高三数学一轮复习导学案65 直线与圆锥曲线(二)

合集下载

【数学】2019届一轮复习人教B版直线与圆锥曲线的综合应用学案

【数学】2019届一轮复习人教B版直线与圆锥曲线的综合应用学案

高考必考题突破讲座(五)直线与圆锥曲线的综合应用考情分析命题趋势题型特点圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、抛物线的准线、双曲线的渐近线是常考题型.2.圆锥曲线中的定点与定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.3.圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.4.圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.解决此类问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.反证法与验证法也是求解探索性问题常用的方法.【例1】 (1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( D )A .x 29-y 213=1B .x 213-y 29=1C .x 23-y 2=1D .x 2-y 23=1 (2)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=2px (p >0)有相同的焦点F .点P ,Q 是椭圆与抛物线的交点,若直线PQ 经过焦点F ,则椭圆x 2a 2+y 2b2=1(a >b >0)解析 (1)双曲线x 2a 2-y 2b 2=1的一个焦点为F (2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±ba x ,由题意得2ba 2+b 2=3,② 联立①②解得b =3,a =1,所求双曲线的方程为x 2-y 23=1.故选D.(2)因为抛物线y 2=2px (p >0)的焦点F 为⎝⎛⎭⎫p 2,0,设椭圆另一焦点为E .如图所示,将x =p2代入抛物线方程得y =±p ,又因为PQ 经过焦点F ,所以P ⎝⎛⎭⎫p 2,p ,且PF ⊥OF . 所以|PE |=⎝⎛⎭⎫p 2+p 22+p 2=2p ,|PF |=p ,|EF |=p .故2a =2p +p,2c =p ,e =2c2a=2-1.【例2】 (2017·山东卷)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为2 2. (1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M ,点N 是点M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.解析 (1)由椭圆的离心率为22,得a 2=2(a 2-b 2). 又当y =1时,x 2=a 2-a 2b 2,得a 2-a 2b 2=2,所以a 2=4,b 2=2,因此椭圆方程为x 24+y 22=1. (2)设A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2=4,得(2k 2+1)x 2+4kmx +2m 2-4=0, 由Δ>0,得m 2<4k 2+2, (*) 且x 1+x 2=-4km 2k 2+1,因此y 1+y 2=2m2k 2+1,所以D ⎝⎛⎭⎫-2km 2k 2+1,m 2k 2+1.又N (0,-m ),所以|ND |2=⎝⎛⎭⎫-2km 2k 2+12+⎝⎛⎭⎫m 2k 2+1+m 2, 整理得|ND |2=4m 2(1+3k 2+k 4)(2k 2+1)2,因为|NF |=|m |,所以|ND |2|NF |2=4(k 4+3k 2+1)(2k 2+1)2=1+8k 2+3(2k 2+1)2.令t =8k 2+3,t ≥3.故2k 2+1=t +14,所以|ND |2|NF |2=1+16t (1+t )2=1+16t +1t+2. 令y =t +1t ,所以y ′=1-1t 2.当t ≥3时,y ′>0,从而y =t +1t 在[3,+∞)上单调递增,因此t +1t ≥103,当且仅当t =3时等号成立,此时k =0,所以|ND |2|NF |2≤1+3=4,故|NF ||ND |≥12,设∠EDF =2θ,则sin θ=|NF |ND ≥12,所以θ的最小值为π6.从而∠EDF 的最小值为π3,此时直线l 的斜率是0.由(*)得-2<m <2且m ≠0.综上所述,当k =0,m ∈(-2,0)∪(0,2)时,∠EDF 取到最小值π3.【例3】 已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝⎛⎭⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解析 (1)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2, 得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9bk 2+9.于是直线OM 的斜率k OM =y M x M =-9k ,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值.(2)四边形OAPB 能为平行四边形.因为直线l 过点⎝⎛⎭⎫m 3,m ,且l 不过原点,所以k ≠3.由(1)可知Δ=4k 2b 2-4(k 2+9)(b 2-m 2)>0,即k 2m 2>9b 2-9m 2.将⎝⎛⎭⎫m 3,m 代入直线l 的方程,得b =m -km3,∴k 2m 2>9⎝⎛⎭⎫m -km 32-9m 2,即6k >0,∴k >0.所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.由(1)得OM 的方程为y =-9k x .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将b =m -km3代入x M =-kb k 2+9,得x M =k (k -3)m 3(k 2+9).四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即x P =2x M .于是±km3k 2+9=2×k (k -3)m 3(k 2+9),解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.1.(2018·河北衡水质检)已知椭圆x 24+y 22=1的左、右焦点分别为F 1,F 2,过F 1且倾斜角为45°的直线l 交椭圆于A ,B 两点,以下结论:①△ABF 2的周长为8;②原点到l 的距离为1,③|AB |=83.其中正确结论的个数为( A )A .3B .2C .1D .0解析 ①由椭圆的定义,得|AF 1|+|AF 2|=4,|BF 1|+|BF 2|=4,又|AF 1|+|BF 1|=|AB |,所以△ABF 2的周长为|AB |+|AF 2|+|BF 2|=8,故①正确;②由条件,得F 1(-2,0),因为过F 1且倾斜角为45°的直线l 的斜率为1,所以直线l 的方程为y =x +2,则原点到l 的距离d=|2|2=1,故②正确;③设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x +2,x 24+y 22=1,得3x 2+42x =0,解得x 1=0,x 2=-423,所以|AB |=1+1·|x 1-x 2|=83,故③正确.故选A .2.已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点.(1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.解析 (1)因为抛物线y 2=2px (p >0)的焦点坐标为(1,0),所以p2=1,所以p =2.所以抛物线C 的方程为y 2=4x .(2)证明:①当直线AB 的斜率不存在时,设A ⎝⎛⎭⎫t 24,t ,B ⎝⎛⎭⎫t24,-t .因为直线OA ,OB 的斜率之积为-12,所以t t 24·-t t 24=-12,化简得t 2=32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x 1,y 1),B (x 2,y 2),联立得⎩⎪⎨⎪⎧y 2=4x ,y =kx +b ,化简得ky 2-4y +4b =0. 根据根与系数的关系得y 1y 2=4b k ,因为直线OA ,OB 的斜率之积为-12,所以y 1x 1·y 2x 2=-12,即x 1x 2+2y 1y 2=0,即y 214·y 224+2y 1y 2=0,解得y 1y 2=0(舍去)或y 1y 2=-32.所以y 1y 2=4bk =-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综上所述,直线AB 过定点(8,0).3.(2017·天津卷)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),右顶点为A ,点E的坐标为(0,c ),△EF A 的面积为b 22.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,|FQ |=32c ,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM ∥QN ,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .①求直线FP 的斜率; ②求椭圆的方程.解析 (1)设椭圆的离心率为e .由已知,可得12(c +a )c =b 22.又由b 2=a 2-c 2,可得2c 2+ac-a 2=0,即2e 2+e -1=0.又因为0<e <1,解得e =12.所以椭圆的离心率为12.(2)①依题意,设直线FP 的方程为x =my -c (m >0),则直线FP 的斜率为1m.由(1)知a =2c ,可得直线AE 的方程为x 2c +yc =1,即x +2y -2c =0,与直线FP 的方程联立,可解得x =(2m -2)c m +2,y =3c m +2,即点Q 的坐标为⎝ ⎛⎭⎪⎫(2m -2)c m +2,3c m +2.由已知|FQ |=32c ,有⎣⎢⎡⎦⎥⎤(2m -2)c m +2+c 2+⎝⎛⎭⎫3c m +22=⎝⎛⎭⎫3c 22,整理得3m 2-4m =0,所以m =43,即直线FP 的斜率为34.②由a =2c ,可得b =3c ,故椭圆方程可以表示为x 24c 2+y 23c2=1.由①得直线FP 的方程为3x -4y +3c =0,与椭圆方程联立⎩⎪⎨⎪⎧3x -4y +3c =0,x 24c 2+y 23c 2=1,消去y ,整理得7x 2+6cx -13c 2=0,解得x =-13c7(舍去)或x =c .因此可得点P ⎝⎛⎭⎫c ,3c 2,进而可得|FP |=(c +c )2+⎝⎛⎭⎫3c 22=5c 2,所以|PQ |=|FP |-|FQ |=5c2-3c2=c . 由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP .因为QN ⊥FP ,所以|QN |=|FQ |·tan ∠QFN =3c 2×34=9c 8,所以△FQN 的面积为12|FQ |·|QN |=27c 232,同理△FPM 的面积等于75c 232,由四边形PQNM 的面积为3c ,得75c 232-27c 232=3c ,整理得c 2=2c ,又由c >0,得c =2.所以椭圆的方程为x 216+y 212=1.4.(2016·浙江卷)如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于||AF -1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.解析 (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0), 可设A (t 2,2t ),t ≠0,t ≠±1.因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1,消去x 得y 2-4sy -4=0,故y 1y 2=-4,所以B ⎝⎛⎭⎫1t2,-2t . 又直线AB 的斜率为2tt 2-1,故直线FN 的斜率为-t 2-12t ,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m,0),由A ,M ,N 三点共线得2t t 2-m =2t +2t t 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1,所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).课时达标 讲座(五)[解密考纲]圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.1.(2018·福建三明一中期中)已知双曲线C 1与椭圆x 225+y 29=1有相同的焦点,并且经过点⎝⎛⎭⎫52,-332.(1)求C 1的标准方程;(2)直线l :y =kx -1与C 1的左支有两个相异的公共点,求k 的取值范围.解析 (1)依题意,双曲线C 1的焦点坐标为F 1(-4,0),F 2(4,0),设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则2a =⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫52+42+⎝⎛⎭⎫-3322-⎝⎛⎭⎫52-42+⎝⎛⎭⎫-3322=4,即a =2,又因为c =4,所以b 2=c 2-a 2=12.故双曲线的标准方程为x 24-y 212=1.(2)由⎩⎪⎨⎪⎧y =kx -1,x 24-y 212=1,得(3-k 2)x 2+2kx -13=0,设该方程的两根分别为x 1,x 2,则依题意可知⎩⎪⎨⎪⎧3-k 2≠0,Δ=4k 2+52(3-k 2)=156-48k 2>0,x 1+x 2=-2k3-k 2<0,x 1x 2=-133-k 2>0,解得-132<k <- 3.故k 的取值范围是⎝⎛⎭⎫-132,-3. 2.(2017·全国卷Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.解析 (1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4,于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1.(2)由y =x 24,得y ′=x2.设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|. 将y =x +m 代入y =x 24,得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1=2+2m +1,x 2=2-2m +1, 从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1), 解得m =7.所以直线AB 的方程为y =x +7.3.(2018·四川绵阳南山中学期中)如果点M (x ,y )在运动过程中总满足关系式()x -22+y 2+()x +22+y 2=23.(1)说明点M 的轨迹是什么曲线并求出它的轨迹方程;(2)O 是坐标原点,直线l :y =kx +2与点M 的轨迹交于不同的A ,B 两点,求△AOB 面积的最大值.解析 (1)(x -2)2+y 2+(x +2)2+y 2=23可表示(x ,y )与(2,0),(-2,0)的距离之和等于常数23,由椭圆的定义,可知此点的轨迹为焦点在x 轴上的椭圆,且a =3,c =2,故轨迹方程为x 23+y 2=1.(2)由⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +2,得(1+3k 2)x 2+12kx +9=0.∵Δ=(12k )2-36(1+3k 2)=36k 2-36>0,k 2>1, x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2,且点O 到直线l 的距离为d =2k 2+1,|AB |=k 2+1·|x 1-x 2|, ∴S =12|AB |·d =12×2|x 1-x 2|=(x 1+x 2)2-4x 1x 2=6k 2-11+3k 2.令t =k 2-1(t >0),则k 2=t 2+1,∴S =6t 3t 2+4=63t +4t ≤32,当且仅当t =233,即k =±213时,等号成立,即S 取最大值32. 4.(2017·北京卷)已知抛物线C :y 2=2px 过点P (1,1).过点⎝⎛⎭⎫0,12作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作 x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.解析 (1)由抛物线C :y 2=2px 过点P (1,1),得p =12.所以抛物线C 的方程为y 2=x .抛物线C 的焦点坐标为⎝⎛⎭⎫14,0,准线方程为x =-14. (2)证明:由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0, 则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝⎛⎭⎫kx 1+12x 2+⎝⎛⎭⎫kx 2+12x 1-2x 1x 2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k2k2x 2=0,所以y 1+y 2x 1x 2=2x 1,故A 为线段BM 的中点.5.在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2).(1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长;如果不存在,说明理由.解析 (1)方法一 当直线AB 垂直于x 轴时, y 1=22,y 2=-22,因此y 1y 2=-8为定值.当直线AB 不垂直于x 轴时,设直线AB 的方程y =k (x -2),由⎩⎪⎨⎪⎧y =k (x -2),y 2=4x ,得ky 2-4y -8k =0.∴y 1y 2=-8. 因此有y 1y 2=-8为定值.方法二 设直线AB 的方程为my =x -2,由⎩⎪⎨⎪⎧my =x -2,y 2=4x ,得y 2-4my -8=0,∴y 1y 2=-8. 因此有y 1y 2=-8为定值.(2)设存在直线l :x =a 满足条件,则AC 的中点E ⎝⎛⎭⎫x 1+22,y 12,|AC |=(x 1-2)2+y 21.点A在抛物线上,所以y 21=4x 1,因此以AC 为直径的圆的半径 r =12|AC |=12(x 1-2)2+y 21=12x 21+4,又点E 到直线x =a 的距离d =⎪⎪⎪⎪x 1+22-a .故直线l 被圆截得的弦长为 2r 2-d 2=214(x 21+4)-⎝⎛⎭⎫x 1+22-a 2=x 21+4-(x 1+2-2a )2=-4(1-a )x 1+8a -4a 2. 当1-a =0,即a =1时,弦长为定值2,这时直线方程为x =1.6.已知中心在坐标原点,焦点在x 轴上的椭圆过点P (2,3),且它的离心率e =12.(1)求椭圆的标准方程;(2)与圆(x -1)2+y 2=1相切的直线l :y =kx +t 交椭圆于M ,N 两点,若椭圆上一点C 满足OM →+ON →=λOC →,求实数λ的取值范围.解析 (1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由已知得⎩⎪⎨⎪⎧4a 2+3b 2=1,c a =12,c 2=a 2-b 2,解得⎩⎪⎨⎪⎧a 2=8,b 2=6,所以椭圆的标准方程为x 28+y 26=1.(2)因为直线l :y =kx +t 与圆(x -1)2+y 2=1相切, 所以|t +k |1+k2=1⇒2k =1-t 2t (t ≠0), 把y =kx +t 代入x 28+y 26=1并整理,得(3+4k 2)x 2+8ktx +(4t 2-24)=0.设M (x 1,y 1),N (x 2,y 2),则有x 1+x 2=-8kt3+4k 2, y 1+y 2=kx 1+t +kx 2+t =k (x 1+x 2)+2t =6t3+4k 2.因为λOC →=(x 1+x 2,y 1+y 2),所以C ⎝ ⎛⎭⎪⎫-8kt (3+4k 2)λ,6t (3+4k 2)λ, 又因为C 在椭圆上,所以8k 2t 2(3+4k 2)2λ2+6t 2(3+4k 2)2λ2=1⇒λ2=2t 23+4k 2=2⎝⎛⎭⎫1t 22+1t 2+1, 因为t 2>0,所以⎝⎛⎭⎫1t 22+1t 2+1>1,所以0<λ2<2,所以λ的取值范围为(-2,0)∪(0,2).7.如图,已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P ,Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.解析 (1)将圆M 的一般方程x 2+y 2-6x -2y +7=0化为标准方程为(x -3)2+(y -1)2=3, 圆M 的圆心为M (3,1),半径为r = 3.由A (0,1),F (c,0)(c =a 2-1)得直线AF :xc +y =1,即x +cy -c =0.由直线AF 与圆M 相切,得|3+c -c |c 2+1= 3.∴c =2或c =-2(舍去).∴a =3,∴椭圆C 的方程为x 23+y 2=1.(2)证明:由AP →·AQ →=0,知AP ⊥AQ ,从而直线AP 与坐标轴不垂直,由A (0,1)可设直线AP 的方程为y =kx +1,直线AQ 的方程为y =-1kx +1(k ≠0),将y =kx +1代入椭圆C 的方程x 23+y 2=1并整理,得(1+3k 2)x 2+6kx =0,解得x =0或x =-6k1+3k 2,因为P 的坐标为⎝⎛⎭⎫-6k 1+3k 2,-6k 21+3k 2+1, 即⎝ ⎛⎭⎪⎫-6k 1+3k 2,1-3k 21+3k 2.将上式中的k 换成-1k ,得Q ⎝ ⎛⎭⎪⎫6k k 2+3,k 2-3k 2+3. ∴直线l 的方程为y =k 2-3k 2+3-1-3k 21+3k 26k k 2+3+6k 1+3k 2⎝⎛⎭⎫x -6k k 2+3+k 2-3k 2+3,化简得直线l 的方程为y =k 2-14k x -12.因此直线l 过定点N ⎝⎛⎭⎫0,-12. 8.(2018·广西桂林中山中学阶段性测试)已知焦距为2的椭圆W :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,上、下顶点分别为B 1,B 2,点M (x 0,y 0)为椭圆W 上不在坐标轴上的任意一点,且四条直线MA 1,MA 2,MB 1,MB 2的斜率之积为14.(1)求椭圆W 的标准方程;(2)如图所示,点A ,D 是椭圆W 上两点,点A 与点B 关于原点对称,AD ⊥AB ,点C 在x 轴上,且AC 与x 轴垂直,求证:B ,C ,D 三点共线.解析 (1)由题意可知2c =2,即c =1,a 2-b 2=1. ∵M (x 0,y 0)为椭圆W 上不在坐标轴上的任意一点,∴x 20a 2+y 20b 2=1,y 20=b 2a 2(a 2-x 20),x 20=a 2b2(b 2-y 20), ∴kMA 1·kMA 2·kMB 1·kMB 2=y 0x 0+a ·y 0x 0-a ·y 0-b x 0·y 0+b x 0=y 20x 20-a 2·y 20-b 2x 20=b 2a 2(a 2-x 20)x 20-a 2·y 20-b 2a 2b 2(b 2-y 20)=⎝⎛⎭⎫b 2a 22=14, 则a 2=2b 2,∴a 2=2,b 2=1, ∴椭圆W 的标准方程为x 22+y 2=1.(2)证明:不妨设点A (x 1,y 1),D (x 2,y 2), 则B (-x 1,-y 1),C (x 1,0).∵A ,D 在椭圆上,∴⎩⎪⎨⎪⎧x 21+2y 21=2,x 22+2y 22=2, 即(x 1-x 2)(x 1+x 2)+2(y 1-y 2)(y 1+y 2)=0, ∴y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2). ∵AD ⊥AB ,∴k AD ·k AB =-1,即y 1x 1·y 1-y 2x 1-x 2=-1,即y 1x 1·⎣⎢⎡⎦⎥⎤-x 1+x 22(y 1+y 2)=-1,∴y 1x 1=2(y 1+y 2)x 1+x 2, ∴k BD -k BC =y 1+y 2x 1+x 2-y 12x 1=y 1+y 2x 1+x 2-y 1+y 2x 1+x 2=0, 即k BD =k BC .∴B ,C ,D 三点共线.。

高三数学人教版A版数学(理)高考一轮复习教案2 圆锥曲线的综合应用

高三数学人教版A版数学(理)高考一轮复习教案2 圆锥曲线的综合应用

第二课时 圆锥曲线的综合应用考点一 最值范围问题|(2015·高考浙江卷)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).[解] (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2bmx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①设M 为AB 的中点,则M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2,代入直线方程y =mx +12解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以 S (t )=12|AB |·d =12-2⎝⎛⎭⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22.(1)最值问题的求解方法:①建立函数模型,利用二次函数、三角函数的有界性求最值或利用导数法求最值. ②建立不等式模型,利用基本不等式求最值. ③数形结合,利用相切、相交的几何性质求最值. (2)求参数范围的常用方法:①函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解. ②不等式法:根据题意建立含参数的不等式,通过解不等式求参数范围. ③判别式法:建立关于某变量的一元二次方程,利用判别式Δ求参数的范围. ④数形结合法:研究该参数所表示的几何意义,利用数形结合思想求解.1.(2016·宁波模拟)如图,抛物线C 的顶点为O (0,0),焦点在y 轴上,抛物线上的点(x 0,1)到焦点的距离为2.(1)求抛物线C 的标准方程;(2)过直线l :y =x -2上的动点P (除(2,0))作抛物线C 的两条切线,切抛物线于A ,B 两点.①求证:直线AB 过定点Q ,并求出点Q 的坐标;②若直线OA ,OB 分别交直线l 于M ,N 两点,求△QMN 的面积S 的取值范围. 解:(1)由已知条件得1-⎝⎛⎭⎫-p 2=1+p2=2, ∴p =2,∴抛物线的标准方程为x 2=4y . (2)①证明:设A (x 1,y 1),B (x 2,y 2),y ′=x2,A 处切线方程为y -y 1=x 12(x -x 1),又∵4y 1=x 21,∴y =x 12x -x 214,a同理B 处切线方程为y =x 22x -x 224,bab 联立可得⎩⎪⎨⎪⎧x =x 1+x22,y =x 1x 24,即P ⎝⎛⎭⎪⎫x 1+x 22,x 1x 24.直线AB 的斜率显然存在,设直线AB :y =kx +m ,⎩⎪⎨⎪⎧ y =kx +m ,x 2=4y ,可得x 2-4kx -4m =0, ⎩⎪⎨⎪⎧x 1+x 2=4k ,x 1x 2=-4m ,即P (2k ,-m ), ∵P 在直线l :y =x -2上, ∴m =-2k +2,即AB 直线为y =k (x -2)+2, ∴直线AB 过定点Q (2,2). ②∵O 不会与A ,B 重合.定点Q (2,2)到直线l :y =x -2的距离h = 2. 由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,⇒x M =2x 1x 1-y 1=84-x 1,同理得x N =2x 2x 2-y 2=84-x 2.∴|MN |=2|x M -x N |=82⎪⎪⎪⎪⎪⎪14-x 1-14-x 2=82⎪⎪⎪⎪⎪⎪x 1-x 2(4-x 1)(4-x 2)=82⎪⎪⎪⎪⎪⎪x 1-x 216-4(x 1+x 2)+x 1x 2=82⎪⎪⎪⎪⎪⎪⎪⎪16k 2+16m -4m -16k +16. ∵m =-2k +2,∴|MN |=42·(k -1)2+1|k -1|=4 21+1(k -1)2.∴S △QMN =12|MN |·h =41+1(k -1)2∈(4,+∞). 考点二 定点最值问题|已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C上异于O 的两点.(1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.[解] (1)因为抛物线y 2=2px (p >0)的焦点坐标为(1,0),所以p2=1,所以p =2.所以抛物线C 的方程为y 2=4x .(2)证明:①当直线AB 的斜率不存在时, 设A ⎝⎛⎭⎫t 24,t ,B ⎝⎛⎭⎫t24,-t . 因为直线OA ,OB 的斜率之积为-12,所以t t 24·-t t 24=-12,化简得t 2=32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x A ,y A ),B (x B ,y B ),联立得⎩⎪⎨⎪⎧y 2=4x ,y =kx +b ,化简得ky 2-4y +4b =0. 根据根与系数的关系得y A y B =4b k ,因为直线OA ,OB 的斜率之积为-12,所以y A x A ·y Bx B=-12, 即x A x B +2y A y B =0.即y 2A 4·y 2B4+2y A y B =0,解得y A y B =0(舍去)或y A y B =-32. 所以y A y B =4bk =-32,即b =-8k ,所以y =kx -8k ,y =k (x -8).综上所述,直线AB 过定点(8,0).(1)解决定点问题的关键就是建立直线系或者曲线系方程,要注意选用合适的参数表达直线系或者曲线系方程,如果是双参数,要注意这两个参数之间的相互关系.(2)解决圆锥曲线中的定值问题的基本思路很明确,即定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,其不受变化的量所影响的一个值就是要求的定值.解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1(-1,0),长轴长与短轴长的比是2∶ 3.(1)求椭圆的方程;(2)过F 1作两直线m ,n 交椭圆于A ,B ,C ,D 四点,若m ⊥n ,求证:1|AB |+1|CD |为定值.解:(1)由已知得⎩⎪⎨⎪⎧2a ∶2b =2∶3,c =1,a 2=b 2+c 2.解得a =2,b = 3.故所求椭圆方程为x 24+y 23=1.(2)证明:由已知F 1(-1,0),当直线m 不垂直于坐标轴时, 可设直线m 的方程为y =k (x +1)(k ≠0).由⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,得(3+4k 2)x 2+8k 2x +4k 2-12=0. 由于Δ>0,设A (x 1,y 1),B (x 2,y 2),则有 x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2, |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-8k 23+4k 22-4×4k 2-123+4k 2 =12(1+k 2)3+4k 2.同理|CD |=12(1+k 2)3k 2+4.所以1|AB |+1|CD |=3+4k 212(1+k 2)+3k 2+412(1+k 2)=7(1+k 2)12(1+k 2)=712.当直线m 垂直于坐标轴时, 此时|AB |=3,|CD |=4; 或|AB |=4,|CD |=3,1|AB |+1|CD |=13+14=712. 综上,1|AB |+1|CD |为定值712. 考点三 探索存在性与证明问题|(2015·高考北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.[解] (1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2.解得a 2=2.故椭圆C 的方程为x 22+y 2=1.设M (x M,0).因为m ≠0,所以-1<n <1. 直线P A 的方程为y -1=n -1m x ,所以x M =m1-n,即M ⎝⎛⎭⎫m 1-n ,0.(2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ).设N (x N,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1,所以y 2Q =|x M ||x N |=m 21-n 2=2. 所以y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ .且点Q 的坐标为(0,2)或(0,-2).解决存在性问题注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.3.(2015·高考安徽卷)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB . 解:(1)由题设条件知,点M 的坐标为⎝⎛⎭⎫23a ,13b ,又k OM =510,从而b 2a =510. 进而a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)证明:由N 是线段AC 的中点知, 点N 的坐标为⎝⎛⎭⎫a 2,-b2, 可得NM →=⎝⎛⎭⎫a 6,5b 6.又AB →=(-a ,b ),从而有AB →·NM →=-16a 2+56b 2=16(5b 2-a 2).由(1)可知a 2=5b 2,所以AB →·NM →=0,故MN ⊥AB .A 组 考点能力演练1.如图,已知抛物线C :y 2=2px (p >0),焦点为F ,过点G (p,0)作直线l 交抛物线C 于A ,M 两点,设A (x 1,y 1),M (x 2,y 2).(1)若y 1y 2=-8,求抛物线C 的方程;(2)若直线AF 与x 轴不垂直,直线AF 交抛物线C 于另一点B ,直线BG 交抛物线C 于另一点N .求证:直线AB 与直线MN 斜率之比为定值.解:(1)设直线AM 的方程为x =my +p ,代入y 2=2px 得y 2-2mpy -2p 2=0, 则y 1y 2=-2p 2=-8,得p =2. ∴抛物线C 的方程为y 2=4x . (2)设B (x 3,y 3),N (x 4,y 4). 由(1)可知y 3y 4=-2p 2,y 1y 3=-p 2. 又直线AB 的斜率k AB =y 3-y 1x 3-x 1=2py 1+y 3, 直线MN 的斜率k MN =y 4-y 2x 4-x 2=2py 2+y 4,∴k AB k MN =y 2+y 4y 1+y 3=-2p 2y 1+-2p 2y 3y 1+y 3=-2p 2y 1y 3(y 1+y 3)y 1+y 3=2. 2.设F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,直线l 为其左准线,直线l 与x 轴交于点P ,线段MN 为椭圆的长轴,已知|MN |=8,且|PM |=2|MF |.(1)求椭圆C 的标准方程;(2)若过点P 的直线与椭圆相交于不同两点A ,B ,求证:∠AFM =∠BFN ; (3)求三角形ABF 面积的最大值. 解:(1)∵|MN |=8,∴a =4,又∵|PM |=2|MF |得a 2c -a =2(a -c ),即2e 2-3e +1=0⇒e =12或e =1(舍去).∴c =2,b 2=a 2-c 2=12, ∴椭圆的标准方程为x 216+y 212=1.(2)当AB 的斜率为0时,显然∠AFM =∠BFN =0.满足题意. 当AB 的斜率不为0时,设A (x 1,y 1),B (x 2,y 2), AB 方程为x =my -8,代入椭圆方程整理得: (3m 2+4)y 2-48my +144=0,则Δ=(48m )2-4×144(3m 2+4),y 1+y 2=48m 3m 2+4,y 1·y 2=1443m 2+4. ∴k AF +k BF =y 1x 1+2+y 2x 2+2=y 1my 1-6+y 2my 2-6=2my 1y 2-6(y 1+y 2)(my 1-6)(my 2-6)=0,∴k AF +k BF =0,从而∠AFM =∠BFN . 综上可知:恒有∠AFM =∠BFN .(3)S△ABF =S△PBF -S△P AF=12|PF |·|y 2-y 1|=72m 2-43m 2+4=72m 2-43(m 2-4)+16=723m 2-4+16m 2-4≤7223·16=3 3. 当且仅当3m 2-4=16m 2-4即m 2=283(此时适合Δ>0的条件)取得等号.三角形ABF 面积的最大值是3 3.3.已知点A ,B ,C 是抛物线L :y 2=2px (p >0)上的不同的三点,O 为坐标原点,直线OA ∥BC ,且抛物线L 的准线方程为x =-1.(1)求抛物线L 的方程;(2)若三角形ABC 的重心在直线x =2上,求三角形ABC 的面积的取值范围.解:(1)抛物线L 的方程为y 2=4x .(2)设直线OA ,BC 的方程分别为y =kx 和y =kx +b (k ≠0).由⎩⎪⎨⎪⎧y =kx ,y 2=4x联立消去y 得k 2x 2=4x , 解得点A 的坐标为A ⎝⎛⎭⎫4k 2,4k . 设B (x 1,y 1),C (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +b ,y 2=4x ,消去y 得k 2x 2+(2kb -4)x +b 2=0.Δ=(2kb -4)2-4k 2b 2=16-16kb >0,即kb <1. 又由韦达定理可得x 1+x 2=4-2kb k 2,∴三角形ABC 的重心的横坐标为4k 2+4-2kb k 23=8-2kb 3k 2=2,化简得b =4-3k 2k ,代入kb <1可得k 2>1.又三角形ABC 的面积为 S =12×k 2+1×16-16kbk 2×|b |1+k 2=|2b |1-kb k 2=2|4-3k 2|k 2|k |×3k 2-3=2⎪⎪⎪⎪4k 2-3 3-3k2. 令t =1k2,则S =23×(4t -3)2(1-t ),t ∈(0,1).考虑函数f (t )=(4t -3)2(1-t ),t ∈(0,1), 则易得函数f (t )在⎝⎛⎭⎫0,34和⎝⎛⎭⎫1112,1上单调递减, 在⎝⎛⎭⎫34,1112上单调递增,且f (0)=9,f ⎝⎛⎭⎫34=0,f ⎝⎛⎭⎫1112=127, ∴△ABC 的面积的取值范围是(0,63).B 组 高考题型专练1.(2015·高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.解:(1)由题意有a 2-b 2a =22,4a 2+2b2=1, 解得a 2=8,b 2=4.所以C 的方程为x 28+y 24=1. (2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1得 (2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b 2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k, 即k OM ·k =-12. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.2.(2015·高考山东卷)平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .a .求|OQ ||OP |的值;b .求△ABQ 面积的最大值.解:(1)由题意知3a 2+14b 2=1, 又a 2-b 2a =32,解得a 2=4,b 2=1, 所以椭圆C 的方程为x 24+y 2=1. (2)由(1)知,椭圆E 的方程为x 216+y 24=1. a .设P (x 0,y 0),|OQ ||OP |=λ, 由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2. b .设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.①则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2. 所以|x 1-x 2|=416k 2+4-m 21+4k 2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k 2=t ,将y =kx +m 代入椭圆C 的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.②由①②可知0<t≤1,因此S=2(4-t)t=2-t2+4t,故S≤23,当且仅当t=1,即m2=1+4k2时,S取得最大值23,由a知,△ABQ的面积为3S,所以△ABQ面积的最大值为6 3.。

高中数学一轮复习9.9 直线与圆锥曲线的位置关系

高中数学一轮复习9.9 直线与圆锥曲线的位置关系

第九节 直线与圆锥曲线的位置关系一、基础知识1.直线与圆锥曲线的位置关系2.弦长公式二、常用结论考点一 直线与圆锥曲线的位置关系[典例] 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-2,0),且点P (0,2)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=8x 相切,求直线l 的方程.[[题组训练]1.若直线y =kx -1与双曲线x 2-y 2=4始终有公共点,则k 的取值范围是________.2.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C : (1)有两个不重合的公共点;(2)有且只有一个公共点.考点二 与弦有关的问题[典例] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,上顶点为B ,已知椭圆的离心率为53,|AB |=13. (1)求椭圆的方程; (2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BP Q 面积的2倍,求k 的值.[题组训练]1.已知直线y =kx +1与双曲线x 2-y 24=1交于A ,B 两点,且|AB |=82,则实数k 的值为( ) A .±7 B .±3或±413 C .±3 D .±4132.已知抛物线y 2=4x 的一条弦AB 恰好以P (1,1)为中点,则弦AB 所在直线的方程是________.考点三 圆锥曲线中的证明问题[典例] 设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .[对点训练] 设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .[课时跟踪检测]1.已知抛物线C :x 2=2py (p >0),若直线y =2x 被抛物线所截得的弦长为45,则抛物线C 的方程为( )A .x 2=8yB .x 2=4yC .x 2=2yD .x 2=y 2.若直线x -y +m =0与双曲线x 2-y 22=1交于不同的点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,则m 的值为( )A .±2B .±2C .±1D .±3 3.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .0 4.过点P (2,2)作直线与双曲线x 24-y 2=1交于A ,B 两点,使点P 为AB 中点,则这样的直线( ) A .存在一条,且方程为x -4y +6=0 B .存在无数条C .存在两条,方程为x -4y +6=0或x +4y -10=0D .不存在5.已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( ) A.32B .3C .2 3D .46.若直线y =52x +b 和曲线4x 2-y 2=36有两个不同的交点,则b 的取值范围是________.7.经过抛物线C :y 2=2px (p >0)的焦点F 且倾斜角为π6的直线交C 于M ,N 两点,O 为坐标原点,若△OMN 的面积为94,则抛物线的方程为________.8.设直线l :2x +y +2=0关于原点对称的直线为l ′,若l ′与椭圆x 2+y 24=1的交点为A ,B ,点P 为椭圆上的动点,则使△P AB 的面积为12的点P 的个数为________.9.已知点A ,B 的坐标分别是(-1,0),(1,0),直线AM ,BM 相交于点M ,且它们的斜率之积为-2. (1)求动点M 的轨迹方程;(2)若过点N ⎝⎛⎭⎫12,1的直线l 交动点M 的轨迹于C ,D 两点,且N 为线段CD 的中点,求直线l 的方程.10.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫3,12,左焦点为 F (-3,0). (1)求椭圆E 的方程;(2)若A 是椭圆E 的右顶点,过点F 且斜率为12的直线交椭圆E 于M ,N 两点,求△AMN 的面积.。

高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)

高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)

解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。

高三数学一轮复习直线与圆锥曲线教案高三全册数学教案

高三数学一轮复习直线与圆锥曲线教案高三全册数学教案

芯衣州星海市涌泉学校第四讲直线与圆锥曲线一、考情分析直线与圆锥曲线的位置关系,是高考考察的重中之重,主要涉及弦长、中点弦、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘〞. 本讲主要是调动学生学习的主动性,注意交代知识的来龙去脉,教给学生解决问题的思路,帮助考生培养分析、抽象和概括等思维才能,掌握形数结合、函数与方程、化归与转化等数学思想,培养良好的个性品质,以及勇于探究、敢于创新的精神,进一步进步学生“应用数学〞的程度.二、知识归纳〔一〕直线与圆锥曲线问题的解决思路“三十二字思路〞:设而不求,求而不设;联立消元,二次判别;韦达,解决问题;遇弦中点,点差优先.〔二〕直线与椭圆()()()2222222222222010y kx m a k b x mka x a m b x y a b a b=+⎧⎪⇒+++-=⎨+=>>⎪⎩,显然,2220a k b +≠; 〔1〕当0∆=时,直线与椭圆只有一个公一一共点,属于直线与椭圆相切; 〔2〕当0∆>时,直线与椭圆有两个公一一共点,属于直线与椭圆相交; 〔三〕直线与双曲线()()()22222222222220100y kx m a k b x mka x a m b x y a b a b=+⎧⎪⇒-+++=⎨-=>>⎪⎩,, 〔1〕假设2220bak b k a-=⇔=±时,直线平行于双曲线的渐进线,此时, ①当0m =时,直线与渐进线重合,与双曲线无交点;②当0m ≠时,直线与双曲线只有一个公一一共点,属于一个交点的相交,而不是相切;〔2〕假设2220bak b k a-≠⇔≠±时,直线不平行于双曲线的渐进线,此时, ①当0∆=时,直线与双曲线只有一个公一一共点,属于直线与双曲线相切; ②当0∆>时,直线与双曲线有两个公一一共点,属于直线与双曲线相交; 〔四〕直线与抛物线()()22222020y kx mk x mk p x m y px p =+⎧⎪⇒+-+=⎨=>⎪⎩, 〔1〕假设0k=时,直线平行于抛物线的对称轴,此时,直线与抛物线只有一个公一一共点,属于一个交点的相交,而不是相切;〔2〕假设0k≠时,直线不平行于抛物线的对称轴,此时,①当0∆=时,直线与抛物线只有一个公一一共点,属于直线与抛物线相切; ②当0∆>时,直线与抛物线有两个公一一共点,属于直线与抛物线相交; 三、精典例析例1:曲线22148x y C -=:,定点()10M ,,直线l 经过点()01,,斜率为t ,与曲线C 交于不同的两点A B 、,设AB 的中点为P ,求直线MP 的斜率k 关于t 的函数关系()k f t =.解析:设直线l 的方程为1l ytx =+:,()()()112200,A x y B x y P x y ,,,,,那么:()222212290148y tx t x tx x y =+⎧⎪⇒---=⎨-=⎪⎩, ∴22t≠,2904t ∆>⇔<,且1212002222x x y y tx y t ++===-, ∵()()120022112222tx tx t x y t t +++===--,,∴020212y kx t t ==-+-;故()()223321122222k t t t ⎛⎫⎛⎛⎫=∈-- ⎪ ⎪+-⎝⎝⎭⎝⎭,,,.例2:椭圆()222210x y a b a b+=>>的离心率36=e ,过点()0A b -,和()0B a ,的直线与原点的间隔为23. 〔1〕求椭圆的方程. 〔2〕定点()10E -,,假设直线()20y kx k =+≠与椭圆交于C D 、两点.问:是否存在k 的值,使以CD 为直径的圆过()10E-,点?请说明理由. 解析:〔1〕直线AB 方程为:0bx ay ab --=,那么:22633312c a a ab b a b⎧=⎪⎧=⎪⎪⇒⎨⎨=⎪⎩⎪=⎪+⎩ , ∴椭圆方程为1322=+y x . 〔2〕假假设存在这样的k 值,设()()1122Cx y D x y ,,,,那么:()22222131290330y kx k x kx x y =+⎧⇒+++=⎨+-=⎩ , ∴0)31(36)12(22>+-=∆k k ,且1212221291313k x x x x k k +=-=++⋅,,∵()()()2121212122224y y kx kx k x x k x x =++=+++⋅,∴要使以CD 为直径的圆过()10E-,点,当且仅当CE DE ⊥时,那么: 121212121(1)(1)011y y y y x x x x =-⇔+++=++⋅. ∴05))(1(2)1(21212=+++++x x k x x k ,∴67=k,经历证,67=k 时符合题意. 综上,存在67=k ,使得以CD 为直径的圆过()10E -,点.例3:双曲线G 的中心在原点,它的渐近线与圆2210200xy x +-+=相切.过点()4,0P -作斜率为14的直线l ,使得l 和G 交于A B 、两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2PA PB PC⋅=.〔1〕求双曲线G 的渐近线的方程; 〔2〕求双曲线G 的方程;〔3〕椭圆S 的中心在原点,它的短轴是G 的实轴.假设S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.解析:〔1〕设双曲线G 的渐近线的方程为:y kx =,那么:∵渐近线与圆2210200xy x +-+=12k =⇔=±. 故双曲线G 的渐近线的方程为:12y x =±.〔2〕设双曲线G 的方程为:224xy m -=,那么:()2221438164044y x x x m x y m ⎧=+⎪⇒---=⎨⎪-=⎩, ∴8164 33A B A B mx x x x ++==-,, ∵2PA PB PC ⋅=,P A B C 、、、一一共线且P 在线段AB 上,∴()()()()()()244164320P A B P P C B A A B A B x x x x x x x x x x x x --=-⇔+--=⇔+++=,例4:〔05年卷〕设A B 、是椭圆λ=+223y x 上的两点,点()13N ,是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C D 、两点. 〔1〕确定λ的取值范围,并求直线AB 的方程;〔2〕试判断是否存在这样的λ,使得A B 、、C D 、四点在同一个圆上?并说明理由.解析:〔1〕法1:显然,直线AB 的斜率存在,设直线AB 的方程为(1)3y k x =-+,设1122()()A x y B x y ,,,,那么:22222(1)3(3)2(3)(3)03y k x k x k k x k x y λλ=-+⎧⇒+--+--=⎨+=⎩, ∴224[(3)3(3)]0k k λ∆=+-->,且21212222(3)(3)33k k k x x x x k k λ---+=⋅=++,,∵点()13N,是线段AB 的中点,∴2121(3)312x x k k k k +=⇔-=+⇒=-,直线AB 的方程是: ()3140y x x y -=--⇔+-=.∴12λ>,故λ的取值范围是()12,+∞.法2:设1122()()A x y B x y ,,,,那么:221112121212222233()()()()03x y x x x x y y y y x y λλ⎧+=⎪⇒-++-+=⎨+=⎪⎩, ∴12123()ABx x k y y +=-+;∵点()13N ,是线段AB 的中点,∴121226x x y y +=+=,,∴1AB k =-,直线AB 的方程是()3140y x x y -=--⇔+-=.∵点()13N,在椭圆的内部,∴2231312λ>⨯+=.故λ的取值范围是()12,+∞.〔2〕法1:∵直线CD 垂直平分线段AB ,∴直线CD 的方程为3120y x x y -=-⇔-+=,又设3344()()C x y D x y ,,,,CD 的中点00()M x y ,,那么:2222044403x y x x x y λλ-+=⎧⇒++-=⎨+=⎩, ∴103λ∆>⇔>,且341x x +=-,03400113()2222x x x y x =+=-=+=,,即1322M ⎛⎫- ⎪⎝⎭,.∴34||||CD x x =-=又22240481603x y x x x y λλ+-=⎧⇒-+-=⎨+=⎩,2012λ∆>⇔>,同理可得:12||AB x x =-=∴当12λ>AB CD >⇒<.假设在在12λ>,使得A B 、、C D 、四点一一共圆,那么CD 必为圆的直径,点M 为圆心,点M 到直线AB的间隔为:13|4|d-+-===,∴222229123||||||||22222AB CDMA MB dλλ--==+=+==.故当12>λ时,A B、、C D、四点均在以M为圆心,2||CD为半径的圆上.〔注:上述解法中最后一步也可如下解法获得:∵A B、、C D、一一共圆⇔△ACD为直角三角形,A为直角2||||||AN CN DN⇔=⋅,∴2||222CD CDABd d⎛⎫⎛⎫⎛⎫=+-⎪⎪⎪⎝⎭⎝⎭⎝⎭,∵3912 2222222CD CDd dλλ⎫⎛⎫⎛⎫--+-=-=-=⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭即A、B、C、D四点一一共圆.〕例5:〔05年卷〕如图,设抛物线2C y x=:的焦点为F,动点P在直线20l x y--=:上运动,过P作抛物线C的两条切线PA PB、,且与抛物线C分别相切于A B、两点.〔1〕求△APB的重心G的轨迹方程;〔2〕证明:PFA PFB∠=∠.解析:〔1〕设切点()()()22001101A x xB x x x x≠,,,,那么:切线PA的方程为:20020x x y x--=,切线PB的方程为:21120x x y x--=,联立,解得:P点的坐标为01012x xP x x+⎛⎫⎪⎝⎭,;∴△APB的重心G的坐标为:PPGxxxxx=++=310,2222010*******()43333P P PGy y y x x x x x x x x x yy+++++--====,∴234P G Gy y x=-+,∵点P在直线20l x y--=:上运动,∴从而得到重心G 的轨迹方程为:221(34)20(42)3x y xy x x --+-=⇔=-+.〔2〕法1:∵22010001111114244x x FA x x FP x x FB x x +⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, ,, ,, ∴cos ||||FP FA AFP FP FA ⋅∠=201001001201114||||x x x x x x x x FP FP x +⎛⎫⎛⎫⋅+--+⎪⎪⎝==; 同理,20110110122211112444cos ||||||1||x x x x x x x x FP FBBFP FP FB FP FP x +⎛⎫⎛⎫⋅+--+⎪⎪⋅⎝⎭⎝⎭∠===⎛⎫+;故PFA PFB ∠=∠. 法2:①当100x x =时,由于01x x ≠,不妨设00x =,那么:00y =,∴P 点坐标为102x P ⎛⎫⎪⎝⎭,,那么P 点到直线AF 的间隔为:11||2x d =;而直线BF 的方程212111111114()0444x y x x x x y x x --=⇔--+=,∴P 点到直线BF 的间隔为:22111111221||11|()|()||42124x x x x x x d x -++===+; ∴12d d =,故PFA PFB ∠=∠.②当001≠x x 时,直线AF 的方程:2020********(0)()04044x y x x x x y x x --=-⇔--+=-; 直线BF 的方程:212111111114(0)()04044x y x x x x y x x --=-⇔--+=-; ∴P 点到直线AF 的间隔为:22201010010001120111|()()||)()||24124x x x x x x x x x x x d x +---++-===+, 同理,P 点到直线BF 的间隔:2||012x x d -=, ∴12d d =,故PFA PFB ∠=∠.四、课后反思 .。

高考数学总复习(一轮)(人教A)教学课件第八章 平面解析几何第8节 直线与圆锥曲线的位置关系

高考数学总复习(一轮)(人教A)教学课件第八章 平面解析几何第8节 直线与圆锥曲线的位置关系

P1F1P2F2的面积.

(2)解:由已知得


- = ,
2
2
解得 a =2,b =1,
+ = ,

2
所以双曲线方程为 -y =1.



根据(1)的结论直线 P1P2 的斜率为 ÷=,

所以直线 P1P2 的方程为 y-1=(x-2),即 x=3y-1,
判断直线与圆锥曲线的位置关系的方法
(1)代数法:直线与圆锥曲线方程联立,利用判别式求解;
(2)几何法:直线过定点时,若定点在圆锥曲线内部,则直线一定与
圆锥曲线相交;
若定点在圆锥曲线上,则直线与圆锥曲线相交或相切;
若定点在圆锥曲线外部,则直线与圆锥曲线相交、相切或相离.
[针对训练] 直线y=kx(k>0)与双曲线
+
等式两边同除以(x1+x2)(x1-x2),得
+
·
-
-




· =0,即 k1k2= .
(2)若双曲线的焦点分别为 F1(- ,0),F2( ,0) ,点P1 的坐标为

(2,1), 直 线 OM 的 斜 率 为 , 求 由 四 点 P1,F1,P2,F2 所 围 成 四 边 形


代入双曲线方程可解得 P2(- ,-),注意到 P1,P2 在直线 F1F2 的两侧,




所以四边形 P1F1P2F2 的面积为 |F1F2|·|y1-y2|= × =

.
解决圆锥曲线“中点弦”问题的思路
(1)根与系数的关系法:联立直线和圆锥曲线的方程得到方程组,消元

高考数学一轮复习 第二章 直线方程导学案 新人教版必修2

高考数学一轮复习 第二章 直线方程导学案 新人教版必修2

高考数学一轮复习第二章直线方程导学案新人教版必修21、理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式、2、掌握确定直线位置的几何要素、3、掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系、说明:直线是解析几何中最基本的内容,对直线的考查一是在选择、填空中考查直线的倾斜角、斜率、直线的方程等基本知识,二是在解答题中与圆、椭圆、双曲线、抛物线等知识进行综合考查、知识再现1、直线的有关概念(1)直线倾斜角的范围是、(2)P1(x1,y1),P2(x2,y2)是直线l上两点,则l的方向向量的坐标为;若l的斜率为k,则方向向量的坐标为2、斜率公式(1)直线l的倾斜角为α≠90,则斜率k=、(2)P1(x1,y1),P2(x2,y2)在直线l上且x1≠x2,则l的斜率、3、直线方程的几种基本形式(1)点斜式:,注意斜率k是存在的、(2)斜截式:,其中b是直线l在y轴上的截距、(3)两点式:,当方程变形为(y2-y1)(x-x1)-(x2-x1)(y-y1)=0时,对于一切情况都成立、(4)截距式:,其中ab≠0,a为l在x轴上的截距,b是l在y轴上的截距、(5)一般式:,其中A、B不同时为0、教材回归例题1、下列四个命题中真命题的是()A、经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示、B、经过任意两个不同点P1(x1,y1),P2(x2,y2)的直线可以用方程:(y-y1)(x2-x1)-(x-x1)(y2-y1)=0表示、C、不过原点的直线都可以用+=1表示、D、经过定点A(0,b)的直线都可以用方程y=kx+b表示、例题2、直线xsin+ycos=0的倾斜角是()A、-B、C、D、例题3、若ab<0,则过点P与Q的直线PQ的倾斜角的取值范围是()A、B、C、D、例题4(07北京)若A(2,2),B(a,0),C(0,b)共线(a,b≠0)则+=________、例5、过点(2,1)且在x轴上截距与在y轴上截距之和为6的直线方程为________、例题7设直线2x+my=1的倾斜角为α,若m∈(-∞,-2)∪[2,+∞),则角α的取值范围是________、(2)直线l过点M(-1,2)且与以点P(-2,-3)、Q(4,0)为端点的线段恒相交,则l的斜率范围是________例8 求适合下列条件的直线的方程:(1)在y轴上的截距为-5,倾斜角的正弦值是;(2)经过点P(3,2),且在两坐标轴上的截距相等;(3)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍、动手试试1、已知θ∈R,则直线xsinθ-y+1=0的倾斜角的取值范围是________、2、已知直线l1的方程是ax-y+b=0,l2的方程是bx-y-a=0(ab≠0,a≠b),则下列各示意图形中,正确的是________、3、直线mx-y+2m+1=0经过一定点,则该点的坐标是______________、4、(xx年高考浙江卷)已知a>0,若平面内三点A(1,-a),B(2,a2),C(3,a3)共线,则a=________、5、(原创题)若点A(ab,a+b)在第一象限内,则直线bx+ay-ab =0不经过第________象限、6、直线l与两直线y=1,x-y-7=0分别交于P、Q两点,线段PQ的中点恰为(1,-1),则直线l 的斜率为________、解析:设直线l与两直线的交点分别为(a,1),(b,c),P、Q的中点为(1,-1),∴c=-2-1=-3,代入x-y-7=0可得b=4,∴a=2-b=-2,∴P(-2,1),Q(4,-3),∴kPQ==-、7、(xx年苏州模拟)若ab<0,则过点P(0,-)与Q(,0)的直线PQ的倾斜角的取值范围是__________、8、已知直线l:ay=(3a-1)x-1、(1)求证:无论a为何值,直线l总过第三象限;(2)a取何值时,直线l不过第二象限?9、若直线l过点P(3,0)且与两条直线l1:2x-y-2=0,l2:x+y+3=0分别相交于两点A、B,且点P平分线段AB,求直线l的方程、10、求过点P(2,3),且满足下列条件的直线方程:(1)倾斜角等于直线x-3y+4=0的倾斜角的二倍的直线方程;(2)在两坐标轴上截距相等的直线方程、。

高三数学第一轮复习教案第53课时—直线与圆锥曲线的位置关系(2)(学案)

高三数学第一轮复习教案第53课时—直线与圆锥曲线的位置关系(2)(学案)

高三数学第一轮复习讲义(53)直线与圆锥曲线的位置关系(2)一.复习目标:1.能利用弦长公式解决直线与圆锥曲线相交所得的弦长的有关问题,会运用圆锥曲线的第二定义求焦点弦长;2.体会“设而不求”、“方程思想”和“待定系数”等方法.二.知识要点:1.弦长公式1212||||AB x x y y =-=-. 2.焦点弦长:||PF e d=(点P 是圆锥曲线上的任意一点,F 是焦点,d 是P 到相应于焦点F 的准线的距离,e 是离心率) 三.课前预习:1.设直线21y x =-交曲线C 于1122(,),(,)A x y B x y 两点,(1)若12||x x -=则||AB = .(2)12||y y -则||AB = . 2.斜率为1的直线经过抛物线24y x =的焦点,与抛物线相交于,A B 两点,则||AB = .3.过双曲线2212y x -=的右焦点作直线l ,交双曲线于,A B 两点,若||4AB =,则这样的直线l 有 ( ) ()A 1条 ()B 2条 ()C 3条 ()D 4条4.已知椭圆2224x y +=,则以(1,1)为中点的弦的长度是( )()A ()B()C ()D 5.中心在原点,焦点在x 轴上的椭圆的左焦点为F ,离心率为13e =,过F 作直线l 交椭圆于,A B 两点,已知线段AB 的中点到椭圆左准线的距离是6,则||AB = . 四.例题分析:例1.如图,过抛物线22(0)y px p =>上一定点000(,)(0)P x y y >,作两条直线分别交抛物线于1122(,),(,)A x y B x y ,(1)求该抛物线上纵坐标为2p的点到其焦点F 的距离;(2)当PA与PB 的斜率存在且倾斜角互补时,求12y y y +的值,并证明直线AB 的斜率是非零常数.例2.椭圆的中心是原点O ,它的短轴长为22,相应于焦点)0)(0,(>c c F 的准线l 与x 轴相交于点A ,||2||FA OF =,过点A 的直线与椭圆相交于,P Q 两点.(I )求椭圆的方程及离心率;(II )若,0.=求直线PQ 的方程;(III )设)1(>=λλ,过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FQ FM λ-=.例3.已知倾斜角为45︒的直线l 过点(1,2)A -和点B ,B 在第一象限,||AB =(1) 求点B 的坐标;(2)若直线l 与双曲线222:1x C y a-=(0)a >相交于E 、F 两点,且线段EF 的中点坐标为(4,1),求a 的值;(3)对于平面上任一点P ,当点Q 在线段AB 上运动时,称||PQ 的最小值为P 与线段AB 的距离. 已知点P 在x 轴上运动,写出点(,0)P t 到线段AB 的距离h 关于t 的函数关系式.五.课后作业: 班级 学号 姓名1.过双曲线22221x y a b-=的右焦点2F 作垂直于实轴的弦PQ ,1F 是左焦点,若0190PFQ ∠=,则双曲线的离心率是 ( )()A()B 1+()C 2+()D 32.过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于,P Q 两点,若线段PF 与FQ 的长分别是,p q ,则11p q+等于 ( )()A 2a ()B 12a ()C 4a()D 4a 3.直线y x m =+与椭圆2214x y +=交于A 、B 两点,则||AB 的最大值是 ( )()A 2 ()B ()C ()D 4.过抛物线24y x =的焦点,作倾斜角为α的直线交抛物线于A ,B 两点,且316=AB 则=α .5.若过椭圆2221(02)4x y b b+=<<右焦点2F 且倾斜角为34π的直线与椭圆相交所得的弦长等于247,则b = .6.设抛物线22(0)y px p =>,Rt AOB ∆ 内接于抛物线,O 为坐标原点,,AO BO AO ⊥所在的直线方程为2y x =,||AB =7.已知某椭圆的焦点是()()124,04,0F F -、,过点2F 并垂直于x 轴的直线与椭圆的一个交点为B ,且1210FB F B +=.椭圆上不同的两点()()1122,,A x y C x y 、满足条件: 222F A F B F C 、、成等差数列.(Ⅰ)求该椭圆的方程;(Ⅱ)求弦AC 中点的横坐标;(Ⅲ)设弦AC 垂直平分线的方程为y kx m =+,求m 的取值范围.8.设双曲线222:1(0)x C y a a-=>与直线:1l x y +=相交于两个不同的点,A B .(1)求双曲线的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,且512PA PB =,求a 的值.经典语录1、最疼的疼是原谅,最黑的黑是背叛。

2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)

2023届高三数学一轮复习专题  直线与圆锥曲线的综合运用  讲义 (解析版)

直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。

高考数学一轮复习精品教学案8.8 直线与圆锥曲线(学生版) 新人教版

高考数学一轮复习精品教学案8.8 直线与圆锥曲线(学生版) 新人教版

【考纲解读】1.了解圆锥曲线的简单应用. 2.理解数形结合的思想. 【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面解析几何是历年来高考重点内容之一,经常与逻辑、不等式、三角函数等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,在解答题中考查,一般难度较大,与其他知识结合起来考查,在考查平面解析几何基础知识的同时,又考查数形结合思想、转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查解析几何与其他知识的结合,在选择题、填空题中继续搞创新,命题形式会更加灵活. 【要点梳理】1.中点坐标公式:设点11(,)A x y 、22(,)B x y ,则AB 中点的坐标为12(,2x x +12)2y y +.2.韦达定理:已知12,x x是一元二次方程20ax bx c ++=的两个根,则12x x +=b a -,12x x =ca .3.弦长公式:设点11(,)A x y 、22(,)B x y ,直线AB 的斜率为k ,则弦长|AB|=2121||k x x +-=12211||y y k +-.【例题精析】考点一 直线与椭圆的位置关系例1. (2012年高考北京卷文科19) 已知椭圆C :22x a +22y b =1(a >b >0)的一个顶点为A (2,0),离心率为22, 直线y=k(x-1)与椭圆C 交与不同的两点M,N(Ⅰ)求椭圆C 的方程(Ⅱ)当△AMN 的面积为103时,求k 的值 .【变式训练】1. (2012年高考陕西卷文科20)已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率。

(1)求椭圆2C 的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆1C 和2C 上,2OB OA =,求直线AB 的方程。

考点二 直线与双曲线(抛物线)例2. (2012年高考上海卷文科22)在平面直角坐标系xOy 中,已知双曲线22:21C x y -=. (1)设F 是C 的左焦点,M 是C 右支上一点,若22MF =,求点M 的坐标;(2)过C 的左焦点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k (2k <)的直线l 交C 于P 、Q 两点,若l 与圆221x y +=相切,求证:OP ⊥OQ .【变式训练】2.(2012年高考全国卷文科22)已知抛物线2:(1)C y x =+与圆2221:(1)()(0)2M x y r r -+-=>有一个公共点A ,且在点A 处两曲线的切线为同一直线l .(Ⅰ)求r ;(Ⅱ)设m 、n 是异于l 且与C 及M 都相切的两条直线,m 、n 的交点为D ,求D 到l 的距离。

江苏省灌南高级中学高三数学 直线与圆锥曲线复习导学案

江苏省灌南高级中学高三数学 直线与圆锥曲线复习导学案

导学目标: 1.了解圆锥曲线的简单应用.2.理解数形结合的思想.自主梳理1.直线与椭圆的位置关系的判定方法(1)将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程,若Δ>0,则直线与椭圆________;若Δ=0,则直线与椭圆________;若Δ<0,则直线与椭圆________.(2)直线与双曲线的位置关系的判定方法 将直线方程与双曲线方程联立消去y (或x ),得到一个一元方程ax 2+bx +c =0.①若a ≠0,当Δ>0时,直线与双曲线________;当Δ=0时,直线与双曲线________;当Δ<0时,直线与双曲线________.②若a =0时,直线与渐近线平行,与双曲线有________交点.(3)直线与抛物线位置关系的判定方法 将直线方程与抛物线方程联立,消去y (或x ),得到一个一元方程ax 2+bx +c =0.①当a ≠0,用Δ判定,方法同上.②当a =0时,直线与抛物线的对称轴________,只有________交点.2.已知弦AB 的中点,研究AB 的斜率和方程(1)A B 是椭圆x 2a 2+y 2b 2=1 (a >b >0)的一条弦,M (x 0,y 0)是AB 的中点,则k AB =______,k AB ·k OM =________.点差法求弦的斜率的步骤是:①将端点坐标代入方程:x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1. ②两等式对应相减:x 21a 2-x 22a 2+y 21b 2-y 22b2=0. ③分解因式整理:k AB =y 1-y 2x 1-x 2=-b 2x 1+x 2a 2y 1+y 2=-b 2x 0a 2y 0. (2)运用类比的手法可以推出:已知AB 是双曲线x 2a 2-y 2b2=1的弦,中点M (x 0,y 0),则k AB =________________.已知抛物线y 2=2px (p >0)的弦AB 的中点M (x 0,y 0),则k AB =________.3.弦长公式直线l :y =kx +b 与圆锥曲线C :F (x ,y )=0交于A (x 1,y 1),B (x 2,y 2)两点,则AB =1+k 2|x 1-x 2|=1+k 2x 1+x 22-4x 1x 2或AB = 1+1k2|y 1-y 2| =2122124)(11y y y y k-++. 自我检测1.抛物线y2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是________.2.如果直线y =kx -1与双曲线x 2-y 2=1没有公共点,则k 的取值范围是________________.3.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是________. 4.过点⎝⎛⎭⎪⎫0,-12的直线l 与抛物线y =-x 2交于A 、B 两点,O 为坐标原点,则OA →·OB →的值为________. 5.经过抛物线y 2=4x 焦点的直线l 交抛物线于A 、B 两点,且AB =8,则直线l 的倾斜角的大小为________.例题精讲例1 k 为何值时,直线y-1=k (x -2)和曲线x 2-4y 2=4有两个公共点?有一个公共点?没有公共点?例3.见苏大例1例4. 在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A 、B ,是否存在常数k ,使得向量OP →+OQ →与AB →共线?如果存在,求k 值;如果不存在,请说明理由.。

高考一轮复习必备—圆锥曲线讲义全

高考一轮复习必备—圆锥曲线讲义全

高考一轮复习必备—圆锥曲线讲义全-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANⅠ复习提问一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到关于一个变量的一元二次方程,即联立(,)0Ax By C F x y ++=⎧⎨=⎩消去y 后得20ax bx c ++= (1)当0a =时,即得到一个一元一次方程,则l 与C 相交,有且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 抛物线的对称轴平行。

(2)当0a ≠时,0∆>,直线l 与曲线C 有两个不同的交点;0∆=,直线l 与曲线C 相切,即有唯一公共点(切点);0∆<,直线l 与曲线C 相离。

二、圆锥曲线的弦长公式相交弦AB的弦长1212AB AB AB x y y ⎧⎪=⎪⎪⎪=⎨⎪⎪=-==-⎪⎪⎩三、中点弦所在直线的斜率(1)若椭圆方程为22221(0)x y a b a b +=>>时,以P 00(x ,y )为中点的弦所在直线斜率202(0)b k y a =-≠00x y ,即22op b k k a =-;若椭圆方程为22221(0)y x a b a b +=>>时,相应结论为202(0)a k y b =-≠0x y ,即22op a k k b =-;(2)P 00(x ,y )是双曲线22221x y a b -=内部一点,以P 为中点的弦所在直线斜率202(0)b k y a =≠0x y ,即22op b k k a =; 若双曲线方程为22221y x a b -=时,相应结论为202(0)a k y b =≠0x y ,即22op a k k b =;(3))P 00(x ,y )是抛物线22y px =内部一点,以P 为中点的弦所在直线斜率0(0)pk y =≠0y ;若方程为22x py =时,相应结论为k p=0x 。

2020高考数学理科大一轮复习导学案《直线与圆锥曲线》含答案

2020高考数学理科大一轮复习导学案《直线与圆锥曲线》含答案

第九节圆锥曲线的综合问题知识点一 直线与圆锥曲线的位置关系 1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0,消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2 =1+1k 2·|y 1-y 2|=1+1k 2·(y 1+y 2)2-4y 1y 2.1.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有3条.解析:结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).2.已知直线y =x +m 被椭圆4x 2+y 2=1截得的弦长为225,则m 的值为±1.解析:把直线y =x +m 代入椭圆方程得4x 2+(x +m )2=1,即5x 2+2mx +m 2-1=0,设该直线与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程5x 2+2mx +m 2-1=0的两根,Δ=4m 2-20(m 2-1)=-16m 2+20>0,即m 2<54.由韦达定理可得x 1+x 2=-2m5,x 1·x 2=m 2-15,所以|AB |=1+12·(x 1+x 2)2-4x 1x 2=2·4m 225-4m 2-45=225,所以m =±1.3.椭圆x 22+y 2=1的弦被点⎝ ⎛⎭⎪⎫12,12平分,则这条弦所在的直线方程是2x+4y -3=0.解析:设弦的两个端点为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=1,y 1+y 2=1. ∵A ,B 在椭圆上,∴x 212+y 21=1,x 222+y 22=1. (x 1+x 2)(x 1-x 2)2+(y 1+y 2)(y 1-y 2)=0, 即y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2)=-12, 即直线AB 的斜率为-12.∴直线AB 的方程为y -12=-12⎝ ⎛⎭⎪⎫x -12,即2x +4y -3=0.知识点二 圆锥曲线中的最值与取值范围问题圆锥曲线中的最值与取值范围问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:1.转化为函数利用基本不等式或二次函数求最值; 2.利用三角函数有界性求最值; 3.数形结合利用几何性质求最值.4.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( C )A .2 B.455 C.4105D.8105解析:设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y=x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0.则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.所以|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2·⎝ ⎛⎭⎪⎫-85t 2-4×4(t 2-1)5=425·5-t 2, 当t =0时,|AB |max =4105.知识点三 圆锥曲线中的定值与定点问题1.这类问题一般考查直线与圆锥曲线的位置关系,一元二次方程的根与系数之间的关系,考查斜率、向量的运算以及运算能力.2.解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.5.设a>0为常数,动点M(x,y)(y≠0)分别与两定点F1(-a,0),F2(a,0)的连线的斜率之积为定值λ,若点M的轨迹是离心率为3的双曲线,则λ的值为(A)A.2 B.-2C.3 D. 3解析:轨迹方程为yx+a·yx-a=λ,整理,得x2a2-y2λa2=1(λ>0),c2=a2(1+λ),1+λ=c2a2=3.λ=2,故选A.1.中点弦问题的常用方法(1)利用根与系数的关系:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用根与系数的关系和中点坐标公式建立等式求解.(2)点差法:若直线l与圆锥曲线C有两个交点A,B,一般地,首先设出A(x1,y1),B(x2,y2),代入曲线方程,通过作差,构造出x1+x2,y1+y2,x1-x2,y1-y2,从而建立中点坐标和斜率的关系.2.弦长问题有两种形式①|AB|=1+k2·|x1-x2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]; ②|AB |=1+1k 2·|y 1-y 2|=(1+1k 2)[(y 1+y 2)2-4y 1y 2].其中第二种形式应用比较巧妙.直线方程可设为x =my +n 的形式,这样可以有效避免直线斜率不存在的讨论,但也要注意斜率为0的特殊情况.第1课时 最值、范围、证明问题考向一 最值问题方向1 利用几何性质求最值【例1】 已知抛物线的方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为( )A.522+2 B.522+1 C.522-2D.522-1【解析】 如图,过点P 作P A ⊥l 于点A ,作PB ⊥y 轴于点B ,PB 的延长线交准线x =-1于点C ,连接PF ,根据抛物线的定义得|P A |+|PC |=|P A |+|PF |.∵P 到y 轴的距离为d 1,P 到直线l 的距离为d 2, ∴d 1+d 2=|P A |+|PB |=(|P A |+|PC |)-1 =(|P A |+|PF |)-1.根据平面几何知识,可得当P ,A ,F 三点共线时,P A +PF 有最小值. ∵F (1,0)到直线l :x -y +4=0的距离为|1-0+4|2=522,∴|P A |+|PF |的最小值是522,由此可得d 1+d 2的最小值为522-1. 【答案】 D方向2 利用函数、不等式求最值【例2】 (2019·福建模拟)已知椭圆Γ的中心在原点,焦点在x 轴上,焦距为2,且长轴长是短轴长的2倍.(1)求椭圆Γ的标准方程;(2)设P (2,0),过椭圆Γ左焦点F 的直线l 交Γ于A ,B 两点,若对满足条件的任意直线l ,不等式P A →·PB →≤λ(λ∈R )恒成立,求λ的最小值.【解】(1)依题意,⎩⎪⎨⎪⎧a =2b ,2c =2,a 2=b 2+c 2.解得a 2=2,b 2=1,∴椭圆Γ的标准方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),∴P A →·PB →=(x 1-2,y 1)·(x 2-2,y 2)=(x 1-2)·(x 2-2)+y 1y 2,当直线l 垂直于x 轴时,x 1=x 2=-1,y 1=-y 2且y 21=12,此时P A→=(-3,y 1),PB →=(-3,y 2)=(-3,-y 1),∴P A →·PB →=(-3)2-y 21=172.当直线l 不垂直于x 轴时,设直线l :y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 2+2y 2=2,得(1+2k 2)x 2+4k 2x +2k 2-2=0,∴x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2,∴P A →·PB →=x 1x 2-2(x 1+x 2)+4+k 2(x 1+1)(x 2+1)=(1+k 2)x 1x 2+(k 2-2)(x 1+x 2)+4+k 2=(1+k 2)·2k 2-21+2k 2-(k 2-2)·4k 21+2k 2+4+k 2=17k 2+22k 2+1=172-132(2k 2+1)<172,要使不等式P A →·PB →≤λ(λ∈R )恒成立,只需λ≥(P A →·PB →)max =172,即λ的最小值为172.最值问题的两种常见解法(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.1.(方向1)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为2 2.解析:双曲线x2-y2=1的渐近线为x±y=0,直线x-y+1=0与渐近线x-y=0平行,故两平行线的距离d=|1-0|12+(-1)2=22.由点P到直线x-y+1=0的距离大于c恒成立,得c≤22,故c的最大值为22.2.(方向2)(2018·浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围.解:(1)证明:设P (x 0,y 0),A 14y 21,y 1,B 14y 22,y 2.因为P A ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝⎛⎭⎪⎫y +y 022=4·14y 2+x 02 即y 2-2y 0y +8x 0-y 20=0的两个不同的实根.所以y 1+y 2=2y 0,因此,PM 垂直于y 轴.(2)由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20, 所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=22(y 20-4x 0).因此,△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 20+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5].因此,△PAB 面积的取值范围是62,15104.考向二 范围问题【例3】 (2019·福建龙岩质检)在平面直角坐标系xOy 中,圆x 2+y 2+2x -15=0的圆心为M .已知点N (1,0),且T 为圆M 上的动点,线段TN 的垂直平分线交TM 于点P .(1)求点P 的轨迹方程;(2)设点P 的轨迹为曲线C 1,抛物线C 2:y 2=2px 的焦点为N .l 1,l 2是过点N 互相垂直的两条直线,直线l 1与曲线C 1交于A ,C 两点,直线l 2与曲线C 2交于B ,D 两点,求四边形ABCD 面积的取值范围.【解】 (1)∵P 为线段TN 垂直平分线上一点, ∴|PM |+|PN |=|PM |+|PT |=|TM |=4, ∵M (-1,0),N (1,0),∵4>|MN |=2,∴P 的轨迹是以M (-1,0),N (1,0)为焦点,长轴长为4的椭圆,它的方程为x 24+y 23=1.(2)∵y 2=2px 的焦点为(1,0), C 2的方程为y 2=4x ,当直线l 1斜率不存在时,l 2与C 2只有一个交点,不合题意. 当直线l 1斜率为0时,可求得|AC |=4,|BD |=4, ∴S 四边形ABCD =12·|AC |·|BD |=8. 当直线l 1斜率存在且不为0时,方程可设为y =k (x -1)(k ≠0),代入x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0,Δ=144(k 2+1)>0,设A (x 1,y 1),C (x 2,y 2),则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,|AC |=1+k 2|x 1-x 2| =1+k 2(x 1+x 2)2-4x 1x 2=12(1+k 2)3+4k 2.直线l 2的方程为y =-1k (x -1)与y 2=4x 联立可得x 2-(2+4k 2)x +1=0, 设B (x 3,y 3),D (x 4,y 4),则|BD |=x 3+x 4+2=4+4k 2, ∴四边形ABCD 的面积S =12|AC ||BD |=12(4+4k 2)·12(1+k 2)3+4k 2=24(1+k 2)23+4k 2.令3+4k 2=t ,则k 2=t -34(t >3),S (t )=24⎝⎛⎭⎪⎫1+t -342t=32⎝ ⎛⎭⎪⎫t +1t +2, ∴S (t )在(3,+∞)是增函数,S (t )>S (3)=8, 综上,四边形ABCD 面积的取值范围是[8,+∞).解决圆锥曲线中的取值范围问题的5种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围. (5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.已知点F 为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程;(2)设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B ,若λ|PM |2=|P A |·|PB |,求实数λ的取值范围.解:(1)由题意,得a =2c ,b =3c ,则椭圆E 为x 24c 2+y 23c 2=1.由⎩⎪⎨⎪⎧x 24+y 23=c 2,x 4+y 2=1,得x 2-2x +4-3c 2=0.∵直线x 4+y2=1与椭圆E 有且仅有一个交点M , ∴Δ=4-4(4-3c 2)=0⇒c 2=1, ∴椭圆E 的方程为x 24+y 23=1. (2)由(1)得M (1,32),∵直线x 4+y2=1与y 轴交于P (0,2), ∴|PM |2=54,当直线l 与x 轴垂直时,|P A |·|PB |=(2+3)×(2-3)=1, ∴λ|PM |2=|P A |·|PB |⇒λ=45,当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +23x 2+4y 2-12=0⇒(3+4k 2)x 2+16kx +4=0, 依题意得,x 1x 2=43+4k2,且Δ=48(4k 2-1)>0, ∴|P A |·|PB |=(1+k 2)x 1x 2=(1+k 2)·43+4k 2=1+13+4k 2=54λ,∴λ=45(1+13+4k 2), ∵k 2>14,∴45<λ<1.综上所述,λ的取值范围是[45,1). 考向三 证明问题【例4】 已知抛物线C :y 2=2px (p >0),焦点为F ,O 为坐标原点,直线AB (不垂直于x 轴)过点F 且与抛物线C 交于A ,B 两点,直线OA 与OB 的斜率之积为-p .(1)求抛物线C 的方程;(2)若M 为线段AB 的中点,射线OM 交抛物线C 于点D ,求证:|OD ||OM |>2.【解】 (1)设A (x 1,y 1),B (x 2,y 2),直线AB (不垂直于x 轴)的方程可设为y =kx -p2(k ≠0).∵直线AB 过点F 且与抛物线C 交于A ,B 两点,∴y 21=2px 1,y 22=2px 2. ∵直线OA 与OB 的斜率之积为-p ,∴y 1y 2x 1x 2=-p ,∴⎝ ⎛⎭⎪⎫y 1y 2x 1x 22=p 2,得x 1x 2=4.由⎩⎨⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,得k 2x 2-(k 2p +2p )x +k 2p24=0,其中Δ=(k 2p +2p )2-k 2p 2k 2>0, ∴x 1+x 2=k 2p +2p k 2,x 1x 2=p 24, ∴p =4,∴抛物线C 的方程为y 2=8x . (2)证明:设M (x 0,y 0),D (x 3,y 3), ∵M 为线段AB 的中点,∴x 0=12(x 1+x 2)=k 2p +2p 2k 2=2(k 2+2)k 2,y 0=k (x 0-2)=4k ,∴直线OD 的斜率k OD =y 0x 0=2kk 2+2,∴直线OD 的方程为y =2kk 2+2x ,代入抛物线方程y 2=8x ,得x 3=2(k 2+2)2k 2,∴x 3x 0=k 2+2,∵k 2>0,∴|OD ||OM |=x 3x 0=k 2+2>2.圆锥曲线中的证明问题,常见的有位置关系方面的,如证明相切、垂直、过定点等;数量关系方面的,如存在定值、恒成立等.在熟悉圆锥曲线的定义和性质的前提下,要多采用直接法证明,但有时也会用到反证法.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点B 是椭圆C 的上顶点,点Q 在椭圆C 上(异于B 点).(1)若椭圆C 过点⎝⎛⎭⎪⎫-3,22,求椭圆C 的方程;(2)若直线l :y =kx +b 与椭圆C 交于B ,P 两点,以线段PQ 为直径的圆过点B ,证明:存在k ∈R ,使得|BP ||BQ |=12.解:(1)依题意得c a =22,3a 2+12b 2=1,a 2=b 2+c 2,解得a 2=4,b 2=2,故椭圆C 的方程为x 24+y 22=1.(2)证明:由椭圆的对称性,不妨假设存在k >0,使得|BP ||BQ |=12. 由题意得a 2=2b 2,则椭圆C :x 22b 2+y 2b 2=1,联立直线l 与椭圆C 的方程可得(1+2k 2)x 2+4kbx =0,解得x P =-4kb1+2k 2,所以|BP |=1+k 2×4kb1+2k 2,因为BP ⊥BQ ,所以|BQ |=1+⎝ ⎛⎭⎪⎫-1k 2×4⎝ ⎛⎭⎪⎫-1k b1+2⎝ ⎛⎭⎪⎫-1k 2=1+k 2×4bk 2+2,因为|BP ||BQ |=12,所以21+k 2×4kb 1+2k 2=1+k 2×4bk 2+2, 即2k 3-2k 2+4k -1=0. 记f (x )=2x 3-2x 2+4x -1,因为f ⎝ ⎛⎭⎪⎫14<0,f ⎝ ⎛⎭⎪⎫12>0, 所以函数f (x )存在零点, 所以存在k ∈R ,使得|BP ||BQ |=12.第2课时 定点、定值、探究性问题考向一 定点问题【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(-1,32),P 4(1,32)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.【解】 (1)由于P 3,P 4两点关于y 轴对称,故由题设知椭圆必过P 3,P 4两点,又由1a 2+1b 2>1a 2+34b 2知C 不经过点P 1,所以点P 2在椭圆C 上.将点P 2(0,1),P 3⎝⎛⎭⎪⎫-1,32的坐标代入椭圆方程得⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.∴椭圆C 的方程为x 24+y 2=1.(2)证明:①当直线l 斜率不存在时,设l :x =m ,A (m ,y A ),B (m ,-y A ),kP 2A +kP 2B =y A -1m +-y A -1m =-2m =-1,得m =2.此时l 过椭圆右顶点,不存在两个交点,故不满足.②当直线l 斜率存在时,设l :y =kx +b (b ≠1),A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +b ,x 2+4y 2-4=0,消去y 并整理得(1+4k 2)x 2+8kbx +4b 2-4=0.∴x 1+x 2=-8kb 1+4k 2,x 1·x 2=4b 2-41+4k 2,则kP 2A +kP 2B =y 1-1x 1+y 2-1x 2=x 2(kx 1+b )-x 2+x 1(kx 2+b )-x 1x 1x2=2kx 1x 2+b (x 1+x 2)-(x 1+x 2)x 1x2=8kb 2-8k -8kb 2+8kb1+4k 24b 2-41+4k 2=8k (b -1)4(b +1)(b -1)=-1.又∵b ≠1,∴b =-2k -1,此时Δ=-64k ,存在k 使得Δ>0成立. ∴直线l 的方程为y =kx -2k -1,即y =k (x -2)-1.当x =2时,y =-1,所以l 过定点(2,-1).解决圆锥曲线中定点问题的基本思路(1)把直线或者曲线方程中的变量x ,y 当作常数看待,把常量当作未知数,将方程一端化为0,即化为kf (x ,y )+g (x ,y )=0的形式(这里把常量k 当作未知数).(2)既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于0,这样就得到一个关于x ,y 的方程组,即⎩⎪⎨⎪⎧f (x ,y )=0,g (x ,y )=0.(3)这个方程组的解所确定的点就是直线或曲线所过的定点,即满足⎩⎪⎨⎪⎧f (x ,y )=0,g (x ,y )=0的点(x 0,y 0)为直线或曲线所过的定点.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率e =12,过F 2作与x 轴垂直的直线交椭圆C 于A ,B 两点,△F 1AB 的面积为3,抛物线E :y 2=2px (p >0)以椭圆C 的右焦点F 2为焦点.(1)求抛物线E 的方程;(2)如图,点P ⎝ ⎛⎭⎪⎫-p 2,t (t ≠0)为抛物线E 的准线上一点,过点P 作y 轴的垂线交抛物线于点M ,连接PO 并延长交抛物线于点N ,求证:直线MN 过定点.解:(1)设F 2(c,0)(c >0),令x =c 代入椭圆C 的方程有:|y A |=b 2a , ∵e =12,∴a =2c .∴S △F 1AB =12×2c ×2|y A |=3.∴b 2=3,由a 2=b 2+c 2,得a 2=4,c =1.∴p =2. 故抛物线E 的方程为y 2=4x .(2)证明:由(1)知:P (-1,t )(t ≠0),则M ⎝ ⎛⎭⎪⎫t 24,t .直线PO 的方程为y =-tx , 代入抛物线E 的方程有N ⎝ ⎛⎭⎪⎫4t 2,-4t . 当t 2≠4时,k MN =t +4tt 24-4t2=4tt 2-4,∴直线MN 的方程为y -t =4t t 2-4⎝ ⎛⎭⎪⎫x -t 24,即y =4tt 2-4(x -1).∴此时直线MN 过定点(1,0).当t 2=4时,直线MN 的方程为x =1,此时仍过点(1,0),即证直线MN 过定点.考向二 定值问题【例2】 (2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值. 【解】 (1)因为抛物线y 2=2px 过点(1,2),所以2p =4,即p =2.故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1. 又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)证明:设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2. 直线P A 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2.由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2 =1k -1·2x 1x 2-(x 1+x 2)x 1x 2 =1k -1·2k2+2k -4k 21k 2=2. 所以1λ+1μ为定值.圆锥曲线中定值问题的特点及两大解法(1)特点:待证几何量不受动点或动线的影响而有固定的值.(2)两大解法:①从特殊入手,求出定值,再证明这个值与变量无关;②引进变量法:其解题流程为椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=32,a+b=3.(1)求椭圆C的方程.(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明:2m-k为定值.解:(1)因为e=32=ca,所以a =23c ,b =13c . 代入a +b =3得,c =3,a =2,b =1. 故椭圆C 的方程为x 24+y 2=1.(2)证明:因为B (2,0),P 不为椭圆顶点, 则直线BP 的方程为y =k (x -2)k ≠0,k ≠±12,① 把①代入x 24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝⎛⎭⎪⎫4k +22k -1,4k 2k -1. 由D (0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,得N ⎝⎛⎭⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14, 则2m -k =2k +12-k =12(定值).考向三 探究性问题【例3】 如图,椭圆长轴的端点为A ,B ,O 为椭圆的中心,F 为椭圆的右焦点,且AF →·FB →=1,|OF →|=1.(1)求椭圆的标准方程;(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使点F 恰为△PQM 的垂心,若存在,求出直线l 的方程;若不存在,请说明理由.【解】 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则c =1, 又∵AF →·FB →=(a +c )·(a -c )=a 2-c 2=1.∴a 2=2,b 2=1, 故椭圆的方程为x 22+y 2=1.(2)假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,设P (x 1,y 1),Q (x 2,y 2),∵M (0,1),F (1,0),∴直线l 的斜率k =1.于是设直线l 为y =x +m ,由⎩⎨⎧y =x +m ,x 22+y 2=1,得3x 2+4mx +2m 2-2=0, x 1+x 2=-43m ,x 1x 2=2m 2-23. ∵MP →·FQ →=x 1(x 2-1)+y 2(y 1-1)=0. 又y i =x i +m (i =1,2),∴x 1(x 2-1)+(x 2+m )(x 1+m -1)=0, 即2x 1x 2+(x 1+x 2)(m -1)+m 2-m =0. 即2·2m 2-23-4m3(m -1)+m 2-m =0,解得m =-43或m =1,当m =1时,M ,P ,Q 三点不能构成三角形,不符合条件,故存在直线l ,使点F 恰为△PQM 的垂心,直线l 的方程为y =x -43.解决是否存在直线的问题时,可依据条件寻找适合条件的直线方程,联立方程消元得出一元二次方程,利用判别式得出是否有解.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且可知其左焦点为F ′(-2,0).从而有⎩⎪⎨⎪⎧c =2,2a =|AF |+|AF ′|=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12.故椭圆C 的方程为x 216+y 212=1. (2)假设存在符合题意的直线l , 设其方程为y =32x +t . 由⎩⎪⎨⎪⎧y =32x +t ,x 216+y 212=1,得3x 2+3tx +t 2-12=0.因为直线l 与椭圆C 有公共点,所以Δ=(3t )2-4×3(t 2-12)=144-3t 2≥0,解得-43≤t ≤4 3. 另一方面,由直线OA 与l 的距离等于4, 可得|t |94+1=4,从而t =±213. 由于±213∉[-43,43], 所以符合题意的直线l 不存在.。

高考数学一轮总复习第8章平面解析几何第8节直线与圆锥曲线的位置关系第2课时范围最值问题教师用书

高考数学一轮总复习第8章平面解析几何第8节直线与圆锥曲线的位置关系第2课时范围最值问题教师用书

第2课时 范围、最值问题考点1 范围问题——综合性(2021·梅州二模)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 距离的取值范围.解:(1)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F 2(c,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆:(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离d =|c +22-1|12+12=a . 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1, 所以椭圆C 的标准方程为x 24+y 23=1.(2)设B (m ,n ),设M ,N 的中点为D ,直线OD 与椭圆交于A ,B 两点. 因为O 为△BMN 的重心,则BO =2OD =OA ,所以D ⎝ ⎛⎭⎪⎫-m 2,-n 2,即B 到直线MN 的距离是原点O 到直线MN 距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时B 在长轴的端点处. 由|OB |=2,得|OD |=1,则O 到直线MN 的距离为1,B 到直线MN 的距离为3.当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎪⎨⎪⎧x 214+y 213=1,x 224+y223=1,两式相减,得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)3=0.因为D 为M ,N 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m4n, 所以直线MN 的方程为y +n 2=-3m 4n ⎝ ⎛⎭⎪⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m264n 2+36m2.因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m264n 2+36m2=12144+16n2=39+n2.因为0<n 2≤3,所以3<9+n 2≤23, 所以123≤19+n 2<13,所以332≤3d <3. 综上所述,332≤3d ≤3,即点B 到直线MN 距离的取值范围为⎣⎢⎡⎦⎥⎤332,3.圆锥曲线中的取值范围问题的解题策略(1)利用圆锥曲线的几何性质或联立方程后的判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.已知椭圆x 2a 2+y 2b2=1(a >b >0)上的点到右焦点F (c,0)的最大距离是2+1,且1,2a,4c成等比数列.(1)求椭圆的方程;(2)过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 两点,线段AB 的垂直平分线交x 轴于点M (m,0),求实数m 的取值范围.解:(1)由已知可得⎩⎨⎧a +c =2+1,1×4c =2a 2,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =1,c =1,所以椭圆的方程为x 22+y 2=1.(2)由题意得F (1,0),设直线AB 的方程为y =k (x -1).与椭圆方程联立得⎩⎪⎨⎪⎧x 2+2y 2-2=0,y =k (x -1),消去y 可得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=(-4k 2)2-4(2k 2-2)(1+2k 2)=8k 2+8>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k21+2k2,y 1+y 2=k (x 1+x 2)-2k =-2k1+2k2. 可得线段AB 的中点为N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2.当k =0时,直线MN 为x 轴,此时m =0;当k ≠0时,直线MN 的方程为y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 化简得ky +x -k 21+2k2=0.令y =0,得x =k 21+2k2,所以m =k 21+2k 2=11k2+2∈⎝ ⎛⎭⎪⎫0,12. 综上所述,实数m 的取值范围为⎣⎢⎡⎭⎪⎫0,12.考点2 最值问题——应用性考向1 利用几何性质求最值在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为___________.22解析:双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线间的距离d =|1-0|12+(-1)2=22,由点P 到直线x -y +1=0的距离大于c恒成立,得c ≤22,故c 的最大值为22. 考向2 利用函数、导数求最值(2022·江门市高三一模)如图,抛物线C :y 2=8x 与动圆M :(x -8)2+y 2=r 2(r >0)相交于A ,B ,C ,D 四个不同点.(1)求r 的取值范围;(2)求四边形ABCD 面积S 的最大值及相应r 的值.解:(1)联立抛物线与圆方程⎩⎪⎨⎪⎧y 2=8x ,(x -8)2+y 2=r 2,消去y ,得x 2-8x +64-r 2=0.若圆与抛物线有四个不同交点,则方程有两个不等正根.所以⎩⎪⎨⎪⎧64-r 2>0,64-4(64-r 2)>0,解得43<r <8,所以r 的取值范围为(43,8).(2)设A (x 1,22x 1),B (x 2,22x 2),其中x 2>x 1>0,则x 1+x 2=8,x 1x 2=64-r 2,S =12(42x 1+42x 2)(x 2-x 1)=(22x 1+22x 2)(x 2-x 1), S 2=8(x 1+x 2+2x 1x 2)[(x 2+x 1)2-4x 1x 2], S 2=64(4+64-r 2)[16-(64-r 2)].令x =64-r 2(0<x <4),令f (x )=(4+x )(16-x 2)(0<x <4),f ′(x )=16-8x -3x 2=(4-3x )(x +4).当0<x <43时,f ′(x )>0,f (x )单调递增;当43<x <4时,f ′(x )<0,f (x )单调递减. f (x )≤f ⎝ ⎛⎭⎪⎫43=2 04827,S =8f (x )≤25669.当x =43时,S 取得最大值,取64-r 2=43,r =4353.考向3 利用基本不等式求最值(2022·唐山三模)在直角坐标系xOy 中,A (-1,0),B (1,0),C 为动点,设△ABC的内切圆分别与边AC ,BC ,AB 相切于P ,Q ,R ,且|CP |=1,记点C 的轨迹为曲线E .(1)求曲线E 的方程;(2)不过原点O 的直线l 与曲线E 交于M ,N ,且直线y =-12x 经过MN 的中点T ,求△OMN的面积的最大值.解:(1)依题意可知,|CA |+|CB |=|CP |+|CQ |+|AP |+|BQ |=2|CP |+|AB |=4>|AB |, 所以曲线E 是以A ,B 为焦点,长轴长为4的椭圆(除去与x 轴的交点), 因此曲线E 的方程为x 24+y 23=1(y ≠0).(2)设M (x 1,y 1),N (x 2,y 2),直线l 的方程为y =kx +m (m ≠0),代入x 24+y 23=1整理,得(4k 2+3)x 2+8kmx +4m 2-12=0,(*)Δ=64k 2m 2-4(4k 2+3)(4m 2-12)>0.则x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3,所以y 1+y 2=k (x 1+x 2)+2m =6m4k 2+3,故MN 的中点T ⎝⎛⎭⎪⎫-4km 4k 2+3,3m 4k 2+3.而直线y =-12x 经过MN 的中点T ,得3m 4k 2+3=-12×-4km4k 2+3, 又m ≠0,所以直线l 的斜率k =32.故(*)式可化简为3x 2+3mx +m 2-3=0,故x 1+x 2=-m ,x 1x 2=m 2-33.由Δ=36-3m 2>0且m ≠0,得-23<m <23且m ≠0. 又|MN |=1+k 2|x 1-x 2|=132×36-3m 23=1323×12-m 2,而点O 到直线l 的距离d =2|m |13, 则△OMN 的面积为S =12×2|m |13×1323×12-m 2=123|m |×12-m 2≤123×m 2+12-m 22=3, 当且仅当m =±6时,等号成立,此时满足-23<m <23且m ≠0,所以△OMN 的面积的最大值为3.最值问题的2种基本解法几何法根据已知的几何量之间的相互关系,利用平面几何和解析几何知识加以解决(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等在选择题、填空题中经常考查)代数法建立求解目标关于某个(或两个)变量的函数,通过求解函数的最值解决(一般方法、基本不等式法、导数法等)已知抛物线C :x 2=2py (p >0),过点T (0,p )作两条互相垂直的直线l 1和l 2,l 1交抛物线C 于A ,B 两点,l 2交抛物线C 于E ,F 两点,当点A 的横坐标为1时,抛物线C 在点A 处的切线斜率为12.(1)求抛物线C 的标准方程;(2)已知O 为坐标原点,线段AB 的中点为M ,线段EF 的中点为N ,求△OMN 面积的最小值.解:(1)因为x 2=2py 可化为y =x 22p ,所以y ′=xp.因为当点A 的横坐标为1时,抛物线C 在点A 处的切线斜率为12,所以1p =12,所以p =2,所以,抛物线C 的标准方程为x 2=4y . (2)由(1)知点T 坐标为(0,2),由题意可知,直线l 1和l 2斜率都存在且均不为0. 设直线l 1方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 2=4y ,联立消去y 并整理,得x 2-4kx -8=0,Δ=(-4k )2+32=16k 2+32>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1·x 2=-8, 所以,y 1+y 2=k (x 1+x 2)+4=4k 2+4. 因为M 为AB 中点,所以M (2k,2k 2+2).因为l 1⊥l 2,N 为EF 中点,所以N ⎝ ⎛⎭⎪⎫-2k ,2k2+2,所以直线MN 的方程为y -(2k 2+2)=2k 2+2-⎝ ⎛⎭⎪⎫2k 2+22k +2k·(x -2k )=⎝ ⎛⎭⎪⎫k -1k ·(x -2k ), 整理得y =⎝⎛⎭⎪⎫k -1k x +4,所以,直线MN 恒过定点(0,4).所以△OMN 面积S =12×4×⎪⎪⎪⎪⎪⎪2k -⎝ ⎛⎭⎪⎫-2k =4⎪⎪⎪⎪⎪⎪k +1k =4⎝ ⎛⎭⎪⎫|k |+⎪⎪⎪⎪⎪⎪1k ≥4·2|k |·⎪⎪⎪⎪⎪⎪1k=8,当且仅当|k |=⎪⎪⎪⎪⎪⎪1k即k =±1时,△OMN 面积取得最小值为8.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆C 的右顶点,过原点且异于x 轴的直线与椭圆C 交于M ,N 两点,M 在x 轴的上方,直线AM 与圆O 的另一交点为P ,直线AN 与圆O 的另一交点为Q .(1)若AP →=3AM →,求直线AM 的斜率;(2)设△AMN 与△APQ 的面积分别为S 1,S 2,求S 1S 2的最大值.[四字程序]读想算思已知圆的方程和椭圆的方程,直线与圆、椭圆都相交 1.向量AP →=3AM →如何转化?2.如何表示三角形的面积把S 1S 2用直线AM 的斜率k 来表示 转化与化归求直线AM 的斜率,求△AMN 与△APQ 的面1.用A ,P ,M 的坐标表示.S 1S 2=|AM |·|AN ||AP |·|AQ |,进把面积之比的最大值转化为一个变量的不积之比2.利用公式S =12ab ·sin C 表示并转化而用基本不等式求其最大值等式思路参考:设直线AM 的方程为y =k (x -2),k <0,利用y P =3y M 求解.解:(1)设直线AM 的方程为y =k (x -2),k <0,将y =k (x -2)与椭圆方程x 24+y 2=1联立,(1+4k 2)x 2-16k 2x +16k 2-4=0,得x A +x M =16k21+4k2,求得点M 的横坐标为x M =8k 2-24k 2+1,纵坐标为y M =-4k4k 2+1.将y =k (x -2)与圆方程x 2+y 2=4联立,得(1+k 2)·x 2-4k 2x +4k 2-4=0,得x A +x P =4k21+k2, 求得点P 的横坐标为x P =2k 2-2k 2+1,纵坐标为y P =-4kk 2+1. 由AP →=3AM →得y P =3y M , 即-4k k 2+1=-12k4k 2+1. 又k <0,解得k =-2.(2)由M ,N 关于原点对称,得点N 的坐标为x N =-8k 2+24k 2+1,y N =4k4k 2+1,所以直线AN 的斜率为k AN =4k4k 2+1-8k 2+24k 2+1-2=-14k. 于是|AM ||AP |=y M y P =k 2+14k 2+1,同理|AN ||AQ |=⎝ ⎛⎭⎪⎫-14k 2+14⎝ ⎛⎭⎪⎫-14k 2+1=16k 2+116k 2+4.所以S 1S 2=|AM |·|AN ||AP |·|AQ |=k 2+14k 2+1·16k 2+116k 2+4=16k 4+17k 2+14(16k 4+8k 2+1) =14⎝ ⎛⎭⎪⎫1+9k 216k 4+8k 2+1=14⎝⎛⎭⎪⎪⎫1+916k 2+1k2+8 ≤14⎝⎛⎭⎪⎪⎫1+9216k 2·1k 2+8=2564, 当且仅当16k 2=1k 2,即k =-12时等号成立,所以S 1S 2的最大值为2564.思路参考:设直线AM 的方程为y =k (x -2),k <0,由AP →=3AM →转化为x P -x A =3(x M -x A )求解.解:(1)设直线AM 的方程为y =k (x -2),k <0,代入椭圆方程,整理得(4k 2+1)x 2-16k 2x +4(4k 2-1)=0.由根与系数的关系得x A x M =4(4k 2-1)4k 2+1,而x A =2,所以x M =2(4k 2-1)4k 2+1. 将y =k (x -2)代入圆的方程,整理得(k 2+1)x 2-4k 2x +4(k 2-1)=0.由根与系数的关系得x A x P =4(k 2-1)k 2+1,而x A =2,所以x P =2(k 2-1)k 2+1.由AP →=3AM →,得x P -x A =3(x M -x A ),即2(k 2-1)k 2+1-2=3⎣⎢⎡⎦⎥⎤2(4k 2-1)4k 2+1-2,解得k 2=2. 又k <0,所以k =-2.(2)因为MN 是椭圆的直径,直线AM ,AN 斜率均存在,所以k AM k AN =-14,即kk AN =-14,所以k AN =-14k.下同解法1(略).思路参考:设直线AM 的方程为x =my +2,利用y P =3y M 求解.解:(1)设直线AM 的方程为x =my +2(m ≠0),将其代入椭圆方程,整理得(m 2+4)y 2+4my =0,得点M 的纵坐标为y M =-4mm 2+4. 将x =my +2代入圆的方程,整理得(m 2+1)y 2+4my =0,得点P 的纵坐标为y P =-4mm 2+1. 由AP →=3AM →,得y P =3y M ,即m m 2+1=3m m 2+4.因为m ≠0,解得m 2=12,即m =±12.又直线AM 的斜率k =1m<0,所以k =-2.(2)因为MN 是椭圆的直径,直线AM ,AN 斜率均存在,又k AM k AN =-14,由(1)知k AM =1m ,所以有1m k AN =-14,则k AN =-m4.又y M =-4m m 2+4,y P =-4mm 2+1, 所以|AM ||AP |=y M y P =m 2+1m 2+4.同理|AN ||AQ |=⎝ ⎛⎭⎪⎫-m 42+14⎝ ⎛⎭⎪⎫-m 42+1=m 2+164(m 2+4).所以S 1S 2=|AM |·|AN ||AP |·|AQ |=m 2+1m 2+4·m 2+164(m 2+4).下同解法1(略).1.本题考查三角形面积之比的最大值,解法较为灵活,其基本策略是把面积的比值表示为斜率k 的函数,从而求其最大值.2.基于新课程标准,解答本题一般需要具备良好的数学阅读技能、运算求解能力.本题的解答体现了数学运算的核心素养.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求椭圆E 的方程;(2)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解:(1)设F (c,0),由题意知2c =233,解得c =3.因为e =ca =32, 所以a =2,b 2=a 2-c 2=1. 所以椭圆E 的方程为x 24+y 2=1.(2)(方法一)显然直线l 的斜率存在.设直线l :y =kx -2,P (x 1,y 1),Q (x 2,y 2),且P 在线段AQ 上.由⎩⎪⎨⎪⎧y =kx -2,x 2+4y 2-4=0得(4k 2+1)x 2-16kx +12=0,所以x 1+x 2=16k 4k 2+1,x 1x 2=124k 2+1.由Δ=(16k )2-48(4k 2+1)>0,得k 2>34.则S △OPQ =S △AOQ -S △AOP=12×2×|x 2-x 1|=(x 1+x 2)2-4x 1x 2=44k 2-34k 2+1. 令4k 2-3=t (t >0),则4k 2=t 2+3,于是S △OPQ =4t t 2+4=4t +4t≤1,当且仅当t =2,即k =±72时等号成立,所以l 的方程为y =72x -2或y =-72x -2. (方法二)依题意直线l 的斜率存在,设直线l 的方程为y =kx -2,P (x 1,y 1),Q (x 2,y 2).将直线l 的方程代入椭圆方程,整理得(4k 2+1)x 2-16kx +12=0,则Δ=(16k )2-48(4k 2+1)=16(4k 2-3)>0,即k 2>34.x 1+x 2=16k 4k 2+1,x 1x 2=124k 2+1.由弦长公式得|PQ |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·44k 2-34k 2+1.由点到直线的距离公式得点O 到直线l 的距离d =21+k2,所以S △OPQ =12|PQ |×d =121+k 2×44k 2-34k 2+1×21+k 2=44k 2-34k 2+1. 设4k 2-3=t (t >0),则4k 2=t 2+3,所以S △OPQ =4t t 2+4=4t +4t≤1,当且仅当t =2,即k =±72时等号成立.7 2x-2或y=-72x-2.故所求直线l的方程为y=。

高三理科数学复习教案:圆锥曲线与方程总复习教案

高三理科数学复习教案:圆锥曲线与方程总复习教案

高三理科数学复习教案:圆锥曲线与方程总复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习适应和能力。

因此小编在此为您编辑了此文:高三理科数学复习教案:圆锥曲线与方程总复习教案期望能为您的提供到关心。

本文题目:高三理科数学复习教案:圆锥曲线与方程总复习教案高考导航考试要求重难点击命题展望1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;2.把握椭圆、抛物线的定义、几何图形、标准方程及简单性质;3.了解双曲线的定义、几何图形和标准方程,明白它的简单几何性质;4.了解圆锥曲线的简单应用;5.明白得数形结合的思想;6.了解方程的曲线与曲线的方程的对应关系. 本章重点:1.椭圆、双曲线、抛物线的定义、几何图形、标准方程及简单性质;2.直线与圆锥曲线的位置关系问题;3.求曲线的方程或曲线的轨迹;4.数形结合的思想,方程的思想,函数的思想,坐标法.本章难点:1.对圆锥曲线的定义及性质的明白得和应用;2.直线与圆锥曲线的位置关系问题;3.曲线与方程的对应关系. 圆锥曲线与函数、方程、不等式、三角形、平面向量等知识结合是高考常考题型.极有可能以一小一大的形式显现,小题要紧考查圆锥曲线的标准方程及几何性质等基础知识、差不多技能和差不多方法运用;解答题常作为数学高考的把关题或压轴题,综合考查学生在数形结合、等价转换、分类讨论、逻辑推理等方面的能力.知识网络9.1 椭圆典例精析题型一求椭圆的标准方程【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为453和253,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.【解析】由椭圆的定义知,2a=453+253=25,故a=5,由勾股定理得,(453)2-(253)2=4c2,因此c2=53,b2=a2-c2=103,故所求方程为x25+3y210=1或3x210+y25=1.【点拨】(1)在求椭圆的标准方程时,常用待定系数法,然而当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m0,n0且m(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C 2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:据此,可推断椭圆C1的方程为.【解析】方法一:先将题目中的点描出来,如图,A(-2,2),B(-2,0),C(0,6),D(2,-22),E(22,2),F(3,-23).通过观看可明白点F,O,D可能是抛物线上的点.而A,C,E是椭圆上的点,这时正好点B既不在椭圆上,也不在抛物线上.明显半焦距b=6,则不妨设椭圆的方程是x2m+y26=1,则将点A(-2,2)代入可得m=12,故该椭圆的方程是x212+y26=1.方法二:欲求椭圆的解析式,我们应先求出抛物线的解析式,因为抛物线的解析式形式比椭圆简单一些.不妨设有两点y21=2px1,①y22=2px2,②y21y22=x1x2,则可知B(-2,0),C(0,6)不是抛物线上的点.而D(2,-22),F(3,-23)正好符合.又因为椭圆的交点在x轴上,故B(-2,0),C(0,6)不可能同时显现.故选用A(-2,2),E(22,2)这两个点代入,可得椭圆的方程是x212+y26=1.题型二椭圆的几何性质的运用【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,F1PF2=60.(1)求椭圆离心率的范畴;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.【解析】(1)设椭圆的方程为x2a2+y2b2=1(a0),|PF1|=m,|PF2|=n,在△F1PF2中,由余弦定理可知4c2=m2+n2-2mncos 60,因为m+n=2a,因此m2+n2=(m+n)2-2mn=4a2-2mn,因此4c2=4a2-3mn,即3mn=4a2-4c2.又mn(m+n2)2=a2(当且仅当m=n时取等号),因此4a2-4c23a2,因此c2a214,即e12,因此e的取值范畴是[12,1).(2)由(1)知mn=43b2,因此=12mnsin 60=33b2,即△F1PF2的面积只与椭圆的短轴长有关.【点拨】椭圆中△F1PF2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范畴时,要专门注意椭圆定义(或性质)与不等式的联合使用,如|PF1||PF2|(|PF1|+|PF2|2)2,|PF1|a-c.【变式训练2】已知P是椭圆x225+y29=1上的一点,Q,R分别是圆(x +4)2+y2=14和圆(x-4)2+y2=14上的点,则|PQ|+|PR|的最小值是.【解析】设F1,F2为椭圆左、右焦点,则F1,F2分别为两已知圆的圆心,则|PQ|+|PR|(|PF1|-12)+(|PF2|-12)=|PF1|+|PF2|-1=9.因此|PQ|+|PR|的最小值为9.题型三有关椭圆的综合问题【例3】(2021全国新课标)设F1,F2分别是椭圆E:x2a2+y2b2=1(a0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.【解析】(1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得|AB|=43a.l的方程为y=x+c,其中c=a2-b2.设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,则x1+x2=-2a2ca2+b2,x1x2=a2(c2-b2)a2+b2.因为直线AB斜率为1,因此|AB|=2|x2-x1|=2[(x1+x2)2-4x1x2],即43a=4ab2a2+b2,故a2=2b2,因此E的离心率e=ca=a2-b2a=22.(2 )设AB的中点为N(x0,y0),由(1)知x0=x1+x22=-a2ca2+b2=-23c,y 0=x0+c=c3.由|PA|=|PB|kPN=-1,即y0+1x0=-1c=3.从而a=32,b=3,故E的方程为x218+y29=1.【变式训练3】已知椭圆x2a2+y2b2=1(a0)的离心率为e,两焦点为F1,F2,抛物线以F1为顶点,F2为焦点,P为两曲线的一个交点,若|PF1||PF2 |=e,则e的值是()A.32B.33C.22D.63【解析】设F1(-c,0),F2(c,0),P(x0,y0),则椭圆左准线x=-a2c,抛物线准线为x=-3c,x0-(-a2c)=x0-(-3c)c2a2=13e=33.故选B.总结提高1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a、b的值(即定量),若定位条件不足应分类讨论,或设方程为mx2+ny2=1(m0,n0,mn)求解.2.充分利用定义解题,一方面,会依照定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行运算推理.3.焦点三角形包含着专门多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范畴.9.2 双曲线典例精析题型一双曲线的定义与标准方程【例1】已知动圆E与圆A:(x+4)2+y2=2外切,与圆B:( x-4)2+y2= 2内切,求动圆圆心E的轨迹方程.【解析】设动圆E的半径为r,则由已知|AE|=r+2,|BE|=r-2,因此|AE|-|BE|=22,又A(-4,0),B(4,0),因此|AB|=8,22|AB|.依照双曲线定义知,点E的轨迹是以A、B为焦点的双曲线的右支.因为a=2,c=4,因此b2=c2-a2=14,故点E的轨迹方程是x22-y214=1(x2).【点拨】利用两圆内、外切圆心距与两圆半径的关系找出E点满足的几何条件,结合双曲线定义求解,要专门注意轨迹是否为双曲线的两支.【变式训练1】P为双曲线x29-y216=1的右支上一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为()A.6B.7C.8D.9【解析】选D.题型二双曲线几何性质的运用【例2】双曲线C:x2a2-y2b2=1(a0,b0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使=0,求此双曲线离心率的取值范畴.【解析】设P(x,y),则由=0,得APPQ,则P在以AQ为直径的圆上,即(x-3a2)2+y2=(a2)2,①又P在双曲线上,得x2a2-y2b2=1,②由①②消去y,得(a2+b2)x2-3a3x+2a4-a2b2=0,即[(a2+b2)x-(2a3-ab2)](x-a)=0,当x=a时,P与A重合,不符合题意,舍去;当x=2a3-ab2a2+b2时,满足题意的点P存在,需x=2a3-ab2a2+b2a,化简得a22b2,即3a22c2,ca62,因此离心率的取值范畴是(1,62).【点拨】依照双曲线上的点的范畴或者焦半径的最小值建立不等式,是求离心率的取值范畴的常用方法.【变式训练2】设离心率为e的双曲线C:x2a2-y2b2=1(a0,b0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是()A.k2-e21B.k2-e21C.e2-k21D.e2-k21【解析】由双曲线的图象和渐近线的几何意义,可知直线的斜率k只需满足-ba题型三有关双曲线的综合问题【例3】(2021广东)已知双曲线x22-y2=1的左、右顶点分别为A1、A 2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)若过点H(0,h)(h1)的两条直线l1和l2与轨迹E都只有一个交点,且l1l2,求h的值.【解析】(1)由题意知|x1|2,A1(-2,0),A2(2,0),则有直线A1P的方程为y=y1x1+2(x+2),①直线A2Q的方程为y=-y1x1-2(x-2).②方法一:联立①②解得交点坐标为x=2x1,y=2y1x1,即x1=2x,y1=2 yx,③则x0,|x|2.而点P(x1,y1)在双曲线x22-y2=1上,因此x212-y21=1.将③代入上式,整理得所求轨迹E的方程为x22+y2=1,x0且x2.方法二:设点M(x,y)是A1P与A2Q的交点,①②得y2=-y21x21-2(x 2-2).③又点P(x1,y1)在双曲线上,因此x212-y21=1,即y21=x212-1.代入③式整理得x22+y2=1.因为点P,Q是双曲线上的不同两点,因此它们与点A1,A2均不重合.故点A1和A2均不在轨迹E上.过点(0,1)及A2(2,0)的直线l的方程为x+2 y-2=0.解方程组得x=2,y=0.因此直线l与双曲线只有唯独交点A2.故轨迹E只是点(0,1).同理轨迹E也只是点(0,-1).综上分析,轨迹E的方程为x22+y2=1,x0且x2.(2)设过点H(0,h)的直线为y=kx+h(h1),联立x22+y2=1得(1+2k2)x2+4khx+2h2-2=0.令=16k2h2-4(1+2k2)(2h2-2)=0,得h2-1-2k2=0,解得k1=h2-12,k2=-h2-12.由于l1l2,则k1k2=-h2-12=-1,故h=3.过点A1,A2分别引直线l1,l2通过y轴上的点H(0,h),且使l1l2,因此A1HA2H,由h2(-h2)=-1,得h=2.现在,l1,l2的方程分别为y=x+2与y=-x+2,它们与轨迹E分别仅有一个交点(-23,223)与(23,223).因此,符合条件的h的值为3或2.【变式训练3】双曲线x2a2-y2b2=1(a0,b0)的左、右焦点分别为F1,F 2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB 是以A为直角顶点的等腰直角三角形,则e2等于()A.1+22B.3+22C.4-22D.5-22【解析】本题考查双曲线定义的应用及差不多量的求解.据题意设|AF1|=x,则|AB|=x,|BF1|=2x.由双曲线定义有|AF1|-|AF2|=2a,|BF1|-|BF2|=2a(|AF1|+|BF1|)-(|AF2|+|BF2|)=(2+1)x-x=4a,即x=22a=|AF1|.故在Rt△AF1F2中可求得|AF2|=|F1F2|2-|AF1|2=4c2-8a2.又由定义可得|AF2|=|AF1|-2a=22a-2a,即4c2-8a2=22-2a,两边平方整理得c2=a2(5-22)c2a2=e2=5-22,故选D.总结提高1.要与椭圆类比来明白得、把握双曲线的定义、标准方程和几何性质,但应专门注意不同点,如a,b,c的关系、渐近线等.2.要深刻明白得双曲线的定义,注意其中的隐含条件.当||PF1|-|PF2||=2a| F1F2|时,P的轨迹是双曲线;当||PF1|-|PF2||=2a=|F1F2|时,P的轨迹是以F1或F2为端点的射线;当||PF1|-|PF2||=2a|F1F2|时,P无轨迹.3.双曲线是具有渐近线的曲线,画双曲线草图时,一样先画出渐近线,要把握以下两个问题:(1)已知双曲线方程,求它的渐近线;(2)求已知渐近线的双曲线的方程.如已知双曲线渐近线y=bax,可将双曲线方程设为x2a2-y2b2=(0),再利用其他条件确定的值,求法的实质是待定系数法.9.3 抛物线典例精析题型一抛物线定义的运用【例1】依照下列条件,求抛物线的标准方程.(1)抛物线过点P(2,-4);(2)抛物线焦点F在x轴上,直线y=-3与抛物线交于点A,|AF|=5.【解析】(1)设方程为y2=mx或x2=ny.将点P坐标代入得y2=8x或x2=-y.(2)设A(m,-3),所求焦点在x轴上的抛物线为y2=2px(p0),由定义得5=|AF|=|m+p2|,又(-3)2=2pm,因此p=1或9,所求方程为y2=2x或y2=18x.【变式训练1】已知P是抛物线y2=2x上的一点,另一点A(a,0) (a0)满足|P A|=d,试求d的最小值.【解析】设P(x0,y0) (x00),则y20=2x0,因此d=|PA|=(x0-a)2+y20=(x0-a)2+2x0=[x0+(1-a)]2+2a-1.因为a0,x00,因此当0当a1时,现在有x0=a-1,dmin=2a-1.题型二直线与抛物线位置讨论【例2】(2021湖北)已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差差不多上1.(1)求曲线C的方程;(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B 的任一直线,都有0?若存在,求出m的取值范畴;若不存在,请说明理由.【解析】(1)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:(x-1)2+y2-x=1(x0).化简得y2=4x(x0).(2)设过点M(m,0)(m0)的直线l与曲线C的交点为A(x1,y1),B(x2,y 2).设l的方程为x=ty+m,由得y2-4ty-4m=0,=16(t2+m)0,因此①又=(x1-1,y1),=(x2-1,y2).(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y20.②又x=y24,因此不等式②等价于y214y224+y1y2-(y214+y224)+10(y1y2)216+y1y2-14[(y1+y2)2-2y1y2]+10.③由①式,不等式③等价于m2-6m+14t2.④对任意实数t,4t2的最小值为0,因此不等式④关于一切t成立等价于m 2-6m+10,即3-22由此可知,存在正数m,关于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有0,且m的取值范畴是(3-22,3+22).【变式训练2】已知抛物线y2=4x的一条弦AB,A(x1,y1),B(x2,y 2),AB所在直线与y轴的交点坐标为(0,2),则1y1+1y2= .【解析】y2-4my+8m=0,因此1y1+1y2=y1+y2y1y2=12.题型三有关抛物线的综合问题【例3】已知抛物线C:y =2x2,直线y=kx+2交C于A,B两点,M 是线段AB的中点,过M作x轴的垂线交C于点N.(1)求证:抛物线C在点N处的切线与AB平行;(2)是否存在实数k使=0?若存在,求k的值;若不存在,说明理由.【解析】(1)证明:如图,设A(x1,2x21),B(x2,2x22),把y=kx+2代入y=2x2,得2x2-kx-2=0,由韦达定理得x1+x2=k2,x1x2=-1,因此xN=xM=x1+x22=k4,因此点N的坐标为(k4,k28).设抛物线在点N处的切线l的方程为y-k28=m(x-k4),将y=2x2代入上式,得2x2-mx+mk4 -k28=0,因为直线l与抛物线C相切,因此=m2-8(mk4-k28)=m2-2mk+k2=(m-k)2=0,因此m=k,即l∥AB.(2)假设存在实数k,使=0,则NANB,又因为M是AB的中点,因此|MN|= |AB|.由(1)知yM=12(y1+y2)=12(kx1+2+kx2+2)=12[k(x1+x2)+4]=12(k22+4)=k 24+2.因为MNx轴,因此|MN|=|yM-yN|=k24+2-k28=k2+168.又|AB|=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2=1+k2(k2)2-4(-1)=12k2+1k2+16.因此k2+168=14k2+1k2+16,解得k=2.即存在k=2,使=0.【点拨】直线与抛物线的位置关系,一样要用到根与系数的关系;有关抛物线的弦长问题,要注意弦是否过焦点,若过抛物线的焦点,可直截了当使用公式|AB|=x1+x2+p,若只是焦点,则必须使用一样弦长公式.【变式训练3】已知P是抛物线y2=2x上的一个动点,过点P作圆(x-3)2+y2=1的切线,切点分别为M、N,则|MN|的最小值是.【解析】455.总结提高1.在抛物线定义中,焦点F不在准线l上,这是一个重要的隐含条件,若F在l上,则抛物线退化为一条直线.2.把握抛物线本身固有的一些性质:(1)顶点、焦点在对称轴上;(2)准线垂直于对称轴;(3)焦点到准线的距离为p;(4)过焦点垂直于对称轴的弦(通径)长为2p.3.抛物线的标准方程有四种形式,要把握抛物线的方程与图形的对应关系.求抛物线方程时,若由已知条件可知曲线的类型,可采纳待定系数法.4.抛物线的几何性质,只要与椭圆、双曲线加以对比,专门容易把握.但由于抛物线的离心率为1,因此抛物线的焦点有专门多重要性质,而且应用广泛,例如:已知过抛物线y2=2px(p0)的焦点的直线交抛物线于A、B 两点,设A(x1,y1),B(x2,y2),则有下列性质:|AB|=x1+x2+p或|AB|=2p sin2(为AB的倾斜角),y1y2=-p2,x1x2=p24等.9.4 直线与圆锥曲线的位置关系典例精析题型一直线与圆锥曲线交点问题【例1】若曲线y2=ax与直线y=(a+1)x-1恰有一个公共点,求实数a 的值.【解析】联立方程组(1)当a=0时,方程组恰有一组解为(2)当a0时,消去x得a+1ay2-y-1=0,①若a+1a=0,即a=-1,方程变为一元一次方程-y-1=0,方程组恰有一组解②若a+1a0,即a-1,令=0,即1+4(a+1)a=0,解得a= -45,这时直线与曲线相切,只有一个公共点.综上所述,a=0或a=-1或a=-45.【点拨】本题设计了一个思维陷阱,即审题中误认为a0,解答过程中的失误确实是不讨论二次项系数=0,即a=-1的可能性,从而漏掉两解.本题用代数方法解完后,应从几何上验证一下:①当a=0时,曲线y2=ax,即直线y=0,现在与已知直线y=x-1 恰有交点(1,0);②当a=-1时,直线y=-1与抛物线的对称轴平行,恰有一个交点(代数特点是消元后得到的一元二次方程中二次项系数为零);③当a=-45时直线与抛物线相切.【变式训练1】若直线y=kx-1与双曲线x2-y2=4有且只有一个公共点,则实数k的取值范畴为()A.{1,-1,52,-52}B.(-,-52][52,+)C.(-,-1][1,+)D.(-,-1)[52,+)【解析】由(1-k2)x2-2kx-5=0,k=52,结合直线过定点(0,-1),且渐近线斜率为1,可知答案为A.题型二直线与圆锥曲线的相交弦问题【例2】(2021辽宁)设椭圆C:x2a2+y2b2=1(a0)的右焦点为F,过F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,=2 .(1)求椭圆C的离心率;(2)假如|AB|=154,求椭圆C的方程.【解析】设A(x1,y1),B(x2,y2),由题意知y10,y20.(1)直线l的方程为y=3(x-c),其中c=a2-b2.联立得(3a2+b2)y2+23b2cy-3b4=0.解得y1=-3b2(c+2a)3a2+b2,y2=-3b2(c-2a)3a2+b2.因为=2 ,因此-y1=2y2,即3b2(c+2a)3a2+b2=2-3b2(c-2a)3a2+b2.解得离心率e=ca=23.(2)因为|AB|=1+13|y2-y1|,因此2343ab23a2+b2=154.由ca=23得b=53a,因此54a=154,即a=3,b=5.因此椭圆的方程为x29+y25=1.【点拨】本题考查直线与圆锥曲线相交及相交弦的弦长问题,以及用待定系数法求椭圆方程.【变式训练2】椭圆ax2+ by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为32,则ab的值为.【解析】设直线与椭圆交于A、B两点的坐标分别为(x1,y1),(x2,y 2),弦中点坐标为(x0,y0),代入椭圆方程两式相减得a(x1-x2)(x1+x2)+b(y 1-y2)(y1+y2)=02ax0+2by0y1-y2x1-x2=0ax0-by0=0.故ab=y0x0=32.题型三对称问题【例3】在抛物线y2=4x上存在两个不同的点关于直线l:y=kx+3对称,求k的取值范畴.【解析】设A(x1,y1)、B(x2、y2)是抛物线上关于直线l对称的两点,由题意知k0.设直线AB的方程为y=-1kx+b,联立消去x,得14ky2+y-b=0,由题意有=12+414k0,即bk+10.(*)且y1+y2=-4k.又y1+y22=-1kx1+x22+b.因此x1+x22=k(2k+b).故AB的中点为E(k(2k+b),-2k).因为l过E,因此-2k=k2(2k+b)+3,即b=-2k-3k2-2k.代入(*)式,得-2k-3k3-2+1k3+2k+3k30k(k+1)(k2-k+3)-1【点拨】(1)本题的关键是对称条件的转化.A(x1,y1)、B(x2,y2)关于直线l对称,则满足直线l与AB垂直,且线段AB的中点坐标满足l的方程;(2)关于圆锥曲线上存在两点关于某一直线对称,求有关参数的范畴问题,利用对称条件求出过这两点的直线方程,利用判别式大于零建立不等式求解;或者用参数表示弦中点的坐标,利用中点在曲线内部的条件建立不等式求参数的取值范畴.【变式训练3】已知抛物线y=-x2+3上存在关于x+y=0对称的两点A,B,则|AB|等于()A.3B.4C.32D.42【解析】设AB方程:y=x+b,代入y=-x2+3,得x2+x+b-3=0,因此xA+xB=-1,故AB中点为(-12,-12+b).它又在x+y=0上,因此b=1,因此|AB|=32,故选C.总结提高1.本节内容的重点是研究直线与圆锥曲线位置关系的判别式方法及弦中点问题的处理方法.2.直线与圆锥曲线的位置关系的研究能够转化为相应方程组的解的讨论,即联立方程组通过消去y(也能够消去x)得到x的方程ax2+bx+c=0进行讨论.这时要注意考虑a=0和a0两种情形,对双曲线和抛物线而言,一个公共点的情形除a0,=0外,直线与双曲线的渐近线平行或直线与抛物线的对称轴平行时,都只有一个交点(现在直线与双曲线、抛物线属相交情形).由此可见,直线与圆锥曲线只有一个公共点,并不是直线与圆锥曲线相切的充要条件.3.弦中点问题的处理既能够用判别式法,也能够用点差法;使用点差法时,要专门注意验证相交的情形.9.5 圆锥曲线综合问题典例精析题型一求轨迹方程【例1】已知抛物线的方程为x2=2y,F是抛物线的焦点,过点F的直线l与抛物线交于A、B两点,分别过点A、B作抛物线的两条切线l1和l 2,记l1和l2交于点M.(1)求证:l1(2)求点M的轨迹方程.【解析】(1)依题意,直线l的斜率存在,设直线l的方程为y=kx+12.联立消去y整理得x2-2kx-1=0.设A的坐标为(x1,y1),B的坐标为(x 2,y2),则有x1x2=-1,将抛物线方程改写为y=12x2,求导得y=x.因此过点A的切线l1的斜率是k1=x1,过点B的切线l2的斜率是k2= x2.因为k1k2 =x1x2=-1,因此l1l2.(2)直线l1的方程为y-y1=k1(x-x1),即y-x212=x1(x-x1).同理直线l2的方程为y-x222=x2(x-x2).联立这两个方程消去y得x212-x222=x2(x-x2)-x1(x-x1),整理得(x1-x2)(x-x1+x22)=0,注意到x1x2,因此x=x1+x22.现在y=x212+x1(x-x1)=x212+x1(x1+x22-x1)=x1x22=-12.由(1)知x1+x2=2k,因此x=x1+x22=kR.因此点M的轨迹方程是y=-12.【点拨】直截了当法是求轨迹方程最重要的方法之一,本题用的确实是直截了当法.要注意求轨迹方程和求轨迹是两个不同概念,求轨迹除了第一要求我们求出方程,还要说明方程轨迹的形状,这就需要我们对各种差不多曲线方程和它的形状的对应关系了如指掌.【变式训练1】已知△ABC的顶点为A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是()A.x29-y216=1B.x216-y29=1C.x29-y216=1(x3)D.x216-y29=1(x4)【解析】如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,因此|CA|-|CB|=8-2=6,依照双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为x29-y216=1(x3),故选C.题型二圆锥曲线的有关最值【例2】已知菱形ABCD的顶点A、C在椭圆x2+3y2=4上,对角线B D所在直线的斜率为1.当ABC=60时,求菱形ABCD面积的最大值.【解析】因为四边形ABCD为菱形,因此ACBD.因此可设直线AC的方程为y=-x+n.由得4x2-6nx+3n2-4=0.因为A,C在椭圆上,因此=-12n2+640,解得-433设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3 n2-44,y1=-x1+n,y2=-x2+n. 因此y1+y2=n2.因为四边形ABCD为菱形,且ABC=60,因此|AB|=|BC|=|CA|.因此菱形ABCD的面积S=32|AC|2.又|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,因此S=34(-3n2+16) (-433因此当n=0时,菱形ABCD的面积取得最大值43.【点拨】建立目标函数,借助代数方法求最值,要专门注意自变量的取值范畴.在考试中专门多考生没有利用判别式求出n的取值范畴,尽管也能得出答案,然而得分缺失许多.【变式训练2】已知抛物线y=x2-1上有一定点B(-1,0)和两个动点P、Q,若BPPQ,则点Q横坐标的取值范畴是.【解析】如图,B(-1,0),设P(xP,x2P-1),Q(xQ,x2Q-1),由kBPkPQ=-1,得x2P-1xP+1x2Q-x2PxQ-xP=-1.因此xQ=-xP-1xP-1=-(xP-1)-1xP-1-1.因为|xP-1+1xP-1|2,因此xQ1或xQ-3.题型三求参数的取值范畴及最值的综合题【例3】(2021浙江)已知m1,直线l:x-my-m22=0,椭圆C:x2m2+y 2=1,F1,F2分别为椭圆C的左、右焦点.(1)当直线l过右焦点F2时,求直线l的方程;(2)设直线l与椭圆C交于A,B两点,△AF1F2,△BF1F2的重心分别为G,H.若原点O在以线段GH为直径的圆内,求实数m的取值范畴.【解析】(1)因为直线l:x-my-m22=0通过F2(m2-1,0),因此m2-1=m22,解得m2=2,又因为m1,因此m=2.故直线l的方程为x-2y-1=0.(2)A(x1,y1),B(x2,y2),由消去x得2y2+my+m24-1=0,则由=m2-8(m24-1)=-m2+80知m28,且有y1+y2=-m2,y1y2=m28-12.由于F1(-c,0),F2(c,0),故O为F1F2的中点,由=2 ,=2 ,得G(x13,y13),H(x23,y23),|GH|2=(x1-x2)29+(y1-y2)29.设M是GH的中点,则M(x1+x26,y1+y26),由题意可知,2|MO||GH|,即4[(x1+x26)2+(y1+y26)2](x1-x2)29+(y1-y2) 29,即x1x2+y1y20.而x1x2+y1y2=(my1+m22)(my2+m22)+y1y2=(m2+1)(m28-12).因此m28-120,即m24.又因为m1且0,因此1因此m的取值范畴是(1,2).【点拨】本题要紧考查椭圆的几何性质,直线与椭圆、点与圆的位置关系等基础知识,同时考查解析几何的差不多思想方法和综合解题能力.【变式训练3】若双曲线x2-ay2=1的右支上存在三点A、B、C使△A BC为正三角形,其中一个顶点A与双曲线右顶点重合,则a的取值范畴为.【解析】设B(m,m2-1a),则C(m,-m2-1a)(m1),又A(1,0),由AB=BC得(m-1)2+m2-1a=(2m2-1a)2,因此a=3m+1m-1=3(1+2m-1)3,即a的取值范畴为(3,+).总结提高事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案直线与圆锥曲线(二)
一、课前准备:
【自主梳理】
.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦端点的坐标为(,),
(,),直线的斜率为,则:||或利用这个公式求弦长时,要注意结合韦达定理.当弦过圆锥曲线的焦点时,可用焦半径进行运算.
.中点弦问题:点差法
设(,),(,)是椭圆上不同的两点,
则:
对于双曲线、抛物线,可得类似的结论.
【自我检测】
1.过点(,)作直线与抛物线=只有一个公共点,这样的直线有条.
.已知双曲线:-,过点(,)作直线,使与有且只有一个公共点,则满足上述条件的直线共有条.
.已知对∈,直线--与椭圆恒有公共点,则实数的取值范围是.
.若双曲线-=的右支上一点(,)到直线的距离为,则的值为.
.已知双曲线-=,过(,)点作一直线交双曲线于、两点,并使为的中点,则直线的斜率为.
.双曲线-=的左焦点为,点为左支下半支上任意一点(异于顶点),则直线的斜率的变化范围是.
二、课堂活动:
【例】填空题:已知椭圆,
()则过点且被平分的弦所在直线的方程是;
()则斜率为的平行弦的中点轨迹方程是;
()过引椭圆的割线,则截得的弦的中点的轨迹方程是;
()椭圆上有两点为原点,且有直线、斜率满足,则线段
中点的轨迹方程是.
【例】已知椭圆的中心在坐标原点,焦点在坐标轴上,直线与椭圆交于和,且⊥,,求椭圆方程。

相关文档
最新文档