径为4;(2)∵∠DP A=45°,∴∠D=45°,∴∠EOF=2∠D=90°,设这个圆锥的底面圆的半径为r,∴2πr=,解得r=1,即这个圆锥的底面圆的半径为1.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了垂径定理和圆周角定理.24.如图,将弧长为6π,圆心角为120°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(接缝粘连部分忽略不计),求圆锥形纸帽的高.【分析】设圆锥的底面圆的半径为r,利用这个扇形的弧长等于圆锥底面的周长得到2πr=6π,解得r=3,设扇形AOB的半径为R,根据弧长公式得到=6π,解得R=9,然后根据勾股定理计算圆锥形纸帽的高.【解答】解:设圆锥的底面圆的半径为r,则2πr=6π,解得r=3,设扇形AOB的半径为R,则=6π,解得R=9,所以圆锥形纸帽的高==6.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.25.有一个直径为1m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.(1)求被剪掉阴影部分的面积:(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?【分析】(1)由∠BAC=90°,得BC为⊙O的直径,即BC=1m;又由AB=AC,得到AB=BC=,而S阴影部分=S⊙O﹣S扇形ABC,然后根据扇形和圆的面积公式进行计算即可;(2)扇形的半径是AB=,扇形BAC的弧长l==π,圆锥的底面周长等于侧面展开图的扇形弧长,然后利用弧长公式计算.【解答】解:(1)如图,连接BC,∵∠BAC=90°,∴BC为⊙O的直径,即BC=1m,又∵AB=AC,∴.∴(平方米)(2)设底面圆的半径为r,则,∴.圆锥的底面圆的半径长为米.【点评】本题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R 为圆的半径),或S=lR,l为扇形的弧长,R为半径.也考查了90度的圆周角所对的弦为直径以及等腰直角三角形三边关系.26.如图,在梯形ABCD中,AD∥BC,∠C=90°,∠BAD=120°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分).(1)求这个扇形的面积;(2)若将这个扇形围成圆锥,求这个圆锥的底面积.【分析】(1)作AE⊥BC,根据三角函数求得扇形的半径AE,由梯形的性质得出圆心角度数,继而根据扇形的面积公式可得.(2)根据圆锥的底面周长等于扇形的弧长,从而求得底面半径,从而求得面积.【解答】解:(1)过点A作AE⊥BC于E,则AE=AB sin B=4×=2,∵AD∥BC,∠BAD=120°,∴扇形的面积为=4π,(2)设圆锥的底面半径为r,则2πr=,解得:r=若将这个扇形围成圆锥,这个圆锥的底面积π.【点评】本题要熟知切线的性质,直角梯形的性质和扇形弧长计算公式.利用切线的性质求得AE的长即半径是解题的关键,注意扇形的周长为两条半径的长加上弧长.。

人教版九年级数学上册《24-4 第2课时 圆锥的侧面积和全面积》作业同步练习题及参考答案

人教版九年级数学上册《24-4 第2课时 圆锥的侧面积和全面积》作业同步练习题及参考答案

2 2 第 2 课时 圆锥的侧面积和全面积1. 已知一个圆锥的底面直径是 6 cm,母线长是 8 cm,则它的全面积为( )A .24π cm 2B .33 cm 2C .24 cm 2D .33π cm 22. 如图,圆锥的底面半径为 r cm,母线长为 10 cm,其侧面展开图是圆心角为 216°的扇形,则 r 的值是()A .3 B.6 C.3π D.6π3. 已知一个圆锥的侧面积是底面积的 2 倍,母线长为 2,则该圆锥的底面半径是()A .1B .1C . 2D .34. 右面是一个圆锥的轴截面,则此圆锥的侧面展开图的圆心角的度数为.5. 已知圆锥的底面周长为 6π cm,高为 4 cm,则该圆锥的全面积是 cm 2;侧面展开扇形的圆心角是 .6. 工人师傅用一张半径为 24 cm,圆心角为 150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为 .7. 一个圆锥的高为 3,侧面展开图是半圆,求:(1)圆锥的母线与底面半径之比;(2)圆锥的全面积.8.如图,有一个直径是1 m 的圆形铁皮,要从中剪出一个半径为1 m 且圆心角是120°的扇形ABC,求:2(1)被剪掉后剩余阴影部分的面积.(2)若用所留的扇形铁皮围成一个圆锥,该圆锥底面圆的半径是多少米?9.已知圆锥的底面半径为4 cm,高为5 cm,则它的表面积为( )A.12π cm2B.26π cm2C. 41π cm2D.(4 41+16)π cm210.已知点O 为一圆锥的顶点,点M 为该圆锥底面上一点,点P 在母线OM 上,一只蚂蚁从点P 出发,绕圆锥侧面爬行,回到点P 时所爬过的最短路线的痕迹如图所示.若沿母线OM 将圆锥侧面剪开并展开, 则所得侧面展开图是( )11.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A 出发沿圆锥的侧面爬行一周后回到点A 的最短路程是.12.如图,这是一个由圆柱形材料加工而成的零件,它是以圆柱的上底面为底面,在其内部“掏取”一个与圆柱等高的圆锥而得到的,其底面直径AB=12 cm,高BC=8 cm,求这个零件的全面积.(结果保留根号)★13.如图①,在正方形的铁皮上剪下一个圆形和一个扇形,使之恰好围成如图②的一个圆锥,设图① 中圆的半径为r,扇形的半径为R,那么扇形的半径R 与☉O 的半径r 之间满足怎样的关系?并说明理由.★14.如图,一个纸杯的母线延长后相交于一点,形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB,经测量,纸杯上开口圆的直径是6 cm,下底圆直径为4 cm,母线长EF=8 cm.求扇形OAB 的圆心角及这个纸杯的全面积.(面积计算结果用π表示)2 2 180 180参考答案夯基达标1.D2.B 圆锥的侧面展开图是扇形,它的弧长=216π×10=12π,弧长又等于底面圆的周长,于是 12π=2π×r ,可180 得 r=6.故选 B .3.B 设圆锥的底面半径为 r ,则圆锥的侧面积为1·2πr ·2=2πr ,底面面积为πr 2,根据题意得 2πr=2πr 2,解得 r=1,即圆锥的底面半径是 1.故选 B .4.90° ∵2π×3=�π×12,∴n=90.180 5.24π 216° 设圆锥的底面半径为 r cm,母线长为 R cm,侧面展开扇形的圆心角为 n °.∵圆锥的底面周长为 2πr=6π,∴r=3.∵圆锥的高为 4 cm,∴R= 32 + 42=5.∴圆锥的全面积=底面积+侧面积=π×32+1×6π×5=24π(cm 2).∵侧面展开扇形的弧长 l=底面周长=6π=�π�,∴n=180×6π=216.π×5 即侧面展开扇形的圆心角是 216°.6.2 119 cm 由题意可得圆锥的母线长为 24 cm,设圆锥底面圆的半径为 r cm,则 2πr=150π×24,2 解得 r=10.故这个圆锥的高为 242-102=2 119(cm).7. 解 如图,设圆锥的轴截面为△ABC ,过点 A 作 AO ⊥BC 于点 O ,设母线长 AB=l ,底面☉O 的半径为 r ,高AO=h.(1) ∵圆锥的侧面展开图是半圆,∴2πr=1×2πl=πl ,�=2.2 �(2) 在 Rt △ABO 中,∵l 2=r 2+h 2,l=2r ,h=3,∴(2r )2=32+r 2.由 r 为正数,解得 r= 3,l=2r=2 3.故 S 全=S 侧+S 底=πrl+πr 2=π× 3×2 3+π×( 3)2=9π.8. 解 (1)设 O 为圆心,连接 OA ,OB ,OC.∵OA=OC=OB ,AB=AC ,∴△ABO ≌△ACO (SSS).又∠BAC=120°,∴∠BAO=∠CAO=60°.∴△ABO 是等边三角形.∴AB=1m .1 2 41 2 12 2 2 2 2 120π× 1 2 ∴� = 2 = π (m 2). 扇形A � 360 122 ∴S =π − π = π(m 2). 阴影 12 6120π×1 π (2)在扇形 ABC 中,�ˆ�的长为 2 = 1803(m). 设底面圆的半径为 r m,则 2πr=π.∴r=1(m).3 6培优促能9.D 底面半径为 4 cm,则底面周长为 8π cm,底面面积为 16π cm 2.由勾股定理得母线长为 cm,圆锥的侧面积为1×8π× 41=4 41π(cm 2),所以它的表面积为 16π+4 41π=(4 41+16)π cm 2.故选 D .10.D11. 20 将圆锥的侧面展开成扇形,连接 AA',则蜘蛛爬行的最短路程就是线段 AA'的长度.由题意知,OA=OA'=20,�ˆ�'=2π×5=10π,设∠AOA'=n °,根据弧长公式可求 n=10π×180=90.20π 所以在 Rt △AOA'中,AA'= ��2 + ��'2=20 2.12. 解 这个零件的底面积为2 π× =36π(cm 2),这个零件的外侧面积为12π×8=96π(cm 2),圆锥母线长OC= 82 + 122 =10(cm),这个零件的内侧面积为1×12π×10=60π(cm 2),2 2 2 所以这个零件的全面积为 36π+96π+60π=192π(cm 2).13. 分析 因为题图①中的圆形和扇形刚好围成题图②中的圆锥,所以题图①中的扇形的弧长等于☉O 的周长.解 扇形的半径 R 等于☉O 的半径 r 的 4 倍.理由如下:因为�ˆ�=2πR×1 = 1πR ,☉O 的周长为 2πr ,42且题图①中的扇形和☉O 能围成题图②的圆锥,所以1πR=2πr ,即 R=4r.创新应用14. 分析 展开图扇形的圆心角可利用圆锥底面周长等于展开图扇形的弧长来计算;纸杯的侧面积利用母线延长后的大圆锥的侧面积与小圆锥的侧面积的差来表示.解 由题意,知�ˆ�=6π cm,�ˆ�=4π cm .设∠AOB=n °,AO=R cm,则 CO=(R-8)cm, 根据弧长公式,�π� �π(�-8) 得 180=6π, 180 =4π.解得 n=45,R=24.所以扇形圆心角的度数为 45°.由 R=24,得 R-8=16.所以 S OCD =1×4π×16=32π(cm 2),S 扇形 OAB =1×6π×24=72π(cm 2).所以 S 纸杯侧=S 扇形 OAB -S 扇形 OCD =72π-32π=40π(cm 2). 又因为 S纸杯底=π 2 =4π(cm 2),4 2 扇形所以S=40π+4π=44π(cm2).纸杯全。

中考数学《圆锥的侧面积》专题练习(附带答案)

中考数学《圆锥的侧面积》专题练习(附带答案)

中考数学《圆锥的侧面积》专题练习(附带答案)一.选择题1.用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.3B.2.5C.2D.1.52.已知圆锥的底面半径为2cm,母线长为4cm,则圆锥的侧面积是()A.8cm2B.16cm2C.16πcm2D.8πcm23.已知一圆锥母线长为8cm,其侧面展开图扇形的圆心角为90°,则圆锥底面圆的半径为()A.1cm B.2cm C.3cm D.4cm4.如图,从一块直径为24cm的圆形纸片上,剪出一个圆心角为90°的扇形ABC,使点A,B,C都在圆周上,将剪下的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径是()A.3cm B.2cm C.6cm D.12cm5.如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长为()A.6cm B.7cm C.8cm D.9cm6.如图,圆锥的轴截面是一个斜边为1的等腰直角三角形,则这个圆锥的侧面积是()A.B.C.πD.π7.如图,在Rt△ABC中,∠B=90°,AC=5,BC=4,以AC所在的直线为轴旋转一周所成几何体的表面积为()A.B.C.D.12π8.一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2.5米,底面半径为2米,则做成这把遮阳伞需要布料的面积是()平方米(接缝不计).A.πB.5πC.4πD.3π二.填空题9.如果把一个圆柱体橡皮泥的一半捏成与圆柱底面积相等的圆锥,则这个圆锥的高与圆柱的高的比为.10.电焊工用一个圆心角为150°,半径为24cm的扇形白铁片制作一个圆锥的侧面(假设焊接时缝隙宽度忽略不计),那么这个圆锥的底面半径为cm.11.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=.12.已知圆锥的底面半径为2cm,侧面积为10πcm2,则该圆锥的母线长为cm.13.用半径为30的一个扇形纸片围成一个底面半径为10的圆锥的侧面,则这个圆锥的侧面积为.14.扇形的半径为8cm,圆心角为120°,用该扇形围成一个圆锥的侧面,则这个圆锥底面圆的直径是cm.三.解答题15.如图,在梯形ABCD中,AD∥BC,∠C=90°,∠BAD=120°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分).(1)求这个扇形的面积;(2)若将这个扇形围成圆锥,求这个圆锥的底面积.16.有一个直径为1m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.(1)求被剪掉阴影部分的面积:(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?17.如图,已知扇形AOB的圆心角为90°,面积为16π.(1)求扇形的弧长;(2)若将此扇形卷成一个无底圆锥形筒,试求这个圆锥形筒的高OH.(注:结果保留根号或π.)18.【问题】如图1、2是底面半径为1cm,母线长为2cm的圆柱体和圆锥体模型.现要用长为2πcm,宽为4cm的长方形彩纸(如图3)装饰圆柱、圆锥模型表面.已知一个圆柱和一个圆锥模型为一套,长方形彩纸共有122张,用这些纸最多能装饰多少套模型呢?【对话】老师:“长方形纸可以怎么裁剪呢?”学生甲:“可按图4方式裁剪出2张长方形.”学生乙:“可按图5方式裁剪出6个小圆.”学生丙:“可按图6方式裁剪出1个大圆和2个小圆.”老师:尽管还有其他裁剪方法,但为裁剪方便,我们就仅用这三位同学的裁剪方法!【解决】(1)计算:圆柱的侧面积是cm2,圆锥的侧面积是cm2.(2)1张长方形彩纸剪拼后最多能装饰个圆锥模型;5张长方形彩纸剪拼后最多能装饰个圆柱体模型.(3)求用122张彩纸对多能装饰的圆锥、圆柱模型套数.19.课堂上,师生一起探究知,可以用已知半径的球去测量圆柱形管子的内径.小明回家后把半径为5cm 的小皮球置于保温杯口上,经过思考找到了测量方法,并画出了草图(如图).请你根据图中的数据,帮助小明计算出保温杯的内径.20.一个圆锥形工件的轴截面是一个等腰直角三角形,这个直角三角形的斜边长为10cm,现为这个工件刷油漆,每平方厘米要2.5g油漆,至少要多少油漆?(结果保留根号)参考答案一.选择题1.解:半圆的周长=×2π×6=6π∴圆锥的底面周长=6π∴圆锥的底面半径==3故选:A.2.解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.故选:D.3.解:设圆锥底面半径为rcm那么圆锥底面圆周长为2πrcm所以侧面展开图的弧长为=4πcm则2πr=4π解得:r=2故选:B.4.解:AB===12cm∴==6π∴圆锥的底面圆的半径=6π÷(2π)=3cm.故选:A.5.解:圆锥的底面周长=2π×2=4πcm设圆锥的母线长为R,则:=4π解得R=6.故选:A.6.解:∵圆锥的轴截面是一个斜边为1的等腰直角三角形∴底面半径=0.5,母线长为,底面周长=π∴圆锥的侧面积=×π×=.故选:A.7.解:作BH⊥AC于H,如图AB==3∵BH•AC=AB•BC∴BH==∴以AC所在的直线为轴旋转一周所成几何体的表面积=•2π••4+•2π••3=π.故选:A.8.解:圆锥的底面周长=2πr=2π×2=4π∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长∴圆锥的侧面积=lr=×4π×2.5=5π故选:B.二.填空题9.解:设圆柱的高为a,圆锥的高为b,圆柱底面积为S根据题意得S•a=•S•b所以b:a=3:2.故答案为:3:2.10.解:设这个圆锥的底面半径为r根据题意得2πr=解得r=10.答:这个圆锥的底面半径为10cm.故答案为10.11.解:当圆锥顺时针滚动三周后点A恰好第一次回到原处,根据题意3π•1=π•P A∴P A=3∴OP==2当圆锥顺时针滚动三周后点A恰好第二次回到原处,根据题意π•1=π•P A∴P A=∴OP===综上所述,OP的长为2或.故答案为2或.12.解:设圆锥的母线长为Rcm圆锥的底面周长=2π×2=4π(cm)则×4π×R=10π解得,R=5故答案为:5.13.解:这个圆锥的侧面积为S侧=•2πr•l=πrl=π×10×30=300π故答案为:300π.14.解:设此圆锥的底面半径为r,由题意,得2πr=解得r=cm.所以直径为cm故答案为:.三.解答题15.解:(1)过点A作AE⊥BC于E则AE=AB sin B=4×=2∵AD∥BC,∠BAD=120°∴扇形的面积为=4π(2)设圆锥的底面半径为r,则2πr=解得:r=若将这个扇形围成圆锥,这个圆锥的底面积π.16.解:(1)如图,连接BC∵∠BAC=90°∴BC为⊙O的直径,即BC=1m又∵AB=AC∴.∴(平方米)(2)设底面圆的半径为r,则∴.圆锥的底面圆的半径长为米.17.解:(1)设扇形的半径是R,则=16π解得:R=8设扇形的弧长是l,则lR=16π,即4l=16π解得:l=4π.(2)圆锥的底面圆的半径为r根据题意得2πr=,解得r=2所以个圆锥形桶的高==2.18.解:(1)圆柱的地面底面周长是2π,则圆柱的侧面积是2π×2=4πcm2,圆锥的侧面积是×2π×2=2πcm2;(2)圆柱的底面积是:πcm2,则圆柱的表面积是:6πcm2,圆锥的表面积是:3πcm2.一张纸的面积是:4×2π=8π则1张长方形彩纸剪拼后最多能装饰2个圆锥模型;5张长方形彩纸剪拼后最多能装饰6个圆柱体模型(3)设做x套模型,则每套模型中做圆锥的需要张纸,作圆柱需要张纸∴+≤122解得:x≤∵x是6的倍数,取x=90,做90套模型后剩余长方形纸片的张数是122﹣(45+75)=2张2张纸够用这三位同学的裁剪方法能做一套模型.∴最多能做91套模型.故答案是:4π,2π;2,6.19.解:连OD.∵EG=20﹣12=8∴OG=8﹣5=3∴GD=4∴AD=2GD=8cm.答:保温杯的内径为8cm.20.解:∵△ABC为等腰直角三角形,BC=10∴AC=BC=5∴圆锥的表面积=π•()2+π•5•5=(25π+25π)cm2∵每平方厘米要2.5g油漆∴所需油漆的量=(25π+25π)×2.5=(+1)π(g).。

人教版九年级数学上学期(第一学期)《圆锥的侧面积和全面积》同步测试题及答案.docx

人教版九年级数学上学期(第一学期)《圆锥的侧面积和全面积》同步测试题及答案.docx

24.4.2 圆锥的侧面积和全面积一、选择题(共18小题)1.已知圆锥的底面半径为6cm,高为8cm,则这个圆锥的母线长为()A.12cm B.10cm C.8cm D.6cm2.一个圆锥的母线长是9,底面圆的半径是6,则这个圆锥的侧面积是()A.81πB.27πC.54πD.18π3.用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是()A.1cm B.2cm C.3cm D.4cm4.若圆锥的侧面展开图为半圆,则该圆锥的母线l与底面半径r的关系是()A.l=2r B.l=3r C.l=r D.5.如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.1500πcm2B.300πcm2 C.600πcm2 D.150πcm26.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是()A.4πB.3πC.2πD.2π7.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为()A.B.C.D.8.一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.C.D.9.一个几何体的三视图如图所示,这个几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm210.底面半径为4,高为3的圆锥的侧面积是()A.12πB.15πC.20πD.36π11.已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A.30°B.60°C.90°D.180°12.如图,圆锥的侧面积为15π,底面积半径为3,则该圆锥的高AO为()A.3 B.4 C.5 D.1513.如图是一个几何体的三视图,则这个几何体的侧面积是()A.πcm2B.2πcm2C.6πcm2D.3πcm214.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π15.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A.B.1 C.D.216.一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.20πcm2D.30πcm217.如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为()A.3πB.3 C.6πD.618.如图,圆锥模具的母线长为10cm,底面半径为5cm,则这个圆锥模具的侧面积是()A.10πcm2B.50πcm2C.100πcm2 D.150πcm2二、填空题(共12小题)19.若圆锥的母线长为5cm,底面半径为3cm,则它的侧面展开图的面积为______cm2(结果保留π)20.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为______cm.21.如图,在一张正方形纸片上剪下一个半径为r的圆形和一个半径为R的扇形,使之恰好围成图中所示的圆锥,则R与r之间的关系是______.22.有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是______cm2.(结果保留π)23.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为______.24.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为______.(结果保留π)25.已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是______(结果保留π).26.如图,圆锥的底面半径OB长为5cm,母线AB长为15cm,则这个圆锥侧面展开图的圆心角α为______度.27.圆锥的底面半径是2cm,母线长6cm,则这个圆锥侧面展开图的扇形圆心角度数为______度.28.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为______米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______米.29.已知圆锥的底面直径为20cm,母线长为90cm,则圆锥的表面积是______cm2.(结果保留π)30.如图是一个几何体的三视图,这个几何体是______,它的侧面积是______(结果不取近似值).24.4.2 圆锥的侧面积和全面积答案一、选择题(共18小题)1.B;2.C;3.B;4.A;5.B;6.B;7.D;8.D;9.B;10.C;11.D;12.B;13.A;14.C;15.B;16.B;17.B;18.B;二、填空题(共12小题)19.15π;20.6;21.R=4r;22.60π;23.300π;24.24π;25.20π;26.120;27.120;28.1;;29.1000π;30.圆锥;2π;。

2022-2023学年苏科版九年级数学上册《圆锥的侧面积》填空专项练习题(含答案)

2022-2023学年苏科版九年级数学上册《圆锥的侧面积》填空专项练习题(含答案)

2022-2023学年苏科版九年级数学上册《2.8圆锥的侧面积》填空专项练习题(附答案)1.在正方形铁皮上剪下一个圆形和扇形,恰好围成一个圆锥模型(如图),如果圆的半径为r,扇形半径为R,那么r:R=.2.将一张扇形纸片卷成一个圆锥形桶(不重叠,无缝隙),通过测量,已知该圆锥形桶的底面周长为6πcm,高为4cm,则扇形纸片的面积为cm2(结果保留π).3.已知圆锥的高为12,母线长为13,则圆锥的侧面积为.4.如图,若圆锥的母线长为6,底面半径为2,则其侧面展开图的圆心角为.5.在数学实践活动中,某同学用一张如图1所示的矩形纸板制做了一个扇形,并有这个扇形,围成一个圆锥模型(如图2所示),若扇形的圆心角为120°,圆锥的底面半径为6,则此圆锥的母线长为.6.已知圆锥的母线长是18,它侧面展开图的圆心角是120°,则它的侧面积是.7.若圆锥的底面圆半径为2cm,母线长是5cm,则它的侧面展开图的面积为cm2.8.如图,要用一个扇形纸片围成一个无底盖的圆锥(接缝处忽略不计),若该圆锥的底面周长为8πcm,侧面积为48πcm2,则这个扇形的圆心角的度数是.9.用圆心角为120°,弧长为4π的扇形围成一个圆锥的侧面,则所围成的圆锥的高为.10.小丽在手工制作课上,用面积为120πcm2,半径为20cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为cm.11.如图,圆锥的母线长AB=12cm,底面圆的直径BC=10cm,则该圆锥的侧面积等于cm2.(结果用含π的式子表示)12.如图,用圆心角为120°,半径为3cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是cm.13.如图,圆锥的高AO=4,底面圆半径为3,则AC=,圆锥的侧面积为.14.如图,在一个边长为4cm的正方形里作一个扇形,再将这个扇形剪下卷成一个圆锥的侧面,则这个圆锥的底面圆的半径为cm.15.如图(1)所示的瓶子中盛满了水,如果将这个瓶子中的水全部倒入图(2)所示的杯子中,那么一共需要个这样的杯子?(单位:cm)16.圆锥的母线长为5cm,高为4cm,则该圆锥侧面展开图扇形的圆心角为°.17.已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为.18.若一个圆锥的母线长为5cm,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径为cm.19.如图,△ABC中,∠C=90°,∠B=60°,AC=3,以AC为轴旋转一周得到一个圆锥,则该圆锥的侧面积为.20.已知Rt△ABC,∠C=90°,AB=5cm,AC=4cm,将此三角形绕AC旋转一周所形成的圆锥的侧面积是.参考答案1.解:因为扇形的弧长等于圆锥底面周长,所以2πR=2πr,所以R=2r所以r:R=1:4;故答案为:1:4.2.解:设圆锥的底面圆的半径为rcm,根据题意得2πr=6π,解得r=3,所以圆锥的母线长为=5(cm),所以圆锥的侧面积为×6π×5=15π(cm2),即扇形纸片的面积为15πcm2.故答案为:15π.3.解:由勾股定理得,圆锥的底面半径==5,∴圆锥的底面周长=10π,∴圆锥的侧面积=×10π×13=65π,故答案为:65π.4.解:设圆锥的侧面展开图的圆心角为n°,根据题意得2π×2=,解得n=120,所以侧面展开图的圆心角为120°.故答案为:120°.5.解:设此圆锥的母线长为l,根据题意得2π×6=,解得l=18,即此圆锥的母线长为18.故答案为:18.6.解:根据题意得圆锥的侧面积==108π.故答案为:108π.7.解:根据题意,圆锥的侧面展开图的面积=×2π×2×5=10π(cm2).故答案为:10π.8.解:设圆锥的母线长为lcm,扇形的圆心角为n°,∵圆锥的底面圆周长为8πcm,∴圆锥的侧面展开图扇形的弧长为8πcm,由题意得:×8π×l=48π,解得:l=12,则=8π,解得,n=162,即扇形的圆心角为120°,故答案为:120°.9.解:设圆锥的底面圆的半径为r,则2πr=4π,解得r=2;设圆锥的母线长为l,则=4π,解得l=6,所以圆锥的高==4.故答案为:4.10.解:∵S=l•R,∴•l•20=120π,解得l=12π,设圆锥的底面半径为rcm,∴2π•r=12π,∴r=6.故答案为:6.11.解:根据题意该圆锥的侧面积=×10π×12=60π(cm2).故答案为:60π.12.解:设这个圆锥的底面圆的半径为rcm,根据题意得2πr=,解得r=1,即这个圆锥的底面圆的半径为1cm,所以这个纸帽的高为=2(cm).故答案为:2.13.解:在Rt△AOC中,AC===5,根据题意,圆锥的侧面积=×2π×3×5=15π.故答案为:5;15π.14.解:设圆锥的底面圆的半径为rcm,根据题意得=2πr,解得r=1,故答案为:1.15.解:瓶子中大圆柱的容积为V大=πa2H(cm3),瓶子中小圆柱容积V小=a2h(cm3),杯子得容积为V杯子=π()2×8=a2(cm3),则所需杯子个数为(πa2H+a2h)÷a2=2H+h.故答案为:(2H+h).16.解:圆锥的底面圆的半径为:=3(cm),设圆锥侧面展开图的圆心角为n°,则2π×3=,∴n=216,∴圆锥侧面展开图的圆心角为216°,故答案为:216.17.解:圆锥的高为8cm,母线长为10cm,由勾股定理得,底面半径=6cm,侧面展开图的面积=πrl=π×6×10=60πcm2.故答案为:60πcm2.18.解:圆锥侧面展开图扇形的弧长为:=,设圆锥的底面半径为r,则2πr=,∴r=cm.故答案为:.19.解:∵∠C=90°,∠B=60°,AC=3,∴BC==,AB=2BC=2,根据题意,△ABC绕AC所在直线旋转一周,所形成的圆锥侧面积=×2π××2=6π.故答案为:6π.20.解:∵∠C=90°,AB=5cm,AC=4cm,∴BC==3cm,根据题意,△ABC绕AC所在直线旋转一周,所形成的圆锥侧面积=×2π×3×5=15π(cm2).故答案为:15πcm2.。

九年级数学下册.1圆锥的侧面展开图同步练习新版青岛版

九年级数学下册.1圆锥的侧面展开图同步练习新版青岛版

7.4.1 圆锥的侧面展开图
1、一个圆锥的底面圆的周长是2π,母线长是3,则它的侧面展开图的圆心角等于()
A、150°
B、120°
C、90°
D、60°
2、若一个圆锥的侧面积是10,则下列图象中表示这个圆锥母线l与底面半径r之间的函数关系的是()
A、B、C、D、
3、一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是()
A、1
B、3
4
C、
1
2
D、
1
3
4、将一个圆心角是90°的扇形围成一个圆锥的侧面,则该圆锥的侧面积S侧和底面积S底的关系是()
A、S侧=S底
B、S侧=2S底
C、S侧=3S底
D、S侧=4S底
5、母线长为2,底面圆的半径为1的圆锥的侧面积为.
6、已知一个圆锥形的零件的母线长为3cm,底面半径为2cm,则这个圆锥形的零件的侧面积为cm2.(用π表示).
7、如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.则圆锥的母线是_____________。

8、用半径为9cm,圆心角为120°的扇形纸片围成一个圆锥,则该圆锥的高为 cm.
参考答案1、D 2、C 3、D 4、B
5、2π;
6、6π;
7、30 ;
8、62。

【九年级数学试题】圆锥的侧面积达标测试题及答案

【九年级数学试题】圆锥的侧面积达标测试题及答案

圆锥的侧面积达标测试题及答案
36 圆锥的侧面积同步练习
一、选择题
1 小明在一次登活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径,把矿石完全浸没在水中,测出杯中水面上升了高度,则小明的这块矿石体积是()
A.B.C.D.
2 若圆锥的侧面展开图是半径为的半圆,则此圆锥的底面半径是()
A.B.C.D.
3 若圆锥的母线长为,底面半径为,则此圆锥的高为()
A.B.C.D.
4 已知圆锥的侧面展形图的面积是,若母线长是,则圆锥的底面半径为()
A.B.C.D.
4 如图1,将半径为2的圆形纸片,沿半径,将其截成面积为两部分,将所得的扇形围成圆锥的侧面,则圆锥的底面半径为()A.B.1C.1或3D.或
图1 图2 图3
5 如图2,在△ 中,,,若以为底面圆半径、为高的圆锥的侧面积为,以为底面圆半径、为高的圆锥的侧面积为,则()A.B.C.D.,有大小关系不确定
6 如图3,分别以等腰直角三角板的直角边、斜边为旋转轴旋转,所形成的旋转体的全面
积依次记为,则的大小关系为()
(A) (B) (c) (D)无法判断
二、填空题。

初三数学圆锥练习题

初三数学圆锥练习题

初三数学圆锥练习题一、选择题1. 下列哪个选项中,不是圆锥的一个要素?A. 母线B. 顶点C. 圆D. 高2. 圆锥的母线是指:A. 顶点到底面的距离B. 顶点到侧面各点的距离之和C. 顶点到侧面的距离D. 顶点到底面的距离之和3. 已知圆锥的底面半径为3 cm,高为4 cm,则这个圆锥的体积为:A. 6π cm³B. 12π cm³C. 24π cm³D. 48π cm³4. 一个母线的圆锥底面半径是6 cm,母线长为8 cm,则这个圆锥的体积为:A. 24π cm³B. 48π cm³C. 64π cm³D. 128π cm³5. 已知圆锥的体积为36π cm³,底面半径为3 cm,则这个圆锥的高为:A. 2 cmB. 3 cmC. 4 cmD. 6 cm二、填空题1. 一个圆锥的侧面积为50π cm²,底面直径为10 cm,则这个圆锥的高为________ cm。

2. 如果一个圆锥的母线长是底面直径的4倍,底面直径为8 cm,则这个圆锥的高为________ cm。

三、解答题1. 一根长度为10 cm 的线段想围成一个筒形容器,问宽度为多少时,容器的体积最大?解答:设筒形容器的半径为r,高为h,则筒形容器的容积V为V=πr²h。

由题意得知线段的长度为2πr+h=10 cm。

解方程可得h=10-2πr。

将h代入容积公式可得V=πr²(10-2πr)。

为求最大值,可以对V进行求导。

首先展开得到V=10πr²-2π³r³。

求导后得到V'=(20πr-6π²r²)。

使V'=0,可以得到r=0或r=10/3π。

由于半径不能为0,所以只取r=10/3π。

将r代入求得h=10-2π(10/3π)=10-20/3=10/3。

苏教版九年级数学上册第二章 2.8 圆锥的侧面积 练习题(含答案解析)

苏教版九年级数学上册第二章 2.8 圆锥的侧面积 练习题(含答案解析)

2.8圆锥的侧面积一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•锡山区期中)已知圆锥的底面半径为4cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.10cm2D.10πcm2 2.(2020•通州区一模)若用半径为6,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.1 B.2 C.3 D.4 3.(2020•宜兴市一模)圆锥的底面半径为1,母线长为3,则该圆锥侧面积为()A.3 B.6πC.3πD.6 4.(2020•张家港市模拟)如图,粮仓的顶部是圆锥形状,这个圆锥底面的半径长为3m,母线长为6m,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是()A.540π元B.360π元C.180π元D.90π元5.(2019秋•海州区校级期末)如图,如果从半径为6cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是()A.2cm B.4cm C.6cm D.8cm6.(2019秋•新吴区期末)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的全面积是()A.65πcm2B.90πcm2C.130πcm2D.155πcm2 7.(2019秋•江都区期末)若将半径为24cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.3cm B.6cm C.12cm D.24cm 8.(2020•迎江区校级模拟)如图,已知在Rt△ABC中,∠BAC=90°,AC=4,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于()A.9πB.12πC.15πD.20π二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)9.(2020•连云港)用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为cm.10.(2020•无锡)已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为=cm2.11.(2020•邗江区二模)圆锥的母线长为4cm,侧面积为8πcm2,圆锥的底面圆的半径为cm.12.(2020•吴中区二模)已知圆锥的侧面积为10πcm2,母线长为5cm,则该圆锥的底面半径为cm.13.(2020•徐州模拟)若一个圆锥的母线长为6cm,它的侧面展开图是半圆,则这个圆锥的底面半径为cm.14.(2020•江都区二模)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=4,扇形的圆心角θ=120°,则该圆锥母线l的长为.15.(2020•扬中市模拟)已知圆锥的底面圆半径为cm,高为cm,则圆锥的侧面积是cm2.16.(2020•徐州模拟)如图,圆锥底面半径为r,母线长为6,其侧面展开图是圆心角为180°的扇形,则r的值为.三、解答题(本大题共4小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.(2019秋•五峰县期末)如图所示,已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则:(1)求出围成的圆锥的侧面积为多少?(2)求出该圆锥的底面半径是多少?18.(2019秋•东海县期中)如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过网格点A(0,4)、B(﹣4,4)、C(﹣6,2),请在网格图中进行如下操作:(1)若该圆弧所在圆的圆心为D点,则D点坐标为;(2)连接AD、CD,则圆D的半径长为(结果保留根号).∠ADC的度数为°;(3)若扇形ADC是一个圆锥的侧面展开图,求该圆锥的底面圆的半径长(结果保留根号)19.(2019秋•淮安区期中)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长.(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;20.(2019•邵阳)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.答案解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•锡山区期中)已知圆锥的底面半径为4cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.10cm2D.10πcm2【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【解析】这个圆锥的侧面积2π×4×5=20π(cm2).故选:B.2.(2020•通州区一模)若用半径为6,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.1 B.2 C.3 D.4【分析】根据弧长公式求出扇形弧长,根据圆的周长公式计算,得到答案.【解析】扇形的弧长4π,∴圆锥的底面圆的周长=4π,∴圆锥的底面圆半径2,故选:B.3.(2020•宜兴市一模)圆锥的底面半径为1,母线长为3,则该圆锥侧面积为()A.3 B.6πC.3πD.6【分析】根据扇形面积公式求出圆锥侧面积.【解析】圆锥的底面周长=2π×1=2π,即圆锥的侧面展开图扇形的弧长为2π,则圆锥侧面积2π×3=3π,故选:C.4.(2020•张家港市模拟)如图,粮仓的顶部是圆锥形状,这个圆锥底面的半径长为3m,母线长为6m,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是()A.540π元B.360π元C.180π元D.90π元【分析】圆锥的侧面积=底面周长×母线长÷2.算出侧面积后乘以单价即可.【解析】底面半径为3m,则底面周长=6π,侧面面积6π×6=18π(m2).所需要的费用=18π×10=180π(元),故选:C.5.(2019秋•海州区校级期末)如图,如果从半径为6cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是()A.2cm B.4cm C.6cm D.8cm【分析】易求得扇形的弧长,除以2π即为圆锥的底面半径.【解析】扇形的弧长为:8πcm,圆锥的底面半径为:8π÷2π=4cm,故选:B.6.(2019秋•新吴区期末)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的全面积是()A.65πcm2B.90πcm2C.130πcm2D.155πcm2【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算扇形的侧面积,然后计算扇形的底面积,从而求得答案.【解析】这个圆锥的侧面积2π×5×13=65π(cm2).底面积为:52×π=25π(cm2),所以全面积为65π+25π=90π(cm2).故选:B.7.(2019秋•江都区期末)若将半径为24cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.3cm B.6cm C.12cm D.24cm【分析】易得圆锥的母线长为12cm,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【解析】圆锥的侧面展开图的弧长为2π×24÷2=24π(cm),∴圆锥的底面半径为24π÷2π=12(cm),故选:C.8.(2020•迎江区校级模拟)如图,已知在Rt△ABC中,∠BAC=90°,AC=4,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于()A.9πB.12πC.15πD.20π【分析】由勾股定理易得圆锥的底面半径长,那么圆锥的侧面积2π×底面半径×母线长,把相应数值代入即可求解.【解析】∵AC=4,BC=5,∴由勾股定理得:AB=3∴底面的周长是:6π∴圆锥的侧面积等6π×5=15π,故选:C.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)9.(2020•连云港)用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为5cm.【分析】设这个圆锥的底面圆半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr,然后解关于r的方程即可.【解析】设这个圆锥的底面圆半径为r,根据题意得2πr,解得r=5(cm).故答案为:5.10.(2020•无锡)已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为=2πcm2.【分析】先利用勾股定理求出圆锥的母线l的长,再利用圆锥的侧面积公式:S侧=πrl 计算即可.【解析】根据题意可知,圆锥的底面半径r=1cm,高h cm,∴圆锥的母线l2,∴S侧=πrl=π×1×2=2π(cm2).故答案为:2π.11.(2020•邗江区二模)圆锥的母线长为4cm,侧面积为8πcm2,圆锥的底面圆的半径为2 cm.【分析】根据扇形面积公式S lr计算即可.【解析】设圆锥的底面圆的半径为rcm,则圆锥的底面周长为2πrcm,∴圆锥的侧面展开图扇形的弧长为2πrcm,由题意得,2πr×4=8π,解得,r=2,故答案为:2.12.(2020•吴中区二模)已知圆锥的侧面积为10πcm2,母线长为5cm,则该圆锥的底面半径为2cm.【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【解析】∵圆锥的母线长是5cm,侧面积是10πcm2,∴圆锥的侧面展开扇形的弧长为:l4π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r2cm.故答案为:2.13.(2020•徐州模拟)若一个圆锥的母线长为6cm,它的侧面展开图是半圆,则这个圆锥的底面半径为3cm.【分析】由于圆锥的母线长为6cm,侧面展开图是圆心角为180°扇形,设圆锥底面半径为rcm,那么圆锥底面圆周长为2πrcm,所以侧面展开图的弧长为2πrcm,然后利用扇形的面积公式即可得到关于r的方程,解方程即可求解.【解析】设圆锥底面半径为rcm,那么圆锥底面圆周长为2πrcm,所以侧面展开图的弧长为2πrcm,S圆锥侧面积2πr×6,解得:r=3,故答案为:3.14.(2020•江都区二模)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=4,扇形的圆心角θ=120°,则该圆锥母线l的长为12.【分析】由于圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.则利用弧长公式得到2π×4,然后解方程即.【解析】根据题意得2π×4,解得l=12.故答案为12.15.(2020•扬中市模拟)已知圆锥的底面圆半径为cm,高为cm,则圆锥的侧面积是πcm2.【分析】先利用勾股定理计算出圆锥的母线长,然后根据扇形的面积公式计算这个圆锥的侧面积.【解析】这个圆锥的母线长6,所以这个圆锥的侧面积2π6π(cm2).故答案为π.16.(2020•徐州模拟)如图,圆锥底面半径为r,母线长为6,其侧面展开图是圆心角为180°的扇形,则r的值为3.【分析】根据底面圆周长=扇形的弧长,构建方程即可解决问题.【解析】由题意:2πr,解得r=3,故答案为:3.三、解答题(本大题共4小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.(2019秋•五峰县期末)如图所示,已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则:(1)求出围成的圆锥的侧面积为多少?(2)求出该圆锥的底面半径是多少?【分析】(1)根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算;(2)根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式计算.【解析】(1)圆锥的侧面积12π(cm2);(2)该圆锥的底面半径为r,根据题意得2πr,解得r=2.即圆锥的底面半径为2cm.18.(2019秋•东海县期中)如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过网格点A(0,4)、B(﹣4,4)、C(﹣6,2),请在网格图中进行如下操作:(1)若该圆弧所在圆的圆心为D点,则D点坐标为(﹣2,0);(2)连接AD、CD,则圆D的半径长为2(结果保留根号).∠ADC的度数为90°;(3)若扇形ADC是一个圆锥的侧面展开图,求该圆锥的底面圆的半径长(结果保留根号)【分析】(1)根据线段垂直平分线的性质得出D点位置,结合图形得到点D的坐标;(2)利用点的坐标结合勾股定理得出⊙D的半径长,根据勾股定理的逆定理∠ADC的度数;(3)利用圆锥的底面圆的周长等于侧面展开图的扇形弧长即可得出答案.【解析】(1)分别作AB、BC的垂直平分线,两直线交于点D,则点D即为该圆弧所在圆的圆心,由图形可知,点D的坐标为(﹣2,0),故答案为:(﹣2,0);(2)圆D的半径长2,AC2,AD2+CD2=20+20=40,AC2=40,则AD2+CD2=AC2,∴∠ADC=90°,故答案为:2;90;(3)设圆锥的底面圆的半径长为r,则2πr,解得,r.19.(2019秋•淮安区期中)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长.(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;【分析】(1)易得底面半径为6m,直接利用圆的周长公式求得底面圆的周长即可;(2)利用勾股定理求得母线的长,然后求得圆锥的侧面积即可.【解析】(1)2π×6=12π.(2)∵∠C=90°,AC=6,BC=8,∴AB10,所以以直线AC为轴,把△ABC旋转一周,得到的圆锥的侧面积10×2π×8=80π;20.(2019•邵阳)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.【分析】(1)利用等腰三角形的性质得到AD⊥BC,BD=CD,则可计算出BD=6,然后利用扇形的面积公式,利用由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF进行计算;(2)设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr,解得r =2,然后利用勾股定理计算这个圆锥的高h.【解析】∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF6×123612π;(2)设圆锥的底面圆的半径为r,根据题意得2πr,解得r=2,这个圆锥的高h4.。

初三数学圆锥体积和表面积计算题库

初三数学圆锥体积和表面积计算题库

初三数学圆锥体积和表面积计算题库1. 计算圆锥体积1.1 问题描述:已知一个圆锥的底面半径为3cm,高度为5cm,求该圆锥的体积。

1.2 解答:根据圆锥的体积公式V = (1/3)πr²h,其中,r为底面半径,h为高度。

代入已知值得到V = (1/3)π(3²)(5) = 15π cm³。

因此该圆锥的体积为15π cm³。

2. 计算圆锥表面积2.1 问题描述:已知一个圆锥的底面半径为4cm,母线长为6cm,求该圆锥的表面积。

2.2 解答:根据圆锥的表面积公式S = πr(r + l),其中,r为底面半径,l为母线长。

代入已知值得到S = π4(4 + 6) = 40π cm²。

因此该圆锥的表面积为40π cm²。

3. 综合计算3.1 问题描述:一个沙漏形的圆锥底面半径为8cm,高度为12cm。

求该沙漏形圆锥的体积和表面积。

3.2 解答:3.2.1 计算圆锥体积:根据圆锥的体积公式V = (1/3)πr²h,代入已知值得到V = (1/3)π(8²)(12) = 256π cm³。

因此该沙漏形圆锥的体积为256π cm³。

3.2.2 计算圆锥表面积:根据圆锥的表面积公式S = πr(r + l),代入已知值得到S = π8(8 + 16) = 288π cm²。

因此该沙漏形圆锥的表面积为288π cm²。

4. 题目变式4.1 问题描述:一个圆锥的体积为100π cm³,底面半径为r,高度为h,求r与h的关系。

4.2 解答:根据圆锥的体积公式V = (1/3)πr²h,代入已知值得到100π = (1/3)πr²h。

化简得到 r²h = 300。

因此,r与h的关系为 r²h = 300。

5. 性质探究5.1 问题描述:若一个圆锥的体积固定,底面半径越大,高度会趋向于变大还是变小?5.2 解答:根据圆锥的体积公式V = (1/3)πr²h,已知体积固定,可以将 V = k,其中k为常数。

人教版数学九年级上册:24.4 第2课时圆锥的侧面积和全面积 习题课件(含答案)(共26张PPT)

人教版数学九年级上册:24.4 第2课时圆锥的侧面积和全面积  习题课件(含答案)(共26张PPT)

∴BC=2 3,∠B=60°. 在Rt△BCG中,∠BCG=30°, ∴BG= 3,CG=3. 则 EF的长为12108π03=2π. 设扇形CEF所围圆锥的底面半径为r,则2πr=2π, r=1. 故圆锥母线长为3,底面半径为1, ∴高为 32 12=2 2 .
15.如图,一个圆锥的高为 3 cm,侧面展开图是
14.如图,在菱形ABCD中,AB=2 3 ,∠C= 120°,以点C为圆心的 EF 与AB,AD分别相切于点 G,H,与BC,CD分别相交于点E,F.若用扇形CEF 作一个圆锥的侧面,求这个圆锥的高. 解:如图,连接CG. ∵AB与EF相切于点G,∴CG⊥AB. ∵四边形ABCD是菱形,AB=2 3, ∠BCD=120°,
知识点二 圆锥及其展开图相关量的计算
6.一个圆锥的侧面积是底面积的2倍,则该圆锥 侧面展开图的圆心角的度数是( B ) A.120° B.180° C.240° D.300°
7.在长方形ABCD中,AB=16,如图所示裁出
一扇形ABE,将扇形围成一个圆锥(AB和AE重合),
则此圆锥的底面半径为( A )
解析:连接OD.由折叠的性质可得OA=AD=
OD,∴△OAD是等边三角形.∴∠AOD=
60°.∵BDl∶ ADl=1∶3,∴∠AOB=80°.设圆
锥的底面半径为r,母线长为l,则 80πl =2 πr,
∴r∶l=2∶9.故选D.
180
13.(2019·十堰模拟)如图,从一块圆形纸片上剪 出一个圆心角为90°的扇形ABC,使点A、B、C 在圆周上,将剪下的扇形作为一个圆锥侧面.若 圆锥的高为3 30 cm,则这块圆形纸片的直径为 ( C) A.12 cm B.20 cm C.24 cm D.28 cm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学圆锥练习题
一、选择题
1、圆锥的底面周长为20π,侧面展开后所得扇形的圆心角为120°,则该圆锥的全面积为( )
A.100π B .200π C .300π D .400π
2、如图,点A 、C 、B 在⊙O 上,已知∠AOB =∠ACB = a . 则a 的值为( ).
A. 135°
B. 120°
C. 110°
D. 100°
3.如图,⊙O 的半径OA 等于5,半径OC 与弦AB 垂直,垂足为D ,若OD =3,则弦AB 的长为( )
A .10
B .8
C .6
D .4
4.将抛物线y =2x 2经过怎样的平移可得到抛物线y =2(x +3)2+4?( ) A .先向左平移3个单位,再向上平移4个单位 B .先向左平移3个单位,再向下平移4个单位 C .先向右平移3个单位,再向上平移4个单位 D .先向右平移3个单位,再向下平移4个单位
5.小莉站在离一棵树水平距离为a 米的地方,用一块含30°的直角三角板按如图所示的方式测量这棵树的高度,已知小莉的眼睛离地面的高度是1.5米,那么她测得这棵树的高度为( )
A .m )3
3
(
a B .m )3(a
C .m )3
3
5.1(a +
D .m )35.1(a + 6.如图,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所示的一
个圆锥,则圆锥的高为( )A. 17cm B. 4cm C.
cm D. 3cm
7.二次函数c bx ax y ++=2
的图象如图所示,则abc ,ac b 42-,b a +2,c b a ++这四个式子中, 值为正数的有( ) A .4个 B .3个 C .2个 D .1个

8.已知反比例函数x
k
y =
的图象如右图所示,则二次函数 2
2
2k x kx y +-=的图象大致为( )
A
B C D
二、填空题
9.若圆锥的底面直径为6cm ,母线长为5cm ,则它的侧面积为 cm .(结果保留π) 10. 若圆锥的高为8cm ,母线长为10cm ,则它的侧面积为 cm .(结果保留π) 11. 若圆锥的母线长为10cm ,轴截面的顶角为60°,则它的侧面积为 cm .(结果保留
π)
12.如图,B ,C 是河岸边两点,A 是对岸边上的 一点,测得30ABC ∠=︒,60ACB ∠=︒,BC 50=米,
则A 到岸边BC 的距离是 米。

13.如图,⊙O 的直径是AB ,CD 是⊙O 的弦,∠D =70°,则∠ABC 等于______.
y
O
x
O x
y
-1 1
y
O x
y
O
x
y
O x
y
O
x
A B C
1长为半径作⊙O,将射线BA 14.如图,∠ABC=90°,O为射线BC上一点,以点O为圆心,OB
2
绕点B按顺时针方向旋转至BA',若BA'与⊙O相切,则旋转的角度等于______.
三、解答题
15.圆锥底面直径是8cm,母线长是5cm,计算这个圆锥得展开图扇形的面积及圆心角。

16.一个扇形如图,半径为20cm,圆心角为108°,用它做成一个圆锥的侧面,求圆锥底面半径和圆锥的高.
17.一个圆锥形粮堆,其中△ABC为边长4 cm的等边三角形,设想AC的中点P处有一老鼠正在偷吃粮食,此时小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,那么小猫所经过的最短路程是多少?
18.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm ,求这个圆形截面的半径.
19.已知:关于x 的方程x 2+2x =3-4k 有两个不相等的实数根(其中k 为实数).
(1)求k 的取值范围;
(2)若k 为非负整数,求此时方程的根.
20.已知:如图,AB 是⊙O 的直径,BC 是弦,∠B =30°,延长BA 到D ,使∠ADC =30.
(1)求证:DC 是⊙O 的切线; (2)若AB =2,求DC 的长.
21.已知抛物线y =ax 2+bx +c 经过点A (0,3)、B (4,3)、C (1,0).
(1)填空:抛物线的对称轴为直线x =______,抛物线与x 轴的另一个交点D 的坐标为______;
(2)求该抛物线的解析式.
B
A。

相关文档
最新文档