催化剂表征与测试

合集下载

某种催化剂的表征与活性评估

某种催化剂的表征与活性评估

某种催化剂的表征与活性评估催化剂是用于促进或加速化学反应速率的物质。

催化剂的表征和活性评估对于研究和优化催化剂的性能具有重要意义。

本文将介绍某种催化剂的表征方法和常用的活性评估技术。

1. 表征方法催化剂表征是对催化剂进行结构和性质分析的过程,可采用多种分析技术,包括物理和化学方法。

1.1 表面形貌观察表面形貌观察是评估催化剂的形态和微观结构的重要手段。

常用的技术包括扫描电子显微镜(SEM)和透射电子显微镜(TEM)。

SEM可以提供催化剂的表面形貌信息,例如颗粒的大小和形状。

TEM可以提供更高分辨率的图像,揭示催化剂的微观结构,如晶体形态、晶体缺陷等。

1.2 化学成分分析化学成分分析是评估催化剂组成的关键手段。

常用的技术包括X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、拉曼光谱和X射线光电子能谱(XPS)。

XRD可以确定催化剂的晶体结构和晶体相,FTIR和拉曼光谱可以提供有关催化剂的化学键和官能团的信息,XPS可以确定催化剂表面元素的化学状态。

1.3 孔结构表征孔结构表征是评估催化剂孔隙性质的关键手段。

常用的技术包括比表面积分析(BET)、孔径分布分析和氮气吸附-脱附实验。

BET可以测量催化剂的比表面积,孔径分布分析可以确定孔径大小和分布情况,氮气吸附-脱附实验可以获得催化剂的孔体积和孔径大小。

2. 活性评估技术活性评估是评估催化剂催化性能和活性的关键步骤。

以下将介绍几种常用的活性评估技术。

2.1 反应动力学研究反应动力学研究是评估催化剂催化活性的重要手段。

通过测量反应物浓度随时间的变化,可以确定反应速率常数和反应级数等动力学参数。

常用的技术包括气相色谱-质谱联用(GC-MS)、高效液相色谱(HPLC)、原子吸收光谱等。

2.2 微观动力学研究微观动力学研究可以提供有关催化剂上反应过程的微观机理和反应中间体的信息。

常用技术包括瞬态吸附技术,如傅里叶变换红外(FTIR)瞬态吸附和傅里叶变换红外-可见光谱(FTIR-UV-Vis)瞬态吸附等。

催化剂的表征

催化剂的表征

催化剂的表征催化剂是一种能够加速化学反应速率的物质,常用于工业生产和实验室研究中。

催化剂的表征是为了了解其物理和化学性质,从而更好地理解其催化性能和反应机理。

催化剂的表征可以通过多种技术手段进行,下面将介绍几种常见的催化剂表征方法。

一、催化剂的物理性质表征催化剂的物理性质表征主要包括表面积、孔结构和晶体结构等方面。

表面积是指催化剂单位质量或体积的活性表面积,可通过比表面积测定仪等设备进行测量。

孔结构是指催化剂内部的孔隙结构,包括孔径、孔体积和孔壁厚度等参数。

常用的孔结构表征方法有氮气吸附-脱附法和压汞法。

晶体结构是指催化剂中晶体的排列方式和晶格参数,可以通过X射线衍射和透射电子显微镜等技术进行表征。

二、催化剂的化学性质表征催化剂的化学性质表征主要包括化学成分、表面酸碱性质和表面活性位点等方面。

化学成分是指催化剂中元素和化合物的组成,可以通过X射线能谱分析、傅里叶变换红外光谱和X射线光电子能谱等技术进行分析。

表面酸碱性质是指催化剂表面的酸碱性质及其强度,可以通过酸碱滴定法、NH3和CO2吸附等方法进行表征。

表面活性位点是指催化剂表面上对反应物吸附和反应发生的活性位点,可以通过吸附取代法、化学计量法和原位傅里叶变换红外光谱等技术进行研究。

三、催化剂的微观结构表征催化剂的微观结构表征主要包括催化剂颗粒形貌、催化剂与反应物的相互作用和催化剂的还原性等方面。

催化剂颗粒形貌可以通过扫描电子显微镜和透射电子显微镜等技术进行观察和分析。

催化剂与反应物的相互作用可以通过吸附实验、漫反射红外光谱和核磁共振等技术进行研究。

催化剂的还原性是指催化剂在还原条件下的还原反应性能,可以通过程序升温还原和原位X射线吸收精细结构等技术进行表征。

四、催化剂的性能评价催化剂的性能评价是指对催化剂进行活性、选择性和稳定性等方面的评价。

活性是指催化剂对反应物转化的能力,可以通过活性测试和动力学模型进行评价。

选择性是指催化剂在多个可能反应路径中选择某一种反应路径的能力,可以通过选择性测试和反应机理研究进行评价。

催化剂表征与测试

催化剂表征与测试

A 、体相组成与结构体相组成:XRF 、AAS物相分析:XRD :晶体结构DTA :记录样品与参比物温差随温度变 化曲线,吸热为负峰,放热为正峰TG:样品质量随温度变化曲线B 、比表面与孔结构BET (压汞法)C 、活性表面、分散度(XRD 、Chemisorption 、TEM)D 、表面组成与表面结构H2-O2滴定:H2吸附饱和后用O2滴定或O2吸附饱和后用H2滴定XPS :表面组成LEED :表面结构排列E 、酸碱性TPD ;IRF 、氧化还原性TPRTPOTPSR:表面吸附物种与载气中反应物发生反应并脱附比表面积转化率比活性=3、X-射线衍射(XRD )作用a 、物相的鉴定、物相分析及晶胞参数的确定b 、确定晶粒大小,研究分散度c 、研究处理条件对催化剂微观结构的影响原理:2dsin θ = n λ例:XRD 物相分析每种晶体都有它自己的晶面间距d ,而且其中原子按照一定的方式排布着。

这反映在衍射图上各种晶体的谱线有它自己特定的位置、数目和强度I.因此,只须将未知样品衍射图中各谱线测定的角度θ及强度I 去和已知样品所得的谱线进行比较就可以达到物相分析的目的。

XRD 测定平均晶粒度的测定hklhkl k D θβλcos =4、透射电镜(TEM)作用• 1、催化剂物性的检测• a 、物相鉴别• b 、粒子(或晶粒)大小及其分布的测定• c 、孔结构的观察• 2、研究负载型催化剂-—金属分散度• 3、催化剂制备过程研究• 4、催化剂失活、再生研究基本原理• 以波长极短的电子束代替可见光,照射厚度在50nm 的超薄切片上,透过样品的电子束通过多级电磁透镜聚集,放大成TEM 图像使用电镜的电子衍射功能可以判断样品的结晶状态5、扫描电镜(SEM )特点:1、能够以较高的分辨率和很大的景深清晰地显示粗糙样品的表面形貌,是进行试样表面形貌分析的有效工具;2、与能谱(EDS ,WDS )组合,又可以以多种方式给出试样表面微区成份等信息。

催化剂的表征与性能评价

催化剂的表征与性能评价

催化剂的表征与性能评价催化剂的表征和性能评价是研究催化剂特性和性能的重要组成部分。

通过对催化剂进行表征和评价,我们能够了解其物理和化学性质,进而优化催化剂的合成和设计过程,提高其催化性能。

本文将介绍几种常见的催化剂表征方法和性能评价指标。

一、表征方法1. X射线衍射(XRD)XRD是一种常用的催化剂表征方法,通过射线与晶体相互作用而产生衍射图样,可以得到催化剂晶体结构、晶格常数等信息。

XRD可以帮助我们确定催化剂的晶体相、相纯度以及晶体尺寸等参数,进而推断其催化性能。

2. 透射电子显微镜(TEM)TEM可以观察催化剂的微观形貌和晶体结构,对于了解催化剂的微观结构和局域化学环境具有重要意义。

通过TEM可以获得催化剂粒子的形貌、粒径以及分布情况等信息,这些信息对于理解催化剂活性和选择性具有重要的指导作用。

3. 扫描电子显微镜(SEM)SEM能够观察催化剂的表面形貌和粒子分布情况,通过SEM可以了解催化剂的表面形貌、粒子形状和大小分布等特征。

这些信息对催化剂的反应活性和稳定性具有重要影响。

4. 紫外可见吸收光谱(UV-vis)UV-vis光谱可以帮助我们了解催化剂的电子结构和吸收性能。

通过UV-vis光谱可以获得催化剂的能带结构、价带和导带等信息,进一步推断其电子传输性能和催化活性。

二、性能评价指标1. 催化活性催化活性是评价催化剂性能的重要指标之一。

通过测定反应物的转化率、产物的选择性和产率等参数,可以评价催化剂的活性。

活性的高低决定了催化剂的实际应用性能。

2. 催化稳定性催化稳定性是衡量催化剂寿命和循环使用性能的重要指标。

通过长时间反应的实验,观察催化剂的活性变化情况,评估其稳定性。

催化剂的稳定性直接影响其在实际工业生产中的应用前景。

3. 表面酸碱性催化剂的表面酸碱性是其催化性能的重要基础。

通过吸附剂和探针分子等的测试,可以评估催化剂的酸碱性。

催化剂的酸碱性对于催化反应的催化活性和选择性具有直接的影响。

【大学】催化剂性能的评价、测试和表征

【大学】催化剂性能的评价、测试和表征
用最广。
三、催化剂的宏观物理性质测定
工业催化剂或载体是具有发达孔系和一定内外表面的颗粒集合体。 若干晶粒聚集为大小不一的微米级颗粒(Particle)。实际成形催化剂的颗 粒或二次
粒子间,堆积形成的孔隙与 晶粒内和晶粒间微孔,构成 该粒团的孔系结构(图3-5)。 若干颗粒又可堆积成球、条、 锭片、微球粉体等不同几何 外形的颗粒集合体,即粒团 (Pelet)。晶粒和颗粒间连接 方式、接触点键合力以及接 触配位数等则决定了粒团的 抗破碎和磨损性能。
18
.
3.3.4.1催化剂比表面积的测定 催化剂比表面积指单位质量多孔物质内外表面积的总和,单位为m2/g。 有时也简称比表面。 对于多孔的催化剂或载体,通常需要测定比表面的两种数值。一种 是总的比表面,另一种是活性比表面。 常用的测定总比表面积的方法有:BET法和色谱法,测定活性比表面 的方法有化学吸附法和色谱法等。 1.BET法测单一比表面 经典的BET法,基于理想吸附(或称兰格缪尔吸附)的物理模型。假 定固体表面上各个吸附位置从
一般而言,衡量一个工业催化剂的质量与 效率,集中起来是活性、选择性和使用寿命
这三项综合指标。
.
活性
指催化剂的效能(改变化学反应速度能力)的高低, 是任何催化剂最重要的性能指标。
选择性
用来衡量催化剂抑制副反应能力的大小。 这是有机催化反应中一个尤其值得注意的性能指标。
.
机械强度
即催化剂抗拒外力作用而不致发生破坏的能力。 强度是任何固体催化剂的一项主要性能指标, 它也是催化剂其他性能赖以发挥的基础。
表征:常着眼于从综合的角度研讨工业催化剂各种物 理的、化学的以及物理化学的诸性能间的内在联系 和规律性,尤其是着眼于催化剂的活性、选择性、 稳定性等与其物理和物理化学性质问本质上的内在 联系和规律性。

《催化剂表征与测试》课程教学大纲

《催化剂表征与测试》课程教学大纲

《催化剂表征与测试》课程教学大纲一、课程基本信息课程中文名称:催化剂表征与测试课程英文名称:Testing and Characterization of catalysts课程编号:06141290课程类型:专业(方向)课总学时:36 实验学时:12 上机学时:0 课外学时:0学分:2适用专业:工业催化先修课程:物理化学,催化作用原理开课院系:化学化工学院化学工程系二、课程的性质与任务催化剂是催化反应工艺和工程的核心。

研究催化剂就是为了揭示寻找其内在规律,以便制备出活性高、选择性好和寿命长的优良催化剂。

催化剂本身的结构、物理化学性质、催化作用及其催化反应过程都是及其复杂的。

但是,催化理论的发展还不能达到直接从理论上完全预见的水平,因此必须借助多种先进的测试手段来揭示催化作用的规律和机理。

《催化剂表征与测试》课程正是满足这一需要,系统介绍固体催化剂的基本分析测试方法和一部分最新的物理测试技术,包括各种方法的基本原理、所用仪器、装置特点、操作的技术要点、应用实例及方法的有效范围,为培养工业催化类专业工程师提供坚实的理论基础服务。

三、课程教学基本要求表征催化剂可提供给人们三种不同的但又互相联系的信息即化学组成和结构、催化剂纹理和机械性质、以及催化活性。

学生应该了解催化剂的性质,包括元素组成,可能呈现的单个相的组成、结构和含量,表面的组成,可能呈现的表面功能基的性质和含量,催化剂的纹理。

掌握各种测试方法的原理,熟悉用各种测试获得的信息解释催化剂的性质。

在掌握了催化剂表征与测试的基本理论和方法之后,学生不应满足于课堂上的教学,更要学会从工程学的观点看问题,分析和解决问题。

四、理论教学内容和基本要求绪论(2学时)1 课程的性质与任务2课程的主要内容3课程的教学安排4主要参考文献基本要求了解催化剂表征与测试在催化反应研究中的重要性。

熟悉相关的术语和基本概念。

重点与催化剂表征有关的若干术语和基本概念。

难点催化剂表征与测试的最新进展第一章催化剂比表面积和孔结构测定(4学时)1 物理吸附理论简单介绍2 表面积计算3 孔容和孔分布计算4 蒸汽吸附实验技术基本要求:物理吸附的基本概念和原理重点:表面积计算难点:孔容、孔分布计算。

催化剂性能的评价、测试和表征

催化剂性能的评价、测试和表征

催化剂性能的评价、测试和表征概述主要内容•活性评价和动力学研究•催化剂的宏观物理性质测定•催化剂微观性质的测定和表征工业催化剂性能评价的目的①为应用提供依据②为开发制备提供判别的标准③基础研究的需要评价内容①使用性能活性,选择性,寿命②.宏观性能:比表面积,孔结构,形状与尺寸③.微观性能:晶相组成,表面酸碱性•工业催化剂的性能要求及其物理化学性质4催化剂测试• 催化剂的物理性质的测定 ,包括宏观物理性质(孔容、孔径分布、比表面等)及微观物理性质(催化剂的晶相、晶格缺陷、微观粒径尺寸等) 几个基本概念评价(evaluation ),对催化剂的化学性质考察和定量描述; 测试(test ),对工业催化剂物理性质(宏观和微观)的测定; 表征(Characterization ),综合考察催化剂的物理、化学的性质和内在联系,特别是研究活性、选择性、稳定性的本质原因。

第一节.活性评价和动力学研究活性测定方法:流动法和静态法,流动法用得最多(一般流动法、流动循环法、催化色谱法) 本质上是对工业催化过程的模拟流动循环法、催化色谱法多用于反应动力学和反应机理活性测试的目的a )由催化剂制造商或用户进行的常规质量控制检验b )快速筛选大量催化剂,以便为特定的反应确定一个催化剂评价的优劣。

c )更详尽的比较几种催化剂d )测定在特定催化剂上反应的详尽动力学,包括失活或再生动力学。

e )模拟工业反应条件下催化剂的连续长期运转活性的表示方法• 转化率(X A)活性的表示方法• 选择性(S)收率(Y)Y=X A ×S• •• 时空得率(STY ):每小时、每升催化剂所得产物的量%100⨯=的起始摩尔数反应物已转化的摩尔数反应物A A X A %100⨯=摩尔数已转化的某一反应物的所得目的产物的摩尔数S %100⨯=起始反应物的摩尔数生成目的产物的摩尔数Y关于时空得率:指在一定条件(温度、压力、进料空速)下,单位体积或单位质量催化剂所得到产物量,多用于工业生产和工业设计,可直接计算出量产。

催化导论-第五章催化剂表征与测试

催化导论-第五章催化剂表征与测试

程序升温实验
总结词
通过逐渐升高温度的方法研究催化剂的活性 和选择性,常用于催化反应动力学和催化材 料表征。
详细描述
程序升温实验是一种在一定温度范围内逐渐 改变温度,并观察催化剂性能变化的方法。 通过程序升温实验,可以研究催化剂的活性 和选择性随温度的变化,了解催化反应的动
力学过程和催化材料的热稳定性。
催化剂B的优化与应用
催化剂B的优化
针对催化剂B的结构和组成进行改进,通过添加助剂 、调整制备工艺等方法提高其活性和选择性。
催化剂B的应用研究
将优化后的催化剂B应用于实际反应中,考察其在不 同反应条件下的性能表现,为工业化应用提供依据。
新型催化剂C的开发与前景
新型催化剂C的设计
01
基于新材料和新技术,设计新型催化剂C,探索其在特定反应中
的潜2
对新设计的催化剂C进行活性、选择性、稳定性等方面的测试,
评估其综合性能。
新型催化剂C的前景展望
03
结合市场需求和技术发展趋势,对新型催化剂C的应用前景进行
预测和展望。
THANKS
感谢观看
总结词
选择性评价有助于了解催化 剂的定向催化能力,对于实 现特定产物的高效合成具有 重要意义。
详细描述
选择性评价可以指导催化剂 的定向设计和优化,提高产 物收率和纯度,降低副产物 的生成。
稳定性与寿命评价
总结词
稳定性与寿命评价是催化剂性能评价的重要环节,主要考 察催化剂在长时间使用过程中的性能保持能力。
活性位点类型
通过对比不同温度下的催化剂表征结果,研究活性位点的类型和数量,了解催化反应的 机理。
活性位点稳定性
通过长时间反应实验和再生实验,研究活性位点的稳定性,评估催化剂的寿命和耐久性。

催化剂测定与表征技术

催化剂测定与表征技术

催化剂测定与表征技术催化剂在化学工业中扮演着重要的角色,它们能够加速反应速度,提高产物选择性,降低反应温度等。

为了充分了解催化剂的性能和稳定性,科学家们发展了各种测定和表征催化剂的技术。

本文将介绍几种常用的催化剂测定与表征技术。

一、物理吸附法物理吸附法是一种常用的催化剂表征技术。

通过测定催化剂表面吸附气体的物理吸附量,可以确定催化剂的比表面积、孔径分布和孔容等参数。

常用的物理吸附法包括比表面积测定、孔径分布测定和吸附等温线测定等。

其中,比表面积测定常用的仪器是比表面仪,可以测定催化剂的比表面积;孔径分布测定则可以通过气孔大小对吸附剂进行分类;吸附等温线测定可以获得催化剂的孔容和孔径分布。

二、扫描电子显微镜(SEM)扫描电子显微镜是一种高分辨率表征催化剂表面形貌和微观结构的技术。

通过扫描电子显微镜,可以观察到催化剂表面的形貌、颗粒大小和分布等信息。

同时,通过能谱分析功能,还可以确定催化剂表面元素的组成和分布。

扫描电子显微镜的应用广泛,可以对不同种类的催化剂进行表征,为改进催化剂性能提供依据。

三、透射电子显微镜(TEM)透射电子显微镜是一种高分辨率表征催化剂内部结构的技术。

通过透射电子显微镜,可以观察到催化剂微观结构的细节,如晶体结构、晶胞参数、晶界和缺陷等。

透射电子显微镜还可以进行能谱分析,确定催化剂微观结构元素的组成和分布。

透射电子显微镜在催化剂研究中起到了至关重要的作用,对于揭示催化机理和改善催化剂性能具有重要意义。

四、X射线衍射(XRD)X射线衍射是一种广泛应用于催化剂表征的技术。

通过X射线衍射,可以确定催化剂晶体结构、晶胞参数和晶面取向等信息。

X射线衍射还可以进行定性和定量分析,确定催化剂中晶体的相对含量。

X射线衍射技术是研究催化剂晶体结构和相变行为的重要手段,为催化剂的合成和改良提供了重要信息。

五、傅里叶变换红外光谱(FTIR)傅里叶变换红外光谱是一种用于催化剂表征的非常有用的技术。

通过傅里叶变换红外光谱,可以确定催化剂表面的吸附物质、化学键特征和表面活性位点等信息。

催化剂的表征与评估方法

催化剂的表征与评估方法

催化剂的表征与评估方法催化剂是许多化学反应中不可或缺的重要组成部分。

为了有效评估和优化催化剂的性能,科学家们开发出了各种表征方法和评估技术。

本文将介绍一些常用的催化剂表征与评估方法。

一、物理表征方法1. 扫描电子显微镜(SEM):通过SEM可以观察到催化剂的形貌和颗粒尺寸分布,从而评估催化剂的活性表面积。

2. 透射电子显微镜(TEM):TEM可以提供催化剂的高分辨率图像,从而观察到催化剂的晶体结构、晶粒大小以及形貌等信息。

3. X射线衍射(XRD):XRD可以用于分析催化剂的晶体结构和晶格参数,通过峰位和峰形分析可以确定催化剂的相态以及晶粒尺寸。

4. 紫外可见光谱(UV-Vis):这种表征方法可以通过测量催化剂在紫外和可见光区域的吸收光谱,来确定催化剂的电子结构和电荷转移过程。

二、化学表征方法1. X射线光电子能谱(XPS):通过XPS可以得到催化剂表面原子的电子能级和化学态,从而揭示催化剂的表面组成和表面反应活性位点。

2. 傅里叶变换红外光谱(FTIR):FTIR可以用于表征涂覆在催化剂表面的吸附物,例如吸附气体、表面中间体等。

3. 原位质谱(MS):通过质谱可以检测催化剂表面产生的化学物质,从而揭示催化剂的反应机制和活性物种。

三、催化活性评估方法1. 反应动力学:通过测量催化剂在给定反应条件下的反应速率,可以评估催化剂的活性和选择性。

2. 表面酸碱性:催化剂表面的酸碱性质对于某些反应过程至关重要,通过表征催化剂表面酸碱性,可以评估催化剂的活性和稳定性。

3. 比表面积测量:催化剂的活性表面积与其性能密切相关,通过测量催化剂的比表面积,可以评估催化剂的催化效果和稳定性。

4. 催化剂寿命评估:对于长期稳定性评估,科学家们通常会对催化剂进行寿命测试,以模拟实际工业条件下的使用情况。

总结:催化剂的表征与评估方法多种多样,上述仅为其中一部分常用方法。

综合利用这些表征和评估技术,可以更全面、准确地了解催化剂的性能和反应机制,进而指导催化剂的设计与改进。

催化剂的表征及其活性测试

催化剂的表征及其活性测试

催化剂的表征及其活性测试一、引言催化剂是从化学反应中非常关键的组成部分,可以加速化学反应速度,降低反应活化能,提高反应选择性。

因此,对于催化剂的表征和活性测试,一直是化学领域研究的热点和难点问题。

二、催化剂的表征技术1. X射线衍射(XRD)X射线衍射是一种常用的催化剂的表征技术。

该技术可以通过测定催化剂晶体结构的衍射图,来判断催化剂物理和化学性质,如化学组分、晶体结构、晶粒尺寸和晶格畸变等。

XRD技术还可以分析催化剂的形貌、表面态和晶体结构相,以及定量分析催化剂晶格畸变度和孔径分布。

2. 透射电子显微镜(TEM)TEM技术是一种高分辨率电子显微技术,可以在微观尺度上研究催化剂的微观形貌、结构和分子交互作用。

该技术通常用于研究催化剂的晶化程度、晶粒形貌、晶体内部结构、分子间空间关系和分布状态等方面的信息。

3. 稳态和瞬态表面分析技术稳态和瞬态表面分析技术主要包括吸附分析、催化反应动态表征分析和光电子光谱学等。

吸附分析可以用来研究催化剂表面与吸附物的相互作用,催化反应动态表征分析用来研究催化剂活性中心、反应过渡态和反应机理,光电子光谱学则可用于研究催化剂表面发射性质、表面电荷状态和表面吸附物的分子结构等。

三、催化剂的活性测试技术常用的催化剂活性测试技术主要包括:热重分析、催化反应动力学分析、催化反应机理分析和渗透技术等。

1. 热重分析热重分析是一种热学分析技术,可以测定催化剂在一定温度下的脱水率或烧结程度。

该技术可用于定量分析催化剂表面积、孔径分布和热稳定性,以及了解催化剂形态、晶体结构和离子交换能力。

2. 催化反应动力学分析催化反应动力学分析用于研究催化剂催化反应活性和反应速率等动力学参数。

该技术可通过变量温度反应和时域催化反应分析等方法确定催化反应动力学参数,如反应速率常数、反应活化能和反应级别等。

3. 催化反应机理分析催化反应机理分析可以研究催化剂的反应机理,了解催化反应中的关键步骤、反应中间体和反应产物等。

催化剂测试与表征课件

催化剂测试与表征课件

2h 2h 2h 2h 2h 2h 2h 2h 2h 2h
Over 80% of industrial processes involve catalysts, and half the elements in the periodic table are involved o systems. Berzelius
• This is a graduate level course on concepts and techniques important to methods and instruments as used in catalysis research. • The lectures and the learning expected of you will be significantly beyond the level and detail of that taught in the other courses and will assume that you are already familiar with the content of such a survey course. • There will be some overlap with other curriculum; however, some new aspects will not be fully covered in the lecture, but will require your learning them by reading on your own. • This is NOT a theory of spectroscopy course. However it does assume that the student has an introductory exposure to such a theoretical background at the senior undergraduate level. Such background should enable you to better appreciate what is being measured with the various techniques and to understand some of the language used in explaining the analytical applications.

催化剂性能的评价测试和表征

催化剂性能的评价测试和表征


粒度与粒度(径)分布测定
方法 测定粒子范围 37~5000μm 5~150μm 光学显微镜500~1 μm 扫描电子显微镜10~0.01 μm 透视电子显微镜 数百0nm~1nm 0.5~500 μm 0.5~80 μm
①筛分法 ②沉降法 ③显微镜法
④激光散射法 ⑤电导法
机械强度的测定
⒈压碎强度 ⑴单粒抗压碎强度:包括(正(轴向)、侧(径向) 压强度 ⑵堆积抗压碎强度 ⒉磨损性能试验 球磨试验
催化剂的活性和选择性的定量表达,常常采用 下述关系式。若以指定反应物进料的量作为基准, 则:
实验室反应器
典型化学反应器

釜式反应器
管式反应器 塔式反应器 固定床反应器 流化床反应器
釜式反应器
基本结构: ①釜体 ②换热装置
③搅拌装置
高压反应釜
釜式反应器 釜体: 由壳体和上、下封头组成,其高与直径之 比一般在1~3之间。 在加压操作时,上、下封头多为半球形或 椭圆形;而在常压操作时,上、下封头可 做为平盖,为了放料方便,下底也可做成 锥形。
化反应,如列管式固定床反应器。
管式反应器

基本结构
由一根或多根管子 串联或并联构成的 反应器,长度与直 径之比一般大于 50~100。

主要用于气固 相反应
管式反应器
塔式反应器
塔式反应器
硫酸转化器塔式反应器
实验室测试用塔式反应器
固定床反应器
固定床反应器
固定床反应器
原料 蒸汽 调节阀
换热式固 定床反应 器 (列管式)

从综合的角度研讨催化剂各种物理的、化学的
以及物理化学的诸性能间的内在联系和规律, 主要为探求催化剂的活性、选择性、寿命等与 其物理和化学性质间本质上的内在联系和规律。

催化剂表征与测试

催化剂表征与测试
(1)粒径越小,外表面积越大; (2)扩散控制的反应,小粒径催化剂有利; (3)流化床反应器,粒径分布影响其流化特性; (4)浆态床反应器,催化剂粒度和粒度分布影响其 悬浮和沉降性能。 一定形状的粒状催化剂:直径0.5~10mm,直接测量法 细粉粒催化剂:直径0.1~200m 筛分法、重力沉降法、电子显微镜法等
催化剂表征与测试
2、热分析
2、热分析(Thermal Analysis)
原理:在程序升温的过程中测定样品的性质随温度 的变化,从而获取样品晶相和结构变化的信息。
(1)差热分析(DTA)和扫描量热分析(DSC)
DTA-differential thermal analysis DSC-differential scanning calorimetry 原理:在按一定的速率加热和冷却的过程中,测量试 样和参比物之间的温度差(或热量差)。 任何伴有放热或吸热的转变或化学反应都可以导致温差 或热量差。由此可以获得有关相变、晶相转变、固相反应、 分解反应、氧化或还原等方面的信息。
催化剂表征与测试
二、热性质
2、抗热冲击性能 在催化剂制备、使用、再生过程中,温度的剧烈变 化使他受到热冲击,从而引起催化剂烧结、失活、颗粒 破碎、床层压降升高甚至床层堵塞。 热冲击性能评价指标: 裂纹的产生:抗热冲击参数R1 裂纹扩展:抗热冲击参数Rp
催化剂表征与测试
第五节 本体性质
一、组成 组成分析:催化剂的元素组成进行定性和定量分析。 生产制备过程的控制 产品的最终分析 使用过程的分析:组分变化和污染物分析 污染物: (1)灰尘和外来碎屑; (2)反应物料中带来的毒物,如S、As、Pb和Cl等; ( 3)金属污染物,如Ni、Fe、V、Ca、Mg、Na、K等; (4)结焦和缩聚物。

催化导论--第五章 催化剂表征与测试

催化导论--第五章 催化剂表征与测试

用于从氦气流吸附氮脉冲的流动装置
A—样品管, B—空管(A和B都浸在液氮中) C—氦气供给, I—氦气流控制 D—转子流量计, E—流量计旁路 F—氮气供给, H—盛氮的U型体积 G—气体出口及精确流量测定, J—气体温度平衡用螺旋 T—热导检测器, R—装配于T的记录仪 W—水浴
在气体流动中,样品是在连续的 氦气流中脱气而不是在真 空中脱气。 此法的优点是灵敏度高,所以比较 低的表面积的样品也可以测定.
第一章 表面积测定
理想地说,催化利的表征包括测定 样品暴露的总表面积,并 且测定可能存 在的每个不同化学相所暴露的表面积。 能否达到这 种理想的情况取决于催化剂 样品的组成,特别是取决于存在的各 种 相的数目及其本性. 在许多实用的催化剂 中,催化剂单粒(例如,催化剂小球或 片) 都是多孔的,显然孔结构和总表面积是 有关联的。
有许多种常用的粒径表示方法。 最满意的是投影面积直径, 它是圆 面积与二维成象面积相同时的圆直 径。第二种也许是最常用的 方法.它 是测量画一条贯穿粒子阵列的直线 所构成的截线。第三 是Fcret直径, 它是粒子相对两边的切线之间的距 离。第四是每个粒子宽度 的最高和 最低值的平均值。整个颗粒阵列的 平均直径可以由以上 测定的各个参 数按通常的办法加以定义。
第二节 测量吸附的方法
可以用静态容量法(气体膨胀)、 流动法、或重量法来进行吸附测量。 下面简单介绍静态容量法和流量法.。
静态容量法的基本装置,按其 最简单的形式示于下面的图中, 并 假定配备有一种足够推确和可靠的 恒容压力传感器Tr(是一 种配以仪表 的石英螺旋压力计 ).
进行气体吸附测定的简单装置
在实践中,这种装置对正常的 BET测定工作得 很好,只要样品的表 面积不太低.它特别适用于化学吸附 测定,因为通常化学吸附是在比较低 的压力下进行的.而由于仪器无汞,样 品被严重污染而影响化学吸附的危 险就大大减少了.缺陷是不适于高精 度物理吸附测定,特别不适用于较 小表面积 助样品或处于相对压力范 围上限的测定。

工业催化剂的表征与测试

工业催化剂的表征与测试

5、活性评价实验条件的确定 正确评价活性的条件: 1)在远离平衡的条件下测试 只有在远离平衡的条件下才能反映催化剂加快反应 速度的能力,才能加以比较 SO2 + 1/2O2 → SO3 V2O5为催化剂 在 400℃ 空速 800时-1 转化率98-99% 在 400℃ 平衡转化率99.5% 在 400℃ 空速 3000时-1 转化率70-80% 2)消除内外扩散控制 只有在动力学控制的条件下才能评价催化剂的本征 活性和研究催化剂的本征动力学 a)消除外扩散控制的方法 方法1 在二个反应器中,分别装入不同体积
b)活性比表面积 利用选择性化学吸附 寻找一种气体只对催化剂表面上某一组分进行 化学吸附 如Pt/Al2O3上 Pt表面积的测定 用H2作吸附气体,测定H2的饱和吸附量, 可得到Pt的比表面积 用CO测定CuO活性比表面
用O2测定Cu2O活性比表面 用H2S测定Ni活性比表面 2)平均孔径 催化剂固体内小孔形状、大小不一,为简化,用相 同形状、大小的园柱形小孔代替,此小孔的半径称 为平均孔径 r¯ Ao r¯ = 2Vg ×104/Sg 3)孔径分布 催化剂中大小不同的孔的分布状况 毛细凝聚法 测细孔 0—200 Ao 压汞法 测粗孔 100—105 Ao a)毛细凝聚法(气体吸附法) 气体在小孔中吸附看作为毛细凝聚,毛细管愈细 发生凝聚所需气体压力愈低
单程转化率 总转化率 (物料平衡、相同接触时间) 空速 反应温度 选择性 收率 4、实验室评价活性的反应器 对反应器的要求 温度恒定 停留时间一定 取样方便 反应器类型 1)积分反应器 如微型管式固定床反应器 装填催化剂量较多,转化率较高,沿催化剂床层 有温度梯度和浓度梯度,对分析要求不高 取dw小单元进行物料衡算 r∙dw = F∙dx r 反应速度 mol/sec∙g w 催化剂重量 g F 原料A加料速度 mol/sec x 反应物A转化率 %

第4章 催化剂的表征和测试

第4章 催化剂的表征和测试

转化率%
观察到的结果:表面积与活性成正比关系
原因:活性中心均匀分布
关联表面积和活性时的注意事项: 由于具有催化活性的面积只是总表面积的很小的 一部分,而且活性中心往往具有一定的结构,由 于植被和操作方法不同,活性中心的分布及其结 构都可能发生变化。因此,用某种方法制得得表 面积很大的催化剂和并不一定意味着它的活性表 面大并具有合适的活性中心结构,所以催化活性 和表面积常常不能成正比关系。
例如:2,3-二甲烷丁烷在硅酸铝催化剂上527℃的裂解反应
催化剂编号 1 2 3 4 5 比表面 m2/g 42 117 190 310 425 转化率% 20.5 20.5 31.5 53.5 69.5 活化能 KJ/mol 92.11 92.11 87.92 87.92 87.92
100 80 60 40 20 0 0 100 200 300 400 500 比表面m2/g
TB>TA A的活性>B的活性 温度越低,活性越高
A
温度/℃
X%
B
T
平行的多路实验
混和气入口
1
2
3
管式反应器
去 析

三.实验室活性测试反应器的类型及应用
实验室反应器按操作方法可分为两大类
{
间歇式 连续式
目前在催化剂研究中用的最多的是连续反应器
1、间歇反应器
进料 冷却水 冷却水
出料
缺点 ①特定温度的控制及测量难 ②不能控制及测量分压
三.比表面测定方法
化学吸附法 常用吸附法 物理吸附法 气相色谱法 BET法 物理吸附法---BET法
1.测算总表面的一般式
Vm Sg N am Vmol
其中: S g ---每克吸附剂的总表面积 Vm ---满层单分子层吸附质体积 Vmol ---吸附质摩尔体积 N ---阿佛加德罗常数6.02× 23 10 am ---每个被吸附分子在吸附剂表面上所占有的面积(横截面积)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Sieving 筛分法Optical microscopy 光学显微镜法Scanning electron microscopy 扫描电镜法Transmission electron microscopy (TEM) 透射电镜法Scanning TEM (STEM) 扫描透射电镜法Scanning tunneling microscopy (STM) 扫描隧道显微镜Scanning force microscopy (SFM) 扫描力显微镜Gravitaional sedimentation 重力沉降法Resistive pulsed 电阻法
Light obscuration 光透法Fraunhofer diffraction 夫琅和费衍射法Cetrifugal sedimentation 离心沉降法Photon correlation spectroscopy(PCS) 光子相关光谱分析法Hydrodynamic chromatography(HCD) 流动色层分析法Field flow fractionation(FFF) 场流分离法
BET method BET法
Small angle X-ray scatiering(XSAS) X-射线小角度散射法Chemisorption 化学吸附法Adsorption-Titration method 吸附-滴定法Mercury porosimetry 压汞法
Incipient wetness 初湿含浸法Permeametry 渗透测粒法Counterdiffusion 反扩散法
Small angle neutron scatiering(NSAS) 中子小角散射法Volumetric adsorption 体积吸附法Gravimetric adsorption 重量吸附法Dynamic adsorption 动态吸附法Calorimetry 量热法
IR-spectroscopy 红外光谱法Raman spectroscopy 拉曼光谱法
UV-Vis spectroscopy 紫外-可见光光谱法Mass spectrometry 质谱
Atomic absorption spectroscopy (AAS)原子吸收光谱Auger electron spectroscopy (AES) 俄歇电子能谱Electron spectroscopy for chemical analysis (ESCA) 化学分析电子能谱
X-ray photoelectron spectroscopy (XPS)X 射线电子能谱
Uv-photoelectron spectroscopy (UPS)紫外光电子能谱Energy dispersive spectroscopy (EDS) 能量色散谱Wavelength dispersive spectroscopy (WDS) 波长分散谱Mossbauer spectroscopy 穆斯堡尔谱Electron spin resonance (ESR) 电子自旋共振Electron Paramagnetic Resonance(EPR) 电子顺磁共振
Nuclear magnetic resonance (NMR) 核磁共振
Thermal gravimetric analysis (TGA) 热重分析
Differential thermal analysis (DTA) 差热分析
Differential scanning calorimetry (DSC) 差示扫描量热计法Thermomechanical analysis (TMA) 热机械分析Temperature programmed desorption(TPD) 程序升温脱附Temperature programmed oxidation(TPO) 程序升温氧化Temperature programmed reduction(TPR) 程序升温还原Temperature programmed surface reaction(TPSR) 程序升温表面反应
X-ray diffraction (XRD) X 射线衍射
Extended x-ray absorption fine structure (EXAFS) 扩展X 射线吸收精细结构Near-edge x-ray adsorption fine structure (NEXAFS) 近边X 射线吸收精细结构Surface extended x-ray adsorption fine structure (SEXAFS) 表面扩展X 射线吸收精细结构Electron energy loss spectroscopy (EELS) 电子能量损失谱
Low-energy electron diffraction (LEED) 低能电子衍射Reflection high-energy electron diffraction (RHEED) 反射高能电子衍射Magnetic force microscopy (MFM) 磁力显微镜Secondary ion mass spectroscopy (SIMS) 二次离子质谱
Surface enhanced raman spectroscopy (SERS) 表面增强拉曼光谱Elemental Analysis 元素分析
Electron probe microanalysis (EPMA) 电子探针微分析
Flame photometry 火焰光度法
X-ray fluorescence (XRF)X 射线荧光Inductively Coupled Plasma-Mass Spectrometer (ICP-AES) 电感耦合等离子体发射光谱Electron diffraction 电子衍射
Neutron diffraction 中子衍射
Optical rotatory dispersion (ORD) 旋光色散
Rutherford back scattering (RBS) 卢瑟福背散射。

相关文档
最新文档