发电机励磁系统.

合集下载

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理发电机励磁系统是指为了使发电机在运行中能够产生稳定的电压和电流,采取的一系列控制和调整励磁电流的措施。

励磁系统的原理是通过调节励磁电流来改变磁场强度,进而控制发电机的输出电压和频率。

一、电磁感应原理根据法拉第电磁感应定律,当导体在磁场中运动或磁场变化时,会在导体中产生感应电动势。

由此,发电机中的转子在转动时,通过导线产生的感应电动势可以用来驱动电流,从而实现电能的转换。

二、励磁机构发电机励磁系统的核心是励磁机构,它由励磁电源和励磁回路组成。

励磁电源提供直流电源,用于激励发电机的磁场。

而励磁回路则通过一组电阻、电感和励磁开关等元件,将励磁电流导入到发电机的励磁线圈中。

三、调整励磁电流励磁电流的大小决定了发电机的磁场强度,从而影响了输出电压和频率。

一般情况下,发电机励磁系统会根据负荷的需求,通过调节励磁电流的大小来实现稳定的电压输出。

4、励磁系统的调整机制发电机励磁系统通常采用自动调压和手动调压两种方式来保持输出电压的稳定。

在自动调压模式下,根据电压传感器的反馈信号,控制励磁电流的大小。

一旦输出电压下降,励磁系统会自动增加励磁电流,以提高输出电压。

手动调压模式下,操作人员可以根据需要手动调整励磁电流,以实现电压的稳定输出。

五、励磁系统的稳定性好的励磁系统应具有良好的稳定性,能够在负荷变化时迅速调整励磁电流,并且使输出电压变化最小。

稳定性的提高可以通过增加励磁回路中的电感和电容元件,以及制定合理的励磁调节策略来实现。

六、励磁系统的应用发电机励磁系统广泛应用于各种发电场景中,包括电力站、风力发电、水力发电、汽车发电机等。

它不仅能够保证电力供应的稳定性和可靠性,还能够提高发电效率和节能减排。

总结:发电机励磁系统是使发电机能够稳定输出电压和频率的重要控制系统。

通过调节励磁电流来改变发电机的磁场强度,励磁系统能够实现电能的转换和稳定输出。

良好的励磁系统应具有稳定性和高效性,能够适应负荷变化并实现可靠的电力供应。

发电机励磁系统

发电机励磁系统

复励系统
复励系统
3
1.直流励磁机励磁系统
多用于七十年代以前的中小型机组。
2.具有与发电机同轴副励磁机的交流励磁机-静止整流器励磁 系统(“三机”励磁系统)
多用于六十年代以后100MW以上的大型火电机组。
3.具有与发电机同轴副励磁机的交流励磁机-旋转整流器励磁 系统(“无刷”励磁系统)
用于八十年代以后的大中小型机组(用量较少)。
在发电机突然解列、甩负荷时,强行励磁,将励磁电流迅速 减到安全数值,以防止发电机电压过分升高;
2020年7月
8
4.提高继电保护动作的灵敏度
当系统处于低负荷运行状态时,发电机的励磁电流 不大,若系统此时发生短路故障,其短路电流较小, 且随时间衰减,以致带时限的继电保护不能正确工 作。励磁自动控制系统就可以通过调节发电机励磁 对发电机进行强励,不仅有利于提高电力系统稳定 性外,还因加大了电力系统的短路电流而使继电保 护的动作灵敏度得到提高。
在研究并联运行发电机组间的无功分配问题时所涉及的主要概念 之一是发电机端电压调差率。所谓发电机端电压调差率是指在自动 励磁调节器调差单元投入,电压给定值固定,发电机功率因数为零 的情况下,发电机的无功负载从零变化到额定值时,用发电机端电 压百分数表示的发电机端电压变化率,通常由下式计算:
2020年7月
2020年7月
10
6.改善电力系统的运行条件
因为维持发电机端电压的恒定有利于维持电力系统的电压水 平。当电力系统由于种种原因,出现短时低电压时,励磁自 动控制系统可以发挥其调节功能,即大幅度地增加励磁以提 高系统电压。从而可以改善电力系统的运行条件。
(1)改善异步电动机的自起动条件 (2)为发电机异步运行创造条件 (3)减少重负荷合闸时的电压下降 (4)重负荷跳闸时,减少系统电压的上升

发电机励磁系统原理

发电机励磁系统原理

维持发电机端电压恒定
01
通过自动调节励磁电流,使发电机在负载变化时保持端电压稳
定。
实现并列运行发电机间的无功功率分配
02
根据各发电机的无功功率需求,合理分配励磁电流,实现无功
功率的均衡分配。
提高电力系统的稳定性
03
通过快速、准确的励磁调节,提高电力系统的静态稳定性和暂

态稳定性。
控制策略选择与优化方法
维护保养
为每台发电机励磁系统建立档案 ,记录其运行和维护情况,为故 障分析和预防性维护提供依据。
05
励磁系统性能评估与测试 方法
性能评估指标体系构建
稳定性指标
衡量励磁系统在扰动下的稳定性,包括静态稳定 性和动态稳定性。
响应性指标
评价励磁系统对发电机运行状态变化的响应速度 和准确性。
经济性指标
考虑励磁系统运行过程中的能耗、维护成本等经 济因素。
面临的挑战和解决方案探讨
挑战
数字化励磁技术的发展面临着电磁干扰、硬件可靠性、软件安全性等方面的挑战。
解决方案
通过优化电磁兼容设计、提高硬件制造工艺、加强软件安全防护等措施,解决数字化励磁技术发展中的难题。
未来发展趋势预测
高效化
随着电力电子技术的发展,未来励磁系统将更加高效,能 够降低能耗,提高发电效率。
过励限制
通过调整励磁电流的大小,限制发电机的过励程度,防止因过励而损坏发电机 。具体实现方式包括设置过励保护定值、采用自动励磁调节器等。
欠励限制
当发电机励磁电流不足时,采取相应措施增加励磁电流,以保证发电机的正常 运行。具体实现方式包括设置欠励保护定值、采用备用励磁系统等。
故障诊断技术原理及应用案例
组成部分

发电机励磁系统介绍

发电机励磁系统介绍

编辑本段发电机励磁系统发电机励磁系统的组成励磁功率单元向同步发电机转子提供励磁电流;而励磁调节器则根据输入信号和给定的调节准则控制励磁功率单元的输出。

励磁系统的自动励磁调节器对提高电力系统并联机组的稳定性具有相当大的作用。

尤其是现代电力系统的发展导致机组稳定极限降低的趋势,也促使励磁技术不断发展。

同步发电机的励磁系统主要由功率单元和调节器(装置)两大部分组成。

如图所示:其中励磁功率单元是指向同步发电机转子绕组提供直流励磁电流的励磁电源部分,而励磁调节器则是根据控制要求的输入信号和给定的调节准则控制励磁功率单元输出的装置。

由励磁调节器、励磁功率单元和发电机本身一起组成的整个系统称为励磁系统控制系统。

励磁系统是发电机的重要组成部份,它对电力系统及发电机本身的安全稳定运行有很大的影响。

励磁系统的主要作用励磁系统的主要作有:1)根据发电机负荷的变化相应的调节励磁电流,以维持机端电压为给定值;2)控制并列运行各发电机间无功功率分配;3)提高发电机并列运行的静态稳定性;4)提高发电机并列运行的暂态稳定性;5)在发电机内部出现故障时,进行灭磁,以减小故障损失程度;6)根据运行要求对发电机实行最大励磁限制及最小励磁限制。

编辑本段同步发电机励磁系统的形式1、直流发电机供电的励磁方式这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。

这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。

缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。

2、交流励磁机供电的励磁方式现代大容量发电机有的采用交流励磁机提供励磁电流。

交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。

2024版图解发电机励磁原理

2024版图解发电机励磁原理

高可靠性设计
提高发电机励磁系统的可靠性是未 来的重要发展方向,通过采用冗余 设计、故障预测与健康管理等技术
手段降低系统故障率。
绿色环保
随着环保意识的提高,未来发电机 励磁系统将更加注重绿色环保,采 用低能耗、低污染的材料和技术,
降低系统对环境的影响。
对未来学习和工作的建议
深入学习专业知识
继续深入学习电力电子、控制理 论等相关专业知识,为从事发电 机励磁相关领域的工作打下坚实
案例分析:某大型水电站励磁调节器设计
• 设计背景:某大型水电站采用水轮发电机组,装机容量大、运行工况复杂,对励磁调节器性能要求高。 • 设计目标:设计一款高性能、高可靠性的励磁调节器,满足水电站运行要求。 • 设计方案:采用基于DSP的数字式励磁调节器设计方案,实现快速、精确的电压调节和功率分配功能;同时采
基础。
关注前沿技术动态
关注发电机励磁技术的最新发展 动态,了解新技术、新方法的应 用情况,不断提升自己的专业素 养。
加强实践动手能力
通过参与实验、项目等方式加强 实践动手能力,培养解决实际问 题的能力。
拓展跨学科知识
学习与发电机励磁相关的跨学科 知识,如电力系统分析、电机学 等,提升综合分析和解决问题的
如失磁、励磁不稳、励磁过流等故障,通过 案例分析学习相应的处理方法和预防措施。
发电机励磁技术发展趋势预测
数字化与智能化
随着电力电子技术和控制理论的发 展,未来发电机励磁系统将更加数 字化和智能化,实现更精确的控制 和优化。
多功能集成化
为满足不同应用场景的需求,发电 机励磁系统将向多功能集成化方向 发展,如集成无功补偿、谐波治理 等功能。
提高发电机并列运行的稳定性。
功能

发电机励磁系统介绍

发电机励磁系统介绍

发电机励磁系统介绍励磁系统主要由励磁电源、励磁绕组、励磁控制器和励磁回路组成。

励磁电源是励磁系统的核心部分,它一般由稳压整流器组成。

稳压整流器通过将交流电转换成直流电,向励磁绕组提供稳定的励磁电流。

稳压整流器的工作原理主要是利用整流元件(如晶闸管、可控整流器等)将交流电变为直流电,并通过电压调节器(如电抗式调压器、电位器等)控制输出电压的大小。

励磁电源的稳定性直接影响着发电机的励磁能力和发电质量。

励磁绕组是发电机中的一部分线圈,一般位于发电机的转子极端。

励磁绕组的主要作用是通过激励电流形成磁场,使得转子产生电磁感应,进而发生电磁能量转换。

励磁绕组的设计和工艺技术对发电机的励磁能力和稳定性有着重要的影响。

一般情况下,励磁绕组采用的是多层绕组,以减少电磁感应的损失并提高转子的稳定性。

励磁控制器是励磁系统的智能控制部分,通过对励磁电源和励磁绕组的调节,实现对发电机励磁电流和磁场的控制。

励磁控制器一般具有自动调节功能,可以根据发电机的负荷情况动态调整励磁电流,确保输出电压和电流的稳定性。

同时,励磁控制器还可以监测发电机的运行状态,如温度、振动等参数,并及时报警,以保护发电机的安全运行。

励磁回路是连接励磁电源和励磁绕组的电路,它主要由导线、接线盒、开关等组成。

励磁回路的设计应考虑导线的导电性、抗干扰能力和散热能力等因素,以确保励磁电流的稳定传输。

此外,励磁回路还应具备可靠的保护装置,以防止因励磁电流过大或故障等原因对发电机造成损坏。

总体而言,发电机励磁系统是确保发电机能够持续稳定输出电能的关键系统。

它通过励磁电源、励磁绕组、励磁控制器和励磁回路等组成部分的协同工作,实现对发电机励磁能力的控制和调节。

只有励磁系统工作正常、稳定,才能保障发电机提供稳定的电力输出,并确保电力系统的安全和可靠运行。

励磁系统故障的原因及处理

励磁系统故障的原因及处理

励磁系统故障的原因及处理大家好,今天咱们聊聊励磁系统故障这件事。

说实话,这个话题可能听上去有点儿枯燥,但别急,咱们把它拆开来,一步步说清楚,也不难懂的。

1. 励磁系统的基本概念1.1 什么是励磁系统?励磁系统其实就是发电机里一个非常重要的部件,简单说,它的作用就是给发电机提供所需的磁场。

想象一下,如果没有磁场,发电机就像是没有油的汽车,根本无法启动。

1.2 励磁系统的作用励磁系统的核心作用就是确保发电机能够稳定地输出电力。

如果励磁系统出现问题,就会导致发电机的电压不稳定,甚至可能引发一系列麻烦事儿。

2. 励磁系统故障的常见原因2.1 电源问题首先,电源问题是最常见的故障原因。

比如电池电量不足、电源线路老化,这些都是让励磁系统“掉链子”的常见元凶。

试想一下,如果你的手机没电了,它是不是也用不了?励磁系统也是这个道理。

2.2 设备老化接下来,就是设备老化。

时间一长,系统里的部件会逐渐磨损,这就像是你用得久了的老鞋子,慢慢就会出现问题。

比如励磁机的刷子磨损,或者是电磁铁的线圈变得不灵光,这些都是老化的表现。

2.3 环境因素环境因素也是个大问题。

高温、高湿度都会对励磁系统造成影响,就像是你在炎热的夏天里,电脑也会因为热而变得卡顿。

3. 励磁系统故障的处理方法3.1 定期维护面对这些问题,最好的办法就是定期维护。

就像你定期给汽车换机油一样,励磁系统也需要定期检查。

这样可以避免许多潜在的问题,确保系统运行得更稳定。

3.2 更换故障部件遇到具体的故障时,需要及时更换损坏的部件。

比如说,如果发现励磁机的刷子磨损了,那就要及时更换刷子,这样才能让系统重新“焕发活力”。

3.3 环境控制最后,还要注意环境控制。

尽量避免让励磁系统暴露在极端的环境下,确保它在一个适宜的温度和湿度范围内工作。

这就像是给它穿上合适的衣服,保护它免受环境的侵害。

总结总的来说,励磁系统的故障虽然听上去有点复杂,但只要我们掌握了常见原因,并且采取合适的处理措施,就能有效预防和解决这些问题。

发电机励磁系统

发电机励磁系统

发电机励磁系统一、简介:励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统,励磁系统是一种直流电源装置。

励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。

另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。

励磁功率单元向同步发电机转子提供直流电流,即励磁电流,以建立直流磁场。

励磁功率单元有足够的可靠性并具有一定的调节容量。

在电力系统运行中,发电机依靠电流的变化进行系统电压和本身无功功率的控制因此,励磁功率单元应具备足够的调节容量以适应电力系统中各种运行工况的要求。

而且它有足够的励磁顶值电压和电压上升速度具有较大的强励能力和快速的响应能力。

励磁调节器根据输入信号和给定的调节准则控制励磁功率单元的输出,是整个励磁系统中较为重要的组成部分。

励磁调节器的主要任务是检测和综合系统运行状态的信息,以产生相应的控制信号,经放大后控制励磁功率单元以得到所要求的发电机励磁电流。

系统正常运行时,励磁调节器就能反映发电机电压高低以维持发电机电压在给定水平。

应能迅速反应系统故障,具备强行励磁等控制功能以提高暂态稳定和改善系统运行条件。

在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。

图一二、励磁系统必须满足以下要求:1、正常运行时,能按负荷电流和电压的变化调节(自动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。

2、整流装置提供的励磁容量应有一定的裕度,应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。

3、调节器应设有相互独立的手动和自动调节通道;4、励磁系统应装设过电压和过电流保护及转子回路过电压保护装置。

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理
发电机的励磁系统是指用来激励电磁铁产生磁场的装置。

励磁系统的原理是通过外部直流电源对电磁铁进行电流供给,使其产生磁场。

在发电机的励磁系统中,有三种常见的励磁方式:直接励磁、直流励磁和交流励磁。

直接励磁是指直接将励磁电流来自发电机的一个分支。

这种方式简单、容易实现,但在应对大功率发电机时,励磁电流较大,会对发电机本身产生较大压力。

直流励磁是将外部直流电源的电流通过整流装置变为直流电源,然后再供给到发电机的励磁设备。

这种方式比直接励磁更加灵活,能够适应不同功率的发电机,并且可以稳定控制励磁电流。

交流励磁是将外部交流电源的电流通过变压器降压,然后再通过整流装置变为直流电源供给到发电机的励磁设备。

这种方式可以根据需要调整变压器的输出电压来控制励磁电流,从而实现对发电机输出电压的调节。

总的来说,发电机的励磁系统通过对电磁铁供给电流,产生一定强度和方向的磁场,进而实现对发电机的励磁,调整发电机的输出电压。

不同的励磁方式具有不同的特点和适用范围,可以根据实际需求进行选择和调节。

同步发电机励磁系统分类

同步发电机励磁系统分类

同步发电机励磁系统分类
同步发电机励磁系统根据其工作原理和结构特点可分为以下几种类型:
1. 静止励磁系统
- 直流励磁系统
- 交流励磁系统
2. 旋转励磁系统
- 直流励磁系统
- 交流励磁系统
3. 无刷励磁系统
- 静止无刷励磁系统
- 旋转无刷励磁系统
静止励磁系统是最传统的励磁方式,其中直流励磁系统使用直流电机或硅整流器作为励磁电源,而交流励磁系统则使用变压器或旋转变流器作为励磁电源。

旋转励磁系统将励磁绕组安装在同步发电机的转子上,与主绕组一同旋转。

直流旋转励磁系统通常使用小型直流发电机作为励磁电源,而交流旋转励磁系统则采用旋转整流器。

无刷励磁系统是近年来发展起来的一种新型励磁方式,它利用功率半
导体器件代替传统的滑环和电刷,可以避免滑环和电刷带来的维护问题。

静止无刷励磁系统将半导体整流器安装在定子上,而旋转无刷励磁系统则将其安装在转子上。

不同的励磁系统各有优缺点,在实际应用中需要根据发电机的型号、容量和运行条件等因素来选择合适的励磁方式。

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理
发电机励磁系统是指通过一定的方式将电能传递到发电机的励磁线圈中,使其产生磁场,从而激励转子产生电能的一种系统。

发电机励磁系统的原理可以分为直流励磁和交流励磁两种方式。

直流励磁系统是通过直流电源将电能传递到励磁线圈中,使其产生磁场。

直流励磁系统的主要组成部分包括直流电源、励磁线圈、励磁开关和励磁控制器等。

其中,直流电源是直接提供电能的设备,励磁线圈是将电能转化为磁场的设备,励磁开关是控制电路通断的设备,励磁控制器是对励磁系统进行监控和控制的设备。

交流励磁系统是通过交流电源将电能传递到励磁线圈中,使其产生磁场。

交流励磁系统的主要组成部分包括交流电源、励磁线圈、励磁变压器和励磁控制器等。

其中,交流电源是提供交流电能的设备,励磁线圈是将电能转化为磁场的设备,励磁变压器是将交流电源的电压转换为适合励磁线圈的电压的设备,励磁控制器是对励磁系统进行监控和控制的设备。

在发电机励磁系统中,励磁线圈的磁场是非常重要的。

磁场的大小和方向决定了发电机的输出电压和频率。

因此,励磁系统的控制和调节非常关键。

在直流励磁系统中,可以通过改变直流电源的电压和电流
来控制励磁线圈的磁场大小和方向。

在交流励磁系统中,可以通过改变励磁变压器的变比来控制励磁线圈的磁场大小和方向。

总之,发电机励磁系统是发电机能够正常工作的重要组成部分。

通过励磁系统的控制和调节,可以保证发电机的输出电压和频率稳定,从而保证电力系统的正常运行。

发电机励磁系统原理

发电机励磁系统原理

励磁系统在核能发电中的应用
反应堆控制
励磁系统在核能发电中用于控制 反应堆的功率输出,通过调节中 子数量和反应速度核电站的热工控制, 通过调节冷却剂流量和温度,保持 核电站的正常运行温度。
安全保障
励磁系统在核能发电中起到安全保 障的作用,一旦出现异常情况,能 够迅速切断电源,防止事故扩大。
整流器的原理
整流器是励磁系统中的关键元件,其 作用是将励磁机产生的交流电转换为 直流电,供给发电机的磁场绕组。
整流器通常采用三相桥式整流电路, 具有输出电流大、性能稳定等优点。
整流器采用半导体整流元件,将交流 电转换为直流电,实现交流到直流的 转换。
03
发电机励磁系统的控制策略
励磁电流控制策略
发电机励磁系统原理
汇报人:
202X-01-04

CONTENCT

• 发电机励磁系统概述 • 发电机励磁系统的原理 • 发电机励磁系统的控制策略 • 发电机励磁系统的应用与实例分析
01
发电机励磁系统概述
励磁系统的定义和作用
定义
励磁系统是发电机的重要组成部分,负责提供磁场能量,确保发 电机正常运行。
总结词
励磁电流控制策略是发电机励磁系统中最基本的控制策略, 通过调节励磁电流来控制发电机的输出电压和无功功率。
详细描述
励磁电流控制策略通过调节励磁电流的大小来控制发电机的 输出电压。当发电机输出的无功功率发生变化时,励磁电流 控制策略能够快速地调节励磁电流,以保持发电机的输出电 压稳定。
无功功率和电压控制策略
励磁系统在水电站中的应用
水能转换
励磁系统在水电站中起到将水能 转换为电能的作用,通过调节水 轮机的转速和涡轮机的扭矩,提

同步发电机励磁系统介绍

同步发电机励磁系统介绍

智能控制技术的应用
要点一
智能控制算法
随着智能控制算法的发展,如模糊控制、神经网络等,励 磁系统的智能化水平得到了显著提升。这些算法可以对励 磁系统进行自适应控制,自动调整励磁电流的参数,提高 发电机的运行效率和稳定性。
要点二
应用优势
智能控制技术的应用,使得励磁系统的自适应能力和鲁棒 性得到了增强。同时,通过智能控制算法,可以实现对励 磁系统的优化控制,降低发电机的运行成本和维护成本。
系统的寿命也得到了延长。
数字化控制技术的应用
数字化控制器
随着数字信号处理器(DSP)和可编程逻辑控制器(PLC)等数字化控制技术的发, 励磁系统的控制精度和响应速度得到了显著提升。数字化控制器可以对励磁电流进行快
速、准确的调节,提高发电机的动态性能和稳定性。
应用优势
数字化控制技术的应用,使得励磁系统的控制策略更加灵活和智能化。通过数字化控制 器,可以实现对励磁系统的远程监控和故障诊断,提高励磁系统的可靠性和可维护性。
高性能永磁材料的应用
永磁材料
随着高性能永磁材料的出现,如稀土永磁材 料,励磁系统的性能得到了显著提升。这些 材料具有高磁能积和矫顽力,可以替代传统 的电磁铁,减小励磁系统的体积和重量,提 高励磁系统的效率和可靠性。
应用优势
高性能永磁材料的应用,使得励磁系统在小 型化和高效化方面取得了重要突破。同时, 由于永磁材料的耐腐蚀和抗氧化性能,励磁
励磁系统的组成
励磁电源
提供励磁电流的电源设备,通常为直流电源 或交流电源。
励磁线圈
安装在发电机转子上的线圈,用于产生励磁 磁场。
励磁控制器
用于控制励磁电流的调节器,根据发电机运 行状态和电网需求进行自动调节。

发电机励磁系统分类与工作原理

发电机励磁系统分类与工作原理

发电机励磁系统分类与工作原理一、直流励磁系统直流励磁系统是指通过外部直流电源为发电机提供直流电源进行励磁的一种方式。

根据外部直流电源的不同,直流励磁系统可以分为恒定电流励磁、恒定电压励磁和恒定磁通励磁三种类型。

1.恒定电流励磁恒定电流励磁是指通过恒定电流激励线圈,使发电机产生固定的电磁场,从而实现稳定的发电功率输出。

该励磁方式适用于低容量的发电机,因为其在负载变化时,会出现电流无法稳定的问题。

2.恒定电压励磁恒定电压励磁是指通过恒定电压激励线圈,控制发电机输出电压的一种方式。

该励磁方式适用于大容量的发电机,因为其可以根据负载变化自动调节电流。

当负载增加时,发电机电流增大,电压保持不变;当负载减小时,电流减小,电压保持不变。

3.恒定磁通励磁恒定磁通励磁是指通过恒定磁通激励线圈,控制发电机输出电压的一种方式,也是较为常用的励磁方式。

通过调节磁通大小,可以实现对电压的调节。

当负载增加时,电压下降,调节磁通以增加输出电压;当负载减小时,电压上升,调节磁通以减小输出电压。

二、交流励磁系统交流励磁系统是指通过交流电源为发电机提供激励电源,进而产生电磁场的一种方式。

根据交流电源的不同,交流励磁系统可以分为同步励磁和异步励磁两种类型。

1.同步励磁同步励磁是指通过同步发电机自身产生的交流电源来为其他发电机提供励磁电源的一种方式。

同步发电机的励磁线圈接通后,通过自身的额外励磁功率产生电磁场,进而激励其他发电机产生电功率。

2.异步励磁异步励磁是指通过变压器将工程电网的交流电源转化为励磁电源来为发电机提供激励的一种方式。

变压器将工程电网的电压升高,然后通过整流装置将高压交流转换为直流电源,最后通过励磁线圈激励发电机产生电磁场。

不同于直流励磁系统,交流励磁系统可以实现多发电机联网运行,其中一个发电机提供励磁电源,而其他发电机则由该发电机提供激励电源进行励磁。

总结起来,发电机励磁系统的分类与工作原理主要可以从直流励磁系统和交流励磁系统两个方面来考虑。

发电机的励磁系统原理

发电机的励磁系统原理

发电机的励磁系统原理
发电机的励磁系统是指用来产生磁场,从而激励转子产生电流的系统。

励磁系统一般由励磁电源和励磁绕组组成。

励磁电源可以是恒压直流电源或交流电源。

恒压直流电源通过整流、滤波和稳压等电路,将交流电源转换为稳定的直流电源。

交流电源则直接提供交流电。

励磁电源的作用是为励磁绕组提供所需电能。

励磁绕组位于发电机的定子或转子上,通常由线圈组成。

当励磁电流通过励磁绕组时,会在绕组周围产生磁场。

这个磁场会穿过转子,引起转子磁极的磁化,进而在转子上产生感应电动势。

由于转子与定子之间存在旋转差,这个感应电动势就会导致转子产生电流。

这个电流被称为励磁电流。

励磁电流在转子中形成闭合回路,并沿着导电材料的路径流动。

由于转子是通过电导的材料制成的,所以励磁电流的流动会产生自身的磁场。

这个磁场与励磁绕组产生的磁场叠加,从而增强转子上的磁场。

增强后的磁场会进一步传递到定子上,因为定子是和转子之间存在旋转差的。

在定子上,转子的磁场会产生感应电动势,并导致定子上产生电流。

这个产生的电流就是发电机输出的电流。

因此,励磁系统的原理是通过励磁电源为励磁绕组提供电能,生成磁场。

这个磁场通过转子和定子之间的相互作用,最终导致发电机输出电流。

发电机励磁系统

发电机励磁系统

4)功能模块(FM)

5)通讯处理器(CP)

3、调节器主要功能

AVR调节 FCR调节 恒无功调节 恒功率因数调节 PSS电力系统稳定器
3.1 自动电压调节(AVR)


自动电压调节以发电机机端电压和电压给定值的差值 作为PID调节器的输入,以调节器的输出控制发电机 励磁电流的大小,从而保持机端电压为恒定值。自动 电压调节是励磁调节的基本调节方式,励磁系统的其 他高层控制调节功能,如PSS控制功能,无功空功能 和正常启停控制功能等,均以自动电压控制调节为基 础实现。 通过控制显示屏的命令(增磁和减磁),或者从某一 操作员站、电厂的DCS 、远方调度系统的通讯方式均可以改变自动
3 、励磁调节器 指按照某种调节规律对同步发电机机端电压、无功功率、 功率因数、转子电流进行实时闭环调节的装置。 4 、自动电压调节器(AVR) 指实现按恒机端电压调节方式的调节及相关的限制保护功 能的装置,也称自动(调节)通道。 5 、手动励磁调节单元(FCR) 指实现按恒励磁电流调节方式的调节及相关的限制保护功 能的装置,也称手动(调节)通道。 6 、整流功率柜 采用晶闸管(可控硅)或整流二极管构成功率整流桥, 用于提供转子电流的整流装置。
励磁系统
按供电方式分
他励式励磁系统
自励式励磁系统
按功率引取方式分
按整流器是否旋转分
直流电机励磁系 统(直流励磁机)
整流器励磁系统 交流励磁机
自并励系 统
自复励系 统
按复合位置分
谐波励磁 系统
按整流器是否旋转分
静止整流器励磁 系统
旋转整流器励磁 系统
交流侧复合的自 复励系统
直流侧复合的自 复励系统
举例1 、直流励磁机

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理发电机励磁系统是指对发电机的磁场进行励磁,以产生电压的一种系统。

在发电机内部,通过励磁系统可以产生电磁场,在转子上产生感应电动势,进而通过转子和定子之间的磁场变化将机械能转换为电能。

发电机励磁系统一般包括励磁电源、励磁线圈以及励磁调节器等组成部分。

本文将继续介绍发电机励磁系统的原理。

1.励磁电源励磁电源是发电机励磁系统中的能量供应部分,其作用是提供所需的电流和电压来激励励磁线圈。

励磁电源可以分为直流励磁电源和交流励磁电源两种。

直流励磁系统中,励磁电源通常是由一个直流发电机供电。

当励磁电源的转子转动时,产生的磁场通过励磁线圈激励主磁场,从而激励发电机。

通常,直流励磁电流的强弱可以通过励磁电源的电压调节器进行调节,以满足发电机输出电压的需要。

2.励磁线圈励磁线圈是励磁系统中最重要的组成部分,它是通过电流激励发电机的主磁场。

励磁线圈通常由导线绕成线圈,绕制在发电机的定子或转子上。

根据线圈的位置不同,励磁线圈可以分为定子励磁线圈和转子励磁线圈两种。

定子励磁线圈是固定在发电机定子上的线圈,通常由大电流和大电压来激励主磁场。

定子励磁线圈的设计和布置需要根据发电机的类型和功率等参数来确定。

转子励磁线圈是绕制在发电机转子上的线圈。

在发电机中,转子是通过传递转速和机械能来激励发电机的部分。

转子励磁线圈同时具有励磁和发电的功能,当转子励磁线圈通入电流时,会产生电磁场,从而感应出电动势,进而转换为电能输出。

3.励磁调节器励磁调节器是控制发电机励磁系统的关键部分,它能够根据发电机输出电压的变化,调节励磁电流的大小,以保持发电机的稳定输出。

根据调节方式的不同,励磁调节器可以分为自动励磁调节器和手动励磁调节器两种。

自动励磁调节器是根据发电机输出电压的反馈信号来自动调节励磁电流的大小。

当发电机输出电压过低时,自动励磁调节器会增大励磁电流,从而提高输出电压。

相反,当输出电压过高时,自动励磁调节器会减小励磁电流,以降低输出电压。

发电机励磁系统原理

发电机励磁系统原理
发电机励磁系统原理
励磁系统是为发电机提供励磁电流的系统,其作用是产生电场,激发发电机 的电磁感应能力。
励磁系统的定义和作用
励磁系统是发电机的重要组成部分,通过提供励磁电流,产生稳定的磁场来激发发电机产生电能。
直流励磁系统的原理
直流励磁系统通过直流电源提供稳定的励磁电流,使用励磁线圈产生磁场, 驱动发电机旋转产生电能。
励磁系统故障分析与排除
故障分析可以通过检查励磁线圈是否断开、检测励磁电源是否正常工作等步 骤来找出故障原因,并采取相应措施进行排除。
常见问题及解决方案
常见问题包括励磁电流不稳定、励磁系统损坏等,解决方案可以通过检修励 磁线圈、更换励磁电源等方式解决。
交流励磁系统的原理
交流励磁系统通过交流电源提供励磁电流,利用变压器和整流装置将交流电转换为直流电,驱动发电机发电。
直流励磁系统的控制方式
直流励磁系统的控制可以通过调节励磁电流大小、改变励磁线圈的并联或串联方的控制可以通过调节变压器的变比、改变整流装置的工作方式 来实现。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
手调 自调
励磁 电源
整流 装置
励磁机
灭磁 装置
~
电枢
保护装置
绕组
励磁绕组
母 线
断路器
调节电路
励磁主电路 励磁系统
2020/7/13
2
2020/7/13
3
励磁系统的主要作用
在正常情况下,供给发电机励磁电流,并根据发 电机电压、负荷及功率因数的变化调整发电机的 励磁电流,以维持发电机端电压为规定的水平。
Ir
IG
2020/7/13
19
E 0
Ia
jIG xd jIa xd UG jIr xd
Ir
IG
E 0 UG jIG xd E0cosδ UG Ir xd E0 UG Ir xd
2020/7/13
20
可见,在励磁电流一 定、E0一定的条件下, 负荷无功电流的变化 是造成发电机电压变 化的主要原因。
发电机输出的无功电流与母线电压水平有关,改 变其中一台并联发电机的励磁电流不仅影响自身 的电压和无功,还将影响与之并联的运行机组的 无功输出。
2020/7/13
23
提高电力系统的稳定性
P
Pem
m
E0U Xd
sin
P0
0 0 90°
180°
2020/7/13
24
改善电力系统的运行条件
改善感应电动机的自启动条件 为发电机的异步运行创造条件 提高继电保护动作的灵敏度
2.3.1.4 同步发电机的励磁系统
励磁电流:由直流电源供给的直流电流,通入 同步发电机的转子绕组建立磁场。
励磁系统:与发电机转子回路电压的建立、调 整及其控制的有关元件和设备。包括发电机励 磁绕组、励磁电源、自动调压器和手动控制等 部分,此外,还有强行励磁、强行减磁、励磁 保护、灭磁等部件。
2020/7/13
改善发电机轴系稳定性。自并励励磁系统可缩短 发电机组的轴系长度,减少轴承座数量,提高了 轴系的稳定性,改善了轴系振动,从而提高了机 组的安全运行水平。
2020/7/13
15
自并励励磁系统的优点
提高电力系统稳定水平。自并励励磁系统响应速 度快,可提高电力系统稳定水平。
经济性好,可降低投资。自并励励磁系统设备简 单,降低了造价;缩短了轴系长度,减少了厂房 和基础造价;调整容易,维护简单,故障后修复 时间较短,可提高发电效益。
感性无功负荷使发电 机的外特性呈下降趋 势。
2020/7/13
Ir1
Ir2
21
发电机有功功率保持不变
IG
jxd
S UG C f C Z0
E 0
E 0
jIG xd
Ia
U G
jIG xd
Ir
IG
Ir
IG
2020/7/13
22
实际运行中,系统并不是无穷大,母线电压将随 负荷的波动而变化。
合理分配并列运行发电机间的无功负荷。 发电机电压急剧降低时,迅速加大励磁电流,以
改善系统的运行条件,提高系统的稳定性和可靠 性。
2020/7/13
4
励磁系统分类
直流励磁机励磁系统。励磁机直接与发电机的 轴相连接,采用有换向器和电刷的直流发电机 作为主励磁机(备用励磁机则由电动机拖动)。
2020/7/13
旋转部分
EX
~
SR G
~
EXT
TV
SCR
起励元件
起励电源
AVR
2020/7/13
12
自并励励磁系统原理接线
G
~
EXT SCR
起励元件
AVR
起励电源
2020/7/13
TV
13
自并励励磁系统原理接线
G
~
EXT SCR
起励元件
AVR
起励电源
2020/7/13
TV
14
自并励励磁系统的优点
运行可靠性高。自并励励磁系统为静态励磁,设 备及接线简单,与交流励磁机励磁系统相比,没 有旋转部件,减少了励磁系统故障,提高了运行 可靠性。
2020/7/13
8
同轴他励静止半导体励磁接线
~
~
If
F~
电刷 电枢 滑环 绕组
母 线
断路器
2020/7/13
9
自励静止半导体励磁接线
2020/7/13
~
10
有副励磁机的无刷励磁系统接线
永磁
旋转部分
~ ~ 发电机 N EX SR G
~
S
开关
SCR
TA TV
AVR
2020/7/13
11
无副励磁机的无刷励磁接线
5
同轴直流励磁机自励接线
if
K
Rf
fm
If
F~
电刷 电枢 滑环 绕组
母 线Leabharlann 断路器2020/7/136
同轴直流励磁机他励接线
if
K
Rf
fc
If
f
副励磁机 主励磁机
F
电刷
滑环
母 线
~
电枢 断路器 绕组
2020/7/13
7
半导体励磁系统。利用交流电源经降压整流后 供给发电机励磁称为半导体励磁系统。
2020/7/13
26
自动调节激磁装置本身应简单可靠,取用的功 率应尽可能小些,调节过程稳定,品质良好。
2020/7/13
27
3.自动调节激磁系统的构成
自动调节指的是发电机的激磁电流根据端电压的 变化按预定要求进行调节,以维持端电压为给定 值。如要求端电压为恒定值,则当机端电压升高 时应减小激磁,机端电压降低时应增加激磁,以 维持机端电压为给定值。
2020/7/13
16
同步发电机的自动调节激磁系统
运行中同步发电机的激磁电流(转子电流),无 论在正常或是事故情况下,都要进行调节。一般 说来,手动调节已不能满足运行要求。现代大、 中型发电机上都装有自动调节激磁装置(AER或 AVR)。发电机的激磁电流按预定要求作自动调 整。
2020/7/13
自动调节激磁系统可以看成是一个以电压为被调 量的负反馈控制系统。
2020/7/13
28
一、励磁调节器的基本概念
励磁调节器的主要功能是维持发电机端电压和实 现并联运行机组间无功功率的合理分配。
2020/7/13
29
没有励磁调节装置
励磁系统通过人工、测量仪表和发电机构成了一个闭合的 反馈系统。这种直接根据电压偏差大小的调节方式称为比 例式调节方式,是励磁调节最常用的方式。
2020/7/13
25
2.对自动调节激磁装置的主要要求
在正常运行时,自动调节激磁装置应能维持发电 机的电压在给定水平,并稳定地分配发电机之间 的无功功率。因此应有足够的调节容量。
从提高电力系统运行的稳定性观点出发。要求自 动装置没有失灵区,动作快速。当发电机电压事 故性降低时,应尽快地加大发电机的激磁电流, 进行强行激磁,所以也应具有足够的功率输出。
17
1.同步发电机自动调节激磁的作用
在正常情况下,维持发电机端或系统中某一点电 压在给定水平。
稳定地分配发电机之间的无功功率。 在正常运行及系统事故情况下,提高电力系统的
稳定性。 改善电力系统的运行条件。
2020/7/13
18
UE
UG IG
IE
xd
I
E 0
U
E 0
Ia
jIG xd jIa xd UG jIr xd
相关文档
最新文档