大学物理第九章讲解
大学物理第九章静电场PPT课件
1 a2 L22
L1
a2 L12
1
a2 L12
(1)中垂线上, E y 0
(2)
L1 , L2 a ,
Ex
(L1 L2 4 0a 2
)
;
Ey 0
(3)
L1 , L2 a ,
Ex
;
20a
Ey 0
例3:求均匀带电圆环轴线上任一点的场强
dl
解: dq dl R
r
dE
1 4 0
第九章
主要内容:
一个定律、两个定理、两个基本物理量
具体要求:
1、掌握场强和电势的概念及叠加原理;掌 握场强和电势的积分关系,了解其微分 关系;能计算简单问题的场强和电势。
2、理解静电场高斯定理和环路定理,掌握 用高斯定理计算场强的条件和方法。
9-1 电荷的量子化 电荷守恒定律
一、电荷的量子化
Q ne e 1.602 1019C
3、但电不场强是度力反映电荷F力学方qE面 的性质, 4、电场强 度满足矢量叠加原理。
E E1 E2
9-4 电场强度的计算
一、点电荷的电场强度
由库仑定律及电场强度的定义
+Q
-Q
E
F q0
1 4 0
Q r2
r0
二、点电荷系:按叠加原理
E E1 E2 En
n i1
1 40
Qi ri2
ri0
三、电荷连续分布的带电体
取电荷元dq,由点电荷的场强
公式对各电荷元的场强求矢量和(即
求积分):
E dE
v
rˆ
4
0
0r
2
dq
说 明:
E=
物理竞赛用大学物理讲义 第九章
• 光的电磁理论——可见光波长
可见光波长: 0.39 — 0.76微米
收音机中波波长: ~ 10 — 10 米
头发丝直径: ~ 80微米 体细胞直径: ~ 10 — 100微米 叶绿体短径: ~ 2 — 4微米
16
2
3
• 光的电磁理论——可见光频率
可见光频率: 3.9 10 — 7.7 10 赫兹
Be
ik1 ( x y )
C 0 光矢量方向 A 0(k k ) B 1 2 O( x 0, y 0) 光矢量方向 A 0(k1 k 2 ) ik2 ( x y ) Ce B / A 0 k1 k2 n1 n2
14 14
收音机中波频率: ~ 10 —10 赫兹
c / 100 16 外层电子绕核频率: ~ 10 ~ 10 赫兹 10 米
5
6
17
• 光的电磁理论——电容率与磁导率
0 0 7 真空磁导率 0 4 10 亨利/ 米
真空电容率 0 c 1
2
真空中的光速 c
1
2.99810 米 / 秒
A
i
C
D
r
O
B f (i, r ) t (i, r ) g (i, r )
f f 0 i r g (i, r ) 0
g (i, r ) AB tani CD tanr BC
10
• 折射定律——费马的时间极值原理
A
i
sin i ui 常数 sin r ur
8
c 0 0和 0都是不可测量的量。 0的值是定义的。 0由与c和0的关系式通过对 c的测量得到。
18
大学物理第九章振动
⼤学物理第九章振动第9章振动本章要点:1. 简谐振动的定义及描述⽅法.2. 简谐振动的能量3. 简谐振动的合成物体在⼀定位置附近作周期性的往返运动,如钟摆的摆动,⼼脏的跳动,⽓缸活塞的往复运动,以及微风中树枝的摇曳等,这些都是振动。
振动是⼀种普遍⽽⼜特殊的运动形式,它的特殊性表现在作振动的物体总在某个位置附近,局限在⼀定的空间范围内往返运动,故这种振动⼜被称为机械振动。
除机械振动外,⾃然界中还存在着各式各样的振动。
今⽇的物理学中,振动已不再局限于机械运动的范畴,如交流电中电流和电压的周期性变化,电磁波通过的空间内,任意点电场强度和磁场强度的周期性变化,⽆线电接收天线中,电流强度的受迫振荡等,都属于振动的范畴。
⼴义地说,凡描述物质运动状态的物理量,在某个数值附近作周期性变化,都叫振动。
9.1 简谐振动9.1.1 简谐振动实例在振动中,最简单最基本的是简谐振动,⼀切复杂的振动都可以看作是由若⼲个简谐振动合成的结果。
在忽略阻⼒的情况下,弹簧振⼦的⼩幅度振动以及单摆的⼩⾓度振动都是简谐振动。
1. 弹簧振⼦质量为m的物体系于⼀端固定的轻弹簧(弹簧的质量相对于物体来说可以忽略不计)的⾃由端,这样的弹簧和物体系统就称为弹簧振⼦。
如将弹簧振⼦⽔平放置,如图9-1所⽰,当弹簧为原长时,物体所受的合⼒为零,处于平衡状态,此时物体所在的位置O就是其平衡位置。
在弹簧的弹性限度内,如果把物体从平衡位置向右拉开后释放,这时由于弹簧被拉长,产⽣了指向平衡位置的弹性⼒,在弹性⼒的作⽤下,物体便向左运动。
当通过平衡位置时,物体所受到的弹性⼒减⼩到零,由于物体的惯性,它将继续向左运动,致使弹簧被压缩。
弹簧因被压缩⽽出现向右的指向平衡位置的弹性⼒,该弹性⼒将阻碍物体向左运动,使物体的运动速度减⼩直到为零。
之后物体⼜将在弹性⼒的作⽤下向右运动。
在忽略⼀切阻⼒的情况下,物体便会以平衡位置O为中⼼,在与O点等距离的两边作往复运动。
图中,取物体的平衡位置O为坐标原点,物体的运动轨迹为x轴,向右为正⽅向。
大学物理——第九章静电场PPT课件
场强在坐标轴上的投影
E x E i,xE y E i,y E z E iz
i
i
i
E E x i E yj E zk
12
五、电场强度的计算
y
例1.电偶极子
如图已知:q、-q、
•B
电偶极矩
r>>l, pql
求:A点及B点的场强
lo
l
E
•EA A
E
x
r
解:A点 设+q和-q 的场强 分别为 E和 E
r、、l 是变量,而线积一分个只变能量 19
选θ作为积分变量 lac( t g)actg
dlacs2cd r2 a2 l2
y
dE
dE y
a 2 a 2 ctg 2 a 2 csc 2
dEx O
x
dE x410rd2 lcos 1
a
r
2
40
acs2cd a2cs2c cos
4 0a
3
二、库仑定律
真空中两个静止的点电荷之间的作用力(静电力),
与它们所带电量的乘积成正比,与它们之间的距离的平
方成反比,作用力方向沿着这两个点电荷的连线。
F
k
q1q2 r2
r0
1
q 1 ro
r
q2
k
F
4 0
——电荷q1作用于电荷q2的力。
ro ——单位矢量,由施力物体指向受力物体。
0
——真空介电常数。
l dl
cosd
Ex dE x 1240acods40a(sin2sin1)
20
1 dl
dyE 40r2sin 40a sin d
y
大学物理 第九章课件资料
可以自己证明:
A B (Axi Ay j Azk ) (Bxi By j Bzk )
(Ay Bz Az By )i (Az Bx AxBz ) j (AxBy Ay Bx )k
第九章内容
9-1 电荷的量子化 电荷守恒定律 9-2 库仑定律 9-3 电场强度 9-4 电场强度通量 高斯定理 9-5 静电场的环路定理 电势能 9-6 电势 例题:P8 例1、例2;P16 例1;P20 例2、例3、例4 ; P29 例1、例2、例3 作业:习题9-8 9-11 9-12 9-15 9-16 9-18 9-23
A
E
x
9 – 3 电场强度
第九章静电场
q O q
x r0 2 r0 2
E
A
E
x
E
1
4π 0
q (x r0
i 2)2
1
q
E 4π 0 (x r0 2)2 i
x
E
r0
E
E
E
q
4π 0
4. 满足乘法交换律和分配律:
A• B B • A (A B) •C A•C B •C
第九章静电场
直角坐标系中:
A• B ( Axi Ay j Azk ) • (Bxi By j Bzk )
Ax Bx Ay By Az Bz
矢积(叉积):
C
A
B
第九章静电场
z Az
A
Ax
Ay
Az
0
A
Ay
y
Ax i Ay j Azk
x
Ax
i , j, k
Ax , Ay , Az
A Ax2 Ay2 Az2
为为xA, 在y,x,z轴y,方z向轴的方单向位的矢分量矢量
大学物理下册第九章:静电场
讨论静电除尘器的工作原理及性能评价指标。
例题3
解释静电复印机的工作过程及常见故障处理方法。
例题4
阐述静电场对人体产生的危害及相应的防护措施。
06 总结回顾与拓展延伸
本章知识点总结回顾
静电场的基本性质
静电场是由静止电荷所产生的电场,具有保守性和无源性 。其基本性质包括电场的强度、电势、电场线等概念。
静电屏蔽
当导体和绝缘体之间存在一定距离时,由于导体的静电屏蔽效应,可 以减弱或消除外部静电场对绝缘体的影响。
典型例题分析与讨论
01
例题1
分析导体球壳在点电荷电场中的静 电感应现象及电荷分布情况。
例题3
解释尖端放电现象的原理及影响因 素,并给出实际应用案例。
03
02
例题2
讨论平行板电容器中绝缘介质对电 容器电容的影响及原因。
03 电势能、电势与等势面
电势能概念及计算方法
电势能定义
电荷在电场中具有的势能,与电荷的电量和电场中的 位置有关。
电势能计算
通过电场力做功来计算电势能的变化,从而确定电势 能的大小。
电势能零点选择
通常选择无穷远处或地球表面为电势能零点,方便计 算。
电势定义及物理意义
电势定义
单位正电荷在电场中某点具有的电势能,反 映电场能的性质。
情况。
THANKS FOR WATCHING
感谢您的观看
大学物理下册第九章静电场
目录
• 静电场基本概念与性质 • 库仑定律与电场线 • 电势能、电势与等势面 • 静电场中导体和绝缘体性质 • 静电场应用与防护 • 总结回顾与拓展延伸
01 静电场基本概念与性质
静电场定义及特点
静电场
大学物理课件第九章
σ1 = σ 4 = 0
E I = E III = 0
Q EII = ε 0S
Q σ 2 −σ3 = S
例题2 例题2 半径为 R 的导体球 1 均匀带电 + q,另外一同 心导体球壳均匀带电 + Q 其半径分别为 R2和 R3求电场强度和电 q +Q 势的分布
解:导体上电荷分 布是: 布是: 球壳内表面 带电 − q ,外表面 带电 q + Q 。
∑q′ = −∫σ′ ⋅ dS
S内 S
∆S
E
l
= −∫ PcosθdS = −∫ P ⋅ dS A S S
B
三、电介质中的电场
E = E0 + E′
介质中 的电场 自由电 荷的电场
E0
E′
E0
E内 = 0
E0
导体 (1)导体内部任一点的电场强度为零 导体内部任一点的电场强度为零, (1)导体内部任一点的电场强度为零,即
E = 0(其 E = E0 + E′) 中内 内
(2)导体表面处电场强度方向与导体表面垂直 (2)导体表面处电场强度方向与导体表面垂直 (3)导体是一等势体
静电场中的导体
有极分子的无序排列
注意
介质表面出现极化电荷, 介质表面出现极化电荷,介质内产生极化电场
1)极化作用将在电介质表面产生束缚电荷; 1)极化作用将在电介质表面产生束缚电荷; 极化作用将在电介质表面产生束缚电荷 2)束缚电荷产生附加电场 E′. 束缚电荷产生附加电场
二、电极化强度
1. 电极化强度: 电极化强度: 在电介质中任取一宏观小体积∆ 在电介质中任取一宏观小体积∆V : 无外场 有外场 介质不极化 介质被极化
∫ E⋅ d S =
大学物理第九章磁场
第九章磁场Stationary Magnetic Field磁铁和电流周围存在着磁场,磁现象的本质就是电荷的运动, 磁场的基本特性是对位于其中的运动电荷有力的作用.1、磁感应强度的定义;2、毕奥-萨伐尔定律,安培环路定理;3、几种电流产生的磁感应强度的计算;4、磁场对运动电荷、载流导线、载流线圈的作用;5、磁场和磁介质之间的相互作用.第一节磁场磁感应强度磁现象永磁体——磁铁的性质S N(1)具有磁性(magnetism),能吸引铁、钴、镍等物质;(2)永磁体具有磁极(magnetic pole),磁北极和磁南极;(3)磁极之间存在相互作用,同性相斥,异性相吸;(4)磁极不能单独存在.奥斯特实验(1819年)NS I在载流导线附近的小磁针会发生偏转Hans ChristianOersted,1777~1851年丹麦物理学家1820年安培的发现SN F I 放在磁体附近的载流导线或线圈会受到力的作用而发生运动.安培分子电流假说(1822年)一切磁现象的根源是电流!磁性物质的分子中存在着“分子电流”,磁性取定于物质中分子电流的磁效应之和.一、磁场(Magnetic Field)电流~~~磁铁、电流~~~电流运动电荷~~~运动电荷、运动电荷~~~磁铁通过一种特殊物质的形式——磁场来传递的.磁铁周围存在磁场,运动电荷和载流导线周围也存在磁场.磁场对其中的运动电荷和载流导线有力的作用;磁力也能做功,具有能量.电流与电流之间的相互作用I I ++--II ++--磁场对运动电荷的作用S +电子束N运动电荷磁场运动电荷从运动的点电荷在磁场中所受的磁力来定义磁感应强度的大小和方向!B 方向:小磁针在磁场中,其磁北极N 的指向B 二、磁感应强度(Magnetic Induction)磁感应强度:描述磁场性质的物理量B点电荷在磁场中运动的实验+B v F max c 、电荷q 沿磁场方向运动时,F = 0;b 、F 大小随v 变化;d 、电荷q 沿垂直磁场方向运动时,F max .(2)在垂直磁场方向改变速率v ,改变点电荷电量q在磁场中同一点,F max /qv 为一恒量,而在不同的点上,F max /qv 的量值不同.(1)点电荷q 以不同运动v a 、受磁力,;F v磁感应强度的大小:qv F B m ax =单位:T 特斯拉(Tesla)G 高斯(Gauss)T10G 14-=磁感应强度的方向:max F vB a.由小磁针的N 极指向定,b.由到的右手螺旋法则定max F v三、磁感应线用磁感应线来形象地描写磁感应强度这一矢量场在空间的分布:曲线上某点处的切向表示该点的方向;曲线在某处的疏密表示该点的大小.B B 磁感应线的特点★任一条磁感应线是闭合的,或两端伸向无穷远;★磁感应线与载流回路互相套联;★任两条磁感应线不能相交.IB四、磁通量(Magnetic Flux)通过磁场中某给定面的磁感应线的总数.θcos d d m S B Φ=⎰⎰=⋅=S S m S B S B Φd cos d θ 单位:Wb ,1Wb=1T ﹒m 2磁通量:穿过磁场中任意闭合曲面的磁通量为零.磁场是无源场:其磁感应线闭合成环,无头无尾;同时也表示不存在磁单极,无单个的N 或S 极.The total magnetic flux through a closed surface is always zero.d 0S B S ⋅=⎰ 五、磁场的高斯定理(Gauss’s law for magnetism)寻找磁单极子1975 年:美国加州大学,休斯敦大学联合小组报告,用装有宇宙射线探测器气球在40 km 高空记录到电离性特强离子踪迹,认为是磁单极. 为一次虚报.1982年,美国斯坦福大学报告,用d = 5 cm 的超导线圈放入D =20 cm 超导铅筒. 由于迈斯纳效应屏蔽外磁场干扰,只有磁单极进入会引起磁通变化,运行151天,记录到一次磁通突变, 改变量与狄拉克理论相符. 但未能重复,为一悬案.人类对磁单极的探寻从未停止,一旦发现磁单极,将改写电磁理论.1820年实验得到:长直载流导线周围的磁感应强度与距离成反比与电流强度成正比. r I B Laplace 对此结果作了分析整理,得出了电流元产生的磁场的磁感应强度表达式.一、毕奥—萨伐尔定律(Law of Biot and Savart)I B r 第二节毕奥—萨伐尔定律d I l IBd l r d I l02d sin d 4I l B r μθπ=002d d 4I l r B r μπ⨯= μo 为真空中的磁导率:μo = 4 π⨯10-7 T·m·A -1. 整个载流导线在P 点产生的磁感应强度为:002d d 4L LI l r B B r μπ⨯==⎰⎰ P d I l θr d Bnqvs I =0024qv r B r μπ⨯= ++++++I S v d I l 导体中带电粒子的定向运动形成电流I ,并由此可分析得到运动电荷产生的磁场.+v r B ×-v r B·二、运动电荷的磁场圆电流轴线上的磁感应强度02d sin d 4I l B r μθπ=02d sin 90cos d cos 4x I l B B B r μααπ︒===⎰⎰22xR r +=22cos R R x α=+x x P R αr d B d I ld B x d B y 毕奥—萨伐尔定律的应用d I l r ⊥ 注意到,通过对称性分析,可知B y = 0,因此:()()2200323222220d 42RR l IR B R x R x πμμπ==++⎰方向:沿轴线与电流成右手螺旋关系.()2032222IRB R x μ=+定义圆电流磁矩:mp IS ISn == 在圆心处x = 0,B 大小:R IB 20μ=IS m p ()2322m 02x R P B += πμ圆电流轴线上磁场的另一种表达式:例:亥姆霍兹圈:两个完全相同的N 匝共轴密绕短线圈,其中心间距与半径R 相等,通有同向平行等大电流I . 求轴线上O 1、O 2之间的磁场.x I P1o 匝N R ⋅⋅R R 匝N o 2o I x o1o 2B 1B 2o 实验室用近似均匀磁场解20322222P NIR B R R x μ=+⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦20322222NIRR R x μ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦00.72O NIB Rμ=0120.68O O NIB B Rμ==θ2Oθ1Pa d xx载流长直导线的磁感应强度02d sin d 4I x B rμθπ=tan x a θ=-2d d sin a x θθ=θsin a r =2022sin d sin d 4sin I aB B aμθθθπθ==⎰⎰Iθrd B 210sin d 4I B a θθμθθπ=⎰()012cos cos 4I a μθθπ=-方向:对图中所在的P 点,磁感应强度垂直纸面向外.()012cos cos 4I B aμθθπ=-对无限长载流导线θ1= 0 , θ2= π:02I B aμπ=半无限长载流导线θ1= π/2 , θ2 = π:04I B aμπ=若P 点在导线延长线上:B =导线密绕,且长度远大于直径:=外B 实验可知:内部的磁感应强度只有平行于轴线的分量;并且平行于轴的任一直线上各点大小相等.︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BI单位长度上的匝数n载流长直螺线管内部的磁场︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BInIB 0μ=内部为均匀磁场,在长直螺线管的两端点处的磁场为中间的一半:012S B nIμ=0nIμ012nI μ通过对圆电流的磁感应强度的叠加积分,可以求得螺线管中间的磁感应强度大小为:方向由右手螺旋法则确定.恒定磁场是无源场,静电场是有源场;静电场是保守场,是无旋场;对静电场和恒定磁场作类比分析:1d SE S q ε⋅=∑⎰d 0LE l ⋅=⎰d 0SB S ⋅=⎰d ?LB l ⋅=⎰表达了恒定磁场的什么性质?第三节安培环路定理安培环路定理:0d LB l Iμ⋅=∑⎰L 磁场中任一闭合曲线—具有一定绕向的环路是环路上各点的磁感应强度,为空间所有电流产生,包括穿过L 的和不穿过的电流.:B:穿过以L 为边界的任意曲面的电流的代数和.I ∑------对L 包围的电流求代数和,并且规定:与L 绕向成右旋关系的电流I i >0,否则I i <0.以长直电流的磁场为例验证1) 路径选在垂直于长直载流导线的平面内,以导线与平面交点O 为圆心,半径为r 的圆周路径L ,其指向与电流成右手螺旋关系.BIr oL00200cos 0d d =d 22rL L I I B l l l r rIπμμππμ⋅=⋅=⎰⎰⎰BIr oL若电流反向:02000d d 2 =d 2cos L L rI I B l l r I l rππμπμμπ⋅=⋅-=-⎰⎰⎰2) 在垂直于导线平面内围绕电流的任意闭合路径Bθϕd ld rLI 02020000d 2 =d 2 d cos 2d L L I B l r I r r I I l ππμπμϕπμϕπμθ⋅=⋅==⎰⎰⎰⎰同理,在电流反向时------积分结果取负.3) 闭合路径不包围电流ϕ1L 2L I()()[]121200d d d =d d 2 02LL L L L B l B l B l I Iμϕϕπμϕϕπ⋅=⋅+⋅+=+-=⎰⎰⎰⎰⎰4) 空间存在多个长直电流时()12110in d d d d =L LLLiLB l B B l B l B l I μ⋅=++⋅=⋅+⋅+⎰⎰⎰⎰∑安培环路定理揭示磁场是非保守场,是涡旋场.l B L d ⋅⎰穿过的电流:对和均有贡献BL 不穿过的电流:对上各点有贡献;对无贡献BL l B Ld ⋅⎰L 0d LB l Iμ⋅=∑⎰可证对任意的稳恒电流和任意形式的闭合环路均成立.注意:练习:如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中那一个是正确的?⊗∙I 21L 2L 3L 4L I10 ( d )2A L B l I μ⋅=⎰ 20(B) d L B l I μ⋅=⎰30 d (C)L B l I μ⋅=-⎰40(D) d L B l I μ⋅=-⎰Br RB RrP IQ 长直圆柱形载流导线内外的磁场圆柱截面半径为R ,电流I 沿轴流动.过P 点(或Q 点)取半径为r 的磁感应线为积分回路,求出B 矢量的环流:0d 2LB l B r I πμ⋅=⋅=∑⎰r ≥R012I I I B r r μπ==∝∑,r< R20222I r IrI B r R Rπμππ==∝∑,方向沿圆周与电流成右手关系!or LL BoRrr1∝B r∝思考:无限长均匀载流直圆筒,B ~r 曲线?BoRr管外磁场为零.无限长直载流螺线管内磁场︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BI单位长度上的匝数n解密绕长螺线管,已知I , n ,计算管内的磁感应强度.dc ab 作矩形安培环路abcd 如图,绕行方向为逆时针.00d d 000=b c d a LabcdB l B l B dl B dl B dlBcd I ncdIμμ⋅=⋅+⋅+⋅+⋅=+++=⎰⎰⎰⎰⎰∑0B nIμ=无限长螺线管磁场为均匀.求螺线环内的磁感应强度I l B L∑=⋅⎰0d μ 02B r NIπμ⋅=rNI B πμ20=2N n rπ=nIB 0μ=Or 1r 2Pr 为平均半径, 考虑到对称性,环内磁场的磁感应线都是同心圆,选择通过管内某点P 的磁感应线L 作为积分环路:方向由电流方向通过右手法则判断.第四节磁场对运动电荷的作用一. 洛仑兹力磁场对运动电荷的作用f qv B=⨯ 大小:θsin qvB F =特点:不改变大小,只改变方向,不对做功.vq v vBf运动正电荷受力方向垂直于和构成的平面,成右手螺旋.v B1、运动方向与磁场方向平行sin F qvB θ=θ= 0 , F = 0带电粒子在均匀磁场中的运动匀速直线运动θBvq+f⊗θBvq-fB+v⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯B 2、运动方向与磁场方向垂直RvmqvB 2=qBmv R =v B f qvB⊥⇒=R22R m T v qBππ==匀速圆周运动周期f+v半径托克马克装置3、沿任意方向方向运动匀速圆周运动与匀速直线运动的合成——轨迹为螺旋线qBmv R θsin =qBm T π2=螺距//2cos m h v T v qBπθ==h +B ⊥v //v θv例有一均匀磁场,B = 1.5 T ,水平方向由南向北. 有一5.0 兆电子伏特的质子沿竖直向下的方向通过磁场,求作用在质子上的力?(m = 1.67⨯10-27 kg )) J (100.8) eV (100.5211362k -⨯=⨯==mv E ) s m (101.31067.1100.822172713k ---⋅⨯=⨯⨯⨯==m E v ︒⨯⨯⨯⨯⨯==-90sin 5.1101.3106.1sin 719θqvB F )N (104.712-⨯=解方向向东F q v 下B 北二、质谱仪(mass spectrograph)R +-⋅⋅⋅P ⋅⋅⋅⋅⋅⋅⋅⋅⋅N ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅B N :粒子源,P :速度选择器 qE qvB v E B ''=⇒=质谱分析:qB mv R x 22==E x B qB m 2'=谱线位置:同位素质量;谱线黑度:相对含量.B’三、霍尔效应(Hall effect)现象:通电流I ,磁场垂直于I ,在既垂直于I ,又垂直于的方向出现电势差∆U. B B m e F qv B F qE =⨯= H I IB U Bb R nqbd d∆==霍尔电势差:解释:载流子q 以漂移,受到磁场力,正负电荷上下两侧积累,形成电场,受力平衡时,有稳定的霍尔电场.v x y zB I b d P 型半导体v q +++++++-+------e F m F I nqvbd =霍尔系数R H 与载流子浓度n 成反比. 在金属中,由于载流子浓度很大,因此霍尔系数很小,相应地霍尔效应也很弱; 而在半导体中,载流子浓度较小,因此霍尔效应也较明显. 霍尔效应是半导体研究的重要手段. 问题:对n 型半导体,霍尔电势差的方向如何?应用:测载流子浓度测载流子电性—半导体类型B 测磁场(霍耳元件)H 1R nq霍尔系数(Hall coefficient):一、安培定律(Ampère Law )磁场对电流元的作用Bl I F ⨯=d d 载流导线所受磁场力d d L L F F I l B ==⨯⎰⎰ 第五节磁场对电流的作用磁矩L I B d I l Fm F qv B =⨯ d F qv BdN qv BnSdl =⨯=⨯载流直导线在均匀磁场中所受的力d L F I l B =⨯⎰ sin d L F IB l θ=⎰θsin ILB F =sin d L IB l θ=⎰安培力的方向由右手螺旋法则可知为垂直纸面向里×IBθFB θd I lLA B C D I 1I 21d I l 2d I l 1B 2B 1d F 2d F 平行长直载流导线间的相互作用力距a 的两无限长直导线,I 1、I 2,导线CD 上的电流元受力:2222d d sin F B I l θ=012 ,22I B a μπθπ==CD 单位长度受力:2012121d d d 2d F I I F l a l μπ==安培:真空中相距为1m 的无限长直细导线,载有相等的电流,若每米导线上受力正好为2⨯10-7N ,则导线内电流定义为1A.例:如图,均匀磁场垂直纸面向外,半径为R 的半圆导线通有电流I ,求作用在导线上的安培力.解R y x Bd θθd I l d F d x F d y F d F =IB d l =IBR d θd d F I l B =⨯ 0d (d )sin 2y y L F F F IBR IBR πθθ====⎰⎰方向为y 轴正向.推广:起点终点相同的载流直导线所受的力?对称性-----各电流元受力水平分量之和为零。
大学物理第九章简谐运动
t 确定, 振动状态确定
O
A
O X X
初相位:=/3
判断: t = 0, 振子的初位移、初速度 x0=A/2, v0<0(向x轴负方向运动)
用旋转矢量描述简谐振动:
O
O X 判断: t = 0,
A
X
=/2
振子的初位移、初速度
x0=0, v0<0 (向x轴负方向运动)
用旋转矢量描述简谐振动:
14
讨论
相位差:表示两个相位之差
(1)对于两个同频率的简谐运动,相位 差表示它们间步调上的差异(解决振动合成 问题). x1 A1 cos(t 1 ) x2 A2 cos(t 2 )
(t 2 ) (t 1 )
2 1
15
合成
简谐运动 谐振子 分解 复杂振动
作简谐运动的物体
8
弹簧振子的振动模型
弹簧和一谐振子组成的振动系统。
l0 k
m
x
C
o
B
x xB F FB
x 0 F 0 平衡位置
x xc v 0
9
振动的成因
a 回复力
b 惯性
10
弹簧振子的动力学分析
F
o
F kx ma
2
m
x
解得 x A cos(t )
简谐运动方程
积分常数,根据初始条件确定
12
由 x A cos(t )
简谐运动方程
简谐振动的各 阶导数也都作 简谐振动
dx 得 v A sin(t ) dt A cos t 2 d2 x a 2 A 2 cos(t ) dt
《大学物理》教学课件 大学物理 第九章
, ,
,
,
例题讲解 3
设长直螺线管长为 l,半径为 R,线圈管总匝数为 N,单位长度匝数为 n N /l ,求轴线上任意一点
P 的磁感应强度。 【解】 如图所示,在螺线管上距 P 点 l 处任取长为 dl 的一小段,其电流为 dI nIdl ,
可得这一小段螺线管在 P 点产生的磁感应强度 dB 的大小为 dB
【解】 如图所示,在直导线上任取一电流元 Idl,它到点 P 的矢径为 r,根据毕奥—萨伐尔定律,
该电流元在点 P 处产生的磁感应强度 dB 的大小为 dB 0 Idl sin
4 r2
磁感应强度 dB 的方向垂直于纸面向里,图中用○×表示。
由于直导线上所有电流元在 P 点的磁感应强度 dB 的方向都相同,所以 P 点的磁感应强度的大小等
9.2 磁感应强度
9.2.1 磁现象
安培于1822年提出分子电流的假说:磁铁是由分子和原子组成的,原子核外电子绕核运动和 自旋运动形成的环形电流称为分子电流。
9.2 磁感应强度
9.2.2 磁感应强度
如图所示,设带有正电的检验电荷 q 处于磁场中,在 Oxyz 坐标系中以速度 v 运动,那么检验电荷
若导线长度远大于点 P 到直导线的垂直距离( L a ),则导线可视为无限长。
此时, 2
0 ,2
,P
点的磁感应强度为
B
0 I
a
表明,无限长载流直导线周围的磁场 B 1 。 a
这一正比关系与毕奥—萨伐尔的早期实验结果是一致的。
9.3 毕奥—萨伐尔定律及其应用
, ,
,
,
例题讲解 2
设在半径为 R 的圆形线圈上通有电流 I,求载流圆形线圈轴线上一点 P 的磁感应强度。
大学物理 第九章 电磁感应 电磁场理论的基本概念
选择绕行方向如右图所示:
b v
o 0 I x bdr 2r 0 Ib x a dr 0 Ib x a x r 2 ln x 2
x
0 Ivab d m d m dx 方向 动 dt dx dt 2x( x a )
v
19
V a I d a d ω b c b cV
三、法拉第电磁感应定律的使用方法 1、规定任一绕行方向为回路的正方向。由右手螺旋 法则确定回路的正法线方向 en 。 d 正法线方向 2、计算 SB dS 及 dt en 3、由 d 之值确定 i 的方向 dt S d L
i
d dt 0, i 0, i的方向与绕行方向相同 d 0, 0, 的方向与绕行方向相反 i i dt
L
解二: 构成扇形闭合回路
AOCA
B
L
A
1 2 m B dS BS AOCA B L 2
o
C
d m 1 1 2 d BL BL2 dt 2 dt 2
沿OACO
由楞次定律:
A
o
17
例2. 如图所示,一矩形导线框在无限长载流导线I 的场中向右运 动,t时刻如图所示,求其动生电动势。
E涡 dl 0
法拉第电磁感应定律推广为
d E涡 dl L 22 dt
静电荷激发电场 E dl 0 保守力场(无旋场) 电场 d 变化磁场激发电场 E涡 dl dt
d 产生的原因不同。 E涡 dl 涡旋电场 dt 静电场 的区别 电力线不同。 E dl 0 环流不同
大学物理第九章课件
--
+ ++
r E
- --
静电感应过程 导体达到静电平衡
E0
r r E外 + E感 = 0
二、导体的静电平衡时的性质
1. 导体内部,场强处处为零。 导体内部,场强处处为零。
E = E 0 + E' = 0
如导体内部电场强度不为零, 如导体内部电场强度不为零,自由电子就要受到电 场力的作用而发生宏观运动! 场力的作用而发生宏观运动!
1. 电荷只分布在导体表面上,导体内部处处不带电 电荷只分布在导体表面上, 在导体内任取一高斯面 S,由高斯定理: ,由高斯定理:
r r E ⋅ dS = 0 ∫∫
S
+ + +
+
+ + + + ++
S
+
∑ q = ∫ ρdV = 0
S内 V
E内 == 0 E内 0
+ + + + + +
+ + +
Q高斯面为任意
对于具有尖端的带电体,因为尖端的曲率很大, 对于具有尖端的带电体,因为尖端的曲率很大,分布 的面电荷密度也大,所以它周围的电场很强, 的面电荷密度也大,所以它周围的电场很强,当场强 超过空气击穿场强时, 超过空气击穿场强时,就会发生空气被电离的放电现 称为尖端放电。 象,称为尖端放电。
ρ ↓⇒ σ ↑⇒ E ↑
0 ∞
q1
q2
σ1
A
σ2 σ3
B
σ4
σ E= ε0
——这就是平板电容器。 这就是平板电容器。 这就是平板电容器
大学物理 第九章 稳衡磁场 老师课件
Φm = BS cosθ = BS⊥
Φm = B ⋅ S
dΦm = B ⋅ d S Φm = ∫ B ⋅ d S
S
s⊥
θ
s
v B
θ v B
v dS
v en
v B
v θ B
单位:韦伯 单位 韦伯 1WB=1Tm2
s
3.磁场的高斯定理 磁场的高斯定理
v B
S
v dS1 v θ1 B 1
dΦm1 = B1 ⋅ d S1 > 0
y
v v
o
v F =0
+
v v
x
实验发现带电粒子在 磁场中沿某一特定直线方 向运动时不受力, 向运动时不受力,此直线 方向与电荷无关. 方向与电荷无关.
z
当带电粒子在磁场中垂直于此特定直线运动时 受力最大. 受力最大 带电粒子在磁场中沿其他方向运动时 F垂直 与特定直线所组成的平面. 于v 与特定直线所组成的平面
l
多电流情况
I1
I2
I3
B = B + B2 + B3 1
l
∫ B ⋅ d l = µ (I
0 l
2
− I3 )
以上结果对任意形状的闭合电流( 以上结果对任意形状的闭合电流(伸向无限远 的电流)均成立. 的电流)均成立.
安培环路定理
B ⋅ dl = µ0 ∑Ii ∫
l i =1
N
真空的稳恒磁场中, 真空的稳恒磁场中,磁感应强度 B 沿任一闭合 路径的积分的值,等于µ0乘以该闭合路径所包围 路径的积分的值, 的各电流的代数和. 的各电流的代数和 注意:电流I正负 正负的规定 注意:电流 正负的规定 :I与l成右螺旋时,I 与 成 螺旋时, 之为负 为正;反之为负.
大学物理第九章导体和介质中的静电场
第九章导体与介质中的静电场Electrostatic field in conductor and dielectric §9-1,2静电场中的导体§9-3电容器的电容§9-6电介质中的高斯定理§9-8 静电场的能量§9-1,2静电场中的导体一、导体的静电平衡( electrostatic equilibrium )1.导体绝缘体半导体1)导体(conductor)导电能力极强的物体(存在大量可自由移动的电荷)2)绝缘体(电介质,dielectric)导电能力极弱或不能导电的物体3)半导体(semiconductor)导电能力介于上述两者之间的物体EE E E iii E e E q F 导体静电平衡条件:导体内任一点的电场强度都等于零Ei E E2. 导体的静电平衡条件导体的内部和表面都没有电荷作任何宏观定向运动的状态.导体的静电平衡状态:静电感应E* 推论(静电平衡状态)证:在导体上任取两点p , ql d E V V i qpq pqp V V 0i Epq导体静电平衡条件:2)导体表面任一点场强方向垂直于表面1)导体为等势体,导体表面为等势面否则其切向分量将引起导体表面自由电子的运动,与静电平衡相矛盾。
3.导体上电荷的分布1)当带电导体处于静电平衡状态时,导体内部处处没有净电荷存在, 电荷只能分布于导体的表面上.qdV iiV证明:在导体内任取体积元dV由高斯定理体积元d v 任取导体带电只能在表面!iiqS d E 01 ,0 i E dVn e En e E E S d e E S d E nS E 0S2).导体表面附近的场强方向与表面垂直,大小与该处电荷的面密度成正比.ne ES结论:孤立的带电导体,外表面各处的电荷面密度与该处曲率半径成反比,410R Q V RRrr R ,44,22rRr R rR q Q r R R rQq1)导体表面凸出而尖锐的地方(曲率较大)电荷面密度较大2)导体表面平坦的地方(曲率较小)电荷面密度较小3)导体表面凹进去的地方(曲率为负)电荷面密度更小rq V r 041rq R Q V V R r 004141l d E 导体内,0l d E 腔沿电场线l d E (违反环路定理)在静电平衡状态下,导体空腔内各点的场强等于零,空腔的内表面上处处没有电荷分布.ld E l d E l d E导体内腔沿电场线二、空腔导体(带电荷Q )1 腔内无电荷,导体的电荷只能分布在外表面。
大学物理课件第九章
R2
34
仿以上两种方法,同学们可自行计
算得如下结果
q
q qQ
Ur 2 40r2 40R2 40R3
静电场中的导体
U r3 40R3
(3)接地后
q
ε E1=4π
r2
0
E2 = 0
E3 = 0
静电场中的导体
U r4 40r4
R2 R1
q q R0
7 静电屏蔽
静电场中的导体
球体的电势
方法一:
U r1 E dl
r1
R1
E1
dr
R2
E2
dr
r1
R1
R3
E3
dr
E4
dr
R2
R3
R2 R1
q
4 0r22
dr
R3
4 0r42
dr
q q qQ
F
F
电偶极矩趋于外电场的方向
有极分子的无序排列
注意
介质表面出现极化电荷,介质内产生极化电场
1)极化作用将在电介质表面产生束缚电荷;
2)束缚电荷产生附加电场 E.
二、电极化强度
1. 电极化强度: 在电介质中任取一宏观小体积V :
无外场 介质不极化
p0
有外场 介质被极化 p 0
定义: P p
l
VP VQ
与导体是一等势体矛盾.
P+
(2) 腔内有带电体+q :
腔体内表面所带的电量和腔内带电体所带的电量等量异
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9-1 静电场中的导体
一、静电感应 静电平衡条件 1.导体 绝缘体 半导体
1)导体(conductor)
导电能力极强的物体(存在大量可自由移动的电荷)
2)绝缘体(电介质, dielectric) 导电能力极弱或不能导电的物体 3)半导体(semiconductor) 导电能力介于上述两者之间的物体
2. 腔内有带电体
(1)腔内表面所带的电量和腔内带电体所带的电荷等量异 号,腔内电荷及其电场分布不受腔外导体影响; (2)腔外电场及其电荷分布不受腔内电荷的位置影响,即 腔内电荷与腔内表面电荷在腔外的合场强为零; (3)腔外表面所带的电量由电荷守恒定律决定; (4)接地空腔外电场为零。
E=0
内=0
V S
E dS 0
S
结论:
在静电平衡时,导体所带的 电荷只能分布在导体的表面 上,导体内部没有净电荷。
2. 空腔导体
E dS
S
q0
0
(i) 空腔内有电荷+q 空腔的内表面有感应电荷-q, 空腔的外表面有感应电荷+q
+q
内 0
外
E内 0 q内表=-q
0
与静电场环路定理矛盾,原假设不成立。
导体内部及腔体的内表面处处无净电荷。
3. 导体表面附近的电场
P
2 0
s
E dS
上底
q
ds
s E dS E dS E dS E dS
0
E平面
E dS 0 0
当 E’< E0 ,导体内部合场强不为零,自由电子继续运动,E’ 增大。 当E’= E0 ,导体内部合场强为零,导体内没有电荷作定向运动。
静电平衡状态:导体内没有电荷作宏观定向运动的状态。
+ + + + + +
-
+ + + + + +
- +
-
+ + + + + +
-
4. 静电平衡的条件
从电场看 •导体内部任一点的电场强度为零; •导体表面处的电场强度与导体的表 面垂直。 从电势看: •导体是个等势体; •导体表面是等势面。
对于导体内部的任何两点A和B
E表 表面
等 势 面
E内= 0
U AB
B
A
E dl 0
对于导体表面上的两点A和B
B A
U AB Et dl 0 dl 0
A
B
E
二、静电平衡时导体上电荷的分布
1. 实心导体
E dS
S
q0
0
在静电平衡时,导体内部的电场强 度为零,所以通过导体内部任一高 斯面的电场强度通量必为零
2. 静电感应
导体中的自由电子在电场力的作用下作宏观定向 运动,引起导体中电荷重新分布而呈现出带电的现象, 叫作静电感应。
+ ++ +A + + ++
B
_ + _ _ B + + _ +
+ ++ + A + ++ +
3. 静电平衡状态
外加电场使导体内电子定向移动, 导体两个侧面出现等量异号 电荷,在导体内部建立附加电场。 导体内部的合场强E 就是附加电场E’ 和外加电场E0 的叠加。
大学物理学
李中军 电子科学与应用物理学院 合肥工业大学
2012.10
第九章 导体和电介质中的静电场
主要内容有:
• 静电场中导体
• 空腔导体内外的静电场 • 电容器的电容 • 电介质及其极化 • 电介质中的静电场
• 有介质时的高斯定理 电位移
• 电荷间的相互作用 电场的能量 • 铁电体 压电体 永电体
上底
下底
侧面
导体表面
q S
E S
E外表面
0
导体表面之外邻近表面处 的场强,与该处电荷面密 度成正比,方向与导体表 面垂直。
4. 孤立导体
孤立导体处于静电平衡时,表 面各处的面电荷密度与表面的 曲率有关,曲率越大的地方, 面电荷密度越大。
例题9-1 两个半径分别为R和r 的球形导体(R>r),用一 根很长的细导线连接起来(如图),使这个导体组带电, 电势为V,求两球表面电荷面密度与曲率的关系。
Q
解:
1 Q V 4 0 R
Q
1 Q 1 q 4 0 R 4 0 r
Q R q r
可见大球所带电量Q比小球所带电量q多。 两球的电荷密度分别为
R
Q 4 R 2 q 4 r 2
r
R
1 Q R 4 R
1 q r r 4 r
可见电荷面密度与半径成反比,即曲率半径 愈小(或曲率愈大),电荷面密度愈大。
S
内= 0
E内 = 0
S内
外
(ii) 空腔内无电荷
空腔的内表面没有净电荷,电 荷只能分布在空腔的外表面。
S
即
内表面电荷代数和为零
L
假设内表面一部分带正电,另一部分带等量的负电, 则必有电场线从正电荷出发终止于负电荷。 取闭合路径L,一部分在空腔,一部分在导体中。
L E dl 沿电场线 E dl 导体内 E dl
二、静电屏蔽
1. 静电屏蔽现象
E0
第一类空腔:空腔导体内部无电荷 •空腔内表面处处没有净余电荷; •空腔内部及导体内部电场强度处处为零。 可以利用空腔导体来屏蔽外电场,使空腔内 的物体不受外电场的影响。
q +
q
第二类空腔:空腔导体内部有电荷
内表面将感应异号电荷, 外表面将感应同号电荷。 若把空腔外表面接地,则空腔外 表面的电荷将中和,空腔外面的电场 消失。
ห้องสมุดไป่ตู้
尖端放电: 带电体尖端附近的场强较 大,大到一定的程度,可 以使空气电离,产生尖端 放电现象。 应用: •高压设备的电极 高压输电线 避雷针 不利的一面:浪费电能 避免方法:金属元件尽量做成球形,并 使导体表面尽可能的光滑
9-2 空腔导体内外的静电场
一、空腔导体内外的静电场
1. 腔内无带电体 静电平衡时,导体内部及腔体内的场强为零,导体 内部及腔体的内表面处处无净电荷。 腔内无带电体,空腔导体外的电场由空腔导体外表 面的电荷分布和其它带电体的电荷分布共同决定。
空腔内的带电体对空腔外就不 会产生任何影响,可以利用来屏蔽 空腔内电荷对腔外的影响。
Q' +
q
–q
在静电平衡状态下,空腔导体外面的带电体不会影响 空腔内部的电场分布;一个接地的空腔导体,腔内的带 电体不会影响腔外的电场分布。这种使导体空腔内的电 场不受外界影响或利用接地的空腔导体将腔内带电体对 外界影响隔绝的现象,称为静电屏蔽。