第九章发酵过程控制

合集下载

发酵过程控制(概述)

发酵过程控制(概述)

数理统计学方法:运用统计学方法设计实验和分析
实验结果,得到最佳的实验条件。如正交设计、均匀设 计、响应面设计。 优点 同时进行多因子试验。用少量的实验,经过数 理分析得到单因子实验同样的结果,甚至更准确,大大 提高了实验效率。 但对于生物学实验要求准确性高,因为实验的最佳 条件是经过统计学方法算出来的,如果实验中存在较大 的误差就会得出错误的结果。

发酵过程工艺控制的目的
有一个好的菌种以后要有一个配合菌种生长的最佳条 件,使菌种的潜能发挥出来。 目标是得到最大的比生产速率和最大的生产率。
发挥菌种的最大生产潜力考虑之点
菌种本身的代谢特点 : 生长速率、呼吸强 度、营养要求(酶系统)、代谢速率
菌代谢与环境的相关性: 温度、pH、渗透 压、离子强度、溶氧浓度、剪切力等
本节重点内容

根据发酵工艺,发酵分为哪几种类型? 各自有何优缺点?
微生物代谢是一个复杂的系统,它的代谢呈网络 形式,比如糖代谢产生的中间物可能用作合成菌体的 前体,可能用作合成产物的前体,也可能合成副产物, 而这些前体有可能流向不同的反应方向,环境条件的 差异会引发代谢朝不同的方向进行。
发酵过程受到多因素又相互交叉的影响如菌本身的遗传 特性、物质运输、能量平衡、工程因素、环境因素等等。 因此发酵过程的控制具有不确定性和复杂性。 为了全面的认识发酵过程,本章首先要告诉大家分 析发酵过程的基本方面,在此基础上再举一些例子,说
第一节 发酵过程工艺控制的 目的、研究的方法和层次
一 发酵过程的种类
分批培养
补料分批培养
半连续培养 连续培养
1、 分批发酵 简单的过程,培养基中接入菌种以后,没有 物料的加入和取出,除了空气的通入和排气。 整个过程中菌的浓度、营养成分的浓度和产 物浓度等参数都随时间变化。

发酵工程发酵过程控制

发酵工程发酵过程控制

发酵工程发酵过程控制1. 引言发酵工程是利用微生物的生理代谢过程来生产有机化合物的一种工程技术。

而发酵过程控制则是在发酵工程中对发酵过程进行调控和监控,以确保发酵过程能够稳定进行,并获得高产率和良好的产品质量。

发酵过程控制通过对微生物与培养基、发酵设备和操作条件等方面进行控制,研究微生物的生长规律和代谢产物的生成规律,实现对发酵过程的调控,以实现最佳的发酵效果。

本文将介绍发酵工程发酵过程控制的主要内容和方法。

2. 发酵过程控制的目标发酵过程控制的主要目标是实现以下几个方面的调控:1.生物量的控制:调控微生物的生长速率和生物量,使其在适宜的培养基和环境条件下获得最佳生长,提高产酶或产物的产量;2.代谢产物的控制:调控微生物代谢过程中的关键反应步骤,实现选择性产物的生成,并提高产量;3.溶氧的控制:调控发酵过程中的溶氧浓度,提高氧传递效率,防止氧的限制性产物的堆积;4.pH的控制:调控发酵过程中的pH值,维持合适的酸碱环境,促进微生物的生长和代谢;5.温度的控制:调控发酵过程中的温度,提供适宜的环境条件,促进微生物的生长和代谢。

3. 发酵过程控制的方法发酵过程控制主要采用以下几种方法:3.1 反馈控制反馈控制是一种基于对发酵过程变量的测量和反馈,通过调节控制器输出量,实现对发酵过程的调控。

常见的反馈控制方法包括:•温度控制:通过测量发酵容器内的温度,控制加热或降温设备的输出,以维持适宜的温度;•pH控制:通过测量发酵液的pH值,控制酸碱调节器的输出,以维持适宜的酸碱环境;•溶氧控制:通过测量发酵液中的溶氧浓度,控制气体供应设备的输出,以维持适宜的溶氧浓度。

3.2 前馈控制前馈控制是一种基于对发酵过程中外部输入变量的预测,通过调节控制器输出量,实现对发酵过程的调控。

常见的前馈控制方法包括:•溶氧前馈控制:根据发酵微生物对溶氧需求的特性,通过对气体供应设备输出的调节,提前调整溶氧浓度,以满足微生物的需求;•pH前馈控制:根据发酵产物对酸碱环境的敏感性,通过对酸碱调节器输出的调节,提前调整pH值,以维持合适的酸碱环境。

第九章发酵工艺

第九章发酵工艺

第九章发酵工艺糖质原料的共同特点是它所含的发酵性物质是可以直接供酵母进行酒精发酵的各种糖。

不同的糖质原料还有各自的特点,由于我国糖类原料目前主要是甘蔗或甜菜废糖蜜,这里重点介绍糖蜜酒精发酵的特点。

糖蜜稀释液接人培养成熟的酒母后,糖蜜稀释液中的糖分在酵母菌作用下分两大步发酵生成酒精。

第一步是酵母菌首先将体内的转化酶(即蔗糖酶.系一种胞外酶)借扩散作用分泌到细胞体外将发酵液中的蔗糖进行水解转化为葡萄糖和果糖。

第二步葡萄糖和果糖通过扩散作用进人酵母细胞体内,在酵母体内酒化酶(胞内酶)的作用下发酵变成酒精和二氧化碳:一、糖蜜酒精发酵方法糖蜜酒精发酵的方法很多,有间歇发酵、半连续发酵和连续发酵3 种,而各种方法又有很多方案,现介绍如下l 间歇发酵法(1)普通间歇发酵即单罐发酵:发酵罐空罐清洗后用蒸汽杀菌至10O℃ 保温0.5~1h ,冷却至30 ℃ 后,接人培养成熟的酒母醪液,而后再将温度为27 ~30℃ (夏天应偏低,冬天应偏高)的发酵糖液输入进行发酵。

发酵温度控制为33~35℃ 为宜。

为了有效地控制发酵,首先必须掌握好糖液入罐温度的控制,其次是加强发酵过程中的温度控制。

夏天应提早升冷却水,冬大则要迟后开冷却水,水量控制由小到大、避免猛开猛关,防止温度骤升骤降,影响发酵效果。

发酵时间一般为32~36h ,通常40~50h 即可送去蒸馏。

(2)分割式间歇发酵第一只罐按普通间歇式发酵法进行发酵,当发酵处于主发酵时,从该罐分割l/3~1/2 主发酵罐至第二罐,用稀糖液加满两罐,第一只继续发酵,直至终了,送去蒸馏。

第二罐进人主酵后再分割l/3~1/2至第三罐,再用稀糖液加满两罐,如此继续下去。

此法的优点是避免了每罐都需制作酒母,且总的发酵时间大为缩短;缺点是易染菌,必须加强糖蜜酸化灭菌工作。

此方法发醉稀糖液一般20~24OBx ,发酵温度为33~35℃ ,发酵时间28~32h 。

(3)分批流加间歇发酵法分批流加间歇发酵法是先在发酵罐内加10%~20%酒母后分3 次加人发酵稀糖液,第一次、第二次加人罐容约20%的稀糖液,第三次加40%~50%的稀糖液,以保持罐内醪液中糖浓度一致,有利于酵母的正常发酵。

发酵过程控制

发酵过程控制

2010-10-26
2)发酵过程中pH的变化规律 )发酵过程中 的变化规律
生长阶段: 相对于起始 相对于起始pH有上升或下降的 生长阶段:pH相对于起始 有上升或下降的 趋势 生产阶段:pH趋于稳定,维持在最适于产物合 趋于稳定, 生产阶段: 趋于稳定 成的范围 自溶阶段: 又上升 自溶阶段:pH又上升
2010-10-26
(一)温度对发酵的影响及其控制 一 温度对发酵的影响及其控制
1. 影响发酵温度的因素 2. 温度对微生物生长的影响 3. 温度对产物合成的影响 4. 最适温度的选择与控制
2010-10-26
(1)发酵热 发酵热
发酵过程中所产生的热量,叫做发酵热 发酵过程中所产生的热量,叫做发酵热。 Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射
2010-10-26
1. 过程控制的重要性
生物因素: 菌株特性(营养要求 生长速率、 营养要求、 决定发酵 生物因素: 菌株特性 营养要求、生长速率、 呼吸强度、产物合成速率) 呼吸强度、产物合成速率 单位(水平 水平) 单位 水平 设备性能: 的因素 外部环境因素 设备性能:传递性能 物理: 工艺条件 物理:n、T、 化学:pH、DO、浓度 化学 浓度 过程控制的意义:最佳工艺条件的优选( 过程控制的意义:最佳工艺条件的优选(即最佳工艺参数 的确定) 的确定)以及在发酵过程中通过过程调节达到最适水平的 控制。 控制。
2010-10-26
4. 最适温度的选择与控制
最适温度的选择还要参考其它发酵条件灵活掌握 通气条件较差情况下, 通气条件较差情况下,最适发酵温度可能比正 常良好通气条件下低一些。 常良好通气条件下低一些。 培养基成分和浓度的影响
2010-10-26
4. 最适温度的选择与控制

09.2 发酵过程pH控制

09.2 发酵过程pH控制

7
5)pH在微生物培养的不同阶段有不同的影响 pH在微生物培养的不同阶段有不同的影响
X
生长 合 成
四 环 素
பைடு நூலகம்
pH
pH对菌体生长影响比产物合成影响小 对菌体生长影响比产物合成影响小
放线菌金色链丛菌
8
3、发酵过程pH变化及其原因 发酵过程pH变化及其原因 pH 3.1发酵过程中pH值的变化一般规律 3.1发酵过程中pH值的变化一般规律 发酵过程中pH 1.在微生物细胞的生长阶段: 1.在微生物细胞的生长阶段: 在微生物细胞的生长阶段 初期:接种后到孢子萌发, 初期:接种后到孢子萌发,因碳氮源代谢水平比较低 , pH一般可维持不变,或者由于添加了CaCO3而略有上升 pH一般可维持不变,或者由于添加了CaCO 一般可维持不变 。 快速生长期:pH值变化较大,因菌种及培养基不同 快速生长期:pH值变化较大, 值变化较大 而上升或下降 2.在生产阶段,一般发酵液的pH值趋于稳定,维持在适 2.在生产阶段,一般发酵液的pH值趋于稳定, 在生产阶段 pH值趋于稳定 合产物形成的pH范围。 pH范围 合产物形成的pH范围。 3.在微生物细胞自溶阶段,养分的耗尽,菌体蛋白酶的 3.在微生物细胞自溶阶段,养分的耗尽, 在微生物细胞自溶阶段 9 活跃,培养液中氨基氮增加,致使pH又上升。 pH又上升 活跃,培养液中氨基氮增加,致使pH又上升。
16
在生产上,主要的过程控制方法有: 在生产上,主要的过程控制方法有: ①添加CaCO3:当用NH4+盐作为氮源时,可在培养 添加CaCO3 当用NH4+盐作为氮源时, CaCO3: NH4+盐作为氮源时 基中加入CaCO3 用于中和NH4+被吸收后剩余的酸. CaCO3, NH4+被吸收后剩余的酸 基中加入CaCO3,用于中和NH4+被吸收后剩余的酸. ②氨水流加法:氨水可以中和发酵中产生的酸,且 氨水流加法:氨水可以中和发酵中产生的酸, NH4+可作为氮源 供给菌体营养. 可作为氮源, NH4+可作为氮源,供给菌体营养.通氨一般是使压缩 氨气或工业用氨水(浓度20 左右) 20% 氨气或工业用氨水(浓度20%左右),采用少量间歇 添加或连续自动流加, 添加或连续自动流加,可避免一次加入过多造成局 部偏碱。氨极易和铜反应产生毒性物质, 部偏碱。氨极易和铜反应产生毒性物质,对发酵产 生影响,故需避免使用铜制的通氨设备。 生影响,故需避免使用铜制的通氨设备。

发酵过程优化与控制PPT课件

发酵过程优化与控制PPT课件
菌种生产性能越高,其生产条件越难满足。
.
3
发酵过程技术原理
分批发酵 补料-分批发酵 半连续发酵 连续发酵
.
4
分批发酵
几个重要参数:
为比生长速率,h-1; -qs 为比基质消耗速率,(g/g)/h; qp 为比产物形成速率,(g/g)/h 。
uX dX dt
q xX d S dt
补充养分,同时解除/消弱代谢产物的抑制。
不足:
丢失了未利用的养分和处于生长旺盛期的菌体;送去提炼 的发酵液体积更大;丢失代谢产生的前体物;利于非产生 菌突变株的生长。
实施:海洋微藻合成藻红素和EPA。
需要摸索最佳的培养基更新速率。
.
10
连续发酵
发酵过程中一面补入新鲜的料液,一面以相同的流速 放料,维持发酵液原来的体积。(恒化培养)
.
1
发酵过程优化与控制
发酵
狭义——厌氧条件下葡萄糖通过酵解途径生成 乳酸或乙醇等的分解代谢过程。
广义——微生物把一些原料养分在合适的发酵 条件下经特定的代谢途径转变成所需产物的过 程。
.
2
发酵是一个很复杂的生化过程,其好坏涉及诸多因素: 菌种性能、培养基组成、原料质量、灭菌条件、种子 质量、发酵条件和过程控制等
pH变化会影响酶活,菌对基质的利用效率和细
胞结构,从而影响菌的生长和产物的合成。
.
23
选择最适发酵pH的原则是获得最大比生产速率和
适当的菌量。
分阶段pH控制策略
如何控制发酵液pH?
基础培养基的配方;通过加酸碱或中间补料 例如,青霉素发酵,通过调节加糖速率来控制pH;链 霉素的生产,补充NH3来控制pH,同时为产物合成提 供氮源。
培养液pH可反映菌的生理状况:pH上升超过最适值,意 味着菌处于饥饿状态,可加糖调节;糖的过量又使pH下 降;用氨水中和有机酸需防止微生物中毒,可通过监测 培养液种溶氧浓度的变化来控制。

发酵工艺控制PPT课件

发酵工艺控制PPT课件
方法一: 通过测定一定时间内冷却水的流量和冷却水的进出口温
度,由下式求得这段时间内的发酵热:
Q发酵 = GC (t2- t1) / V (J / m3 ·h)
G --- 冷却水流量,kg/h C --- 水的比热, J/kg · ℃ t 1、t 2 --- 进、出口的冷却水温度,℃ V ---- 发酵液体积 , m3
一、溶氧测定的意义
1、溶氧作为发酵中氧是否足够的度量,了解菌对氧利用的规律。 2、溶氧作为发酵异常情况的指示 3、溶氧 作溶为氧发一酵反中往间常控,制在的较手短段的之时一间内跌到零附近,且跌零
后长时间不回升,这很可能说明污染了好气菌 4、溶氧 作补如为糖发考后酵查,过设溶程备氧中、出溶工现氧艺明迅条显速件下回对降升氧的,供趋发需势酵与液产变物稀形,成则影很响可能 的指标是之因污一此染可了利噬用菌溶体氧作为参数来控制加料的次数、流加速
◇ 这种热的主要来源是培养基中的碳水化合物、脂肪和 蛋白质等的分解。
◇ 释放出的能量部分用来合成高能化合物(ATP),部分用来 合成产物,其余的则以热的形式散发出来
影响生物热的因素:
菌株特性 培养基成分和浓度 发酵时期
◇ 菌株对营养物质利用的速率越大,培养基成分越丰富,生 物热也就越大。 ◇ 发酵旺盛期的生物热大于其它时间的生物热 (四环素2050小时; 苏云金杆菌10-18小时)
五、温度的控制
方法: 罐壁调温 夹层调温 罐内调温
第二节 pH对发酵的影响及其控制
一、pH对菌体生长和产物合成的影响
1)pH影响酶的活性 当pH抑制菌体中某些酶的活性时,使菌体的新陈代谢
受阻
2)pH影响微生物细胞膜所带电荷的状态,从而改变细 胞膜的渗透性,影响微生物对营养物质的吸收及代谢产 物的排泄,因此影响代谢的正常进行。

发酵工艺的过程控制

发酵工艺的过程控制

发酵工艺的过程控制引言发酵工艺是一种将有机物质通过微生物的作用转化为需要的产物的过程。

在发酵过程中,微生物通过吸收养分、产生代谢产物和释放能量,完成了物质的转化。

为了保证发酵过程的高效和稳定,控制发酵过程至关重要。

本文将介绍发酵工艺的过程控制,包括控制参数和控制策略。

1. 发酵过程的控制参数发酵过程的控制参数是指影响发酵过程的参数,包括温度、pH值、溶氧量、搅拌速度、发酵菌种等等。

这些控制参数对于发酵过程的高效和稳定起到了重要的作用。

1.温度:发酵过程中适宜的温度可以促进微生物的生长和代谢活动。

不同的发酵过程需要不同的温度,一般在微生物的最适生长温度附近,通常在25-42摄氏度之间。

2.pH值:发酵过程中的pH值对微生物的生长和代谢活动有重要影响。

不同的微生物对于pH值的需求不同,一般在微生物最适生长pH值的附近维持。

3.溶氧量:溶氧量是指发酵液中的氧气饱和度。

微生物在发酵过程中需要氧气进行呼吸和代谢活动。

合适的溶氧量可以提高发酵效率和产物质量。

4.搅拌速度:搅拌速度对于发酵液中的微生物的分散性和氧气气液传递有着重要影响。

适当的搅拌速度可以保证发酵液中的微生物充分接触营养物质和氧气。

5.发酵菌种:选择适宜的发酵菌种对于发酵过程的控制至关重要。

合适的发酵菌种应具备高发酵活力、产物合成能力和抗污染能力。

2. 发酵过程的控制策略为了实现对发酵过程的有效控制,需要采取相应的控制策略。

以下是几种常见的发酵过程控制策略。

1.反馈控制:反馈控制是根据实时的监测数据对发酵过程进行调节。

通过监测发酵过程中的温度、pH值、溶氧量等参数,将实际参数与设定值进行比较,根据误差进行反馈调整,以维持发酵过程的稳定性。

2.前馈控制:前馈控制是根据预期的发酵过程需求提前对控制参数进行调整。

通过事先设定好的控制策略,根据发酵过程中的状态进行预测和计算,提前对控制参数进行调整,以达到预期的控制效果。

3.比例积分控制:比例积分控制是通过调整控制器的比例参数和积分参数来改变控制器的工作方式。

微生物工程第九章发酵供氧

微生物工程第九章发酵供氧

二、气体溶解过程的双膜理论
1、氧首先由气相扩散到气液两相的接触界面,再进入液 相,界面的一侧是气膜,另一侧是液膜,氧由气相扩 散到液相必须穿过这两层膜。
2、氧从空气扩散到气液界面这一般的推动力是空气中氧 的分压与界面处氧分压之差,即P-Pi,阻力是气膜阻 力 1/kG 。
3、穿过界面溶于液体,继续扩散到液体中的推动力是界 面处氧的浓度与液体中氧浓度之差,即Ci-CL。液膜 阻力为1/kL。
定义:氧饱和度=发酵液中氧的浓度/临界溶氧溶度
所以对于微生物生长,只要控制发酵过程中氧饱和度>1.
问题:一般微生物的临界溶氧浓度很小,是不是发酵过程中 氧很容易满足?
例:以微生物的摄氧率0.052 mmol O2·L-1·S-1 计, 0.25/0.052=4.8秒
注意:产物的形成和菌体最适的生长条件,常常不一样:
第四节 CL、r和Kla的测定
一、CL的测定 1、化学法
2、溶氧电极
极谱型(阴极):
O2+2H++2e →H2O2
原电池型(极):
O2+2H2O+4e → 4OH-
生长 产物
头孢菌素
卷须霉素
5% (相对于饱和浓度) 13%
>13%
>8%
五、影响需氧的因素
菌体浓度
r = QO2 .X
QO2
➢ 遗传因素 ➢ 菌龄 ➢ 营养的成分与浓度 ➢ 有害物质的积累 ➢ 培养条件
第二节 传质理论
一、氧的传递途径与传质阻力 1、供氧及供氧方面的阻力 (1)供氧:空气中的氧气从空气泡里通
随着细胞浓度的不断增加,培养液的摄氧率迅速增高, 在对数生长后期达到高峰。
平台期由于由于基质的消耗,以及培养装置氧传递能 力的限制,细胞浓度增加减慢,耗氧速率下降;但是 由于细胞总量仍大,耗氧量仍较大。 最后阶段,基质耗尽,细胞自溶,摄氧率迅速下降。

发酵生产的过程及控制

发酵生产的过程及控制

死亡期
2、补料分批培养
在分批培养过程中补入新鲜的料液,以克服营养不足而导致 的发酵过早结束的缺点。 在此过程中只有料液的加入没有料液的取出,所以发酵结束 时发酵液体积比发酵开始时有所增加。在工厂的实际生产中 采用这种方法很多。
简单的过程,培养基中接入菌种以后,没有物料的加入和取出, 除了空气的通入和排气。整个过程中菌的浓度、营养成分的浓 度和产物浓度等参数都随时间变化。
优点: 操作简单,周期短,染菌机会少,生产过程和产品质量 容易掌握 缺点: 产率低,不适于测定动力学数据
分批培养中微生物的生长
迟滞期 对数生长期
稳 定期
发酵级数确定的依据
级数受发酵规模、菌体生长特性、接种量的影响。
级数大,难控制、易染菌、易变异,管理困难,一 般2-4级。
在发酵产品的放大中,反应级数的确定是非常重要 的一个方面。
3、接种量的确定
移入种子的体积 接种量= —————————
接种后培养液的体积
过大过小都不好,最终以实践定,如大多数抗生素为7-15%。 但是一般认为大一点好。
7 种子的质量标准
• 菌丝形态、菌体浓度和培养基外观(色素、颗粒等); • pH; • 糖氮代谢速度; • 其它参数,如接种前的抗生素含量、某种酶活等。
8 影响种子质量的因素:
1)原材料的质量:
一般选择一些有利于孢子发芽和菌丝生长的培养基,在营养 上容易被菌体直接吸收利用,营养成分要适当地丰富和完全, 氮源和维生素含量较高,这样可以使菌丝粗壮,并且具有较 强的活力。
另一方面,种子培养基中的营养成分要尽可能和发酵培养基 接近以适合发酵的需要,这样的种子移入发酵罐后能比较容 易适应发酵罐的培养条件如微量元素Mg、Ca、Ba能刺激孢子 的生长。 2)、培养温度:过低?过高?

第9章 微生物发酵技术

第9章 微生物发酵技术
第九章 微生物发酵技术
第一节 微生物发酵概论 第二节 工业发酵的工艺流程 第三节 工业发酵的主要产品
发酵工程是一门具有悠久历史,又融合了现代 科学的技术,是现代生物技术的组成部分。本 章主要介绍发酵工程的基本内容和基本原理, 重点介绍了工业发酵的工艺流程,还介绍了典型 产品的发酵生产工艺,如青霉素,谷氨酸和维 生素C的生产。
青霉素是最早发现并用于临床的—种抗生素,1928年为英国人 A . Fleming发现,40年代投入工业生产。在二战期间立刻大显身 手,它能有效控制伤口的细菌感染,挽救了数百万战争中受伤者 的性命。我们就以青霉素为例简单介绍抗生素的发酵生产过程。
(一)青霉素发酵生产菌株
最初由弗莱明分离的点青霉,只能产生2 U/ml的青霉素。 目前全世界用于生产青霉素的高产菌株,大都由菌株Wis Q l76(一种产黄青霉)经不同改良途径得到。70年代前育种采用 诱变和随机筛选方法,后来由于原生质体融合技术、基因克 隆技术等现代育种技术的应用,青霉素工业发酵生产水平已 达85 000U/ml以上。青霉素生产菌株一般在真空冷冻干燥状 态下保存其分生孢子,也可以用甘油或乳糖溶剂作悬浮剂, 在-70度冰箱或液氮中保存孢子悬浮液和营养菌丝体。
三、微生物发酵工业所用菌种
优良的微生物菌种是发酵工业的基础和关键,微生物资源非常 丰富,广泛分布于土壤、水和空气中,尤以土壤中为最多
1.从微生物分类学的角度把所需菌种分为:细菌类如短杆菌、枯 草芽孢杆菌、地衣芽孢杆菌、苏云金芽孢杆菌、梭状芽孢杆 菌等;酵母菌如啤酒酵母、酒精酵母、汉逊酵母和假丝酵母 等;霉菌如黄曲霉、红曲霉、青霉菌和赤霉菌等;放线菌如 各种抗生素,链、庆大等。
(3)脱色 在二次B A提取液中加活性炭150 一300g/10亿单位, 脱色、过滤。

发酵工程第九章发酵过程控制

发酵工程第九章发酵过程控制

发酵工程第九章发酵过程控制发酵工程是一门应用生物学、微生物学、化学等知识与技术的交叉学科,通过对微生物在发酵过程中的代谢特点和运行规律的深入研究,从而探索在发酵生产过程中如何控制微生物的生长、代谢及产物的合成,以提高发酵产物的产量和质量。

发酵过程控制是发酵工程的核心内容,也是实现发酵过程优化的关键。

发酵过程控制主要包括微生物培养条件的优化、发酵参数的监控和调控等。

微生物培养条件的优化是指通过合理调控发酵基质、发酵条件和发酵设备等因素,为微生物提供适宜的生长和代谢环境,以达到提高产酶产物的目的。

其中,发酵基质的优化包括选用适宜的碳源、氮源、无机盐和微量元素等,以满足微生物的营养需求;发酵条件的优化包括控制培养温度、pH值、溶氧度、搅拌速度、通气量等,以提供适宜的生长环境;发酵设备的优化包括选择合适的发酵罐类型和规格,保证良好的混合效果和传质性能。

发酵参数的监控和调控是实现发酵过程可控性的重要手段。

其中,监控发酵参数主要通过测定和分析微生物生长曲线、代谢产物浓度、培养液的理化指标等来了解发酵过程的动态变化,并及时调整发酵条件;调控发酵参数主要通过采用在线控制与传感技术,实时监测并自动调节温度、pH 值、溶氧度、搅拌速度、通气量等关键参数,以实现发酵过程的自动化和精确控制。

发酵过程控制的目标是在保证微生物生长和代谢的基础上,提高发酵产物的产量和质量,实现发酵过程的高效、稳定和可控。

为此,需要通过对发酵过程的深入研究和优化设计,建立合理的发酵工艺和控制策略。

在发酵过程中,应用传统的经验法和现代的控制理论相结合,根据不同微生物和不同发酵产物的特点,制定相应的控制策略。

例如,对于需氧发酵的菌种,应充分考虑氧的供应情况,控制溶氧度在合适的范围内;对于需酸性环境的菌种,应合理调控pH值,维持在适宜的范围内;对于同时产生多种代谢产物的菌种,应选择合适的反馈控制方法,控制各种产物的生成量。

此外,还应考虑发酵过程的反应动力学和传输过程等因素对控制的影响。

发酵过程控制

发酵过程控制

发酵过程控制和优化技术的有关知识发酵的生产水平高低除了取决于生产菌种本身的性能外,还要受到发酵条件、工艺的影响。

只有深入了解生产菌种在生长和合成产物的过程中的代谢和调控机制以及可能的代谢途径,弄清生产菌种对环境条件的要求,掌握菌种在发酵过程中的代谢变化规律,有效控制各种工艺条件和参数,使生产菌种始终处于生长和产物合成的优化环境中,从而最大限度地发挥生产菌种的生产能力,取得最大的经济效益。

一.发酵过程进行优化控制的意义随着生物和基因工程技术在各工业行业中的应用,发酵产品生产规模和品种不断增加,对发酵过程进行控制和优化也显得越来越重要。

作为发酵中游技术的发酵过程控制和优化技术,既关系到能否发挥菌种的最大生产能力,又会影响到下游处理的难易程度,在整个发酵过程中是一项承上启下的关键技术。

与物理和化学反应过程不同,生物过程的反应速率比较慢,目的产物的浓度、生产强度、反应物质(底物或基质)向目的产物的转化率也比较底。

工业微生物学从两个方面解决上述问题,一方面通过菌种选育和改良获得高产的发酵菌种;另一方面,通过控制培养条件使微生物最大限度地生产目标产物。

相对来讲,通过发酵过程控制和优化,将生物过程准确地控制在最优的环境或操作条件下,是提高整体生产水平的一个捷径或者说是一种更容易的方法,其重要性也绝不亚于利用分子生物学和基因工程进行菌种改良的方法。

二.生化过程的特征与物理和化学反应过程相比,生化反应过程有以下不同特征:①动力学模型高度非线性;②动力学模型参数的时变性;③除简单的物理和化学状态变量(温度、pH、压力、气体分压、DO 外,绝大多数生物状态变量(生物量、营养物浓度、代谢产物浓度、生物活性等)很难在线测量;④过程参数的滞后性,一个生物过程可能涉及成千上万个小的物理和化学反应,其相互间的作用和影响造成了生物过程的响应速率慢。

生物过程的控制和优化还具有以下特点:①不需要太高的控制精度;②各状态变量之间存在一定的连带关系;③由于没有合适的定量的数学模型可循,其控制与优化操作还必须完全依靠操作人员的经验和知识来进行。

第九章发酵动力学分析

第九章发酵动力学分析
使动力学参数也保持相应的稳定; ③细胞有固有的化学组成,不随发酵时间和某些发
酵条件的变化而发生明显改变, ④各种描述发酵动态的变量对发酵条件变化的反应
无明显滞后。
在以上假定的基础上,我们主要采用以下两 种方法进行发酵动力学的研究;
1.宏观处理法 结构模型,非结构模型
2.质量平衡法 物质的质量守恒
三、发酵动力学与过程优化控制 发酵动力学:是关于微生物生长率、基质和
维持代谢消耗的基质量。特定条件下为常 数。
ms
1 X
dS dt
M
ms ..........Fra bibliotek..以基质消耗为基准的维持因素
X...............菌体干重
S.................基质量
t..................发酵时间
M...............表示维持
(二)生长得率
菌体的生长量相对于基质消耗量的得率叫做生长得 率:
Yx

s
X S
X................干菌体的生长量
S..............基质消耗量
纯生长得率: 也叫理论生长得率、最大生长得 率或生长得率常数。
Ygs=(
X S)G
X................干菌体的生长量
( S)G..............只用于生长的基质消耗量(不包括维持和产物合成)
第九章 发酵动力学
一、发酵动力学研究的内容 ①细胞生长和死亡动力学; ②基质消耗动力学; ③氧消耗动力学; ④CO2生成动力学; ⑤产物合成和降解动力学; ⑥代谢热生成动力学。
二、研究发酵动力学的方法
为可行性,我们对发酵过程进行了以下简化处理: ①反应器内的体系均匀; ②温度、pH等环境条件能够控制以保持稳定,从而

8.发酵过程控制

8.发酵过程控制

发酵过程控制
五 CO2 和 呼 吸 商 对 发 酵 的 影 响 及 其 控 制
CO2对菌体具有抑制作用;通常,当排气中 CO2的浓度高于4%时,微生物的糖代谢和 呼吸速率下降。如,发酵液中CO2的浓度达 到1.6×10-1mol,就会严重抑制酵母的生长; 当迚气口CO2的含量占混合气体的80%时, 酵母活力与对照相比降低20%。
二 温 度 对 发 酵 的 影 响 及 其 控 制
发酵过程控制
发酵过程中,发酵液温度变化取决于上面 几个因素: Q发酵 = Q生物 + Q搅拌 - Q蒸发 - Q辐射
二 温 度 对 发 酵 的 影 响 及 其 控 制
发酵过程控制
发酵热的测量: ①利用热交换原理: 测量一定时间内冷却水的流量和冷却水迚 出口温度,根据 Q发酵 = G*C(t2 – t1)/V
八 泡 沫 对 发 酵 的 影 响 及 其 控 制
发酵过程控制
泡沫的消长规律
八 泡 沫 对 发 酵 的 影 响 及 其 控 制
操作情况 培养基原料
发酵周期
发酵过程控制
不同搅拌速度和通气量对泡沫影响
八 泡 沫 对 发 酵 的 影 响 及 其 控 制
发酵过程控制
不同浓度蛋白质原料的起泡作用
八 泡 沫 对 发 酵 的 影 响 及 其 控 制
二 温 度 对 发 酵 的 影 响 及 其 控 制
发酵过程控制
散热的情况:
二 温 度 对 发 酵 的 影 响 及 其 控 制
蒸发热:水汽化时带走的热量,用Q蒸发表示; 假设迚出口气体温度相同,则由通气带走的 热量为:Q蒸发= G(I出-I迚) G:空气流量;I:气体热焓;
发酵过程控制
辐射热:罐体表面向环境中发射红外线而 散失的热量;热量的大小决定于罐内外温 度差大小、罐的表面积等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超过最高温度微生物即受到抑制或死亡,在 最低温度范围内微生物尚能生长,但生长速 度非常缓慢,世代时间无限延长。 如黑曲霉生长温度为37。 谷氨酸棒状杆菌生 长温度为30~32 。青霉菌生长温度为30。

为什么不同微生物对温度要求不同呢? 根据细胞膜脂质成分分析表明不同最适温度 生长的微生物,其膜内磷脂组成有很大区别。 嗜热菌只含饱和脂肪酸, 嗜冷菌含有较高的不饱和脂肪酸。

例如
一摩尔葡萄糖彻底氧化成水和二氧化碳 好氧:产生287.2千焦热量 183千焦转变为高能化合物 104.2千焦以热的形式释放 厌氧:产生22.6千焦的热量 9.6千焦转变为高能化合物 13千焦以热的形式释放 二例中葡萄糖转化为高能化合物的热量分别占 63.7%和42.6%,放出的热量分别为104.2千焦和 13千焦。 微生物的好氧培养产生的热比厌氧培养多。
一、影响发酵温度的因素

发酵热:发酵过程中释放出来的净热量。
菌分解基质产生热量,
搅拌产生热量,
罐壁散热, 水分蒸发、空气排气带走热量, 发酵热引起发酵温度的上升。发酵热大,温度
上升快;发酵热小,温度上升慢。
生物热Q生物 微生物在生长繁殖过程中,产生热量,部分用 来合成高能化合物,供微生物合成和代谢活动 的需要,部分用来合成产物,其余部分则以热 的形式散发出来,这部分热叫生物热。
菌体浓度增大时,粘度增加,
溶氧下降。 (10)浊度 能直接反应菌体的浓度,但 不能区分菌体的死活。 (11)料液流量 连续发酵时,涉及稀释 率。 (12)产物浓度 生产目标 (13)氧化还原电位 其原因往往十分复 杂。测量手段有待开发。
(14)废气中的氧含量 (15)废气中的CO2 从中可了解生产菌 株的呼吸代谢规律。 (16)菌丝形态 判别种子质量、区分 发酵阶段、确认染菌的重要依据。 (17)菌体浓度 是确定补料量、供气量、 阶段转换的重要依据。
L-亮氨酸/g•L 糖酸转化率/%
20 16 12 8 24 26 28 30

生物热的产生具有强烈的时间性
1. 初 期:适应期,菌量少,呼吸慢,热量少 2. 对数期:菌量大,呼吸旺盛,热量多 3. 合成期:菌体合成减缓,靠已合成的酶进行反 应,产热减少,温升小。

如果培养前期温度上升过缓,发酵不正常;若培 养前期温度上升过于剧烈,有可能染菌。 此外培养基营养越丰富,生物热也越大。

1.直接状态参数 2.间接状态参数 3.离线发酵分析方法
1.直接状态参数
直接反映发酵过程微生物生理代谢状况的参 数。如pH、DO、溶解CO2、尾气O2、尾气CO2、 黏度等。 在线检测

传感器

2.间接状态参数
指那些采用直接状态参数计算求得的参数。 比生长速率,摄氧率(OUR),CO2释放速率, 呼吸商(RQ),KLa。 可以提供反应过程状态、反应速率、设备性 能、设备利用效率等信息。
三、温度对发酵的影响

温度影响反应速率
发酵过程的反应速率实际是酶反应速率,酶反 应有一个最适反应温度,低于最适温度,反应 速率随温度升高而上升,高于最适温度,发酵 速率随温度升高而下降。

阿累尼乌斯方程式

发酵液的黏度、基质和氧在发酵液中的溶解度 和传递速率、某些基质的分解吸收速率等,都 受温度变化的影响,进而影响发酵动力学特性 和产物的生物合成。

搅拌热Q搅拌

搅拌热与搅拌功率有关,可用下式计算: Q搅拌=P*860*4186.8J/h



P——搅拌轴功率 860*4186.8——机械能转变为热能的热功当 量
பைடு நூலகம்



蒸发热Q蒸发 通气时引起发酵液的水分蒸发所需的热量叫蒸发热, 此外排气也会带走部分热量叫显热Q显,显热很小, 一般可忽略。 辐射热Q辐射 发酵罐内温度与环境温度不同,发酵液中有部分热 通过罐体向外辐射。辐射热的大小取决于罐内与环 境的温差。冬天大一些,夏天小一些。 Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射
(5)空气流量 空气灭菌系统、流量、温 度、目的是供氧。 (6)罐压 正压防止空气中的杂菌侵入 发酵液,罐压过高时CO2 浓度陡增,负面作 用。 (7)搅拌速度 延长空气的停留时间,提 高溶氧;促进菌体与培养基之间的质量传递。 过高时会损伤菌体、产生过多的泡沫。 (8)搅拌功率 其成本比重较大。
(9)粘度

3、离线发酵分析方法
从发酵液中取出样品进行离线分析, 分析菌体浓度,形态、培养基成分和产物成 分及含量。 显微观察,细胞体积,干重,光密度,平板 计数及基质及产物分析等。
第1节 温度对发酵的影响及其控制


一、影响发酵温度的因素
二、温度对微生物的生长的影响


三、温度对发酵的影响
四、最适温度的选择
二、温度对微生物的生长的影响
微生物生长对温度要求不同,大致可分为: 嗜冷菌: 20 ℃ 最大 0℃~26℃生长, 嗜温菌: 30~35℃ 15℃~43℃生长, 嗜热菌: 50℃ 37℃~65℃生长。

最适温度 最高温度 最低温度


在最适温度范围内,微生物生长迅速,生长 速率随温度升高而增加,温度增加10℃,生 长速率增长一倍。
重点掌握:温度、pH、溶解氧、菌体浓度、
基质浓度、二氧化碳、泡沫等因素对发酵过
程的影响
一、发酵过程的主要控制参数
(1) 温度 最适生长温度与最佳次级代谢产 物合成温度往往不同。 (2)pH 菌体的代谢影响培养基的pH,培养 基的pH又影响菌体的生长和酶系统活性、代谢 途径. (3)溶解氧的浓度(DO) 溶解氧是需氧菌 发酵的必要条件。 (4)基质含量 要保证菌体生长、维持生存、 避免抑制、合成产物等不同目的和阶段的工艺 需要。
发酵过程的主要控制参数
1. 2. 3. 4. 5. 6. 7. 8. pH值(酸碱度) 温度(℃) 溶解氧浓度 基质含量 空气流量 压力 搅拌转速 搅拌功率 粘度
• • • 浊度 料液流量 产物浓度

• •
氧化还原电位
废气中的氧含量 废气中的CO2含量


菌丝形态
菌体浓度
二、发酵过程的参数检测
相关文档
最新文档