长春市中考数学试题及答案
精品解析:2024年吉林省长春市中考数学试题(解析版)
2024年长春市初中学业水平考试数学本试卷包括三道大题,共6页.全卷满分为120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 根据有理数加法法则,计算()23+−过程正确的是( )A. ()32++B. ()32+−C. ()32−+D. ()32−−【答案】D 【解析】【分析】本题主要考查了有理数的加法,掌握“将两个数的绝对值相减,结果的符号与绝对值较大的数的符号相同”成为解题的关键.根据将两个数的绝对值相减,结果的符号与绝对值较大的数的符号相同即可解答. 【详解】解:()()2332+−−−=. 故选D .2. 南湖公园是长春市著名旅游景点之一,图①是公园中“四角亭”景观的照片,图②是其航拍照片,则图③是“四角亭”景观的( ).A. 主视图B. 俯视图C. 左视图D. 右视图【答案】B 【解析】【分析】本题主要考查了几何体的三视图,熟练掌握三视图的定义是解决本题的关键.根据三视图主视图、俯视图、左视图的定义即可解答.【详解】解:由题意可知图③是从“四角亭”上方看到的,即为俯视图. 故选B .3. 在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A. 54oB. 60C. 70D. 72【答案】D 【解析】【分析】本题考查了多边形内角与外角,正多边形的内角和,熟练掌握正多边形的内角和公式是解题的关键.根据正五边形的内角和公式和邻补角的性质即可得到结论. 【详解】解:(52)180180725α−⨯︒∠=︒−=︒,故选:D .4. 下列运算一定正确的是( ) A. 236a a a ⋅= B. 236a a a ⋅=C. ()222ab a b =D. ()235a a =【答案】C 【解析】【分析】本题考查了单项式乘单项式、同底数幂的乘法以及幂的乘方与积的乘方,掌握相关运算法则是解答本题的关键.根据单项式乘单项式的运算法则计算并判断A ;根据同底数幂的乘法法则计算并判断B ;根据积的乘方运算法则计算并判断C ;根据幂的乘方运算法则计算并判断D . 【详解】解:A .2236a a a ⋅=,故本选项不符合题意; B .235a a a ⋅=,故本选项不符合题意;C .()222ab a b =,故本选项符合题意;D .()236a a =,故本选项不符合题意;故选:C .5. 不等关系在生活中广泛存在.如图,a 、b 分别表示两位同学的身高,c 表示台阶的高度.图中两人的对话体现的数学原理是( )A. 若a b >,则a c b c +>+B. 若a b >,b c >,则a c >C. 若a b >,0c >,则ac bc >D. 若a b >,0c >,则a b c c> 【答案】A 【解析】【分析】本题主要考查不等式的性质,熟记不等式性质是解决问题的关键.根据不等式的性质即可解答. 【详解】解:由作图可知:a b >,由右图可知:a c b c +>+,即A 选项符合题意. 故选:A .6. 2024年5月29日16时12分,“长春净月一号”卫星搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点A 时,位于海平面R 处的雷达测得点R 到点A 的距离为a 千米,仰角为θ,则此时火箭距海平面的高度AL 为( )A. sin a θ千米B.sin aθ千米 C. cos a θ千米D.cos aθ千米 【答案】A 【解析】【分析】本题考查解直角三角形,熟记锐角三角函数的定义是解题关键,根据锐角的正弦函数的定义即可求解【详解】解:由题意得:sin AL ALAR aθ== ∴sin AL a θ=千米 故选:A7. 如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ; ②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ; ③以点F圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A. AOM B ∠=∠B. 180OMC C ∠+∠=C. AM CM =D. 12OM AB =【答案】D 【解析】【分析】本题主要考查了作一个角等于已知角,平行线的性质和判定,平行线分线段成比例定理,解题的关键是熟练掌握相关的性质,先根据作图得出AOM B ∠=∠,根据平行线的判定得出OM BC ∥,根据平行线的性质得出180OMC C ∠+∠=,根据平行线分线段成比例得出1AM AOCM OB==,即可得出AM CM =. 【详解】解:A .根据作图可知:AOM B ∠=∠一定成立,故A 不符合题意; B .∵AOM B ∠=∠, ∴OM BC ∥,∴180OMC C ∠+∠=一定成立,故B 不符合题意; C .∵O 是边AB 的中点, ∴AO BO =, ∵OM BC ∥,为∴1AM AOCM OB==, ∴AM CM =一定成立,故C 不符合题意; D .12OM AB =不一定成立,故D 符合题意. 8. 如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0ky k x x=>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0ky k x x=>>的图象交于点C .若BC =B 的坐标是( )A. (B. ()0,3C. ()0,4D. (【答案】B 【解析】【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.如图:过点A 作x 轴的垂线交x 轴于点E ,过点C 作y 轴的垂线交y 轴于点D ,先根据点A 坐标计算出sin OAE ∠、k 值,再根据平移、平行线的性质证明DBC OAE ∠=∠,进而根据sin sin CDDBC OAE BC∠==∠求出CD ,最后代入反比例函数解析式取得点C 的坐标,进而确定2CD =,4OD =,再运用勾股定理求得BD ,进而求得OB 即可解答.【详解】解:如图,过点A 作x 轴的垂线交x 轴于点E ,过点C 作y 轴的垂线交y 轴于点D ,则AE y ∥轴,∵()4,2A ,∴4OE =,OA =∴sinOE OAE OA ∠===. ∵()4,2A 在反比例函数的图象上, ∴428k =⨯=.∴将直线OA 向上平移若干个单位长度后得到直线BC , ∴OA BC ∥, ∴OAE BOA ∠=∠, ∵AE y ∥轴, ∴DBC BOA ∠=∠, ∴DBC OAE ∠=∠,∴sin si n CD DBC OAE BC ∠===∠=2CD =,即点C 的横坐标为2, 将2x =代入8y x=,得4y =, ∴C 点的坐标为()2,4, ∴2CD =,4OD =,∴1BD ==,∴413OB OD BD =−=−=, ∴()0,3B 故选:B .二、填空题:本题共6小题,每小题3分,共18分.9. 单项式22a b −的次数是_____. 【答案】3 【解析】【分析】此题考查单项式有关概念,根据单项式次数的定义来求解,解题的关键是需灵活掌握单项式的系数和次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】单项式22a b −的次数是:213+=, 故答案为:3.10.=____.【解析】【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质. 11. 若抛物线2y x x c =−+(c 是常数)与x 轴没有交点,则c 的取值范围是________. 【答案】14c > 【解析】【分析】本题主要考查了抛物线2y ax bx c =++与x 轴的交点问题,掌握抛物线2y ax bx c =++与x 轴没有交点与20x x c −+=没有实数根是解题的关键.由抛物线与x 轴没有交点,运用根的判别式列出关于c 的一元一次不等式求解即可. 【详解】解:∵抛物线2y x x c =−+与x 轴没有交点, ∴20x x c −+=没有实数根,∴2141140c c ∆=−⨯⨯=−<,14c >. 故答案为:14c >. 12. 已知直线y kx b =+(k 、b 是常数)经过点()1,1,且y 随x 的增大而减小,则b 的值可以是________.(写出一个即可) 【答案】2(答案不唯一) 【解析】【分析】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“0k >,y 随x 的增大而增大;0k <,y 随x 的增大而减小”是解题的关键.利用一次函数图象上点的坐标特征,可得出1k b =+,由y 随x 的增大而减小,利用一次函数的性质,可得出0k <,若代入1k =−,求出b 值即可.【详解】解:∵直线y kx b =+(k 、b 是常数)经过点()1,1, ∴1k b =+.∵y 随x 的增大而减小, ∴0k <,当1k =−时,11b =−+, 解得:2b =, ∴b 的值可以是2.故答案为:2(答案不唯一)13. 一块含30︒角的直角三角板ABC 按如图所示的方式摆放,边AB 与直线l 重合,12cm AB =.现将该三角板绕点B 顺时针旋转,使点C 的对应点C '落在直线l 上,则点A 经过的路径长至少为________cm .(结果保留π)【答案】203π【解析】【分析】本题主要考查了旋转的性质、弧长公式等知识点,掌握弧长公式成为解题的关键.由旋转的性质可得60ABC A BC '∠=∠=︒,即120A BA '∠=︒,再根据点A 经过的路径长至少为以B 为圆心,以AB 为半径的圆弧的长即可解答.【详解】解:∵将该三角板绕点B 顺时针旋转,使点C 的对应点C '落在直线l 上, ∴60ABC A BC '∠=∠=︒,即120A BA '∠=︒, ∴点A 经过的路径长至少为12010201803ππ︒⋅⋅=︒.故答案为:203π. 14. 如图,AB 是半圆的直径,AC 是一条弦,D 是AC 的中点,DE AB ⊥于点E ,交AC 于点F ,DB 交AC 于点G ,连结AD .给出下面四个结论:①ABD DAC ∠=∠; ②AF FG =;③当2DG =,3GB =时,2FG =;④当2BD AD =,6AB =时,DFG 上述结论中,正确结论的序号有________.【答案】①②③ 【解析】【分析】如图:连接DC ,由圆周角定理可判定①;先说明BDE AGD ∠=∠、ADE DAC ∠=∠可得DF FG =、AF FD =,即AF FG =可判定②;先证明∽ADG BDA 可得AD GDBD AD=,即AD GDDG BG AD=+,代入数据可得AD =,然后运用勾股定理可得AG =AF FG =即可判定③;如图:假设半圆的圆心为O ,连接,,OD CO CD ,易得60AOD DOC ∠=∠=︒,从而证明,AOD ODC 是等边三角形,即ADCO 是菱形,然后得到30DAC OAC ∠=∠=︒,再解直角三角形可得DG =ADGS =④.【详解】解:如图:连接DC ,∵D 是AC 的中点, ∴AD DC =,∴ABD DAC ∠=∠,即①正确; ∵AB 是直径, ∴90ADB ∠=︒,∴90DAC AGD ∠+∠=︒, ∵DE AB ⊥ ∴90BDE ABD??,∵ABD DAC ∠=∠, ∴BDE AGD ∠=∠, ∴DF FG =, ∵90BDE ABD??,90BDE ADE ∠+∠=︒,∴ADE ABD ∠=∠, ∵ABD DAC ∠=∠, ∴ADE DAC ∠=∠, ∴AFFD =,∴AF FG =,即②正确; 在ADG △和BDA △,90ADG BDA DAG DBA ∠=∠=︒⎧⎨∠=∠⎩, ∴∽ADG BDA , ∴AD GD BD AD =,即AD GDDG BG AD=+,∴223AD AD=+,即AD =∴AG ==∵AF FG =,∴122FG AG ==,即③正确; 如图:假设半圆的圆心为O ,连接,,OD CO CD , ∵2BD AD =,6AB =,D 是AC 的中点, ∴1,3AD DC AB ==∴60AOD DOC ∠=∠=︒, ∵OA OD OC ==,∴,AOD ODC 是等边三角形,∴6OA AD CD OC OD =====,即ADCO 是菱形, ∴1302DAC OAC DAO ∠=∠=∠=︒, ∵90ADB ∠=︒,∴tan tan 30DG DAC AD ∠=︒=,即36DG=,解得:DG =∴11622ADGSAD DG =⋅=⨯⨯= ∵AF FG = ∴1332DFGADGSS ==故答案为:①②③.【点睛】本题主要考查了圆周角定理、解直角三角形、相似三角形的判定与性质、勾股定理、菱形的判定与性质、等腰三角形的判定与性质等知识点,灵活运用相关知识成为解题的关键.三、解答题:本题共10小题,共78分.15. 先化简,再求值:32222x xx x−−−,其中x=【答案】2x,2【解析】【分析】本题考查了分式的化简求值问题,先算分式的减法运算,再代入求值即可.【详解】解:原式()23222222x xx xx x x−−===−−∵x=,∴原式2=16. 2021年吉林省普通高中开始施行新高考选科模式,此模式有若干种学科组合,每位高中生可根据自己的实际情况选择一种.一对双胞胎姐妹考入同一所高中且选择了相同组合,该校要将所有选报这种组合的学生分成A、B、C三个班,其中每位学生被分到这三个班的机会均等.用画树状图(或列表)的方法,求这对双胞胎姐妹被分到同一个班的概率.【答案】1 3【解析】【分析】本题主要考查列表法与树状图法、概率公式等知识点,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.先列表确定出所有等可能的结果数以及这对双胞胎姐妹被分到同一个班的结果数,然后再利用概率公式计算即可.【详解】解:列表如下:共有9种等可能的结果,其中这对双胞胎姐妹被分到同一个班的结果有3种,所以这对双胞胎姐妹被分到同一个班的概率为31 93 =.17. 《九章算术》被历代数学家尊为“算经之首”.下面是其卷中记载的关于“盈不足”的一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何?这段话的意思是:今有人合伙买金,每人出400钱,会剩余3400钱;每人出300钱,会剩余100钱.合伙人数、金价各是多少?请解决上述问题.【答案】共33人合伙买金,金价为9800钱 【解析】【分析】设共x 人合伙买金,金价为y 钱,根据“每人出400钱,会剩余3400钱;每人出300钱,会剩余100钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论. 【详解】解:设共x 人合伙买金,金价为y 钱,依题意得:4003400300100x yx y −=⎧⎨−=⎩,解得:339800x y =⎧⎨=⎩.答:共33人合伙买金,金价为9800钱.【点睛】本题考查了二元-次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.18. 如图,在四边形ABCD 中,90A B ∠=∠=︒,O 是边AB 的中点,AOD BOC ∠=∠.求证:四边形ABCD 是矩形.【答案】证明见解析. 【解析】【分析】本题考查全等三角形的判定与性质、平行四边形的判定及矩形的判定,熟练掌握判定定理是解题关键.利用SAS 可证明AOD BOC ≌△△,得出AD BC =,根据90A B ∠=∠=︒得出AD BC ∥,即可证明四边形ABCD 是平行四边形,进而根据有一个角是直角的平行四边形是矩形即可证明四边形ABCD 是矩形.【详解】证明:∵O 是边AB 的中点, ∴OA OB =,在AOD △和BOC 中,90A B OA OB AOD BOC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴AOD BOC ≌△△, ∴AD BC =, ∵90A B ∠=∠=︒, ∴AD BC ∥,∴四边形ABCD 是平行四边形, ∵90A B ∠=∠=︒, ∴四边形ABCD 是矩形.19. 某校为调研学生对本校食堂的满意度,从初中部和高中部各随机抽取20名学生对食堂进行满意度评分(满分10分),将收集到的评分数据进行整理、描述和分析.下面给出了部分信息:a .高中部20名学生所评分数频数分布直方图如下图:(数据分成4组:67x ≤<,78x ≤<,89x ≤<,910x ≤≤)b .高中部20名学生所评分数在89x ≤<这一组的是:8.0 8.1 8.2 8.2 8.4 8.5 8.6 8.7 8.8c .初中部、高中部各20名学生所评分数的平均数、中位数如下:根据以上信息,回答下列问题:的(1)表中m 的值为________;(2)根据调查前制定的满意度等级划分标准,评分不低于8.5分为“非常满意”.①在被调查的学生中,设初中部、高中部对食堂“非常满意”的人数分别为a 、b ,则a ________b ;(填“>”“<”或“=”)②高中部共有800名学生在食堂就餐,估计其中对食堂“非常满意”的学生人数. 【答案】(1)8.3(2)①>;②估计其中对食堂“非常满意”的学生人数为360人 【解析】【分析】(1)由题意知,高中部评分的中位数为第1011,位数的平均数,即8.28.42m +=,计算求解即可;(1)①利用中位数进行决策即可;②根据4580020+⨯,计算求解即可. 【小问1详解】解:由题意知,高中部评分的中位数为第1011,位数的平均数,即8.28.48.32m +==, 故答案为:8.3; 【小问2详解】①解:由题意知,初中部评分的中位数为8.5,高中部评分的中位数为8.3, ∴a b >, 故答案为:>; ②解:∵4580036020+⨯=, ∴估计其中对食堂“非常满意”的学生人数为360人.【点睛】本题考查了条形统计图,中位数,利用中位数进行决策,用样本估计总体.熟练掌握条形统计图,中位数,利用中位数进行决策,用样本估计总体是解题的关键.20. 图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作四边形ABCD ,使其是轴对称图形且点C 、D 均在格点上.(1)在图①中,四边形ABCD面积为2;(2)在图②中,四边形ABCD面积为3;(3)在图③中,四边形ABCD面积为4.【答案】(1)见解析(2)见解析(3)见解析【解析】【分析】本题考查网格作图、设计图案、轴对称的性质、平移的性质等知识点,根据轴对称的性质、平移的性质作图是解题的关键.(1)根据轴对称的性质、平移的性质作出面积为2四边形ABCD即可.(2)根据轴对称的性质、平移的性质作出面积为3四边形ABCD即可.(3)根据轴对称的性质、平移的性质作出面积为4四边形ABCD即可.【小问1详解】解:如图①:四边形ABCD即为所求;(不唯一).【小问2详解】解:如图②:四边形ABCD即为所求;(不唯一).【小问3详解】解:如图③:四边形ABCD 即为所求;(不唯一).21. 区间测速是指在某一路段前后设置两个监控点,根据车辆通过两个监控点的时间来计算车辆在该路段上的平均行驶速度.小春驾驶一辆小型汽车在高速公路上行驶,其间经过一段长度为20千米的区间测速路段,从该路段起点开始,他先匀速行驶112小时,再立即减速以另一速度匀速行驶(减速时间忽略不计),当他到达该路段终点时,测速装置测得该辆汽车在整个路段行驶的平均速度为100千米/时.汽车在区间测速路段行驶的路程y (千米)与在此路段行驶的时间x (时)之间的函数图象如图所示.(1)a 的值为________; (2)当112x a ≤≤时,求y 与x 之间的函数关系式; (3)通过计算说明在此区间测速路段内,该辆汽车减速前是否超速.(此路段要求小型汽车行驶速度不得超过120千米/时) 【答案】(1)15(2)11902125y x x ⎛⎫=+≤≤ ⎪⎝⎭(3)没有超速 【解析】【分析】本题考查了一次函数的应用、一次函数的图像、求函数解析式等知识点,掌握待定系数法求函数关系式是解题的关键.(1)由题意可得:当以平均时速为100/千米时行驶时,a 小时路程为20千米,据此即可解答; (2)利用待定系数法求解即可; (3)求出先匀速行驶112小时的速度,据此即可解答. 【小问1详解】解:由题意可得:10020a =,解得:15a =. 故答案为:15. 【小问2详解】 解:设当11125x ≤≤时,y 与x 之间函数关系式为()0y kx b k =+≠, 则:11761205k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:902k b =⎧⎨=⎩,∴11902125y x x ⎛⎫=+≤≤⎪⎝⎭.【小问3详解】 解:当112x =时,19029.512y =⨯+=, ∴先匀速行驶112小时的速度为:19.5114/12÷=(千米时), ∵114120<,∴辆汽车减速前没有超速. 22. 【问题呈现】小明在数学兴趣小组活动时遇到一个几何问题:如图①,在等边ABC 中,3AB =,点M 、N 分别在边AC 、BC 上,且AM CN =,试探究线段MN 长度的最小值.的【问题分析】小明通过构造平行四边形,将双动点问题转化为单动点问题,再通过定角发现这个动点的运动路径,进而解决上述几何问题. 【问题解决】如图②,过点C 、M 分别作MN 、BC 的平行线,并交于点P ,作射线AP .在【问题呈现】的条件下,完成下列问题:(1)证明:AM MP =;(2)CAP ∠的大小为 度,线段MN 长度的最小值为________. 【方法应用】某种简易房屋在整体运输前需用钢丝绳进行加固处理,如图③.小明收集了该房屋的相关数据,并画出了示意图,如图④,ABC 是等腰三角形,四边形BCDE 是矩形,2AB AC CD ===米,30ACB ∠=︒.MN 是一条两端点位置和长度均可调节的钢丝绳,点M 在AC 上,点N 在DE 上.在调整钢丝绳端点位置时,其长度也随之改变,但需始终保持AM DN =.钢丝绳MN 长度的最小值为多少米.【答案】问题解决:(1)见解析(2)30,32;方法应用:线段MN 长度的最小值为2米 【解析】【分析】(1)过点C 、M 分别作MN 、BC 的平行线,并交于点P ,作射线AP ,根据平行四边形性质证明结论即可; (2)先证明30CAPMPA ??,根据垂线段最短求出最小值;(3)过点D 、M 分别作MN 、ED 的平行线,并交于点H ,作射线AH ,连接AD ,求出15MAH ?,进而得45DAH ∠=︒,利用垂线段最短求出即可.【详解】解:问题解决:(1)证明:过点C 、M 分别作MN 、BC 的平行线,并交于点P ,作射线AP ,∴四边形MNCP 是平行四边形,NC MP MN PC \==,AM NC =AM MP ∴=;(2)在等边ABC 中,60ACB ∠=︒,MP CN ∥60PMC ACB \???AM MP =30CAP MPA \???;当CP AP ⊥时,CP 最小,此时MN 最小, 在Rt ACP 中,3,30AC CAP=??13322CP \=?, ∴线段MN 长度的最小值为32; 方法应用:过点D 、M 分别作MN 、ED 的平行线,并交于点H ,作射线AH ,连接AD ,∴四边形MNDH 是平行四边形,,ND MH MN DH MH ED \==,∥AM ND =AM MH ∴=,四边形BCDE 是矩形,,90BC ED BCD \??∥ BC MH \∥ 30ACB CMH\???AM MH = 15MAH \??3m,120AC CD ACD ACB BCD ==????30DAC ∴∠=︒45DAH ∴∠=︒∴当DH AH ⊥时,DH 最小,此时MN 最小,作CR AD ⊥于点R ,在Rt ACR 中,3,30AC CAR =??13322CR \=?,2AR \=2AD AR \==在Rt ADH中,45AD DAH=??2DH AH \==∴线段MN【点睛】本题考查了平行四边形判定与性质、等腰三角形的判定与性质、三角形外角的性质,垂线段最短及矩形性质,熟练掌握相关性质是解题关键.23. 如图,在ABC 中,5AB AC ==,6BC =.点D 是边BC 上的一点(点D 不与点B 、C 重合),作射线AD ,在射线AD 上取点P ,使AP BD =,以AP 为边作正方形APMN ,使点M 和点C 在直线AD 同侧.的(1)当点D 是边BC 的中点时,求AD 的长;(2)当4BD =时,点D 到直线AC 的距离为________; (3)连结PN ,当PN AC ⊥时,求正方形APMN 的边长;(4)若点N 到直线AC 的距离是点M 到直线AC 距离的3倍,则CD 的长为________.(写出一个即可)【答案】(1)4 (2)85(3)177(4)256或259 【解析】【分析】本题考查等腰三角形性质,勾股定理,锐角三角函数,熟练掌握面积法是解题的关键;(1)根据等腰三角形三线合一性质,利用勾股定理即可求解;(2)利用面积法三角形面积相等即可;(3)设AP x =,则BD x =,6CD x =−,过点D 作DHAC ⊥于Q,根据AQ CQ AC +=,建立方程;即可求解;(4)第一种情况,M ,N 在AC 异侧时,设MQ m =,3NQ m =,则4AN m =,证明CDE ANQ ∽,得到CE CDNQ AQ=,即可求解;第二种情况,当M ,N 在AC 同侧,设CD x =,则35CH x =,45DH x =,3425AH x =⨯,求得3345525x x +⨯=,解方程即可求解; 【小问1详解】 解:根据题意可知:5AB AC ==,ABC ∴为等腰三角形,故点D 是边BC 的中点时,AD BC ⊥;在Rt ADC 中,4AD ====;【小问2详解】根据题意作DH AC ⊥,如图所示;当4BD =时,则2CD =,设点D 到直线AC 的距离为DH h =,1124522ACDSh =⨯⨯=⨯⨯, 解得:85h =; 【小问3详解】如图,当NP AC ⊥时,点M 落在AC 上,设AP x =,则BD x =,6CD x =−, 过点D 作DH AC ⊥于Q 则()33655CQ CD x ==−,()44655DQ CD x ==− ()44655AQ DQ CD x ===−,AQ CQ AC +=,()()3466555x x ∴−+−= 解得:177x = 故177=AP , 所以正方形APMN 的边长为177; 【小问4详解】如图,M ,N 在AC 异侧时;设MQ m =,3NQ m =,则4AN m =ANQ ∴三边的比值为3:4:5,AQN C ∴∠=∠,CAD C ∴∠=∠,∴CDE ANQ ∽CE CDNQ AQ= ∴5525326CD =⨯= 当M ,N 在AC 同侧设MQ m =,则3AN AP m ==,2PQ m =,APO ∴三边比为,AQD ∴三边比为设CD x =,则35CH x =,45DH x =,3425AH x =⨯3345525x x ∴+⨯= 解得:259CD x ==综上所述:CD 的长为256或259 24. 在平面直角坐标系中,点O 是坐标原点,抛物线22y x x c =++(c 是常数)经过点()2,2−−.点A 、B 是该抛物线上不重合的两点,横坐标分别为m 、m −,点C 的横坐标为5m −,点C 的纵坐标与点A 的纵坐标相同,连结AB 、AC .(1)求该抛物线对应的函数表达式;(2)求证:当m 取不为零的任意实数时,tan CAB ∠的值始终为2;(3)作AC 的垂直平分线交直线AB 于点D ,以AD 为边、AC 为对角线作菱形ADCE ,连结DE . ①当DE 与此抛物线的对称轴重合时,求菱形ADCE 的面积;②当此抛物线在菱形ADCE 内部的点的纵坐标y 随x 的增大而增大时,直接写出m 的取值范围. 【答案】(1)222y x x =+−(2)见详解 (3)①9ADCE S =菱形;②3m ≤−或10m −≤<或04m <≤ 【解析】【分析】(1)将()2,2−−代入22y x x c =++,解方程即可;(2)过点B 作BH AC ⊥于点H ,由题意得()()22,22,,22A m m m B m m m +−−−−,则4A B BH y y m =−=,2A B AH x x m =−=,因此tan 2BHCAB AH∠==; (3)①记,AC DE 交于点M , ()25,22C m m m −+−,而对称轴为直线=1x −,则512m m−+=−,解得:12m =,则32AM =,3AC =,由tan 232DM DMCAB AM∠===,得3DM =,则6DE =,因此9ADCE S =菱形;②分类讨论,数形结合,记抛物线顶点为点F ,则()1,3F −−,故菱形中只包含在对称轴右侧的抛物线,当0m >时,符合题意;当m 继续变大,直至当直线CD 经过点F 时,符合题意, 过点F 作FQ AC ⊥于点Q ,由CAD FCQ ∠=∠,得到()()2223215m m m +−−−=−−−,解得:4m =4m =+(舍),故04m <≤,当4m >时,发现此时菱形包含了对称轴左侧的抛物线,不符合题意;当0m <时,符合题意:当m 继续变小,直至点A 与点F 重合,此时1m =−,故10m −≤<;当m 继续变小,直线AE 经过点F 时,也符合题意, 过点F 作FQ AC ⊥于点Q ,同上可得,()222321m m m+−−−=−−,解得:3m =−或1m =−(舍),当m 继续变小时,仍符合题意,因此3m ≤−,故m 的取值范围为:3m ≤−或10m −≤<或04m <≤. 【小问1详解】解:将()2,2−−代入22y x x c =++, 得:442c −+=−, 解得:2x =−,∴抛物线表达式为:222y x x =+−; 【小问2详解】解:过点B 作BH AC ⊥于点H ,则90AHB ∠=︒,由题意得:()()22,22,,22A m m m B m m m +−−−−,∴4A B BH y y m =−=,2A B AH x x m =−=, ∴在Rt AHB △中,4tan 22mBH CAB AH m∠===; 【小问3详解】解:①如图,记,AC DE 交于点M ,由题意得,()25,22C m m m −+−,由2122b a −=−=−, 得:对称轴为直线:=1x − ∵四边形ADCE 是菱形,∴点A 、C 关于DE 对称,2,2AC AM DE DM ==, ∵DE 与此抛物线的对称轴重合, ∴512m m−+=−, 解得:12m =, ∴12A x =, ∴()13122AM =−−=∴3AC =, ∵tan 232DM DMCAB AM∠===, ∴3DM =,则6DE =, ∴192ADCE S DE AC =⨯=菱形; ②记抛物线顶点为点F ,把=1x −代入222y x x =+−,得:=3y −,∴()1,3F −−,∵抛物线在菱形ADCE 内部的点的纵坐标y 随x 的增大而增大, ∴菱形中只包含在对称轴右侧的抛物线, 当0m >时,如图,符合题意,当m 继续变大,直至当直线CD 经过点F 时,符合题意,如图:过点F 作FQ AC ⊥于点Q , ∵四边形ADCE 是菱形, ∴DA DC =, ∴CAD FCQ ∠=∠, ∴tan tan 2FQFCQ CAD CQ∠=∠==, ∴()()2223215m m m +−−−=−−−,解得:4m =4m =+(舍),∴04m <≤,当4m >当0m <时,如图,符合题意:当m 继续变小,直至点A 与点F 重合,此时1m =−,符合题意,如图:∴10m −≤<;当m 继续变小,直至直线AE 经过点F 时,也符合题意,如图:过点F 作FQ AC ⊥于点Q ,同上可得,tan 2FQFAQ AQ∠==, ∴()222321m m m+−−−=−−,解得:3m =−或1m =−(舍), 当m 继续变小时,仍符合题意,如图:∴3m ≤−,综上所述,m 的取值范围为:3m ≤−或10m −≤<或04m <≤.【点睛】本题考查了抛物线与几何的综合,菱形的性质,待定系数法求函数解析式,求锐角的正切值,正确理解题意,利用数形结合的思想,找出临界状态是解决本题的关键.。
2024年长春市中考数学试卷
选择题在平面直角坐标系中,点A(3, -2)关于x轴对称的点的坐标是:A. (-3, 2)B. (-3, -2)C. (3, 2)(正确答案)D. (2, 3)已知等腰三角形的两边长分别为3和5,则这个等腰三角形的周长为:A. 8B. 11C. 13(正确答案)D. 11或13函数y = 2x + 1与y = 2x - 3的图象:A. 平行且关于x轴对称B. 平行且关于y轴对称C. 相交且交点在y轴上D. 平行且关于直线y = x对称(正确答案)若关于x的一元二次方程x2 - 4x + m = 0有两个相等的实数根,则m的值为:A. -4B. 4(正确答案)C. 2D. -2下列计算正确的是:A. 3a + 2b = 5abB. a2 · a3 = a6C. (a2)3 = a6(正确答案)D. a6 ÷ a3 = a1已知圆的半径为r,圆心到直线l的距离为d,若直线l与圆相切,则:A. d > rB. d < rC. d = r(正确答案)D. d与r的大小关系不确定在比例尺为1:1000的地图上,测得某矩形区域的图上面积为2cm2,则该矩形区域的实际面积为:A. 2m2B. 20m2C. 200m2(正确答案)D. 2000m2下列不等式组中,解集为x > 2的是:A. {x | x > 1, x > 3}B. {x | x > 1, x ≤ 2}C. {x | x ≥ 2, x < 3}D. {x | x > 1, x > 2}(正确答案)若a、b、c为三角形的三边长,且满足(a - 5)2 + |b - 12| + c2 - 26c + 169 = 0,则此三角形的形状为:A. 等腰三角形B. 等边三角形C. 直角三角形(正确答案)D. 等腰直角三角形。
2023年吉林省长春市中考数学真题(解析版)
2023年长春市初中学业水平考试数学本试卷包括三道大题,共24道小题,共6页.全卷满分20分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名,准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(本大题共8小题,每小题3分,共24分)1. 实数a 、b 、c 、d 伍数轴上对应点位置如图所示,这四个数中绝对值最小的是( )A. aB. bC. cD. d【答案】B【解析】【分析】根据绝对值的意义即可判断出绝对值最小的数.【详解】解:由图可知,3a >,01b <<,01c <<,23d <<,比较四个数的绝对值排除a 和d ,根据绝对值的意义观察图形可知,c 离原点的距离大于b 离原点的距离,<b c \,\这四个数中绝对值最小的是b .故选:B 【点睛】本题考查了绝对值意义,解题的关键在于熟练掌握绝对值的意义,绝对值是指一个数在数轴上所对应点到原点的距离,离原点越近说明绝对值越小.2. 长春龙嘉国际机场T3A 航站楼设计创意为“鹤舞长春”,如图所示,航站楼的造型如仙鹤飞翔,蕴含了对吉春大地未来发展的美好愿景.本期工程按照满足2030年旅客吞吐量38000000人次目标设计的,其中38000000这个数用科学记数法表示为().的A. 80.3810´ B. 63.810´ C. 83.810´ D. 73.810´【答案】D【解析】【分析】根据科学记数法公式转换即可,科学记数法公式为:10n a ´,1<10a £,n 为整数的位数减1.【详解】解:738000000 3.810=´,故选:D .【点睛】本题考查了科学记数法;解题的关键是熟练掌握科学记数法的定义.3. 下列运算正确的是( )A. 32a a a-= B. 23a a a ×= C. ()325a a = D. 623a a a ¸=【答案】B【解析】【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】A. 3a 与2a 不能合并,故该选项不正确,不符合题意;B. 23a a a ×=,故该选项正确,符合题意;C. ()326a a =,故该选项不正确,不符合题意;D. 624a a a ¸=,故该选项不正确,不符合题意;故选:B .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.4. 下图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是( )A. 面①B. 面②C. 面⑤D. 面⑥【答案】C【解析】【分析】根据底面与多面体的上面是相对面,则形状相等,间隔1个长方形,且没有公共顶点,即可求解.【详解】解:依题意,多面体的底面是面③,则多面体的上面是面⑤,故选:C .【点睛】本题考查了长方体的表面展开图,熟练掌握基本几何体的展开图是解题的关键.5. 如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA ¢、BB ¢的中点,只要量出A B ¢¢的长度,就可以道该零件内径AB 的长度.依据的数学基本事实是( )A. 两边及其夹角分别相等的两个三角形全等B. 两角及其夹边分别相等的两个三角形全等C. 两余直线被一组平行线所截,所的对应线段成比例D. 两点之间线段最短【答案】A【解析】【分析】根据题意易证()SAS AOB A OB ¢¢V V ≌,根据证明方法即可求解.【详解】解:O 为AA ¢、BB ¢的中点,OA OA \¢=,OB OB ¢=,AOB A OB ¢¢Ð=ÐQ (对顶角相等),\在AOB V 与A OB ¢¢△中,OA OA AOB A OB OB OB =ìïÐ=Ðíï=¢¢î¢,()SAS AOB A OB ¢¢\△≌△,AB A B ¢¢\=,故选:A .【点睛】本题考查了全等三角形的证明,正确使用全等三角形的证明方法是解题的关键.6. 学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳AB 到地面,如图所示.已彩旗绳与地面形成25°角(即25BAC Ð=°)、彩旗绳固定在地面的位置与图书馆相距32米(即32AC =米),则彩旗绳AB 的长度为( )A. 32sin 25°米B. 32cos 25°米C. 32sin 25°米D. 32cos 25°米【答案】D【解析】【分析】根据余弦值的概念即邻边与斜边之比,即可求出答案.【详解】解:Q AC 表示的是地面,BC 表示是图书馆,AC BC \^,ABC \V 为直角三角形,32cos 25cos 25AC AB \==°°(米).故选:D .【点睛】本题考查的是解直角三角形的应用,涉及到余弦值,解题的关键在于熟练掌握余弦值的概念.7. 如图,用直尺和圆规作MAN Ð的角平分线,根据作图痕迹,下列结论不一定正确的是( )A. AD AE= B. AD DF = C. DF EF = D. AF D E^【答案】B 【解析】【分析】根据作图可得,AD AE DF EF ==,进而逐项分析判断即可求解.【详解】解:根据作图可得,AD AE DF EF ==,故A ,C 正确;∴,A F 在DE 的垂直平分线上,∴AF D E ^,故D 选项正确,而DF EF =不一定成立,故B 选项错误,故选:B .【点睛】本题考查了作角平分线,垂直平分线的判定,熟练掌握基本作图是解题的关键.8. 如图,在平面直角坐标系中,点A 、B 在函数(0,0)k y k x x=>>的图象上,分别以A 、B 为圆心,1为半径作圆,当A e 与x 轴相切、B e 与y 轴相切时,连结AB ,AB =k 的值为( )A. 3B.C. 4D. 6【答案】C【解析】【分析】过点,A B 分别作,y x 轴的垂线,垂足分别为,E D ,,AE BD 交于点C ,得出B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ,则1,1AC k BC k =-=-,根据AB =【详解】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为ED ,,AE BD ,交于点C ,依题意,B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ∴()1,1C ,则1,1AC k BC k =-=-,又∵90ACB Ð=°,AB =,∴()()(22211k k -+-=∴13k -=(负值已舍去)解得:4k =,故选:C .【点睛】本题考查了切线的性质,反比例函数的性质,勾股定理,掌握以上知识是解题的关键.二、填空题(本大题共6小题,每小题3分,共8分)9. 分解因式:21a -=____.【答案】()()11a a +-.【解析】【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键.10. 若关于x 的方程220x x m -+=有两个不相等的实数根,则m 的取值范围是_________.【答案】1m <【解析】【分析】根据根的判别式求出2(2)41440m m D =--´´=->,再求出不等式的解集即可.【详解】解:Q 关于x 的方程220x x m -+=有两个不相等的实数根,2(2)41440m m \D =--´´=->解得:1m <,故答案为:1m <.【点睛】本题考查了根的判别式和解一元一次不等式,解题的关键是能熟记根的判别式的内容是解此题的关键,注意:已知一元二次方程20ax bx c ++=(,,a b c 为常数,0)a ¹,①当240b ac D =->时,方程有两个不相等的实数根,②当240b ac D =-=时,方程有两个相等的实数根,③当24<0b ac D =-时,方程没有实数根.11. 2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x 公里的速度跑了10分钟,此时他离健康跑终点的路程为__________公里.(用含x 的代数式表示)【答案】()7.510x -【解析】【分析】根据题意列出代数式即可.【详解】根据题意可得,他离健康跑终点的路程为()7.510x -.故答案为:()7.510x -.【点睛】此题考查了列代数式,解题的关键是读懂题意.12. 如图,ABC V 和A B C ¢¢¢V 是以点O 为位似中心的位似图形,点A 在线段OA ¢上.若12OA AA ¢=::,则ABC V 和A B C ¢¢¢V 的周长之比为__________.【答案】1:3【解析】【分析】根据位似图形的性质即可求出答案.【详解】解:12OA AA ¢=Q ::,:1:3OA OA ¢\=,设ABC V 周长为1l ,设A B C ¢¢¢V 周长为2l ,ABC QV 和A B C ¢¢¢V 是以点O 为位似中心的位似图形,1213l OA l OA \==¢.12:1:3l l \=.ABC \V 和A B C ¢¢¢V 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.13. 如图,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,展开后,再将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ¢,折痕为AF ,则AFB ¢Ð的大小为__________度.【答案】45【解析】【分析】根据题意求得正五边形的每一个内角为()5218101508-´°=°,根据折叠的性质求得,,BAM FAB ¢ÐÐ在AFB ¢V 中,根据三角形内角和定理即可求解.【详解】解:∵正五边形的每一个内角为()5218101508-´°=°,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,则111085422BAM BAE Ð=Ð=´°=°,∵将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ¢,折痕为AF ,∴11542722FAB BAM ¢Ð=Ð=´°=°,108AB F B ¢Ð=Ð=°,在AFB ¢V 中,1801801082745AFB B FAB ¢¢Ð=°-Ð-Ð=°-°-°=°,故答案为:45.【点睛】本题考查了折叠的性质,正多边形的内角和的应用,熟练掌握折叠的性质是解题的关键.14. 2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A 、B 的水平距离为80米时,两条水柱在物线的顶点H 处相遇,此时相遇点H 距地面20米,喷水口A 、B 距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A ¢、B ¢到地面的距离均保持不变,则此时两条水柱相遇点H ¢距地面__________米.【答案】19【解析】【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令0x =求平移后的抛物线与y 轴的交点即可.【详解】解:由题意可知:()40,4A -、()40,4B 、()0,20H ,设抛物线解析式为:220y ax =+,将()40,4A -代入解析式220y ax =+,解得:1100a =-,220100x y \=-+,消防车同时后退10米,即抛物线220100x y =-+向左(右)平移10米,平移后的抛物线解析式为:()21020100x y +=-+,令0x =,解得:19y =,故答案为:19.【点睛】本题考查了待定系数法求抛物线解析式、函数图像的平移及坐标轴的交点;解题的关键是求得移动前后抛物线的解析式.三、解答题(本大题共10小题,共78分)15. 先化简.再求值:2(1)(1)a a a ++-,其中a =【答案】31a +1【解析】【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.16. 班级联欢会上有一个抽奖活动,每位同学均参加一次抽奖,活动规则下:将三个完全相同的不透明纸杯倒置放在桌面上,每个杯子内放入一个彩蛋,彩蛋颜色分别为红色、红色、绿色.参加活动的同学先从中随机选中一个杯子,记录杯内彩蛋颜色后再将杯子倒置于桌面,重新打乱杯子的摆放位置,再从中随机选中一个杯子,记录杯内彩蛋颜色.若两次选中的彩蛋颜色不同则获一等奖,颜色相同则获二等奖.用画树状图(或列表)的方法,求某同学获一等奖的概率.【答案】49【解析】【分析】依题意画出树状图,运用概率公式求解即可.【详解】解:画树状图如下:共有9种可能,获一等奖即两次颜色不相同的可能有4种,则某同学获一等奖的概率为:49,答:某同学获一等奖的概率为49.【点睛】本题考查了树状图求概率,正确画出树状图是解题的关键.17. 随着中国网民规模突破10亿、博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务.问原计划平均每天制作多少个摆件?【答案】原计划平均每天制作200个摆件.【解析】【分析】设原计划平均每天制作x 个,根据题意列出方程,解方程即可求解.【详解】解:设原计划平均每天制作x 个,根据题意得,3000300051.5x x=+解得:200x =经检验,200x =是原方程的解,且符合题意,答:原计划平均每天制作200个摆件.【点睛】本题考查了分式方程的应用,根据题意列出方程是解题的关键.18. 将两个完全相同的含有30°角的直角三角板在同一平面内按如图所示位置摆放.点A ,E ,B ,D 依次在同一直线上,连结AF 、CD .(1)求证:四边形AFDC 是平行四边形;(2)已知6cm BC =,当四边形AFDC 是菱形时.AD 的长为__________cm .【答案】(1)见解析;(2)18【解析】【分析】(1)由题意可知ACB DFE △≌△易得AC DF =,30CAB FDE Ð=Ð=°即AC DF ∥,依据一组对边平行且相等的四边形是平行四边形可证明;(2)如图,在Rt ACB △中,由30°角所对的直角边等于斜边的一半和直角三角形锐角互余易得212cm AB BC ==,60ABC Ð=°;由菱形得对角线平分对角得30CDA FDA Ð=Ð=°,再由三角形外角和易证BCD CDA Ð=Ð即可得6cm BC BD ==,最后由AD AB BD =+求解即可.【小问1详解】证明:由题意可知ACB DFE △≌△,AC DF =∴,30CAB FDE Ð=Ð=°,AC DF \∥,\四边形AFDC 地平行四边形;【小问2详解】如图,在Rt ACB △中,90ACB Ð=°,30CAB Ð=°,6cm BC =,212cm AB BC \==,60ABC Ð=°,四边形AFDC 是菱形,AD \平分CDF Ð,30CDA FDA \Ð=Ð=°,ABC CDA BCD Ð=Ð+ÐQ ,603030BCD ABC CDA \Ð=Ð-Ð=°-°=°,BCD CDA \Ð=Ð,6cm BC BD \==,18cm AD AB BD \=+=,故答案为:18.【点睛】本题考查了全等三角形的性质,平行四边形的判定,菱形的性质,30°角所对的直角边等于斜边的一半和直角三角形锐角互余,三角形外角及等角对等边;解题的关键是熟练掌握相关知识综合求解.19. 近年来,肥胖经成为影响人们身体健康的重要因素.目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度以及是否健康,其计算公式是22kg BMI=m 体重(单位:)身高(位置:)例如:某人身高1.60m ,体重60kg ,则他的260BMI 23.41.60=».中国成人的BMI 数值标准为:BMI<18.5为偏瘦;18.5BMI 24£<为正常;24BMI 28£<为偏胖;BMI 28³为肥胖.某公司为了解员工的健康情况,随机抽取了一部分员工的体检数据,通过计算得到他们的BMI 值并绘制了如下两幅不完整的统计图.根据以上信息回答下列问题:(1)补全条形统计图;(2)请估计该公司200名员工中属于偏胖和肥胖的总人数;(3)基于上述统计结果,公司建议每个人制定健身计划.员工小张身高1.70m ,BMI 值为27,他想通过健身减重使自己的BMI 值达到正常,则他的体重至少需要减掉_________kg .(结果精确到1kg )【答案】(1)见解析(2)110人(3)9【解析】【分析】(1)根据属于正常的人数除以占比得出抽取的人数,结合条形统计图求得属于偏胖的人数,进而补全统计图即可求解;(2)用属于偏胖和肥胖的占比乘以200即可求解;(3)设小张体重需要减掉kg x ,根据BMI 计算公式,列出不等式,解不等式即可求解.小问1详解】抽取了735%20¸=人,属于偏胖的人数为:202738---=,补全统计图如图所示,【【小问2详解】8320011020+´=(人)【小问3详解】设小张体重需要减掉kg x ,依题意,227241.70x -<解得:8.67x >,答:他的体重至少需要减掉9kg ,故答案为:9.【点睛】本题考查了条形统计图与扇形统计图信息关联,样本估计总体,一元一次不等式的应用,根据统计图表获取信息是解题的关键.20. 图①、图②、图③均是55´的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作ABC V ,点C 在格点上.(1)在图①中,ABC V 的面积为92;(2)在图②中,ABC V 的面积为5(3)在图③中,ABC V 是面积为52的钝角三角形.【答案】(1)见解析 (2)见解析(3)见解析【解析】【分析】(1)以3AB =为底,设AB 边上的高为h ,依题意得19·22ABC S AB h ==V ,解得3h =,即点C 在AB 上方且到AB 距离为3个单位的线段上的格点即可;(2)由网格可知,AB ==AB AB 边上的高为h ,依题意得1·52ABC S AB h ==V ,解得h =,将AB 绕A 或B 旋转90°,过线段的另一个端点作AB 的平行线,与网格格点的交点即为点C ;(3)作BD AB ==,过点D 作CD AB ∥,交于格点C ,连接A 、B 、C 即可.【小问1详解】解:如图所示,以3AB =为底,设AB 边上的高为h ,依题意得:19·22ABC S AB h ==V 解得:3h =即点C 在AB 上方且到AB 距离为3个单位的线段上的格点即可,答案不唯一;【小问2详解】由网格可知,AB ==以AB =为底,设AB 边上的高为h ,依题意得:1·52ABC S AB h ==V解得:h =将AB 绕A 或B 旋转90°,过线段的另一个端点作AB 的平行线,与网格格点的交点即为点C ,答案不唯一,【小问3详解】如图所示,作BD AB ==,过点D 作CD AB ∥,交于格点C ,由网格可知,BD AB ===,AD =,∴ABD △是直角三角形,且AB BD^∵CD AB∥∴15·22ABC S AB BD ==V .【点睛】本题考查了网格作图,勾股定理求线段长度,与三角形的高的有关计算;解题的关键是熟练利用网格作平行线或垂直.21. 甲、乙两个相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车到达山顶.甲、乙距山脚的垂直高度y (米)与甲登山的时间x (分钟)之间的函数图象如图所示.(1)当1540x ££时,求乙距山脚的垂直高度y 与x 之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.【答案】(1)12180y x =-(2)180【解析】【分析】(1)待定系数法求解析式即可求解;(2)求得甲距山脚的垂直高度y 与x 之间的函数关系式为460y x =+()2560x ££,联立12180y x =-()1540x ££,即可求解.【小问1详解】解:设乙距山脚垂直高度y 与x 之间的函数关系式为y kx b =+,将()15,0,()40,300代入得,15040300k b k b +=ìí+=î,解得:12180k b =ìí=-î,∴12180y x =-()1540x ££;【小问2详解】设甲距山脚的垂直高度y 与x 之间的函数关系式为11y k x b =+()2560x ££将点()()25,16060,300,代入得,11112516060300k b k b +=ìí+=î解得:11460k b =ìí=î,∴460y x =+()2560x ££;联立12180460y x y x =-ìí=+î解得:30180x y =ìí=î∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为180米【点睛】本题考查了一次函数的应用,熟练掌握待定系数法求解析式是解题的关键.22. 【感知】如图①,点A 、B 、P 均在O e 上,90AOB Ð=°,则锐角APB Ð的大小为__________度.的【探究】小明遇到这样一个问题:如图②,O e 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA 至点E ,使AE PC =,连结BE ,Q 四边形ABCP 是O e 的内接四边形,180BAP BCP \Ð+Ð=°.180BAP BAE Ð+Ð=°Q ,BCP BAE \Ð=Ð.ABC QV 是等边三角形.BA BC \=,(SAS)PBC EBA \V V ≌请你补全余下的证明过程.【应用】如图③,O e 是ABC V 的外接圆,90ABC AB BC Ð=°=,,点P 在O e 上,且点P 与点B 在AC 的两侧,连结PA 、PB 、PC .若PB =,则PB PC 的值为__________.【答案】感知:45【解析】【分析】感知:由圆周角定理即可求解;探究:延长PA 至点E ,使AE PC =,连结BE ,通过证明(SAS)PBC EBA V V ≌,可推得PBE 是等边三角形,进而得证;应用:延长PA 至点E ,使AE PC =,连结BE ,通过证明(SAS)PBC EBA V V ≌得,可推得PBE 是等腰直角三角形,结合PE PA PC =+与PE =可得3PC PA =,代入PB PC即可求解.【详解】感知:由圆周角定理可得1245APB AOB Ð=Ð=°,故答案为:45;探究:证明:延长PA 至点E ,使AE PC =,连结BE ,Q 四边形ABCP 是O e 的内接四边形,180BAP BCP \Ð+Ð=°.180BAP BAE Ð+Ð=°Q ,BCP BAE \Ð=Ð.ABC QV 是等边三角形.BA BC \=,(SAS)PBC EBA \V V ≌,∴PB EB =,PBC EBA Ð=Ð,60EBA ABP PBC ABP ABC \Ð+Ð=Ð+Ð=Ð=°,PBE \V 是等边三角形,PB PE \=,PB PE PA AE PA PC \==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,Q 四边形ABCP 是O e 的内接四边形,180BAP BCP \Ð+Ð=°.180BAP BAE Ð+Ð=°Q ,BCP BAE \Ð=Ð.AB CB =Q ,(SAS)PBC EBA \V V ≌,∴PB EB =,PBC EBA Ð=Ð,90EBA ABP PBC ABP ABC \Ð+Ð=Ð+Ð=Ð=°,PBE \V 是等腰直角三角形,222PB BE PE \+=,222PB PE \=,即PE =,PE PA AE PA PC =+=+Q ,PA PC \+=,PB =Q ,4PA PC PA \+==,3PC PA \=,PB PC \==.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA V V ≌,进行转换求解.23. 如图①.在矩形ABCD .35AB AD ==,,点E 在边BC 上,且2BE =.动点P 从点E 出发,沿折线EB BA AD --以每秒1个单位长度的速度运动,作90PEQ Ð=°,EQ 交边AD 或边DC 于点Q ,连续PQ .当点Q 与点C 重合时,点P 停止运动.设点P 的运动时间为t 秒.(0t >)(1)当点P 和点B 重合时,线段PQ 的长为__________;(2)当点Q 和点D 重合时,求tan PQE Ð;(3)当点P 在边AD 上运动时,PQE V 的形状始终是等腰直角三角形.如图②.请说明理由;(4)作点E 关于直线PQ 的对称点F ,连接PF 、QF ,当四边形EPFQ 和矩形ABCD 重叠部分图形为轴对称四边形时,直接写出t 的取值范围.【答案】(1(2)23(3)见解析(4)0t <£176t =或7t =【解析】【分析】(1)证明四边形ABEQ 是矩形,进而在Rt QBE △中,勾股定理即可求解.(2)证明PBE ECD V V ∽,得出2tan 3PE BE PQE DE CD Ð===;(3)过点P 作PH BC ^于点H ,证明PHE ECQ V V ≌得出PE QE =,即可得出结论(4)分三种情况讨论,①如图所示,当点P 在BE 上时,②当P 点在AB 上时,当,F A 重合时符合题意,此时如图,③当点P 在AD 上,当,F D 重合时,此时Q 与点C 重合,则PFQE 是正方形,即可求解.【小问1详解】解:如图所示,连接BQ ,∵四边形ABCD 是矩形∴90BAQ ABE Ð=Ð=°∵90PEQ Ð=°,∴四边形ABEQ 是矩形,当点P 和点B 重合时,∴3QE AB ==,2BE =在Rt QBE △中,BQ ===,.【小问2详解】如图所示,∵90PEQ Ð=°,90PBE ECD Ð=Ð=°,∴1290,2390Ð+Ð=°Ð+Ð=°,∴13Ð=Ð∴PBE ECD V V ∽,∴PE BE DE CD=,∵2BE =,3CD AB ==,∴2tan 3PE BE PQE DE CD Ð===;【小问3详解】如图所示,过点P 作PH BC ^于点H ,∵90PEQ Ð=°,90PHE ECQ Ð=Ð=°,∴1290,2390Ð+Ð=°Ð+Ð=°,则四边形ABHP 是矩形,∴PH AB =3=又∵523EC BC BE =-=-=∴PH EC =,∴PHE ECQV ≌∴PE QE=∴PQE V 是等腰直角三角形;【小问4详解】①如图所示,当点P 在BE 上时,∵3,2QE QF AQ BE ====,在Rt AQF △中,AF ===则3BF =∵PE t =,则2BP t =-,PF PE t ==,Rt PBF V 中,222PF PB FB =+,∴(()22232t t =+-解得:t =当t <F 在矩形内部,符合题意,∴0t <£符合题意,②当P 点在AB 上时,当,F A 重合时符合题意,此时如图,在则2PB t BE t =-=-,PE =()325AP AB PB t t =-=--=-,在Rt PBE △中,222PE PB BE =+()()222522t t -=-+,解得:176t =,③当点P 在AD 上,当,F D 重合时,此时Q 与点C 重合,则PFQE 是正方形,此时2327t =++=综上所述,0t <£或176t =或7t =.【点睛】本题考查了矩形的性质,正方形的性质与判定,勾股定理,求正切,轴对称的性质,分类讨论,分别画出图形,数形结合是解题的关键.24. 在平面直角坐标系中,点O 为坐标原点,抛物线22y x bx =-++(b 是常数)经过点(2,2).点A 的坐标为(,0)m ,点B 在该抛物线上,横坐标为1m -.其中0m <.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点B 在x 轴上时,求点A 的坐标;(3)该抛物线与x 轴的左交点为P ,当抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点与最低点的纵坐标之差为2m -时,求m 的值.(4)当点B 在x 轴上方时,过点B 作BC y ^轴于点C ,连结AC 、BO .若四边形AOBC 的边和抛物线有两个交点(不包括四边形AOBC 的顶点),设这两个交点分别为点E 、点F ,线段BO 的中点为D .当以点C 、E 、O 、D (或以点C 、F 、O 、D )为顶点的四边形的面积是四边形AOBC 面积的一半时,直接写出所有满足条件的m 的值.【答案】(1)222y x x =-++;顶点坐标为()1,3(2)()A(3)1m =-或2m =-(4)2m =-+或2m =-或12m =-【解析】【分析】(1)将点(2,2)代入抛物线解析式,待定系数法即可求解;(2)当0y =时,2220x x -++=,求得抛物线与x 轴的交点坐标,根据抛物线上的点B 在x 轴上时,横坐标为1m -.其中0m <,得出m =,即可求解;(3)①如图所示,当111m <-<,即0m <<时,②当11m -³m £时,分别画出图形,根据最高点与最低点的纵坐标之差为2m -,建立方程,解方程即可求解;(4)根据B 在x 轴的上方,得出m <<E 是AC 的中点,②同理当F 为AO 的中点时,③12AOC CDF S S =V V ,根据题意分别得出方程,解方程即可求解.【小问1详解】解:将点(2,2)代入抛物线22y x bx =-++,得,2422b =-++解得:2b =∴抛物线解析式为222y x x =-++;∵222y x x =-++()213x =--+,∴顶点坐标为()1,3,【小问2详解】解:由222y x x =-++,当0y =时,2220x x -++=,解得:1211x x =-=+,∵抛物线上的点B 在x 轴上时,横坐标为1m -.其中0m <.∴1m 1->∴11m -=+解得:m =,∵点A 的坐标为(,0)m ,∴()A ;【小问3详解】①如图所示,当111m <-<+,即0m <<时,抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点为顶点,最低点为点P ,∵顶点坐标为()1,3,()1P 则纵坐标之差为303-=依题意,32m=-解得:1m =-;②当11m -³+m £时,∵()()()21,1212B m m m ---+-+,即()21,3B m m --+,依题意,()2332m m --+=-,解得:2m =-或1m =(舍去),综上所述,1m =-或2m =-;【小问4详解】解:如图所示,∵B 在x 轴的上方,∴111m -<-<+∴m <<∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D ∴BCD CODS S =V V ∵AOBC AOC BOC S S S =+V V ,BOC BCD CODS S S =+V V V ①当E 是AC 的中点,如图所示则2AOBC CEOD S S =,∴23,22m m E æö-+ç÷èø代入222y x x =-++,即22322222m m m -+æö=-+´+ç÷èø,解得:2m =-(舍去)或2m =-+;②同理当F 为AO 的中点时,如图所示,ACF CFO S S =V V ,BCD COD S S =V V ,则点C 、F 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,∴12m =-,解得:2m =-,③如图所示,设BOC S S =V ,则12DBC S S =V ,∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D∴12CDF FDB AOC S S S S +=+V V V 即1122CDF CDF AOC S S S S S +=-+V V V ∴12AOC CDF S S =V V , ∴CF AO =,∴()2,3F m m --+,∵,B F 关于1x =对称,∴112m m -+-=,解得:12m =-,综上所述,2m =-或2m =-或12m =-.【点睛】本题考查了二次函数综合运用,二次函数的性质,面积问题,根据题意画出图形,分类讨论,熟练掌握二次函数的性质是解题的关键.。
吉林省长春市中考数学试卷及答案(Word解析版)
吉林省长春市中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(•长春)的绝对值等于()A.B.4C.D.﹣4考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣的绝对值等于,即|﹣|=.故选A.点评:本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(•长春)如图是由四个相同的小长方体组成的立体图形,这个立体图形的正视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个长方形,位于左边,第二层有2个长方形.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)(•长春)我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为()A.14×106B.1.4×107C.1.4×108D.0.14×108考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14 000 000有8位,所以可以确定n=8﹣1=7.解答:解:14 000 000=1.4×107.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(•长春)不等式2x<﹣4的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式分析:首先解不等式求得不等式的解集,根据数轴上点的表示法即可判断.解答:解:解不等式得:x<﹣2.故选D.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(•长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D 在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°考点:平行线的性质;直角三角形的性质.分析:首先根据垂直定义可得∠ADE=90°,再根据∠FDE=30°,可得∠ADF=60°,然后根据两直线平行同位角相等可得∠B的大小.解答:解:∵DE⊥AB,∴∠ADE=90°,∵∠FDE=30°,∴∠ADF=90°﹣30°=60°,∵BC∥DF,∴∠B=∠ADF=60°,故选:C.点评:此题主要考查了平行线的性质,关键是掌握两直线平行同位角相等.6.(3分)(•长春)如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC 弧上,则∠ADB的大小为()A.46°B.53°C.56°D.71°考点:圆周角定理.分析:根据三角形内角和定理求出∠ACB,根据圆周角定理得出∠C,求出即可.解答:解:∵∠ABC=71°,∠CAB=53°,∴∠ACB=180°﹣∠ABC﹣∠BAC=56°,∵弧AB对的圆周角是∠ADB和∠ACB,∴∠ADB=∠ACB=56°,故选C.点评:本题考查了圆周角定理和三角形内角和定理的应用,关键是求出∠ACB的度数和得出∠ACB=∠ADB.7.(3分)(•长春)如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A.B.C.2D.3考点:相似三角形的判定与性质.专题:探究型.分析:先根据题意判断出△ABD∽△BDC,再根据相似三角形的对应边成比例即可得出CD的长.解答:解:∵∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,∴△ABD∽△BDC,∴=,即=,解得CD=.故选B.点评:本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.8.(3分)(•长春)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x 轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()A.B.3C.4D.5考点:一次函数图象上点的坐标特征;坐标与图形变化-平移分析:根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.解答:解:如图,连接AA′、BB′.∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是3.又∵点A的对应点在直线y=x上一点,∴3=x,解得x=4.∴点A′的坐标是(4,3),∴AA′=4.∴根据平移的性质知BB′=AA′=4.故选C.点评:本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.根据平移的性质得到BB′=AA′是解题的关键.二、填空题(每小题3分,共18分)9.(3分)(•长春)计算:a2•5a=5a3.考点:单项式乘单项式专题:计算题.分析:利用单项式乘单项式法则计算即可得到结果.解答:解:原式=5a3.故答案为:5a3.点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.10.(3分)(•长春)吉林广播电视塔“五一”假期第一天接待游客m人,第二天接待游客n人,则这2天平均每天接待游客人(用含m、n的代数式表示).考点:列代数式分析:用两天接待的游客总人数除以天数,即可得解.解答:解:2天平均每天接待游客.故答案为:.点评:本题考查了列代数式,比较简单,熟练掌握平均数的求法是解题的关键.11.(3分)(•长春)如图,MN是⊙O的弦,正方形OABC的顶点B、C在MN上,且点B是CM的中点.若正方形OABC的边长为7,则MN的长为28.考点:垂径定理;正方形的性质.分析:根据正方形性质得出BC=7,∠OCB=90°,根据垂径定理得出CM=2BC,推出MN=4BC,代入求出即可.解答:解:∵四边形OABC是正方形,∴BC=7,∠OCB=90°,∴OC⊥MN,∴由垂径定理得:MN=2CM,∵点B是CM的中点,∴CM=2BC,∴MN=4BC=4×7=28,故答案为:28.点评:本题考查了垂径定理和正方形性质的应用,关键是推出MN=4BC.12.(3分)(•长春)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC 的大小为65度.考点:全等三角形的判定与性质.分析:根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA全等,再根据全等三角形对应角相等解答.解答:解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA,∴∠ADC=∠B=65°.故答案为:65.点评:本题考查了全等三角形的判定与性质,根据作法得到全等三角形相等的边是解题的关键.13.(3分)(•长春)如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k 的值为.考点:正多边形和圆;反比例函数图象上点的坐标特征.分析:连接OB,过B作BM⊥OA于M,得出等边三角形AOB,求出OB,根据锐角三角函数求出BM和OM,即可得出B的坐标,代入即可求出答案.解答:解:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=6,∴BM=OB•sin∠BOA=6×sin60°=3,OM=OB•COS60°=3,即B的坐标是(3,3),∵B在反比例函数位于第一象限的图象上,∴k=3×3=9,故答案为:9.点评:本题考查了正多边形性质,锐角三角函数,反比例函数的性质,等边三角形的性质和判定的应用,关键是求出B的坐标.14.(3分)(•长春)如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长值为6.考点:二次函数图象上点的坐标特征.分析:先由y轴上点的横坐标为0求出A点坐标为(0,3),再将y=3代入y=,求出x的值,得出B、C两点的坐标,进而求出BC的长度.解答:解:∵抛物线y=ax2+3与y轴交于点A,∴A点坐标为(0,3).当y=3时,=3,解得x=±3,∴B点坐标为(﹣3,3),C点坐标为(3,3),∴BC=3﹣(﹣3)=6.故答案为6.点评:本题考查了二次函数图象上点的坐标特征,两函数交点坐标的求法,平行于x轴上的两点之间的距离,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)(•长春)先化简,再求值:,其中x=.考点:分式的化简求值专题:计算题.分析:将的分子因式分解,然后约分;再将(x﹣2)2展开,合并同类项后再代入求值即可.解答:解:原式==4x+x2﹣4x+4=x2+4.当x=时,原式==11.点评:本题考查了分式的化简求值,熟悉因式分解及约分、通分是解题的关键.16.(6分)(•长春)甲、乙两人各有一个不透明的口袋,甲的口袋中装有1个白球和2个红球,乙的口袋中装有2个白球和1个红球,这些球除颜色外其他都相同.甲、乙两人分别从各自口袋中随机摸出1个球,用画树状图(或列表)的方法,求两人摸出的球颜色相同的概率.考点:列表法与树状图法专题:计算题.分析:列表得出所有等可能的情况数,找出两人摸出的求颜色相同的情况数,即可求出所求的概率.解答:解:列表如下:甲乙结果白红红白(白,白)(红,白)(红,白)白(白,白)(红,白)(红,白)红(白,红)(红,红)(红,红)所有等可能的情况有9种,其中颜色相同的情况有4种,则P(两人摸出的球颜色相同)=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)(•长春)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.考点:分式方程的应用.分析:首先设第一组有x人,则第二组人数是1.5x人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数﹣第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方即可.解答:解:设第一组有x人.根据题意,得=,解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.18.(7分)(•长春)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.考点:平行四边形的性质专题:证明题.分析:根据平行四边形的对边平行且相等可得AD=EF,AD∥EF,再根据两直线平行,同位角相等可得∠ACB=∠FEB,根据等边对等角求出∠ACB=∠B,从而得到∠FEB=∠B,然后根据等角对等边证明即可.解答:证明:∵四边形ADEF为平行四边形,∴AD=EF,AD∥EF,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.点评:本题考查了平行四边形对边平行且相等的性质,平行线的性质,等角对等边的性质,熟练掌握各性质是解题的关键.19.(7分)(•长春)如图,岸边的点A处距水面的高度AB为2.17米,桥墩顶部点C距水面的高度CD为23.17米.从点A处测得桥墩顶部点C的仰角为26°,求岸边的点A与桥墩顶部点C之间的距离.(结果精确到0.1米)(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)考点:解直角三角形的应用-仰角俯角问题分析:在Rt△CAE中,利用CD、DE的长和已知的角的度数,利用正弦函数可求得AC的长.解答:解:由题意知,DE=AB=2.17,∴CE=CD﹣DE=12.17﹣2.17=10.在Rt△CAE中,∠CAE=26°,sin∠CAE=,∴AC===≈22.7(米).答:岸边的点A与桥墩顶部点C之间的距离约为22.7米.点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.20.(7分)(•长春)某校学生会为了解学生在学校食堂就餐剩饭情况,随机对上周在食堂就餐的n名学生进行了调查,先调查是否剩饭的情况,然后再对其中剩饭的每名学生的剩饭次数进行调查.根据调查结果绘制成如下统计图.(1)求这n名学生中剩饭学生的人数及n的值.(2)求这n名学生中剩饭2次以上的学生占这n名学生人数的百分比.(3)按上述统计结果,估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的人数.考点:条形统计图;用样本估计总体;扇形统计图专题:计算题.分析:(1)由条形统计图中的数据相加即可求出n名学生中剩饭的学生人数,除以剩饭学生所占的百分比即可求出学生的总数,即为n的值;(2)根据条形统计图得到剩饭2次以上的人数,除以n的值,即可求出结果;(3)根据(2)中求出的百分比,乘以1200即可得到结果.解答:解:(1)根据题意得:这n名学生中剩饭学生的人数为58+41+6=105(人),n的值为105÷70%=150,则这n名学生中剩饭的学生有105人,n的值为150;(2)根据题意得:6÷150×100%=4%,则剩饭2次以上的学生占这n名学生人数的4%;(3)根据题意得:1200×4%=48(人).则估计上周在学校食堂就餐的1200名学生中剩饭2次以上的约有48人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(8分)(•长春)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.考点:一次函数的应用分析:(1)先求出乙队铺设路面的工作效率,计算出乙队完成需要的时间求出E的坐标,再由待定系数法就可以求出结论.(2)由(1)的结论求出甲队完成的时间,把时间代入乙的解析式就可以求出结论.解答:(1)设线段BC所在直线对应的函数关系式为y=k1x+b1.∵图象经过(3,0)、(5,50),∴∴线段BC所在直线对应的函数关系式为y=25x﹣75.设线段DE所在直线对应的函数关系式为y=k2x+b2.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:(160﹣50)÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5.(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.答:当甲队清理完路面时,乙队铺设完的路面长为87.5米.点评:本题考查了待定系数法求一次函数的解析式的运用,工作总量=工作效率×工作时间的运用,解答时求出函数的解析式是关键.22.(9分)(•长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为152.考点:全等三角形的判定与性质;正方形的判定与性质.分析:探究:过点A作AF⊥CB,交CB的延长线于点F,先判定四边形AFCE为矩形,根据矩形的四个角都是直角可得∠FAE=90°,然后利用同角的余角相等求出∠FAB=∠EAD,再利用“角角边”证明△AFB和△AED全等,根据全等三角形对应边相等可得AE=AF,从而得到四边形AFCE是正方形,然后根据正方形的面积公式列计算即可得解;应用:过点A作AF⊥CD交CD的延长线于F,连接AC,根据同角的补角相等可得∠ABC=∠ADF,然后利用“角角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AF=AE,再根据S四边形ABCD=S△ABC+S△ACD列式计算即可得解.解答:探究:如图①,过点A作AF⊥CB,交CB的延长线于点F,∵AE⊥CD,∠BCD=90°,∴四边形AFCE为矩形,∴∠FAE=90°,∴∠FAB+∠BAE=90°,∵∠EAD+∠BAE=90°,∴∠FAB=∠EAD,∵在△AFB和△AED中,,∴△AFB≌△AED(AAS),∴AF=AE,∴四边形AFCE为正方形,∴S四边形ABCD=S正方形AFCE=AE2=102=100;应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC,则∠ADF+∠ADC=180°,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADF,∵在△ABE和△ADF中,,∴△ABE≌△ADF(AAS),∴AF=AE=19,∴S四边形ABCD=S△ABC+S△ACD=BC•AE+CD•AF=×10×19+×6×19=95+57=152.故答案为:152.点评:本题考查了全等三角形的判定与性质,正方形的判定与性质,(1)作辅助线构造出全等三角形是解题的关键;(2)作辅助线构造出全等三角形并把四边形分成两个三角形是解题的关键.23.(10分)(•长春)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.(1)求这条抛物线所对应的函数关系式.(2)求点C在这条抛物线上时m的值.(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.①当点D在这条抛物线的对称轴上时,求点D的坐标.②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(,))考点:二次函数综合题分析:(1)将A(﹣1,0)、B(4,0)两点的坐标代入y=ax2+bx﹣2,运用待定系数法即可求出抛物线的解析式;(2)先根据等腰直角三角形的性质求出点C的坐标为(m,2),再将C的坐标代入y=x2﹣x﹣2,即可求出m的值;(3)①先由旋转的性质得出点D的坐标为(m,﹣2),再根据二次函数的性质求出抛物线y=x2﹣x﹣2的对称轴为直线x=,然后根据点D在直线x=上,即可求出点D的坐标;②以DN为直角边作等腰直角三角形DNE时,分别以D、N为直角顶点,在DN的两侧分别作出等腰直角三角形DNE,E点的位置分四种情况讨论.针对每一种情况,都可以先根据等腰直角三角形的性质求出点E的坐标,然后根据点E在直线x=上,列出关于m的方程,解方程即可求出m的值.解答:解:(1)∵抛物线经过点A(﹣1,0)、B(4,0),∴解得∴抛物线所对应的函数关系式为y=x2﹣x﹣2;(2)∵△CMN是等腰直角三角形CMN,∠CMN=90°,∴CM=MN=2,∴点C的坐标为(m,2),∵点C(m,2)在抛物线上,∴m2﹣m﹣2=2,解得m1=,m2=.∴点C在这条抛物线上时,m的值为或;(3)①∵将线段CN绕点N逆时针旋转90°后,得到对应线段DN,∴∠CND=90°,DN=CN=CM=MN,∴CD=CN=2CM=2MN,∴DM=CM=MN,∠DMN=90°,∴点D的坐标为(m,﹣2).又∵抛物线y=x2﹣x﹣2的对称轴为直线x=,点D在这条抛物线的对称轴上,∴点D的坐标为(,﹣2);②如图,以DN为直角边作等腰直角三角形DNE,E点的位置有四种情况:如果E点在E1的位置时,∵点D的坐标为(m,﹣2),MN=ME1=2,点N的坐标为(m+2,0),∴点E1的(m﹣2,0),∵点E1在抛物线y=x2﹣x﹣2的对称轴x=上,∴m﹣2=,解得m=;如果E点在E2的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E2的(m+2,﹣4),∵点E2在抛物线y=x2﹣x﹣2的对称轴x=上,∴m+2=,解得m=﹣;如果E点在E3的位置时,∵点D的坐标为(m,﹣2),∴点E3的(m,2),∵点E3在抛物线y=x2﹣x﹣2的对称轴x=上,∴m=;如果E点在E4的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E4的(m+4,﹣2),∵点E4在抛物线y=x2﹣x﹣2的对称轴x=上,∴m+4=,解得m=﹣;综上可知,当点E在这条抛物线的对称轴上时,所有符合条件的m的值为m=﹣或m=﹣或m=或m=.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求抛物线的解析式,二次函数的性质,等腰直角三角形的性质,旋转的性质等知识,综合性较强,难度适中.其中(3)②要注意分析题意分情况讨论E点可能的位置,这是解题的关键.24.(12分)(•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A ﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.考点:四边形综合题.分析:(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;(2)分类讨论,当0<t<1时,当1<t<时,根据三角形的面积公式分别求出S 与t的函数关系式;(3)分情况讨论,当0<t<1时,当1<t<时,当<t<时,利用三角形的面积相等建立方程求出其解即可;(4)分情况讨论当P在A﹣D之间或D﹣A之间时,如图⑥,根据轴对称的性质可以知道四边形QCOC′为菱形,根据其性质建立方程求出其解,当P在D﹣A之间如图⑦,根据菱形的性质建立方程求出其解即可.解答:解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8.当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t.(2分)(2)当点P与点A重合时,BP=AB,t=1.当点P与点D重合时,AP=AD,8t﹣8=50,t=.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ==,∴QE===.∴S=﹣30t2+30t.当1<t≤时,如图②.S==,∴S=48t﹣48;(3)当点P与点R重合时,AP=BQ,8t﹣8=5t,t=.当0<t≤1时,如图③.∵S△BPM=S△BQM,∴PM=QM.∵AB∥QR,∴∠PBM=∠QRM,∠BPM=∠MQR,在△BPM和△RQM中,∴△BPM≌△RQM.∴BP=RQ,∵RQ=AB,∴BP=AB∴13t=13,解得:t=1当1<t≤时,如图④.∵BR平分阴影部分面积,∴P与点R重合.∴t=.当<t≤时,如图⑤.∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A﹣D之间或D﹣A之间时,C′D′在BC上方且C′D′∥BC 时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50﹣5t=50﹣8(t﹣1)+13,或50﹣5t=8(t﹣1)﹣50+13,解得:t=7或t=.当P在A﹣D之间或D﹣A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50﹣5t+13=8(t﹣1)﹣50,解得:t=.∴当t=7,t=,t=时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.点评:本题考查了平行四边形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,分类讨论的数学思想的运用,轴对称的性质的运用,三角形的面积公式的运用,解答时灵活运用动点问题的解答方法确定分界点是解答本题的关键和难点.。
2023年吉林省长春市中考数学真题(解析)
2023年长春市初中学业水平考试数学一、选择题(本大题共8小题,每小题3分,共24分)1.【答案】B 【解析】解:由图可知,3a >,01b <<,01c <<,23d <<,比较四个数的绝对值排除a 和d ,根据绝对值的意义观察图形可知,c 离原点的距离大于b 离原点的距离,<b c ∴,∴这四个数中绝对值最小的是b .故选:B .2.【答案】D【解析】解:738000000 3.810=⨯,故选:D .3.【答案】B【解析】A 选项,3a 与2a 不能合并,故该选项不正确,不符合题意;B 选项,23a a a ⋅=,故该选项正确,符合题意;C 选项,()326a a =,故该选项不正确,不符合题意;D 选项,624a a a ÷=,故该选项不正确,不符合题意;故选:B .4.【答案】C【解析】解:依题意,多面体的底面是面③,则多面体的上面是面⑤,故选:C .5.【答案】A【解析】解:O 为AA '、BB '的中点,OA OA ∴'=,OB OB '=,AOB A OB ''∠=∠ (对顶角相等),∴在AOB 与A OB ''△中,OA OA AOB A OB OB OB =⎧⎪∠=∠⎨⎪=''⎩',()SAS AOB A OB ''∴△≌△,AB A B ''∴=,故选:A .6.【答案】D【解析】解: AC 表示的是地面,BC 表示是图书馆,AC BC ∴⊥,ABC ∴ 为直角三角形,32cos 25cos 25AC AB ∴==︒︒(米).故选:D .7.【答案】B【解析】解:根据作图可得,AD AE DF EF ==,故A ,C 正确;∴,A F 在DE 的垂直平分线上,∴AF D E ⊥,故D 选项正确,而DF EF =不一定成立,故B 选项错误,故选:B .8.【答案】C【解析】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为E D ,,AE BD ,交于点C,依题意,B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ∴()1,1C ,则1,1AC k BC k =-=-,又∵90ACB ∠=︒,AB =,∴()()(22211k k -+-=∴13k -=(负值已舍去)解得:4k =,故选:C .二、填空题(本大题共6小题,每小题3分,共8分)9.【答案】()()11a a +-.【解析】解:()()2111a a a -=+-.故答案为:()()11a a +-10.【答案】1m <【解析】解: 关于x 的方程220x x m -+=有两个不相等的实数根,2(2)41440m m ∴∆=--⨯⨯=->解得:1m <,故答案为:1m <.11.【答案】()7.510x -【解析】根据题意可得,他离健康跑终点的路程为()7.510x -.故答案为:()7.510x -.12.【答案】1:3【解析】解:12OA AA '= ::,:1:3OA OA '∴=,设ABC 周长为1l ,设A B C ''' 周长为2l ,ABC 和A B C ''' 是以点O 为位似中心的位似图形,1213l OA l OA ∴=='.12:1:3l l ∴=.ABC ∴ 和A B C ''' 的周长之比为1:3.故答案为:1:3.13.【答案】45【解析】解:∵正五边形的每一个内角为()5218101508-⨯︒=︒,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,则111085422BAM BAE ∠=∠=⨯︒=︒,∵将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ',折痕为AF ,∴11542722FAB BAM '∠=∠=⨯︒=︒,108AB F B '∠=∠=︒,在AFB 'V 中,1801801082745AFB B FAB ''∠=︒-∠-∠=︒-︒-︒=︒,故答案为:45.14.【答案】19【解析】解:由题意可知:()40,4A -、()40,4B 、()0,20H ,设抛物线解析式为:220y ax =+,将()40,4A -代入解析式220y ax =+,解得:1100a =-,220100x y ∴=-+,消防车同时后退10米,即抛物线220100x y =-+向左(右)平移10米,平移后的抛物线解析式为:()21020100x y +=-+,令0x =,解得:19y =,故答案为:19.三、解答题(本大题共10小题,共78分)15.【答案】31a +1+【解析】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当33a =时,原式33113=⨯+=16.【答案】49【解析】解:画树状图如下:共有9种可能,获一等奖即两次颜色不相同的可能有4种,则某同学获一等奖的概率为:49,答:某同学获一等奖的概率为49.17.【答案】原计划平均每天制作200个摆件.【解析】解:设原计划平均每天制作x 个,根据题意得,3000300051.5x x=+解得:200x =经检验,200x =是原方程的解,且符合题意,答:原计划平均每天制作200个摆件.18.【答案】(1)见解析;(2)18【解析】(1)证明:由题意可知ACB DFE △≌△,AC DF =∴,30CAB FDE ∠=∠=︒,AC DF \∥,∴四边形AFDC 地平行四边形;(2)如图,在Rt ACB △中,90ACB ∠=︒,30CAB ∠=︒,6cm BC =,212cm AB BC ∴==,60ABC ∠=︒,四边形AFDC 是菱形,AD ∴平分CDF ∠,30CDA FDA ∴∠=∠=︒,ABC CDA BCD ∠=∠+∠ ,603030BCD ABC CDA ∴∠=∠-∠=︒-︒=︒,BCD CDA ∴∠=∠,6cm BC BD ∴==,18cm AD AB BD ∴=+=,故答案为:18.19.【答案】(1)见解析(2)110人(3)9【解析】(1)抽取了735%20÷=人,属于偏胖的人数为:202738---=,补全统计图如图所示,(2)8320011020+⨯=(人)(3)设小张体重需要减掉kg x ,依题意,227241.70x -<解得:8.67x >,答:他的体重至少需要减掉9kg ,故答案为:9.20.【答案】(1)见解析(2)见解析(3)见解析【解析】(1)解:如图所示,以3AB =为底,设AB 边上的高为h ,依题意得:19·22ABC S AB h == 解得:3h =即点C 在AB 上方且到AB 距离为3个单位的线段上的格点即可,答案不唯一;(2)由网格可知,AB ==以AB =为底,设AB 边上的高为h ,依题意得:1·52ABC S AB h ==解得:h =将AB 绕A 或B 旋转90︒,过线段的另一个端点作AB 的平行线,与网格格点的交点即为点C ,答案不唯一,(3)如图所示,作5BD AB ==,过点D 作CD AB ∥,交于格点C ,由网格可知,22215BD AB ==+=,10AD =,∴ABD △是直角三角形,且AB BD⊥∵CD AB∥∴15·22ABC S AB BD == .21.【答案】(1)12180y x =-(2)180【解析】(1)解:设乙距山脚的垂直高度y 与x 之间的函数关系式为y kx b =+,将()15,0,()40,300代入得,15040300k b k b +=⎧⎨+=⎩,解得:12180k b =⎧⎨=-⎩,∴12180y x =-()1540x ≤≤;(2)设甲距山脚的垂直高度y 与x 之间的函数关系式为11y k x b =+()2560x ≤≤将点()()25,16060,300,代入得,11112516060300k b k b +=⎧⎨+=⎩解得:11460k b =⎧⎨=⎩,∴460y x =+()2560x ≤≤;联立12180460y x y x =-⎧⎨=+⎩解得:30180x y =⎧⎨=⎩∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为180米22.【答案】感知:45;探究:见解析;应用:223.【解析】感知:由圆周角定理可得1245APB AOB ∠=∠=︒,故答案为:45;探究:证明:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.ABC 是等边三角形.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE , 四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即PE =,PE PA AE PA PC =+=+ ,PA PC ∴+=,PB =,4PA PC PA ∴+==,3PC PA ∴=,33PB PC PA ∴==,故答案为:3.23.【答案】(1)13(2)32(3)见解析(4)93502t -<≤或176t =或7t =【解析】(1)解:如图所示,连接BQ ,∵四边形ABCD 是矩形∴90BAQ ABE ∠=∠=︒∵90PEQ ∠=︒,∴四边形ABEQ 是矩形,当点P 和点B 重合时,∴3QE AB ==,2BE =在Rt QBE △中,22223213BQ BE QE =+=+=13(2)如图所示,∵90PEQ ∠=︒,90PBE ECD ∠=∠=︒,∴1290,2390∠+∠=︒∠+∠=︒,∴13∠=∠∴PBE ECD∽∵2BE =,3CD AB ==,∴2tan 3PE BE PQE DE CD ∠===;(3)如图所示,过点P 作PH BC ⊥于点H ,∵90PEQ ∠=︒,90PHE ECQ ∠=∠=︒,∴1290,2390∠+∠=︒∠+∠=︒,则四边形ABHP 是矩形,∴PH AB =3=又∵523EC BC BE =-=-=∴PH EC =,∴PHE ECQ≌∴PE QE=∴POE △是等腰直角三角形;(4)①如图所示,当点P 在BE 上时,∵3,2QE QF AQ BE ====,在Rt AQF △中,2222325AF QF AQ =-=-=,则35BF =-,∵PE t =,则2BP t =-,PF PE t ==,在Rt PBF 中,222PF PB FB =+,∴(()222352t t =-+-解得:9352t -=当9352t -<时,点F 在矩形内部,符合题意,∴93502t -<≤符合题意,②当P 点在AB 上时,当,F A 重合时符合题意,此时如图,则2PB t BE t =-=-,PE =()325AP AB PB t t =-=--=-,在Rt PBE △中,222PE PB BE =+()()222522t t -=-+,解得:176t =,③当点P 在AD 上,当,F D 重合时,此时Q 与点C 重合,则PFQE 是正方形,此时2327t =++=综上所述,93502t -<≤或176t =或7t =.24.【答案】(1)222y x x =-++;顶点坐标为()1,3(2)()3,0A (3)1m =-或2m =-或512m +=或2112m -=(4)22m =-+23m =-或12m =-【解析】(1)解:将点(2,2)代入抛物线22y x bx =-++,得,2422b =-++解得:2b =∴抛物线解析式为222y x x =-++;∵222y x x =-++()213x =--+,∴顶点坐标为()1,3,(2)解:由222y x x =-++,当0y =时,2220x x -++=,解得:1213,13x x ==+,∵抛物线上的点B 在x 轴上时,横坐标为1m -.其中0m <.∴1m 1->∴113m -=+解得:3m =-,∵点A 的坐标为(,0)m ,∴()A ;(3)①如图所示,当111m <-<+,即0m <<时,抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点为顶点,最低点为点P ,∵顶点坐标为()1,3,()1P 则纵坐标之差为303-=依题意,32m=-解得:1m =-;②当11m -≥+m ≤时,∵()()()21,1212B m m m ---+-+,即()21,3B m m --+,依题意,()2332m m --+=-,解得:2m =-或1m =(舍去),③当111m <-<,即0m <<则232m m -+=-,解得:512m =或152m -=(舍去),④当113m -≤3m ≥,则()2032m m --+=-,解得:2112m -=(舍去)或2112m =,综上所述,1m =-或2m =-或512m =或2112m =;(4)解:如图所示,∵B 在x 轴的上方,∴13113m -<-<+∴33m <<∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D ∴BCD CODS S = ∵AOBC AOC BOC S S S =+ ,BOC BCD CODS S S =+ ①当E 是AC 的中点,如图所示则2AOBC CEOD S S =,∴23,22m m E ⎛⎫-+ ⎪⎝⎭代入222y x x =-++,即22322222m m m -+⎛⎫=-+⨯+ ⎪⎝⎭,解得:2m =-(舍去)或2m =-②同理当F 为AO 的中点时,如图所示,ACF CFO S S = ,BCD COD S S = ,则点C 、F 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,∴12m =解得:2m =-,③如图所示,设BOC S S = ,则12DBC S S = ,∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D ∴12CDF FDB AOC S S S S +=+ 即1122CDF CDF AOC S S S S S +=-+ ∴12AOC CDF S S = ,∴CF AO =,∴()2,3F m m --+,∵,B F 关于1x =对称,∴112m m -+-=,解得:12m =-,综上所述,2m =-+或2m =-或12m =-.。
长春数学中考试题及答案
长春数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于该数本身,那么这个数可以是:A. 0B. 1C. -1D. 0和13. 已知一个长方体的长是10厘米,宽是8厘米,高是6厘米,那么它的体积是:A. 480立方厘米B. 240立方厘米C. 360立方厘米D. 600立方厘米4. 下列哪个分数是最简分数?A. 4/8B. 5/6C. 6/9D. 3/45. 一个数除以3的商是8,余数是2,那么这个数是:A. 24B. 26C. 27D. 256. 一个等腰三角形的两个底角相等,顶角是80度,那么底角的度数是:A. 50度B. 60度C. 70度D. 80度7. 下列哪个选项是3的倍数?A. 12B. 21C. 33D. 448. 一个数的60%是120,那么这个数是:A. 180B. 200C. 220D. 2409. 一个正方形的周长是32厘米,那么它的面积是:A. 64平方厘米B. 100平方厘米C. 128平方厘米D. 144平方厘米10. 一个数的1/5与它的1/4的和等于这个数的:A. 1/20B. 9/20C. 1D. 无法确定二、填空题(每题4分,共20分)11. 一个数的1.5倍是45,那么这个数是______。
12. 一本书的价格是35元,打8折后的价格是______元。
13. 一个长方体的体积公式是______(长×宽×高)。
14. 一个数的2/3加上它的1/4等于这个数的______。
15. 一个数的75%是150,那么这个数的40%是______。
三、解答题(共50分)16. 一块梯形的苗圃,上底长是20米,下底长是35米,高是15米。
求这块苗圃的面积。
(6分)17. 小明和小红合伙买了一些文具,小明出了总钱数的2/5,小红出了96元。
这些文具的总价是多少元?(6分)18. 一个长方体的长是12厘米,宽是10厘米,高是8厘米。
长春市中考数学试题及答案
长春市中考数学试题及答案【注意:以下为长春市中考数学试题及答案,请按照试题格式合理排版。
】题目:长春市中考数学试题及答案一、选择题1. 设正数a = 3/5,将a化成小数形式是:A. 0.6B. 0.35C. 1.5D. 0.152. 若a = 2^3 × 3^4,a = 2^5 × 3^2,则ab的值为:A. 2^8 × 3^6B. 2^15 × 3^6C. 2^8 × 3^8D. 2^7 × 3^6二、解答题1. 计算:29.8 ÷ (0.06 × 2 ÷ 0.03)解:步骤一:29.8 ÷ (0.06 × 2 ÷ 0.03)步骤二:29.8 ÷ (0.12 ÷ 0.03)步骤三:29.8 ÷ 4答案:7.452. 若2x - 5y = 8,3x + 4y = 1,请求解x和y的值。
解:步骤一:2x - 5y = 8步骤二:3x + 4y = 1步骤三:乘以2得到4x - 10y = 16步骤四:乘以3得到9x + 12y = 3步骤五:将两个等式相加,得到13x + 2y = 19步骤六:将十三x移到一边得到x = (19 - 2y)/13步骤七:代入第一个等式得到2(19 - 2y)/13 - 5y = 8步骤八:化简得到38 - 4y - 65y = 104步骤九:-69y = 66步骤十:y = -66/69步骤十一:代入x = (19 - 2y)/13,得到x = 121/69答案:x = 121/69,y = -66/69【注意:以上为长春市中考数学试题及答案,请将试题与答案合理地整理排版,以确保内容清晰易读。
】。
(中考精品卷)吉林省长春市中考数学真题(解析版)
2022年长春市初中学业水平考试数学一、选择题(本大题共8小题,每小题3分,共24分)1. 图是由5个相同的小正方体组合而成的立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念,从正面看到的图形就是主视图,再根据小正方体的个数和排列进行作答即可.【详解】正面看,其主视图为:故选:A.【点睛】此题主要考查了简单组合体的三视图,俯视图是从上面看所得到的图形,主视图是从正面看所得到的图形,左视图时从左面看所得到的图形,熟练掌握知识点是解题的关键.2. 长春轨道客车股份有限公司制造的新型奥运版复兴号智能动车组,车头采用鹰隼形的设计,能让性能大幅提升,一列该动车组一年运行下来可节省约1800000度电,将数据1800000用科学记数法表示为()A. 51810⨯B. 61.810⨯C. 71.810⨯D. 70.1810⨯【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.详解】解:1800000=1.8×106,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 不等式23x +>的解集是( )A. 1x <B. 5x <C. 1x >D. 5x >【答案】C【解析】【分析】直接移项解一元一次不等式即可.【详解】23x +>, 32x >-,1x >,故选:C .【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解题的关键.4. 实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A. 0a >B. a b <C. 10b -<D. 0ab >【答案】B【解析】【分析】观察数轴得:2123a b -<<-<<<,再逐项判断即可求解.【详解】解:观察数轴得:2123a b -<<-<<<,故A 错误,不符合题意;B 正确,符合题意;∴10b ->,故C 错误,不符合题意;∴0ab <,故D 错误,不符合题意;【故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键.5. 如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,AD 垂直地面,垂足为点D ,BC AD ⊥,垂足为点C .设ABC α∠=,下列关系式正确的是( )A. sin AB BC α=B. sin BC AB α=C. sin AB AC α=D. sin AC ABα= 【答案】D【解析】【分析】根据正弦三角函数的定义判断即可.【详解】∵BC ⊥AC ,∴△ABC 是直角三角形,∵∠ABC =α, ∴sin AC ABα=, 故选:D .【点睛】本题考查了正弦三角函数的定义.在直角三角形中任意锐角∠A 的对边与斜边之比叫做∠A 的正弦,记作sin ∠A .掌握正弦三角函数的定义是解答本题的关键. 6. 如图,四边形ABCD 是O 的内接四边形.若121BCD ∠=︒,则BOD ∠的度数为( )A. 138°B. 121°C. 118°D. 112°【答案】C【解析】 【分析】由圆内接四边形的性质得59A ∠=︒,再由圆周定理可得2118BOD A ∠=∠=︒.【详解】解:∵四边形ABCD 内接于圆O ,∴180A C ∠+∠=︒∵121BCD ∠=︒∴59A ∠=︒∴2118BOD A ∠=∠=︒故选:C【点睛】本题主要考查了圆内接四边形的性质和圆周角定理,熟练掌握相关性质和定理是解答本题的关键7. 如图,在ABC 中,根据尺规作图痕迹,下列说法不一定正确的是( )A. AF BF =B. 12AE AC =C. 90DBF DFB ∠+∠=︒D. BAF EBC ∠=∠【答案】B【解析】 【分析】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线,根据垂直平分线的性质和角平分线的定义,直角三角形两锐角互余,等边对等角的性质进行判断即可.【详解】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线, ,90,AF BF BDF ABF CBE ∴=∠=︒∠=∠,,90ABF BAF DBF DFB ∴∠=∠∠+∠=︒,BAF EBC ∴∠=∠,综上,正确的是A 、C 、D 选项,故选:B .【点睛】本题考查了垂直平分线和角平分线的作图,垂直平分线的性质,角平分线的定义,直角三角形两锐角互余,等边对等角的性质,熟练掌握知识点是解题的关键. 8. 如图,在平面直角坐标系中,点P 在反比例函数k y x=(0k >,0x >)的图象上,其纵坐标为2,过点P 作PQ //y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM .若点M 也在该反比例函数的图象上,则k 的值为( )C. D. 4【答案】C【解析】【分析】作MN ⊥x 轴交于点N ,分别表示出ON 、MN ,利用k 值的几何意义列式即可求出结果.【详解】解:作MN ⊥x 轴交于点N ,如图所示,∵P 点纵坐标为:2,∴P 点坐标表示为:(2k ,2),PQ =2, 由旋转可知:QM =PQ =2,∠PQM =60°,∴∠MQN =30°,∴MN =112QM =,QN , ∴ON MN k = ,即:2k k =,解得:k =故选:C .【点睛】本题主要考查的是k 的几何意义,表示出对应线段是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9. 分解因式:23m m +=_______.【答案】(3)m m +【解析】【分析】原式提取公因式m 即可得到结果.【详解】解:23(3)m m m m +=+故答案为:(3)m m +.【点睛】本题主要考查了提公因式分解因式,正确找出公因式是解答本题的关键. 10. 若关于x 的方程20x x c ++=有两个相等的实数根,则实数c 的值为_______. 【答案】14##0.25 【解析】【分析】根据方程20x x c ++=有两个相等的实数根,可得0∆=,计算即可.【详解】 关于x 的方程20x x c ++=有两个相等的实数根,21410c ∴∆=-⨯=, 解得14c =, 故答案为:14. 【点睛】本题考查了一元二次方程根的判别式,即一元二次方程有两个不相等的实数根时,0∆>;有两个相等的实数根时,0∆=;没有实数根时,∆<0;熟练掌握知识点是解题的关键.11. 《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x 间房,可求得x的值为________.【答案】8【解析】【分析】设店中共有x 间房,根据“今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住”可列一元一次方程,求解即可.【详解】设店中共有x 间房,由题意得,779(1)x x +=-,解得8x =,所以,店中共有8间房,故答案为:8.【点睛】本题考查了一元一次方程的应用,准确理解题意,找到等量关系是解题的关键. 12. 将等腰直角三角板与量角器按如图所示的方式摆放,使三角板的直角顶点与量角器的中心O 重合,且两条直角边分别与量角器边缘所在的弧交于A 、B 两点.若5OA =厘米,则 AB 的长度为________厘米.(结果保留π)【答案】52π##2.5π 【解析】【分析】直接根据弧长公式进行计算即可.【详解】90,5cm AOB OA ∠=︒= , 9055cm 1802AB ππ⨯⨯∴==, 故答案为:52π. 【点睛】本题考查了弧长公式,即180n r l π=,熟练掌握知识点是解题的关键. 13. 跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC 和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形.若27AB =厘米,则这个正六边形的周长为_________厘米.【答案】54【解析】【分析】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,再证明△FMN、△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形即可求解.【详解】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,如图,∵六边形MNGHPO是正六边形,∴∠GNM=∠NMO=120°,∴∠FNM=∠FNM=60°,∴△FMN是等边三角形,同理可证明△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形,∴MO=BM,NG=AN,OP=PD,GH=HE,∴NG+MN+MO=AN+MN+BM=AB,GH+PH+OP=HE+PH+PD=DE,∵等边△ABC≌等边△DEF,∴AB=DE,∵AB=27cm,∴DE=27cm,∴正六边形MNGHPO的周长为:NG+MN+MO+GH+PH+OP=AB+DE=54cm,故答案为:54.【点睛】本题考查了正六边的性质、全等三角形的性质以及等边三角形的判定与性质等知识,掌握正六边的性质是解答本题的关键.14. 已知二次函数223y x x =--+,当12a x ……时,函数值y 的最小值为1,则a 的值为_______.【答案】1--1-【解析】【分析】先把函数解析式化为顶点式可得当1x <-时,y 随x 的增大而增大,当1x >-时,y 随x 的增大而减小,然后分两种情况讨论:若1a ≥-;若1a <-,即可求解.【详解】解:()222314y x x x =--+=-++,∴当1x <-时,y 随x 的增大而增大,当1x >-时,y 随x 的增大而减小,若1a ≥-,当12a x ……时,y 随x 的增大而减小, 此时当12x =时,函数值y 最小,最小值为74,不合题意, 若1a <-,当x a =时,函数值y 最小,最小值为1,∴2231a a --+=,解得:1a =--或1-+;综上所述,a 的值为1--故答案为:1-【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.三、解答题(本大题共10小题,共78分)15. 先化简,再求值:()()()221a a a a +-++,其中4a =.【答案】4a +【解析】【分析】根据平方差公式与单项式乘以单项式进行计算,然后将4a =代入求值即可求解.【详解】解:原式=224a a a -++ 4a =+当4a =-时,原式44=-=【点睛】本题考查了整式的混合运算,实数的运算,代数式求值,正确的计算是解题的关键.16. 抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”.正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率. 【答案】34【解析】【分析】采用列表法列举即可求解.【详解】根据题意列表如下:由表可知,总的可能结果有4种,两次之和不大于3的情况有3种,故所求概率为:3÷4=34, 即两次分数之和不大于3的概率为34. 【点睛】本题考查了用列表法或者树状图法列举求解概率的知识,掌握用列表法或者树状图法列举求解概率是解答本题的关键.17. 为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?【答案】乙班每小时挖400千克的土豆【解析】【分析】设乙班每小时挖x 千克的土豆,则甲班每小时挖(100+x )千克的土豆,根据题意列出分式方程即可求解.【详解】设乙班每小时挖x 千克的土豆,则甲班每小时挖(100+x )千克的土豆, 根据题意有:150********x x=+, 解得:x =400,经检验,x =400是原方程的根,故乙班每小时挖400千克的土豆.【点睛】本题考查了分式方程的应用,明确题意列出分式方程是解答本题的关键. 18. 如图①、图②、图③均是55⨯的正方形网格,每个小正方形的边长均为1,其顶点称为格点,ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中ABC 的形状是________;(2)在图①中确定一点D ,连结DB 、DC ,使DBC △与ABC 全等:(3)在图②中ABC 的边BC 上确定一点E ,连结AE ,使ABE CBA △∽△:(4)在图③中ABC 的边AB 上确定一点P ,在边BC 上确定一点Q ,连结PQ ,使PBQ ABC △∽△,且相似比为1:2.【答案】(1)直角三角形(2)见解析(答案不唯一)(3)见解析(4)翙解析【解析】 【分析】(1)运用勾股定理分别计算出AB ,AC ,BC 的长,再运用勾股定理逆定理进行判断即可得到结论;(2)作出点A 关于BC 的对称点D ,连接BD ,CD 即可得出DBC △与ABC 全等: (3)过点A 作AE ⊥BC 于点E ,则可知ABE CBA △∽△:(4)作出以AB 为斜边的等腰直角三角形,作出斜边上的高,交AB 于点P ,交BC 于点Q ,则点P ,Q 即为所求.【小问1详解】∵222222224220,215,525AB AC BC =+==+===∴222AB AC BC +=,∴ABC 是直角三角形,故答案为:直角三角形;【小问2详解】如图,点D 即为所求作,使DBC △与ABC 全等:【小问3详解】如图所示,点E 即为所作,且使ABE CBA △∽△:【小问4详解】如图,点P ,Q 即为所求,使得PBQ ABC △∽△,且相似比为1:2.【点睛】本题主要考查了勾股定理,勾股定理逆定理,等腰直角三角形的性质,全等三角形的判定,相似三角形的判定,熟练掌握相关定理是解答本题的关键.19. 如图,在Rt ABC 中,90ABC ∠=︒,AB BC <.点D 是AC 的中点,过点D 作DE AC ⊥交BC 于点E .延长ED 至点F ,使得DF DE =,连接AE 、AF 、CF .(1)求证:四边形AECF 是菱形;(2)若14BE EC =,则tan BCF ∠的值为_______.【答案】(1)见解析(2【解析】 【分析】(1)根据对角线互相垂直平分的四边形是菱形即可得证;(2)设BE a =,则4EC a =,根据菱形的性质可得4AE EC a ==,AE FC ∥,勾股定理求得AB ,根据BCF BEA ∠=∠,tan BCF ∠=tan AB BEA BE∠=,即可求解. 【小问1详解】证明: AD DC =,DE DF =,∴四边形AECF 是平行四边形,∵DE AC ⊥, ∴四边形AECF 是菱形;【小问2详解】解: 14BE EC =, 设BE a =,则4EC a =,四边形AECF 是菱形;4AE EC a ∴==,AE FC ∥,∴BCF BEA ∠=∠,在Rt ABE △中,AB ===,∴tan BCF ∠=tan AB BEA BE ∠===,【点睛】本题考查了菱形的判定与性质,勾股定理,求正切,掌握以上知识是解题的关键.20. 党的十八大以来,我国把科技自立自强作为国家发展的战略支撑,科技事业发生了历史性、整体性、格局性变化,成功跨入创新型国家的行列,专利项目多项指数显著攀升.如图是长春市2016年到2020年专利授权情况的统计图.根据以上信息回答下列问题:(1)长春市从2016年到2020年,专利授权量最多的是________年:(2)长春市从2016年到2020年,专利授权量年增长率的中位数是_______;(3)与2019年相比,2020年长春市专利授权量增加了_______件,专利授权量年增长率提高了_______个百分点;(注:1%为1个百分点)(4)根据统计图提供的信息,有下列说法,正确的画“√”,错误的画“×”.①因为2019年的专利授权量年增长率最低,所以2019年的专利授权量的增长量就最小.( )②与2018年相比,2019年的专利授权量年增长率虽然下降,但专利授权量仍然上升.这是因为专利授权量年增长率100%-=⨯当年专利授权量上一年专利授权量上一年专利授权量,所以只要专利授权量年增长率大于零,当年专利授权量就一定增加.( )③通过统计数据,可以看出长春市区域科技创新力呈上升趋势,为国家科技自立自强贡献吉林力量.( )【答案】(1)2020(2)18.1% (3)5479,30.2(4)①×,②√,③√【解析】【分析】(1)观察统计图可得专利授权量最多的是2020年,即可求解;(2)先把专利授权量年增长率从小到大排列,即可求解;(3)分别用2020年长春市专利授权量减去2019年长春市专利授权量,2020年专利授权量年增长率减去2019年专利授权量年增长率,即可求解;(4)①根据题意可得2017年的的专利授权量的增长量低于2019年的,可得①错误;②根据专利授权量年增长率100%-=⨯当年专利授权量上一年专利授权量上一年专利授权量,可得②正确;③观察统计图可得从2016年到2020年,每年的专利授权量都有所增加,可得③正确,即可求解.【小问1详解】解:根据题意得:从2016年到2020年,专利授权量最多的是2020年;故答案为:2020【小问2详解】解:把专利授权量年增长率从小到大排列为:15.8%,16.0%,18.1%,25.4%,46.0%, 位于正中间的是18.1%,∴专利授权量年增长率的中位数是18.1%;故答案为:18.1%【小问3详解】解:与2019年相比,2020年长春市专利授权量增加了17373-11894=5479件; 专利授权量年增长率提高了46.0%-15.8%=30.2%,专利授权量年增长率提高了302个百分点; 故答案为:5479,30.2【小问4详解】解:①因为2017年的专利授权量的增长量为8190-7062=1128件;2019年的专利授权量的增长量11894-10268=1626件,所以2019年的专利授权量的增长量高于2017年的专利授权量的增长量,故①错误; 故答案为:× ②因为专利授权量年增长率100%-=⨯当年专利授权量上一年专利授权量上一年专利授权量, 所以只要专利授权量年增长率大于零,当年专利授权量就一定增加,故②正确; 故答案为:√根据题意得:从2016年到2020年,每年的专利授权量都有所增加,所以长春市区域科技创新力呈上升趋势,故③正确;故答案为:√【点睛】本题主要考查了折线统计图和条形统计图,理解统计图中数据之间的关系是正确解答的关键.21. 己知A 、B 两地之间有一条长440千米的高速公路.甲、乙两车分别从A 、B 两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B 地;乙车匀速行驶至A 地,两车到达各自的目的地后停止.两车距A 地的路程y (千米)与各自的行驶时间x (时)之间的函数关系如图所示..(1)m =_______,n =_______;(2)求两车相遇后,甲车距A 地的路程y 与x 之间的函数关系式;(3)当乙车到达A 地时,求甲车距A 地的路程.【答案】(1)2.6(2)甲车距A 地的路程y 与x 之间的函数关系式6080y x =+(3)300千米【解析】【分析】(1)先根据甲乙两车相遇时甲车行驶的路程除以速度可求出m 的值,再用m 的值加4即可得n 的值;(2)由(1)得(2,200)和(6,440),再运用待定系数法求解即可;(3)先求出乙车的行驶速度,从而可求出行驶时间,代入函数关系式可得结论.【小问1详解】根据题意得,2001002m =÷=(时) 4246n m =+=+=(时)故答案为:2.6;【小问2详解】由(1)得(2,200)和(6,440),设相遇后,甲车距A 地的路程y 与x 之间的函数关系式为y kx b =+则有:22006440k b k b +=⎧⎨+=⎩, 解得,6080k b =⎧⎨=⎩ 甲车距A 地的路程y 与x 之间的函数关系式6080y x =+【小问3详解】甲乙两车相遇时,乙车行驶的路程为440-200=240千米,∴乙车的速度为:240÷2=120(千米/时)∴乙车行完全程用时为:440÷120=113(时) ∵1123> ∴当113x =时,1160803003y =⨯+=千米, 即:当乙车到达A 地时,甲车距A 地的路程为300千米【点睛】本题主要考查了一次函数的应用,读懂图象是解答本题的关键.22. 【探索发现】在一次折纸活动中,小亮同学选用了常见的A 4纸,如图①,矩形ABCD 为它的示意图.他查找了A 4纸的相关资料,根据资料显示得出图①中AD =.他先将A 4纸沿过点A 的直线折叠,使点B 落在AD 上,点B 的对应点为点E ,折痕为AF ;再沿过点F 的直线折叠,使点C 落在EF 上,点C 的对应点为点H ,折痕为FG ;然后连结AG ,沿AG 所在的直线再次折叠,发现点D 与点F 重合,进而猜想ADG AFG △≌△.【问题解决】(1)小亮对上面ADG AFG △≌△的猜想进行了证明,下面是部分证明过程: 证明:四边形ABCD 是矩形,∴90BAD B C D ∠=∠=∠=∠=︒. 由折叠可知,1452BAF BAD ∠=∠=︒,BFA EFA ∠=∠. ∴45EFA BFA ∠=∠=︒.∴AF AD ==.请你补全余下的证明过程.【结论应用】(2)DAG ∠的度数为________度,FG AF 的值为_________; (3)在图①的条件下,点P 在线段AF 上,且12AP AB =,点Q 在线段AG 上,连结FQ 、PQ ,如图②,设AB a =,则FQ PQ +的最小值为_________.(用含a 的代数式表示)【答案】(1)见解析(2)22.5°1. (3【解析】【分析】(1)根据折叠的性质可得AD =AF ,90AFG D ∠=∠=︒,由HL 可证明结论; (2)根据折叠的性质可得122.5;2DAG DAF ∠=∠=︒ 证明GCF ∆是等腰直角三角形,可求出GF 的长,从而可得结论 ;(3)根据题意可知点F 与点D 关于AG 对称,连接PD ,则PD 为PQ +FQ 最小值,过点P 作PR ⊥AD ,求出PR =AR,求出DR ,根据勾腰定理可得结论. 【小问1详解】证明:四边形ABCD 矩形,∴90BAD B C D ∠=∠=∠=∠=︒. 由折叠可知,1452BAF BAD ∠=∠=︒,BFA EFA ∠=∠. ∴45EFA BFA ∠=∠=︒.∴AF AD ==.由折叠得,45CFG GFH ∠=∠=︒,∴454590AFG AFE GFE ∠=∠+∠=︒+︒=︒∴90AFG D ∠=∠=︒又AD =AF ,AG =AG∴ADG AFG △≌△【小问2详解】由折叠得,∠,BAF EAF =∠又∠90BAF EAF ︒+∠= ∴∠119045,22EAF BAE ︒︒=∠=⨯= 由ADG AFG △≌△得,∠114522.5,22DAG FAG FAD ︒︒=∠=∠=⨯= ∠90,AFG ADG ︒=∠=的是又∠45AFB ︒=∴∠45,GFC ︒=∴∠45,FGC ︒=∴.GC FC =设,AB x =则,,BF x AF AD BC ====∴1)FC BC BF x x =-=-=-∴(2GF x ==∴ 1.GF AF ==- 【小问3详解】如图,连接,FD∵DG FG =∴AG 是FD 的垂直平分线,即点F 与点D 关于AG 轴对称,连接PD 交AG 于点Q ,则PQ +FQ 的最小值为PD 的长;过点P 作PR AD ⊥交AD 于点R ,∵∠45DAF BAF ︒=∠=∴∠45.APR ︒=∴AR PR = 又22222()24a a AR PR AP +===∴,AR PR ==∴DR AD AR a =-== 在Rt DPR ∆中,222DP AR PR =+∴DP===∴PQ FQ+【点睛】本题主要考查了折叠的性质,全等三角形的判定与性质,最短路径问题,矩形的性质以及勾股定理等知识,正确作出辅助线构造直角三角形是解答本题的关键.23. 如图,在ABCD中,4AB=,AD BD==M为边AB的中点,动点P 从点A出发,沿折线AD DB-个单位长度的速度向终点B运动,连结PM.作点A关于直线PM的对称点A',连结A P'、A M'.设点P的运动时间为t秒.(1)点D到边AB的距离为__________;(2)用含t的代数式表示线段DP的长;(3)连结A D',当线段A D'最短时,求DPA'△的面积;(4)当M、A'、C三点共线时,直接写出t的值.【答案】(1)3 (2)当0≤t≤1时,DP=;当1<t≤2时,PD=;(3)35(4)23或2011【解析】【分析】(1)连接DM,根据等腰三角形的性质可得DM⊥AB,再由勾股定理,即可求解;(2)分两种情况讨论:当0≤t≤1时,点P在AD边上;当1<t≤2时,点P在BD边上,即可求解;(3)过点P作PE⊥DM于点E,根据题意可得点A运动轨迹为以点M为圆心,AM长为半径的圆,可得到当点D、A′、M三点共线时,线段A D'最短,此时点P在AD上,再证明△PDE∽△ADM,可得33,22DE t PE t=-=-,从而得到23A E DE A D t''=-=-,在Rt A PE'中,由勾股定理可得25t=,即可求解;的(4)分两种情况讨论:当点A'位于M、C之间时,此时点P在AD上;当点A'(A'')位于C M的延长线上时,此时点P在BD上,即可求解.【小问1详解】解:如图,连接DM,==M为边AB的中点,∵AB=4,AD BD∴AM=BM=2,DM⊥AB,∴3DM==,即点D到边AB的距离为3;故答案为:3【小问2详解】解:根据题意得:当0≤t≤1时,点P在AD边上,DP=;当1<t≤2时,点P在BD边上,PD=-;综上所述,当0≤t≤1时,DP=;当1<t≤2时,PD=;【小问3详解】解:如图,过点P作PE⊥DM于点E,∵作点A关于直线PM的对称点A',∴A′M=AM=2,∴点A的运动轨迹为以点M为圆心,AM长为半径的圆,'最短,此时点P在AD上,∴当点D、A′、M三点共线时,线段A DA D'=,∴1根据题意得:A P AP '==,DP =,由(1)得:DM ⊥AB ,∵PE ⊥DM ,∴PE ∥AB ,∴△PDE ∽△ADM , ∴PD DE PE AD DM AM==,32DE PE ==, 解得:33,22DE t PE t =-=-,∴23A E DE A D t ''=-=-,在Rt A PE ' 中,222A P PE A E ''=+,∴)()()2222223t t =-+-,解得:25t =, ∴65PE =, ∴116312255DPA S A D PE ''=⋅=⨯⨯= ; 【小问4详解】解:如图,当点M 、A '、C 三点共线时,且点A '位于M 、C 之间时,此时点P 在AD 上,连接A A ′, A ′B ,过点P 作PF ⊥AB 于点F ,过点A ′作A ′G ⊥AB 于点G ,则A A ′⊥PM , ∵AB 为直径,∴∠A =90°,即A A ′⊥A ′B ,∴PM ∥A ′B ,∴∠PMF =∠AB A ′,过点C 作CN ⊥AB 交AB 延长线于点N ,在ABCD 中,AB ∥DC ,∵DM ⊥AB ,∴DM ∥CN ,∴四边形CDMN 为平行四边形,∴CN =DM =3,MN =CD =4,∴CM =5, ∴3sin 5CN CMN CM ∠==, ∵A ' M =2, ∴36255A G '=⨯=, ∴85MG =, ∴25BG BM MG =-=, ∴tan 3A G A BA BG''∠==, ∴tan tan 3PMF A BA '∠=∠=, ∴3PF FM=,即PF =3FM ,∵3tan 2DM PF DAM AM AF ∠===,cos AM AF DAM AD AP ∠=== ∴32PF AF =, ∴332FM AF =,即AF =2FM , ∵AM =2, ∴43AF =,=,解得:23t =; 如图,当点A '(A '')位于C M 的延长线上时,此时点P 在BD 上,PB =,过点A ''作A G AB '''⊥于点G ′,则AMA CMN ''∠=∠,取AA ''的中点H ,则点M 、P 、H 三点共线,过点H 作HK ⊥AB 于点K ,过点P 作PT ⊥AB 于点T ,同理:62,55A G AG ''''==, ∵HK ⊥AB ,A G AB '''⊥,∴HK ∥A ′′G ′,∴AHK AA G ''' ,∵点H 是AA ''的中点, ∴12HK AK AH A G AG AA ==='''''', ∴31,55HK AK ==, ∴95MK =, ∴1tan tan 3HK PMT HMK MK ∠=∠==, ∴13PT MT =,即MT =3PT ,∵3tan 2DM PT PBT BM BT ∠===,cos BT BM PBT PB BD ∠===, ∴23BT PT =, ∴92MT BT =, ∵MT +BT =BM =2, ∴411BT =,=,解得:2011t =;综上所述,t 的值为23或2011. 【点睛】本题主要考查了四边形的综合题,熟练掌握平行四边形的性质,圆的基本性质,相似三角形的判定和性质,解直角三角形,根据题意得到点A '的运动轨迹是解题的关键,是中考的压轴题.24. 在平面直角坐标系中,抛物线2y x bx =-(b 是常数)经过点()2,0.点A 在抛物线上,且点A 的横坐标为m (0m ≠).以点A 为中心,构造正方形PQMN ,2PQ m =,且PQ x ⊥轴.(1)求该抛物线对应的函数表达式:(2)若点B 是抛物线上一点,且在抛物线对称轴左侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接BC .当4BC =时,求点B 的坐标;(3)若0m >,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,或者y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为34时,直接写出m 的值.【答案】(1)22y x x =-(2)()1,3B -(3)102m <≤或3m ≥ (4)38m =-或12m =或32m =. 【解析】【分析】(1)将点()2,0代入2y x bx =-,待定系数法求解析式即可求解;(2)设()2,2B m m m -,根据对称性可得()22,2C m m m --,根据BC 4=,即可求解;(3)根据题意分两种情况讨论,分别求得当正方形PQMN 点Q 在x 轴上时,此时M 与O 点重合,当PQ 经过抛物线的对称轴1x =时,进而观察图象即可求解;(4)根据题意分三种情况讨论,根据正方形的性质以及点的坐标位置,即可求解.【小问1详解】解:∵抛物线2y x bx =-(b 是常数)经过点()2,0∴420b -=解得2b =22y x x ∴=-【小问2详解】如图,由22y x x =-()211x =--则对称轴为直线1x =,设()2,2B m m m -,则()22,2C m m m -- 24BC m m =--=解得1m =-()1,3B ∴-【小问3详解】点A 在抛物线上,且点A 的横坐标为m (0m ≠).以点A 为中心,构造正方形PQMN ,2PQ m =,且PQ x ⊥轴2MN PQ m ∴==,且,M N 在y 轴上,如图,①当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,如图,当正方形PQMN 点Q 在x 轴上时,此时M 与O 点重合,PN PQ =OP ∴的解析式为y x =∴(),A m m ,将(),A m m 代入22y x x =-即22m m m --0=解得120,3m m ==0m >()3,3A ∴观察图形可知,当3m ≥时,抛物线在正方形内部的点的纵坐标y 随x 的增大而增大; ②当抛物线在正方形内部的点的纵坐标y 随x 的增大而减小时,当PQ 经过抛物线的对称轴1x =时,2,0MQ PQ m m ==>21m ∴= 解得12m =, 观察图形可知,当102m <≤时,抛物线在正方形内部的点的纵坐标y 随x 的增大而增大; 综上所述,m 的取值范围为102m <≤或3m ≥ 【小问4详解】①如图,设正方形与抛物线的交点分别为,E F ,当34E F y y -=时,则34MN = A 是正方形PQMN 的中心,()2,2A m m m - ∴1328A x MN ==即38 m=-②如图,当A点在抛物线左侧,y轴右侧时,()2,2A m m m-2MN m∴=22122E A A y y MN y m m m m m m ∴=+=+=-+=- 交点的纵坐标之差为34, F ∴的纵坐标为234m m -- F 的横坐标为2MQ PQ m ==232,4F m m m ⎛⎫∴-- ⎪⎝⎭ F 在抛物线22y x x =-上, ()2232224m m m m ∴--=-⨯ 解得12m = ③当A 在抛物线对称轴的右侧时,正方形与抛物线的交点分别为O ,S ,设直线AM 交x 轴于点T ,如图,则34N S y y == 34OM OT ∴==即330,,,044M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭设直线MN 解析式为y kx b =+ 则30434k b b ⎧+=⎪⎪⎨⎪=⎪⎩解得134k b =-⎧⎪⎨=⎪⎩∴直线MN 解析式为34y x =-+联立22y x x =- 解得1231,22x x ==-(舍去) 即A 的横坐标为32,即32m =, 综上所述,38m =-或12m =或32m =. 【点睛】本题考查了二次函数的综合问题,二次函数的对称性,正方形的性质,掌握二次函数图象的性质是解题的关键。
2022年吉林省长春市中考数学试卷(解析版)
2022年吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)如图是由5个相同的小正方体组合而成的立体图形,其主视图是()A.B.C.D.2.(3分)长春轨道客车股份有限公司制造的新型奥运版复兴号智能动车组,车头采用鹰隼形的设计,能让性能大幅提升,一列该动车组一年运行下来可节省约1800000度电,将数据1800000用科学记数法表示为()A.18×105B.1.8×106C.1.8×107D.0.18×1073.(3分)不等式x+2>3的解集是()A..x<1B..x<5C.x>1D..x>54.(3分)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>0B.a<b C.b﹣1<0D.ab>05.(3分)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A,变幅索的底端记为点B,AD垂直地面,垂足为点D,BC⊥AD,垂足为点C.设∠ABC=α,下列关系式正确的是()A.sinα=B.sinα=C.sinα=D.sinα=6.(3分)如图,四边形ABCD是⊙O的内接四边形,若∠BCD=121°,则∠BOD的度数为()A.138°B.121°C.118°D.112°7.(3分)如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是()A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC8.(3分)如图,在平面直角坐标系中,点P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,将线段QP绕点Q顺时针旋转60°得到线段QM.若点M也在该反比例函数的图像上,则k的值为()A.B.C.D.4二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)分解因式:m2+3m=.10.(3分)若关于x的方程x2+x+c=0有两个相等的实数根,则实数c的值为.11.(3分)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住.设店中共有x间房,可求得x的值为.12.(3分)将等腰直角三角板与量角器按如图所示的方式摆放,使三角板的直角顶点与量角器的中心O重合,且两条直角边分别与量角器边缘所在的弧交于A、B两点.若OA=5厘米,则的长度为厘米.(结果保留π)13.(3分)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.14.(3分)已知二次函数y=﹣x2﹣2x+3,当a≤x≤时,函数值y的最小值为1,则a的值为.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(2+a)(2﹣a)+a(a+1),其中a=﹣4.16.(6分)抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率.17.(6分)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?18.(7分)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ ∽△ABC,且相似比为1:2.19.(7分)如图,在Rt△ABC中,∠ABC=90°,AB<BC.点D是AC的中点,过点D 作DE⊥AC交BC于点E.延长ED至点F,使得DF=DE,连结AE、AF、CF.(1)求证:四边形AECF是菱形;(2)若=,则tan∠BCF的值为.20.(7分)党的十八大以来,我国把科技自立自强作为国家发展的战略支撑,科技事业发生了历史性、整体性、格局性变化,成功跨入创新型国家的行列,专利项目多项指数显著攀升.如图是长春市2016年到2020年专利授权情况的统计图.根据以上信息回答下列问题:(1)长春市从2016年到2020年,专利授权量最多的是年;(2)长春市从2016年到2020年,专利授权量年增长率的中位数是;(3)与2019年相比,2020年长春市专利授权量增加了件,专利授权量年增长率提高了个百分点;(注:1%为1个百分点)(4)根据统计图提供的信息,有下列说法,正确的画“√”,错误的画“×”.①因为2019年的专利授权量年增长率最低,所以2019年的专利授权量的增长量就最小.②与2018年相比,2019年的专利授权量年增长率虽然下降,但专利授权量仍然上升.这是因为专利授权量年增长率=×100%,所以只要专利授权量年增长率大于零,当年专利授权量就一定增加.③通过统计数据,可以看出长春市区域科技创新力呈上升趋势,为国家科技自立自强贡献吉林力量.21.(8分)已知A、B两地之间有一条长440千米的高速公路.甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示.(1)m=,n=;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A地的路程.22.(9分)【探索发现】在一次折纸活动中,小亮同学选用了常见的A4纸,如图①,矩形ABCD为它的示意图.他查找了A4纸的相关资料,根据资料显示得出图①中AD=AB.他先将A4纸沿过点A的直线折叠,使点B落在AD上,点B的对应点为点E,折痕为AF;再沿过点F的直线折叠,使点C落在EF上,点C的对应点为点H,折痕为FG;然后连结AG,沿AG所在的直线再次折叠,发现点D与点F重合,进而猜想△ADG ≌△AFG.【问题解决】小亮对上面△ADG≌△AFG的猜想进行了证明,下面是部分证明过程:证明:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°.由折叠可知,∠BAF=∠BAD=45°,∠BF A=∠EF A.∴∠EF A=∠BF A=45°.∴AF=AB=AD请你补全余下的证明过程.【结论应用】(1)∠DAG的度数为度,的值为;(2)在图①的条件下,点P在线段AF上,且AP=AB,点Q在线段AG上,连结FQ、PQ,如图②.设AB=a,则FQ+PQ的最小值为.(用含a的代数式表示)23.(10分)如图,在▱ABCD中,AB=4,AD=BD=,点M为边AB的中点.动点P 从点A出发,沿折线AD﹣DB以每秒个单位长度的速度向终点B运动,连结PM.作点A关于直线PM的对称点A',连结A'P、A'M.设点P的运动时间为t秒,(1)点D到边AB的距离为;(2)用含t的代数式表示线段DP的长;(3)连结AD,当线段A'D最短时,求△DP A'的面积;(4)当M、A'、C三点共线时,直接写出t的值.24.(12分)在平面直角坐标系中,抛物线y=x2﹣bx(b是常数)经过点(2,0).点A在抛物线上,且点A的横坐标为m(m≠0).以点A为中心,构造正方形PQMN,PQ=2|m|,且PQ⊥x轴.(1)求该抛物线对应的函数表达式;(2)若点B是抛物线上一点,且在抛物线对称轴左侧.过点B作x轴的平行线交抛物线于另一点C,连结BC.当BC=4时,求点B的坐标;(3)若m>0,当抛物线在正方形内部的点的纵坐标y随x的增大而增大时,或者y随x 的增大而减小时,求m的取值范围;(4)当抛物线与正方形PQMN的边只有2个交点,且交点的纵坐标之差为时,直接写出m的值.2022年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)如图是由5个相同的小正方体组合而成的立体图形,其主视图是()A.B.C.D.【分析】找到从几何体的正面看所得到的图形即可.【解答】解:从几何体的正面看,一共有三列,从左到右小正方形的个数分别为3、1、1,故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.2.(3分)长春轨道客车股份有限公司制造的新型奥运版复兴号智能动车组,车头采用鹰隼形的设计,能让性能大幅提升,一列该动车组一年运行下来可节省约1800000度电,将数据1800000用科学记数法表示为()A.18×105B.1.8×106C.1.8×107D.0.18×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1800000=1.8×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)不等式x+2>3的解集是()A..x<1B..x<5C.x>1D..x>5【分析】利用不等式的性质,移项、合并同类项即可.【解答】解:x+2>3,x>3﹣2,x>1.故选:C.【点评】本题考查了不等式的性质:熟练掌握不等式的性质是解决此类问题的关键.4.(3分)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>0B.a<b C.b﹣1<0D.ab>0【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.【解答】解:根据图形可以得到:﹣2<a<0<1<b<3;所以:A,C,D都是错误的;故选:B.【点评】本题考查了数轴与实数的关系,理解并正确运用是解题的关键.5.(3分)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A,变幅索的底端记为点B,AD垂直地面,垂足为点D,BC⊥AD,垂足为点C.设∠ABC=α,下列关系式正确的是()A.sinα=B.sinα=C.sinα=D.sinα=【分析】根据直角三角形的边角关系进行判断即可.【解答】解:在Rt△ABC中,∠ACB=90°,∠ABC=α,由锐角三角函数的定义可知,sinα=sin∠ABC=,故选:D.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确判断的前提.6.(3分)如图,四边形ABCD是⊙O的内接四边形,若∠BCD=121°,则∠BOD的度数为()A.138°B.121°C.118°D.112°【分析】根据圆的内接四边形对角互补得到∠A=180°﹣121°=59°,根据圆周角定理即可得到∠BOD=2∠A的度数.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠A=180°﹣121°=59°,∴∠BOD=2∠A=2×59°=118°,故选:C.【点评】本题考查了圆内接四边形,圆周角定理,掌握圆的内接四边形对角互补是解题的关键.7.(3分)如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是()A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC【分析】由图中尺规作图痕迹可知,BE为∠ABC的平分线,DF为线段AB的垂直平分线,结合角平分线的定义和垂直平分线的性质逐项分析即可.【解答】解:由图中尺规作图痕迹可知,BE为∠ABC的平分线,DF为线段AB的垂直平分线.由垂直平分线的性质可得AF=BF,故A选项不符合题意;∵DF为线段AB的垂直平分线,∴∠BDF=90°,∴∠DBF+∠DFB=90°,故C选项不符合题意;∵BE为∠ABC的平分线,∴∠ABF=∠EBC,∵AF=BF,∴∠ABF=∠BAF,∴∠BAF=∠EBC,故D选项不符合题意;根据已知条件不能得出AE=AC,故B选项符合题意.故选:B.【点评】本题考查尺规作图,熟练掌握垂直平分线的性质是解答本题的关键.8.(3分)如图,在平面直角坐标系中,点P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,将线段QP绕点Q顺时针旋转60°得到线段QM.若点M也在该反比例函数的图像上,则k的值为()A.B.C.D.4【分析】作MN⊥x轴于N,根据题意P(,2),PQ=2,由于将线段QP绕点Q顺时针旋转60°得到线段QM,得出QM=QP=2,∠POM=60°,即可得出∠MQN=30°,即可得出MN=QM=1,QN==,得到M(+,1),代入反比例函数解析式即可求得k的值.【解答】解:作MN⊥x轴于N,∵P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,∴P(,2),∴PQ=2,∵将线段QP绕点Q顺时针旋转60°得到线段QM.∴QM=QP=2,∠POM=60°,∴∠MQN=90°﹣60°=30°,∴MN=QM=1,∴QN==,∴M(+,1),∵点M也在该反比例函数的图象上,∴k=+,解得k=2,故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,坐标与图形变化﹣旋转,表示出M点的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)分解因式:m2+3m=m(m+3).【分析】利用提公因式法,进行分解即可解答.【解答】解:m2+3m=m(m+3),故答案为:m(m+3).【点评】本题考查了因式分解﹣提公因式法,熟练掌握因式分解﹣提公因式法是解题的关键.10.(3分)若关于x的方程x2+x+c=0有两个相等的实数根,则实数c的值为.【分析】若一元二次方程有两个相等的实数根,则根的判别式Δ=b2﹣4ac=0,建立关于c的方程,求出c的值即可.【解答】解:∵关于x的一元二次方程x2+x+c=0有两个相等的实数根,∴Δ=b2﹣4ac=12﹣4c=0,解得c=.故答案为:.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.11.(3分)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住.设店中共有x间房,可求得x的值为8.【分析】由等量关系“一房七客多七客,一房九客一房空”,即可列出一元一次方程组求得.【解答】解:依题意得:7x+7=9(x﹣1),解得:x=8,故答案为:8.【点评】本题考查一元一次方程的应用,理清题中的等量关系是解题的关键.12.(3分)将等腰直角三角板与量角器按如图所示的方式摆放,使三角板的直角顶点与量角器的中心O重合,且两条直角边分别与量角器边缘所在的弧交于A、B两点.若OA=5厘米,则的长度为厘米.(结果保留π)【分析】弧长的计算(1)圆周长公式:C=2πR.(2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).【解答】解:===.故答案为:.【点评】本题考查了弧长公式的应用,注意以下几点:①在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长.③题设未标明精确度的,可以将弧长用π表示.13.(3分)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为54厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.【点评】本题考查等边三角形的性质,正多边形与圆,理解图形的对称性以及等边三角形的判定是解决问题的前提.14.(3分)已知二次函数y=﹣x2﹣2x+3,当a≤x≤时,函数值y的最小值为1,则a的值为﹣1﹣.【分析】函数配方后得y=﹣x2﹣2x+3=﹣(x+1)2+4,当y=1时,﹣(x+1)2+4=1,可得x=﹣1±,因为﹣1+>,所以﹣1﹣≤x≤时,函数值y的最小值为1,进而可以解决问题.【解答】解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴图象开口向下,顶点坐标为(﹣1,4),根据题意,当a≤x≤时,函数值y的最小值为1,当y=1时,﹣(x+1)2+4=1,∴x=﹣1±,∵﹣1+>,∴﹣1﹣≤x≤时,函数值y的最小值为1,∴a=﹣1﹣.故答案为:﹣1﹣.【点评】本题考查了二次函数的性质,二次函数的最值,熟练掌握二次函数的增减性质是解题的关键.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(2+a)(2﹣a)+a(a+1),其中a=﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.【点评】本题考查了整式的混合运算﹣化简求值,准确熟练地进行计算是解题的关键.16.(6分)抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率.【分析】画树状图,共有4种等可能的结果,其中两次分数之和不大于3的结果有3种,再由概率公式求解即可.【解答】解:画树状图如下:共有4种等可能的结果,其中两次分数之和不大于3的结果有3种,∴两次分数之和不大于3的概率为.【点评】本题考查了用树形图概率,树状图法可以不重不漏的列举出所有可能发生的情况,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?【分析】设乙班平均每小时挖x千克土豆,根据“甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同”列分式方程,求解即可.【解答】解:设乙班平均每小时挖x千克土豆,根据题意,得,解得x=400,经检验,x=400是原方程的根,且符合题意;答:乙班平均每小时挖400千克土豆.【点评】本题考查了分式方程的应用,理解题意并根据题意建立等量关系是解题的关键.18.(7分)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是直角三角形;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′即为所求;(3)如图②中,点E即为所求;(4)如图,点P,点Q即为所求.【点评】本题考查作图﹣应用与设计作图,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,勾股定理的逆定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.19.(7分)如图,在Rt△ABC中,∠ABC=90°,AB<BC.点D是AC的中点,过点D 作DE⊥AC交BC于点E.延长ED至点F,使得DF=DE,连结AE、AF、CF.(1)求证:四边形AECF是菱形;(2)若=,则tan∠BCF的值为.【分析】(1)先证四边形AECF是平行四边形,再由DE⊥AC,即可得出结论;(2)设BE=a,则CE=4a,由菱形的性质得AE=CE=4a,AE∥CF,则∠BEA=∠BCF,再由勾股定理得AB=a,然后由锐角三角函数定义即可得出结论.【解答】(1)证明:∵点D是AC的中点,∴AD=CD,∵DF=DE,∴四边形AECF是平行四边形,又∵DE⊥AC,∴平行四边形AECF是菱形;(2)解:∵=,∴CE=4BE,设BE=a,则CE=4a,由(1)可知,四边形AECF是菱形,∴AE=CE=4a,AE∥CF,∴∠BEA=∠BCF,∵∠ABC=90°,∴AB===a,∴tan∠BCF=tan∠BEA===,故答案为:.【点评】本题考查了菱形的判定与性质、平行四边形的判定与性质、勾股定理以及锐角三角函数定义等知识,熟练掌握菱形的判定与性质是解题的关键.20.(7分)党的十八大以来,我国把科技自立自强作为国家发展的战略支撑,科技事业发生了历史性、整体性、格局性变化,成功跨入创新型国家的行列,专利项目多项指数显著攀升.如图是长春市2016年到2020年专利授权情况的统计图.根据以上信息回答下列问题:(1)长春市从2016年到2020年,专利授权量最多的是2020年;(2)长春市从2016年到2020年,专利授权量年增长率的中位数是18.1%;(3)与2019年相比,2020年长春市专利授权量增加了5479件,专利授权量年增长率提高了30.2个百分点;(注:1%为1个百分点)(4)根据统计图提供的信息,有下列说法,正确的画“√”,错误的画“×”.①因为2019年的专利授权量年增长率最低,所以2019年的专利授权量的增长量就最小.×②与2018年相比,2019年的专利授权量年增长率虽然下降,但专利授权量仍然上升.这是因为专利授权量年增长率=×100%,所以只要专利授权量年增长率大于零,当年专利授权量就一定增加.√③通过统计数据,可以看出长春市区域科技创新力呈上升趋势,为国家科技自立自强贡献吉林力量.√【分析】(1)观察统计图可得专利授权量最多的是2020年,即可求解;(2)先把专利授权量年增长率从小到大排列,即可求解;(3)分别用2020年长春市专利授权量减去2019年长春市专利授权量,2020年专利授权量年增长率减去2019年专利授权量年增长率,即可求解;(4)①根据题意可得2017年的的专利授权量的增长量低于2019年的,可得①错误;②根据专利授权量年增长率当年专利授权量﹣上一年专利授权量x100%,可得②正确;③观察统计图可得从2016年到2020年,每年的专利授权量上一年专利授权量都有所增加,可得③正确,即可求解.【解答】解:(1)根据题意得:从2016年到2020年,专利授权量最多的是2020年,故答案为:2020;(2)把专利授权量年增长率从小到大排列为:15.8%,16.0%,18.1%,25.4%,46.0%,位于正中间的是18.1%,∴专利授权量年增长率的中位数是18.1%,故答案为:18.1%;(3)与2019年相比,2020年长春市专利授权量增加了17373﹣11894=5479件;专利授权量年增长率提高了46.0%﹣15.8%=30.2%,专利授权量年增长率提高了30.2个百分点,故答案为:5479,30.2;(4)①因为2017年的专利授权量的增长量为8190﹣7062=1128件,2019年的专利授权量的增长量11894﹣10268=1626件,所以2019年的专利授权量的增长量高于2017年的专利授权量的增长量,故①错误,故答案为:×;②因为专利授权量年增长率=×100%,所以只要专利授权量年增长率大于零,当年专利授权量就一定增加,故②正确,故答案为:√;根据题意得:从2016年到2020年,每年的专利授权量都有所增加,所以长春市区域科技创新力呈上升趋势,故③正确,故答案为:√.【点评】本题主要考查了折线统计图和条形统计图,理解统计图中数据之间的关系是正确解答的关键.21.(8分)已知A、B两地之间有一条长440千米的高速公路.甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示.(1)m=2,n=6;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A地的路程.(1)由甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇可求出m=2,【分析】根据以另一速度继续匀速行驶4小时到达B地知n=6;(2)用待定系数法可得y=60x+80,(2≤x≤6);(3)求出乙的速度,即可得乙到A地所有时间,即可求得甲车距A地的路程为300千米.【解答】解:(1)由题意知:m=200÷100=2,n=m+4=2+4=6,故答案为:2,6;(2)设y=kx+b,将(2,200),(6,440)代入得:,解得,∴y=60x+80,(2≤x≤6);(3)乙车的速度为(440﹣200)÷2=120(千米/小时),∴乙车到达A地所需时间为440÷120=(小时),当x=时,y=60×+80=300,∴甲车距A地的路程为300千米.【点评】本题考查一次函数的应用,解题的关键是读懂题意,能正确识图.22.(9分)【探索发现】在一次折纸活动中,小亮同学选用了常见的A4纸,如图①,矩形ABCD为它的示意图.他查找了A4纸的相关资料,根据资料显示得出图①中AD=AB.他先将A4纸沿过点A的直线折叠,使点B落在AD上,点B的对应点为点E,折痕为AF;再沿过点F的直线折叠,使点C落在EF上,点C的对应点为点H,折痕为FG;然后连结AG,沿AG所在的直线再次折叠,发现点D与点F重合,进而猜想△ADG ≌△AFG.【问题解决】小亮对上面△ADG≌△AFG的猜想进行了证明,下面是部分证明过程:证明:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°.由折叠可知,∠BAF=∠BAD=45°,∠BF A=∠EF A.∴∠EF A=∠BF A=45°.∴AF=AB=AD请你补全余下的证明过程.【结论应用】(1)∠DAG的度数为22.5度,的值为﹣1;(2)在图①的条件下,点P在线段AF上,且AP=AB,点Q在线段AG上,连结FQ、PQ,如图②.设AB=a,则FQ+PQ的最小值为a.(用含a的代数式表示)【分析】【问题解决】根据折叠的性质可得AD=AF,∠AFG=∠D=90°,由HL可证明结论;【结论应用】(1)根据折叠的性质可得∠DAG=∠DAF=22.5°;证明△GCF是等腰直角三角形,可求出GF的长,从而可得结论;(2)根据题意可知点F与点D关于AG对称,连接PD,则PD为PQ+FQ的最小值,过点P作PR⊥AD,求出PR=AR=a,求出DR,根据勾腰定理可得结论.【解答】【问题解决】证明:四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,由折叠可知,∠BAF=∠BAD=45°,∠BF A=∠EF A.∴∠EF A=∠BF A=45°,∴AF=AB=AD.由折叠得,∠CFG=∠GFH=45°,∴∠AFG=∠AFE+∠GFE=45°+45°=90°,∴∠AFG=∠D=90°,又AD=AF,AG=AG,∴△ADG≌△AFG(HL).【结论应用】(1)由折叠得,∠BAF=∠EAF,又∠BAF+∠EAF=90°,∴∠EAF=∠BAE=×90°=45°,由△ADG≌△AFG得,∠DAG=∠F AG=∠F AD=×45°=22.5°,∠AFG=∠ADG=90°,又∠AFB=45°,∴∠GFC=45°.∴∠FGC=45°.∴GC=FC.设AB=x,则BF=x,AF=x=AD=BC,∴FC=BC﹣BF=x﹣x=(﹣1)x,∴GF=FC=(2﹣)x.∴==﹣1.故答案为:22.5;﹣1.(2)如图,连接FD,∵DG=FG,∴AG是FD的垂直平分线,即点F与点D关于AG轴对称,连接PD交AG于点Q,则PQ+FQ的最小值为PD的长;过点P作PR⊥AD交AD于点R,∵∠DAF=∠BAF=45°,∴∠APR=45°,∴AR=PR,又AR2+PR2=AP2=()2=,∴AR=PR=a,∴DR=AD﹣AR=a﹣a=a.在Rt△DPR中,AR2+PR2=DP2,∴DP=a.∴PQ+FQ的最小值为a.。
中考数学试题及答案长春
中考数学试题及答案长春中考数学试题及答案——长春第一部分选择题(共60分)1. 已知函数 f(x) = 3x - 5,求 f(2) 的值。
答案:f(2) = 3(2) - 5 = 6 - 5 = 12. 在四边形 ABCD 中,如果∠ADC = 90°,则∠BAC + ∠BCD 的度数之和为多少?答案:∠BAC + ∠BCD = 180° - ∠ADC = 180° - 90° = 90°3. 计算:(2a - b)^2,其中 a = 3,b = 4。
答案:(2a - b)^2 = (2(3) - 4)^2 = (6 - 4)^2 = 2^2 = 44. 一个数除以5,商是30,余数是3,这个数是多少?答案:这个数 = 商 ×除数 + 余数 = 30 × 5 + 3 = 1535. 将一个正方形 ABCD 以点 C 为中心旋转90°得到正方形 CDEF,C 在 BA 上,若 BC = 3cm,则 DE 的长度为多少?答案:DE 的长度与 BC 相等,即 DE = 3cm第二部分填空题(共20分)1. 1000 ÷ (10 × 5) = _______答案:1000 ÷ (10 × 5) = 1000 ÷ 50 = 202. 半径为6cm的圆的面积是 _______ 平方厘米。
答案:半径为6cm的圆的面积= πr² = 3.14 × 6² = 3.14 × 36 = 113.04平方厘米3. 一个水桶里有120升水,从中取出 2/5 升后还剩下 _______ 升水。
答案:还剩下的水量 = 总水量 - 取出的水量 = 120升 - (2/5 × 1000毫升) = 120升 - 400毫升 = 119.6升4. 化简:(a + b)² - (a - b)²答案:(a + b)² - (a - b)² = a² + 2ab + b² - a² + 2ab - b² = 4ab5. 若 x = -2,求 -3x - 7 的值。
2022年吉林省长春市中考数学试卷-含答案详细解析校准版
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年吉林省长春市中考数学试卷副标题学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图是由5个相同的小正方体组合而成的立体图形,其主视图是( )A.B.C.D.2. 长春轨道客车股份有限公司制造的新型奥运版复兴号智能动车组,车头采用鹰隼形的设计,能让性能大幅提升,一列该动车组一年运行下来可节省约1800000度电,将数据1800000用科学记数法表示为( )A. 18×105B. 1.8×106C. 1.8×107D. 0.18×107……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………3. 不等式x +2>3的解集是( ) A. .x <1 B. .x <5 C. x >1 D. .x >54. 实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A. a >0B. a <bC. b −1<0D. ab >05. 如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,AD 垂直地面,垂足为点D ,BC ⊥AD ,垂足为点C.设∠ABC =α,下列关系式正确的是( )A. sinα=ABBCB. sinα=BCABC. sinα=ABACD. sinα=ACAB6. 如图,四边形ABCD 是⊙O 的内接四边形,若∠BCD =121°,则∠BOD 的度数为( )A. 138°B. 121°C. 118°D. 112°7. 如图,在△ABC 中,根据尺规作图痕迹,下列说法不一定正确的是( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………A. AF =BFB. AE =12AC C. ∠DBF +∠DFB =90°D. ∠BAF =∠EBC8. 如图,在平面直角坐标系中,点P 在反比例函数y =kx (k >0,x >0)的图象上,其纵坐标为2,过点P 作PQ//y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM.若点M 也在该反比例函数的图像上,则k 的值为( )A. √32B. √3C. 2√3D. 4第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)9. 分解因式:m 2+3m =______.10. 若关于x 的方程x 2+x +c =0有两个相等的实数根,则实数c 的值为______.11. 《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住.设店中共有x 间房,可求得x 的值为 .12. 将等腰直角三角板与量角器按如图所示的方式摆放,使三角板的直角顶点与量角器的中心O 重合,且两条直角边分别与量角器边缘所在的弧交于A 、B 两点.若OA =5厘米,则AB⏜的长度为______厘米.(结果保留π)……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………13. 跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC 和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形.若AB =27厘米,则这个正六边形的周长为______厘米.14. 已知二次函数y =−x 2−2x +3,当a ≤x ≤12时,函数值y 的最小值为1,则a的值为______.三、解答题(本大题共10小题,共78.0分。
精品解析:2022年吉林省长春市中考数学真题(解析版)
∵P点纵坐标为:2,
∴P点坐标表示为:( ,2),PQ=2,
由旋转可知:QM=PQ=2,∠PQM=60°,
∴∠MQN=30°,
∴MN= ,QN= ,
∴ ,
即: ,
解得:k= ,
故选:C.
【点睛】本题主要考查的是k的几何意义,表示出对应线段是解题的关键.
二、填空题(本大题共6小题,每小题3分,共18分)
【答案】8
【解析】
【分析】设店中共有x间房,根据“今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住”可列一元一次方程,求解即可.
【详解】设店中共有x间房,
由题意得, ,
解得 ,
所以,店中共有8间房,
故答案为:8.
【点睛】本题考查了一元一次方程的应用,准确理解题意,找到等量关系是解题的关键.
故选:A.
【点睛】此题主要考查了简单组合体的三视图,俯视图是从上面看所得到的图形,主视图是
从正面看所得到的图形,左视图时从左面看所得到的图形,熟练掌握知识点是解题的关键.
2.长春轨道客车股份有限公司制造的新型奥运版复兴号智能动车组,车头采用鹰隼形的设计,能让性能大幅提升,一列该动车组一年运行下来可节省约1800000度电,将数据1800000用科学记数法表示为()
2022年长春市初中学业水平考试数学
一、选择题(本大题共8小题,每小题3分,共24分)
1.图是由5个相同的小正方体组合而成的立体图形,其主视图是()
A. B. C. D.
【答案】A
【解析】
【分析】根据三视图的概念,从正面看到的图形就是主视图,再根据小正方体的个数和排列进行作答即可.
吉林省长春市2023年中考数学试卷((附参考答案))
吉林省长春市2023年中考数学试卷一、单选题1.实数、、、数轴上对应点位置如图所示,这四个数中绝对值最小的是()A.B.C.D.2.长春龙嘉国际机场T3A航站楼设计创意为“鹤舞长春”,如图所示,航站楼的造型如仙鹤飞翔,蕴含了对吉春大地未来发展的美好愿景.本期工程按照满足年旅客吞吐量人次目标设计的,其中这个数用科学记数法表示为()A.B.C.D.3.下列运算正确的是()A.B.C.D.4.下图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是()A.面①B.面②C.面⑤D.面⑥5.如图,工人师傅设计了一种测零件内径的卡钳,卡钳交叉点O为、的中点,只要量出的长度,就可以道该零件内径的长度.依据的数学基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.两余直线被一组平行线所截,所的对应线段成比例D.两点之间线段最短6.学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳到地面,如图所示.已彩旗绳与地面形成角(即)、彩旗绳固定在地面的位置与图书馆相距32米(即米),则彩旗绳的长度为()A.米B.米C.米D.米7.如图,用直尺和圆规作的角平分线,根据作图痕迹,下列结论不一定正确的是()A.B.C.D.8.如图,在平面直角坐标系中,点、在函数的图象上,分别以、为圆心,为半径作圆,当与轴相切、与轴相切时,连结,,则的值为()A.3B.C.4D.6二、填空题9.分解因式:=.10.若关于的方程有两个不相等的实数根,则的取值范围是.11.2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为公里.(用含x的代数式表示)12.如图,和是以点为位似中心的位似图形,点在线段上.若,则和的周长之比为.13.如图,将正五边形纸片折叠,使点与点重合,折痕为,展开后,再将纸片折叠,使边落在线段上,点的对应点为点,折痕为,则的大小为度.14.年5月8日,商业首航完成——中国民商业运营国产大飞机正式起步.时分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的抛物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为米时,两条水柱在物线的顶点H处相遇,此时相遇点H距地面米,喷水口A、B距地面均为4米.若两辆消防车同时后退米,两条水柱的形状及喷水口、到地面的距离均保持不变,则此时两条水柱相遇点距地面米.三、解答题15.先化简.再求值:,其中.16.班级联欢会上有一个抽奖活动,每位同学均参加一次抽奖,活动规则下:将三个完全相同的不透明纸杯倒置放在桌面上,每个杯子内放入一个彩蛋,彩蛋颜色分别为红色、红色、绿色.参加活动的同学先从中随机选中一个杯子,记录杯内彩蛋颜色后再将杯子倒置于桌面,重新打乱杯子的摆放位置,再从中随机选中一个杯子,记录杯内彩蛋颜色.若两次选中的彩蛋颜色不同则获一等奖,颜色相同则获二等奖.用画树状图(或列表)的方法,求某同学获一等奖的概率.17.随着中国网民规模突破亿、博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使伽瑶,受到广大敦煌文化爱好者的好评.某工厂计划制作个伽瑶玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的倍,结果提前天完成任务.问原计划平均每天制作多少个摆件?18.将两个完全相同的含有角的直角三角板在同一平面内按如图所示位置摆放.点A,E,B,D依次在同一直线上,连结、.(1)求证:四边形是平行四边形;(2)已知,当四边形是菱形时.的长为.19.近年来,肥胖经成为影响人们身体健康的重要因素.目前,国际上常用身体质量指数(,缩写)来衡量人体胖瘦程度以及是否健康,其计算公式是例如:某人身高,体重,则他的.中国成人的数值标准为:为偏瘦;为正常;为偏胖;为肥胖.某公司为了解员工的健康情况,随机抽取了一部分员工的体检数据,通过计算得到他们的值并绘制了如下两幅不完整的统计图.根据以上信息回答下列问题:(1)补全条形统计图;(2)请估计该公司名员工中属于偏胖和肥胖的总人数;(3)基于上述统计结果,公司建议每个人制定健身计划.员工小张身高,值为,他想通过健身减重使自己的值达到正常,则他的体重至少需要减掉.(结果精确到)20.图①、图②、图③均是的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A、B均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作,点C在格点上.(1)在图①中,的面积为;(2)在图②中,的面积为5(3)在图③中,是面积为的钝角三角形.21.甲、乙两个相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车到达山顶.甲、乙距山脚的垂直高度y(米)与甲登山的时间x(分钟)之间的函数图象如图所示.(1)当时,求乙距山脚的垂直高度y与x之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.22.(1)【感知】如图①,点A、B、P均在上,,则锐角的大小为度.(2)【探究】小明遇到这样一个问题:如图②,是等边三角形的外接圆,点P在上(点P不与点A、C重合),连结、、.求证:.小明发现,延长至点E,使,连结,通过证明,可推得是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长至点E,使,连结,四边形是的内接四边形,.,.是等边三角形.,请你补全余下的证明过程.(3)【应用】如图③,是的外接圆,,点P在上,且点P与点B在的两侧,连结、、.若,则的值为.23.如图①.在矩形.,点在边上,且.动点从点出发,沿折线以每秒个单位长度的速度运动,作,交边或边于点,连续.当点与点重合时,点停止运动.设点的运动时间为秒.()(1)当点和点重合时,线段的长为;(2)当点和点重合时,求;(3)当点在边上运动时,的形状始终是等腰直角三角形.如图②.请说明理由;(4)作点关于直线的对称点,连接、,当四边形和矩形重叠部分图形为轴对称四边形时,直接写出的取值范围.24.在平面直角坐标系中,点为坐标原点,抛物线(是常数)经过点.点的坐标为,点在该抛物线上,横坐标为.其中.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点在轴上时,求点的坐标;(3)该抛物线与轴的左交点为,当抛物线在点和点之间的部分(包括、两点)的最高点与最低点的纵坐标之差为时,求的值.(4)当点在轴上方时,过点作轴于点,连结、.若四边形的边和抛物线有两个交点(不包括四边形的顶点),设这两个交点分别为点、点,线段的中点为.当以点、、、(或以点、、、)为顶点的四边形的面积是四边形面积的一半时,直接写出所有满足条件的的值.答案1.【答案】B2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】D7.【答案】B8.【答案】C9.【答案】10.【答案】11.【答案】12.【答案】13.【答案】14.【答案】15.【答案】解:当时,原式16.【答案】解:画树状图如下:共有种可能,获一等奖即两次颜色不相同的可能有种,则某同学获一等奖的概率为:,答:某同学获一等奖的概率为.17.【答案】解:设原计划平均每天制作个,根据题意得,解得:经检验,是原方程的解,且符合题意,答:原计划平均每天制作个摆件.18.【答案】(1)证明:由题意可知,,,,四边形地平行四边形;(2)19.【答案】(1)解:抽取了人,属于偏胖的人数为:,补全统计图如图所示,(2)解:(人)(3)20.【答案】(1)解:如图所示,以为底,设边上的高为,依题意得:解得:即点在上方且到距离为个单位的线段上的格点即可,答案不唯一;(2)解:由网格可知,以为底,设边上的高为,依题意得:解得:将绕或旋转,过线段的另一个端点作的平行线,与网格格点的交点即为点,答案不唯一,(3)解:如图所示,作,过点作,交于格点,由网格可知,,,∴是直角三角形,且∵∴.21.【答案】(1)解:设乙距山脚的垂直高度y与x之间的函数关系式为,将,代入得,,解得:,∴;(2)解:设甲距山脚的垂直高度y与x之间的函数关系式为将点代入得,解得:,∴;联立解得:∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为米. 22.【答案】(1)(2)解:延长至点E,使,连结,四边形是的内接四边形,.,.是等边三角形.,,∴,,,是等边三角形,,,即;(3)23.【答案】(1)(2)解:如图所示,∵,,∴,∴∴,∴,∵,,∴;(3)解:如图所示,过点作于点,∵,,∴,则四边形是矩形,∴又∵∴,∴∴∴是等腰直角三角形;(4)或或24.【答案】(1)解:将点代入抛物线,得,解得:∴抛物线解析式为;∵,∴顶点坐标为,(2)解:由,当时,,解得:,∵抛物线上的点在轴上时,横坐标为.其中.∴∴解得:,∵点的坐标为,∴;(3)解:①如图所示,当,即时,抛物线在点和点之间的部分(包括、两点)的最高点为顶点,最低点为点,∵顶点坐标为,则纵坐标之差为依题意,解得:;②当,即时,∵,即,依题意,,解得:或(舍去),③当,即时,则,解得:或(舍去),④当,即,则,解得:(舍去)或,综上所述,或或或;(4)或或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年长春市初中毕业生学业考试数学本试卷包括七道大题,共26小题.共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸上、试卷上答题无效.一、选择题(每小题3分,共24分)1.2-的绝对值是(A)12-.(B)21.(C)2-.(D)2.2.某汽车参展商为参加第8届(长春)国际汽车博览会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为(A)10.5410⨯.(B)1.05⨯510. (C)1.05⨯610.(D)0.105610⨯.3.右图是由4个相同的小正方体组成的几何体,其俯视图为(A)(B)(C) (D)4.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为(A)37.(B)35.(C)33.8.(D)32.5.不等式组24,20xx>-⎧⎨-≤⎩的解集为(A)2x>-. (B)22x-<<.(C)2x≤. (D)22x-<≤.6.小玲每天骑自行车或步行上学,她上学的路程为2 800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设步行的平均速度为x米/分.根据题意,下面列出的方程正确的是(A)30428002800=-xx.(B)30280042800=-xx.2800280028002800(第3题)(第4题)7.如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为(A)(1,2).(B)(2,1).(C)(2,2).(D)(3,1).(第7题) (第8题)8.如图,直线l1//l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=54°,则∠1的大小为(A)36°.(B)54°. (C)72°. (D)73°.二、填空题(每小题3分,共18分)9.计算:23x x⋅=_____________.10.有a名男生和b名女生在社区做义工,他们为建花坛搬砖.男生每人搬了40块,女生每人搬了30块,这a名男生和b名女生一共搬了____块砖(用含a、b的代数式表示).11.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连结PA、PB.则∠APB的大小为___度.(第11题)(第12题)(第13题)12.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE的长为.13.如图,一次函数bkxy+=(0k<)的图象经过点A.当3y<时,x的取值范围是.14.边长为2的两种正方形卡片如图①所示,卡片中的扇形半径均为2.图②是交替摆放A、B 两种卡片得到的图案.若摆放这个图案共用两种卡片21张,则这个图案中阴影部分图形的面积和为(结果保留π).(第14题)三、解答题(每小题5分,共20分) 15.先化简,再求值:2121-1a a a ++-,其中21=a .16.小华有3张卡片,小明有2张卡片,卡片上的数字如图所示.小华和小明分别从自己的卡片中随机抽取一张.请用画树状图(或列表)的方法,求抽取的两张卡片上的数字和为6的概率.17.在长为10m,宽为8m 的矩形空地上,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示.求其中一个小矩形花圃的长和宽.18.平放在地面上的直角三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示.量得角A 为54°,斜边AB 的长为2.1m,B C边上露出部分B D长为0.9m.求铁板BC 边被掩埋部分C D的长.(结果精确到0.1m)【参考数据:sin54°=0.81,co s54°=0.59,t an54°=1.38】四、解答题(每小题6分,共12分)19.如图,平面直角坐标系中,直线1122y x=+与x轴交于点A,与双曲线xky=在第一象限内交于点B,BC⊥x轴于点C,OC=2AO.求双曲线的解析式.20.在正方形网格图①、图②中各画一个等腰三角形.每个等腰三角形的一个顶点为格点A,其余顶点从格点B、C、D、E、F、G、H中选取,并且所画的两个三角形不全等.五、解答题(每小题6分,共12分)21.如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB=32.(1)求⊙P的半径.(4分)(2)将⊙P向下平移,求⊙P与x轴相切时平移的距离.(2分)22.某校课外兴趣小组从我市七年级学生中抽取2 000人做了如下问卷调查,将统计结果绘制了如下两幅统计图.问卷您平时喝饮料吗?()(A)不喝.(B)喝.请选择B选项的同学回答下面问题:请您减少喝饮料的数量,将节省下来的钱捐给希望工程,您愿意平均每月减少多少瓶?()(A)0瓶.(B)1瓶.(C)2瓶.(D)2瓶以上.根据上述信息解答下列问题:(1)求条形统计图中n的值.(2分)(2)如果每瓶饮料平均3元钱,“少2瓶以上”按少喝3瓶计算.①求这2000名学生一个月少喝饮料能节省多少钱捐给希望工程?(2分)②按上述统计结果估计,我市七年级6万学生一个月少喝饮料大约能节省多少钱捐给希望工程?(2分)六、解答题(每小题7分,共14分) 23.如图,平面直角坐标系中,抛物线32212+-=x x y 交y 轴于点A .P 为抛物线上一点,且与点A 不重合.连结AP,以AO 、AP 为邻边作□OAP Q,PQ 所在直线与x 轴交于点B .设点P 的横坐标为m .(1)点Q 落在x 轴上时m 的值.(3分)(3)若点Q 在x 轴下方,则m 为何值时,线段BQ 的长取最大值,并求出这个最大值.(4分)【参考公式:二次函数)0(2≠++=a c bx ax y 的顶点坐标为(ab ac a b 44,22--)】24.探究如图①,在□AB CD 的形外分别作等腰直角△ABF 和等腰直角△A DE ,∠F AB=∠E AD =90°,连结AC 、E F.在图中找一个与△FAE 全等的三角形,并加以证明.(5分)应用以□AB CD 的四条边为边,在其形外分别作正方形,如图②,连结EF 、GH 、I J、KL .若□ABCD 的面积为5,则图中阴影部分四个三角形的面积和为 .(2分)七、解答题(每小题10分,共20分)25.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2分)(2)求乙组加工零件总量a的值.(3分)(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)26.如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).(1)用含有x的代数式表示CF的长.(2分)(2)求点F与点B重合时x的值.(2分)(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.(3分)(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.(3分)2011年长春市初中毕业生学业考试数学参考答案及评分标准一、选择题(每小题3分,共24分)1.D 2.B 3.C 4.B 5.D 6.A 7.B 8.C 二、填空题(每小题3分,共18分)9.5x 10.(4030a b +) 11.45 12.6 13.x >2 14.π(44-) 三、解答题(每小题5分,共20分) 15.解:原式=aa a a a a a -=-+-=-+-++13121112)1)(1(1. (3分)当21=a 时,原式=62113=-. (5分)16.解:或(3分)P (抽取的两张卡片上的数字和为6)=26= 31. (5分) 17.解:设小矩形花圃的长为xm,宽为y m .根据题意,得⎩⎨⎧=+=+.82,102y x y x (3分)解得42.x y =⎧⎨=⎩,答:小矩形花圃的长为4m,宽为2m . (5分)18.解:在△AB C中,∠C =90,sin BCA AB=, ∵∠A =54,AB =2.1, ∴sin 2.1sin54BC AB A ==⨯2.10.81 1.701.=⨯= (3分) ∵BD=0.9,∴CD= BC -BD =1.701-0.9=0.801≈0.8.答:铁板B C边被掩埋部分CD 的长约为0.8m. (5分) 四、解答题(每小题6分,共12分) 19.解:∵直线1122y x =+与x 轴交于点A , ∴11022x +=.解得1x =-.∴AO =1. ∵OC =2AO ,∴OC =2. (2分) ∵BC ⊥x 轴于点C,∴点B 的横坐标为2.∵点B 在直线1122y x =+上,∴1132222y =⨯+=.∴点B 的坐标为3(22,).(4分)∵双曲线xk y =过点B 3(22,),∴322k=.解得3k =.∴双曲线的解析式为3y x=. (6分)20.解:以下答案供参考.图④、⑤、⑥中的三角形全等,只能画其中一个. 画对一个得3分,共6分.五、解答题(每小题6分,共12分) 21.解:(1)作PC ⊥AB 于C , 连结PA .∴A C =CB =21A B. ∵AB =32,∴AC =3. (2分)∵点P的坐标为(31-,),∴P C=1. 在R t△PA C中,∠PCA =90°, ∴PA =22AC PC +=2)3(122=+.∴⊙P 的半径为2 . (4分)(2)将⊙P 向下平移,⊙P 与x 轴相切时平移的距离为211-=. (6分)22.解:(1)200060%(445470185)100⨯-++=.所以,条形统计图中100n =. (2分) (2)①47011852100333420⨯+⨯+⨯⨯=().所以,这2 000名学生一个月少喝饮料能节省3 420元钱捐给希望工程. (4分)②6000034201026002000⨯=. 所以,我市七年级6万名学生一个月少喝饮料大约能节省102 600元钱捐给希望工程. (6分)六、解答题(每小题7分,共14分)23.解:(1)抛物线32212+-=x x y 与y轴交于点A, ∴点A 的坐标为(03),.∴OA =3.∵四边形O APQ为平行四边形, ∴Q P=OA =3.∴当点Q落在x 轴上时,212332m m -+=. 解得1204m m ==,.当m=0,点P与点A 重合,不符合题意,舍去. ∴m =4.(2)解法一:∵点P 的横坐标为m ,∴21=232BP m m -+.∴=QB QP BP-2213(23)2122m m m m=--+=-+ 21(2)22m =--+.(5分)∵点Q 在x 轴下方,∴04m <<.∴2m =时,线段QB 的长取最大值,最大值为2. (7分)解法二:∵QP =3,=3QB BP -,∴线段BP 的长取最小值时,线段QB 的长取最大值. 当点P 为抛物线的顶点时,线段BP 的长取最小值.当22b x a =-=时,214344211442ac b y a ⨯⨯--===⨯. ∴线段BP 的长最小值为1. (5分)∴2m =时,线段Q B的长取最大值,最大值为3-1=2.(7分)24.探究 △ABC (或△CDA )与△FAE 全等.(下面仅对△ABC ≌△FAE 证明) ∵90FAB EAD ∠=∠=, ∴∠+EAF ∠180=DAB °. ∵四边形ABCD 是平行四边形, ∴BC AD BC AD =,//. ∴∠+DAB ∠180=CBA °. ∴∠CBA =∠EAF .(2分)∵AD AE =,∴AE BC =. ∵AF AB =,∴△ABC ≌△FAE . (5分)应用10.(7分)七、解答题(每小题10分,共20分)25.解:(1)设甲组加工的零件数量y 与时间x 的函数关系式为y kx =.根据题意,得6360k =,解得60k =. 所以,甲组加工的零件数量y 与时间x的函数 关系式为60y x =. (2分) (2)当2x =时,100y =.因为更换设备后,乙组工作效率是原来的2倍, 所以,10010024.8 2.82a -=⨯-.解得300a =. (5分)(3)乙组更换设备后,乙组加工的零件的个数y 与时间x的函数关系式为100100( 2.8)100180y x x =+-=-.当0≤x≤2时,6050300x x +=.解得3011x =.舍去. 当2<x ≤2.8时,10060300x +=.解得103x =.舍去.当2.8<x≤4.8时,60100180300x x +-=.解得3x =.所以,经过3小时恰好装满第1箱. (8分)当3<x ≤4.8时,601001803002x x +-=⨯.解得398x =.舍去. 当4.8<x≤6时.603003002x +=⨯.解得5x =. 因为5-3=2, 所以,再经过2小时恰好装满第2箱. (10分) 26.解:(1)由题意知,△DBP ∽△ABC ,四边形PDEC 为矩形,∴PD PBCA CB=,C E=PD . ∴304620CA PB xPD x CB ⨯⨯===.∴6CE x =. (2分)(2)由题意知,△C EF ∽△C BA ,∴CF CE CA CB =.∴306920CA CE xCF x CB ⨯⨯===.当点F与点B 重合时,CF CB =,9x =20.解得920=x . (4分)(3)当点F 与点P 重合时,BP CF CB +=,4x +9x =20.解得1320=x . 当20013x <<时,如图①, ()26(2013204)2PD PF DE y x -x x +=+-=x x 120512+-=.当2013≤x <209时,如图②,12y DE DG =⨯=12(204)(204)23x x -⋅- 216(5)3x =-. (或216160400333y x x =-+)(7分)(4)1232020519132x x x ===,,. (10分)提示:如图③,当PD PF =时,62013x x =-.解得2019x =.B DE '∆为拼成的三角形.如图④,当点F 与点P重合时,4920x x +=.解得2013x =.BDC ∆为拼成的三角形.如图⑤,当DE PB =时,2044x x -=.解得52x =.DPF ∆为拼成的三角形.。