大数据概述PPT课件(PPT38页)

合集下载

大数据基本介绍ppt课件(2024)

大数据基本介绍ppt课件(2024)
数据预处理
包括数据清洗、数据集成、数据 变换和数据规约等步骤,为后续 的数据分析和挖掘提供高质量的
数据。
2024/1/30
数据挖掘算法
如分类、聚类、关联规则挖掘、时 间序列分析等,用于发现数据中的 潜在规律和模式。
数据可视化技术
将数据以图形或图像的形式展现出 来,帮助用户更直观地理解数据和 分析结果。
11
2024/1/30
03
大数据基础设施建设
12
云计算平台构建
2024/1/30
云计算平台架构
包括IaaS、PaaS、SaaS等层次,提供弹 性可扩展的计算、存储、网络等资源。
虚拟化技术应用
通过虚拟化技术实现资源的池化、动态分 配和高效利用。
容器化技术
采用Docker等容器化技术,实现轻量级 、快速部署的应用运行环境。
15
2024/1/30
04
大数据在各行业应用案例
16
金融行业应用案例
2024/1/30
风险管理与合规
利用大数据分析技术,金融机构可以更有效地识别、评估和监控 风险,确保合规经营。
客户洞察
通过分析客户行为、偏好和交易数据,金融机构可以提供更个性 化的产品和服务,提高客户满意度。
信贷评估
大数据可以帮助金融机构更准确地评估借款人的信用状况,降低 信贷风险。
13
数据中心建设与运维
数据中心选址与设计
考虑地质、气候、能源等因素,进行 科学合理的选址和设计。
智能化运维管理
运用人工智能、大数据等技术,实现 数据中心的智能化运维管理,提高运 维效率和质量。
高可用性与容灾备份
采用冗余设计、负载均衡等技术手段 ,确保数据中心的高可用性和容灾备 份能力。

2024大数据ppt课件完整版

2024大数据ppt课件完整版
2024大数据ppt课件完整版
目录 CONTENTS
• 大数据概述与发展趋势 • 数据采集与预处理技术 • 数据存储与管理技术 • 数据分析与挖掘算法 • 数据可视化与报表呈现技巧 • 大数据安全与隐私保护策略
01
大数据概述与发展趋势
大数据定义及特点
01
数据量在TB、 PB甚至EB级别以上的数据。
,降低医疗成本。
金融科技
利用大数据技术进行风 险控制和客户管理,提 高金融业务的智能化水
平。
智能制造
通过大数据分析优化生 产流程,提高生产效率
和产品质量。
02
数据采集与预处理技术
数据来源及采集方法
互联网数据
社交媒体、新闻网站、论坛等。
企业内部数据
CRM、ERP、SCM等系统数据。
数据来源及采集方法
动态交互式报表设计思路
实时更新
通过数据接口实现报表数据的实时更 新,反映最新业务情况。
交互操作
提供筛选、排序、分组等交互功能, 方便用户按需查看和分析数据。
图表联动
实现不同图表之间的联动,当用户在 一个图表上操作时,其他相关图表也 能相应变化。
个性化定制
提供报表样式、布局等个性化定制功 能,满足不同用户的需求。
基于文本的特征提取
对文本数据进行分词、词频统计等操 作。
特征提取和降维技术
• 基于图像的特征提取:提取图像的形状、纹理等 特征。
特征提取和降维技术
主成分分析(PCA)
流形学习
通过线性变换将原始数据变换为一组 各维度线性无关的表示。
通过保持数据的局部结构来发现数据 的全局结构,如Isomap、LLE等。
• 重复值处理:删除或合并重复数据记录。

2024全新大数据ppt课件免费

2024全新大数据ppt课件免费

随着大数据的广泛应用,数据安全和隐私 保护问题日益突出,需要加强相关技术和 政策的研究与制定。
2024/1/26
24
学员心得体会分享环节
学员A
通过学习这门课程,我对大数据 有了更深入的了解,掌握了大数 据处理的基本技能和方法,对未
来的职业发展充满信心。
学员B
课程中的案例分析和实践项目让 我受益匪浅,不仅加深了对理论 知识的理解,还提高了我的动手
2024全新大数据 ppt课件免费
2024/1/26
1
contents
目录
2024/1/26
• 大数据概述与发展趋势 • 大数据核心技术解析 • 大数据在各行各业应用案例分享 • 大数据挑战与应对策略探讨 • 大数据未来创新方向展望 • 总结回顾与课程结束语
2
01
大数据概述与发展趋 势
2024/1/26
3
MapReduce应用场景
列举MapReduce在大数据分析领域的典型应用 场景,如日志分析、数据挖掘、机器学习等。
2024/1/26
9
实时计算技术原理与实践
2024/1/26
实时计算概念及原理
01
阐述实时计算的定义、基本原理和架构,包括数据流处理、事
件驱动、低延迟等关键技术。
典型实时计算系统
02
团队协作与沟通
探讨如何促进团队成员之间的协作和沟通,以提高工作效率和应对 复杂问题。
18
05
大数据未来创新方向 展望
2024/1/26
19
人工智能赋能下的大数据创新应用
智能数据分析
通过机器学习、深度学习 等技术,对海量数据进行 自动化、智能化的分析, 挖掘数据中的潜在价值。

大数据介绍ppt课件

大数据介绍ppt课件

ASG Server ASG Server
Grid Server
Grid Server
ASG Server
Grid Server
移动终端
ASG Server
Grid Server
To Other Grid Nodes
ASG Server
PC用户
移动终端
ASG Server
ASG Server
邮件服务器
➢异常检测:识别其特征显著不同于其他 数据的观测值
实战项目1—— Python 网络爬虫
网络爬虫是一个自动提取网页的程序/脚 本,它可以搜索引擎从万维网上下载网 页,是搜索引擎的重要组成。 ➢做为oping、 chinahr) ➢科学研究:在线人类行为,在线社群 演化,复杂网络,数据挖掘领域的实证 科学研究,快速收集大量数据
Task:携程数据库(游客数据、点评记录)
实战项目2—— 数据分析及可视化应用
1.Python—2012年美国总统大选数据分析 2.动态气泡图的实现 3.热力感应图(heatmap.js)
管理大数据“易”,理解大数据“难”
•目前大数据管理多从架构和并行等方面考虑, 解决高并发数据存取的性能要求及数据存储 的横向扩展,但对非结构化数据的内容理解 仍缺乏实质性的突破和进展,这是实现大数 据资源化、知识化、普适化的核心.
作用:
- 成本降低,能用PC机,不用大型机和高端存储 - 软件容错硬件故障视为常态,通过软件保证可靠性 - 简化并行分布式计算,无须控制节点同步和数据交换
技术变革
云计算:把集中的运算分散开来
物联网:把分散的设备连在一起
Hadoop:把大数据切成小模块
大数据处理技术——Hadoop

大数据课件ppt

大数据课件ppt

适用于大规模数据 集处理,具有高效 的数据处理能力和 内存管理。
Flink平台
详细描述
提供丰富的API和工具,如 DataStream API、DataSet API 、Table API等。
总结词:实时流数据处理引擎。
支持基于流的处理和批处理。
适用于实时数据处理和复杂事件 处理场景。
Kafka工具
要点二
发展
大数据的发展经历了三个阶段:第一个阶段是大数据技术 的萌芽期,这个阶段出现了许多大数据技术的基础组件, 如分布式存储和计算系统;第二个阶段是大数据技术的成 熟期,这个阶段出现了许多成熟的大数据产品和解决方案 ;第三个阶段是大数据技术的普及期,这个阶段大数据技 术被广泛应用于各个领域。
大数据的研究与应用
02
大数据处理技术
数据采集与预处理
01
02
03
数据采集
从各种数据源(如数据库 、网络、文件等)获取数 据的过程。
数据清洗
去除重复、无效或错误的 数据,保证数据的质量和 准确性。
数据转换
将数据从一种格式或结构 转换为另一种,以便进行 后续处理。
数据存储与管理
数据存储
使用存储设备(如硬盘、 闪存等)保存数据,以便 长期保存和使用。
数据挖掘与分析
关联规则挖掘
发现数据之间的关联和模式,揭 示潜或属性进行 分组,以便进行分类和识别。
预测分析
利用已有的数据进行预测,对未 来的趋势和结果进行预测和分析

03
大数据平台与工具
Hadoop平台
总结词:分布式存储和计算平台,适合 大规模数据处理。
特点
大数据通常具有四个特点,即4V:体量(Volume)指数据 的大小、速度(Velocity)指数据生成或处理的快慢、多样 性(Variety)指数据的种类、真实性(Veracity)指数据的 准确性和可信度。

大数据专题(共43张PPT)

大数据专题(共43张PPT)
应用
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务, 提供了高可用性和数据一致性保证。
对数据进行分组、汇总等 操作。
Part
04
大数据分析方法与应用
统计分析方法
描述性统计
对数据进行整理和描述, 包括数据的中心趋势、离 散程度、分布形态等。
推论性统计
通过样本数据推断总体特 征,包括参数估计和假设 检验等方法。
多元统计分析
研究多个变量之间的关系, 包括回归分析、因子分析、 聚类分析等。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode。 NameNode负责管理文件系统 的元数据,而DataNode负责存
储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
加密技术
采用加密算法对敏感数据进行加密处理,确保数 据在传输和存储过程中的安全性。
企业如何保障大数据安全
制定完善的大数据安全管理制度 和流程,明确各部门职责和权限。
加强员工安全意识教育和培训, 提高全员大数据安全意识。
加强大数据安全技术研发和投入, 提高安全防护能力和水平。
建立大数据安全应急响应机制, 及时应对和处理安全事件。

大数据技术与应用基础第1章大数据概述精品PPT课件

大数据技术与应用基础第1章大数据概述精品PPT课件
数据,这部分数据属于结构化数据,可直接进行处理使用,为公司决策提供依据。
(2)互联网及移动互联网。 移动互联网促进更多用户从传统的数据使用者转变为数据生产者。
(3)物联网。 物联网技术的发展,使得视频、音频、RFID、M2M、物联网和传感
器等产生大量数据,其数据规模更巨大。
三、大数据的产生及数据类型
内容 导航
CONTENTS
大数据的发展
第1章 大数据概述
P1
大数据的概念及特性
大数据的产生及数据类型
大数据计算模式和系统 大数据的主要技术层面和技术内容
大数据的典型应用
四、信息安全的要素
第1章 大数据概述
P1
第1章 大数据概述
P1
THANtening, this course is expected to bring you value and help
内容 导航
CONTENTS
大数据的发展
第1章 大数据概述
P1
大数据的概念及特征
大数据的产生及数据类型
大数据计算模式和系统 大数据的主要技术层面和技术内容 大数据的典型应用
一、大数据的发展
大数据综述
Google上每天需要处理24PB的数据;
淘宝累计的交易数据量高达100PB;
每天会有2.88万个小时的视频上传到 Youtobe; 根据国际数据公司IDC的测算,到2020 年数字世界将产生35000EB的数据。
第1章 大数据概述
P1
大规模的行业/企业大数据已 远远超出了现有传统的计算 技术和信息系统的处理能力。 因此,寻求有效的大数据处 理技术、方法和手段已经成 为现实世界的迫切需求。
一、大数据的发展
大数据有多重要

2024版大数据ppt(数据有关文档)共30张[1]

2024版大数据ppt(数据有关文档)共30张[1]
利用大数据技术和人工智能算法,可以对海量医疗数据进行分析和挖掘,为医生提供临床决 策支持。例如,通过对病人的病史、检查结果、用药记录等数据进行综合分析,可以辅助医 生做出更准确的诊断和治疗方案。
远程医疗与健康管理
大数据技术可以实现远程医疗服务和健康管理,方便患者随时随地获取医疗服务和健康指导。 例如,通过可穿戴设备收集患者的生理数据,可以实时监测患者的健康状况,及时发现异常 情况并给出预警提示。
多元统计分析
处理多个变量的统计方法,如回归分析、 因子分析等。
16
机器学习算法应用
监督学习
利用已知结果的数据训 练模型,如线性回归、 决策树等。
2024/1/30
无监督学习
在没有已知结果的情况 下,通过数据之间的相 似性进行聚类或降维, 如K-means、主成分分 析等。
强化学习
让模型在与环境交互的 过程中学习,如Qlearning、深度强化学 习等。
18
2024/1/30
05
大数据在各领域应用案例
19
金融行业应用案例
2024/1/30
01
风险管理与合规
利用大数据分析技术,金融机构可以更准确地评估和管理风险,提高合
规性。例如,通过对客户交易数据的实时监控和分析,可以及时发现异
常交易行为,防止欺诈和洗钱等违法行为。
02
客户画像与精准营销
金融机构可以利用大数据技术对客户进行画像,了解客户的消费习惯、
包括企业数据库、业务系统、日志文件等。
外部数据源
包括社交媒体、公开数据集、第三方数据提供商 等。
数据类型
包括结构化数据(如关系型数据库中的表)和非 结构化数据(如文本、图像、音频、视频等)。
2024/1/30

(2024年)大数据介绍PPT课件

(2024年)大数据介绍PPT课件
副本机制
为确保数据可靠性和可用性,对每个数据分片创建多个副本,并将 它们存储在集群的不同节点上。
一致性协议
通过分布式一致性协议(如Paxos、Raft等)确保数据在多个副本之 间保持一致性。
2024/3/26
28
数据备份与恢复策略
定期备份
制定定期备份计划,将数据备份到远程存储或云 存储中,以防止数据丢失。
绿色计算与节能 随着环保意识的提高,如何在保证计算性能的同时降低能 耗成为大数据处理的重要挑战。
39
未来发展趋势预测
2024/3/26
人工智能与机器学习融合
大数据将与人工智能和机器学习更紧密地结合,实现更高级别的数据 分析和预测。
实时数据处理与分析
随着5G、物联网等技术的发展,实时数据处理和分析将成为可能,为 各行业提供更准确、及时的数据支持。
分布式文件系统
适用于具有大数据集的应 用程序
流式数据访问模式
高吞吐量访问数据
01
2024/3/26
03 02
9
分布式文件系统
• GlusterFS: 一个开源的分布式文件系统, 具有弹性哈希算法、可配置的传输层及支 持多种客户端接口。
2024/3/26
10
分布式文件系统
可扩展性
高可用性
数据一致性
2024/3/26
推论性统计
通过样本数据推断总体特 征,包括假设检验、方差 分析等。
多元统计分析
研究多个变量之间的关系, 包括回归分析、聚类分析、 主成分分析等。
32
机器学习算法
2024/3/26
监督学习
通过已知输入和输出数据进行训练,预测新数据的输出。如线性 回归、逻辑回归、支持向量机等。

(完整版)大数据介绍ppt

(完整版)大数据介绍ppt
大数据的定义与特性
定义
大数据是指在传统数据处理软件难以处理的庞大的、复杂的数据集。这些数据可 以是结构化的,如数据库里的表格,也可以是非结构化的,如社交媒体上的文字 或图片。
大数据通常涉及对海量数据的采集、存储、管理和分析,以发现数据背后的规律 和趋势,从而帮助企业和组织做出更好的决策。
特性:4V(体量、速度、多样性和价值)
传感器
各种传感器在工业生产、环境监测等领域中广泛应用,能 够实时监测和收集各种数据,如温度、湿度、压力等。
生成方式
社交网络
用户在社交媒体上的互动行为 ,如发布动态、点赞、评论等 ,以及社交网络中的用户关系
数据。
电子商务
在线购物平台上的商品浏览、 添加购物车、下单等行为,以 及用户的购买记录和偏好数据 。
数据治理与元数据管理
加强数据治理和元数据管理,确保数据的统一管理和有效利用。
PART 06
大数据未来发展趋势与展 望
人工智能与大数据的融合
人工智能与大数据的融合将进一步加深,通过数据挖掘、机 器学习和深度学习等技术,实现更高效的数据处理和分析, 为各行业提供更智能的决策支持。
人工智能将进一步提高大数据的处理速度和准确性,同时大 数据也将为人工智能提供更丰富、更真实的训练数据,促进 人工智能技术的不断进步。
疾病诊断与预测
通过分析患者的医疗记录、生理数据 等,辅助医生进行疾病诊断,同时预 测疾病发展趋势和预后情况。
金融
风险评估
通过对企业的财务数据、市场数据等 进行深度分析,评估企业的信用风险 和投资风险,帮助金融机构做出更明 智的决策。
欺诈检测
投资策略
通过分析市场数据、经济数据等,制 定更有效的投资策略和风险管理方案 ,提高投资回报率。

(2024年)大数据介绍pptppt课件

(2024年)大数据介绍pptppt课件

Flink
03
一个流处理和批处理的开源框架,提供了高吞吐、低延迟的数
据处理能力。
8
数据存储与管理技术
2024/3/26
Hadoop HDFS
一个分布式文件系统,设计用来存储和处理大规模数据集,具有 高容错性和高吞吐量。
HBase
一个高可扩展性的列存储系统,用于存储非结构化和半结构化的 稀疏数据。
Cassandra
一个高度可扩展的NoSQL数据库,提供高可用性和无单点故障 的数据存储服务。
9
数据处理与分析技术
SQL与NoSQL数据库
用于数据的存储和查询,包括关系型数据库 (如MySQL、PostgreSQL)和非关系型数 据库(如MongoDB、Redis)。
2024/3/26
数据挖掘与机器学习
通过统计学、计算机视觉、自然语言处理等技术, 从数据中提取有用信息和预测未来趋势。
金融科技
金融机构利用大数据分析进行 风险评估、信用评级、反欺诈 等。
商业智能
通过大数据分析,帮助企业了 解市场趋势、客户需求和行为 模式,为决策提供支持。
2024/3/26
医疗健康
大数据在医疗健康领域的应用 包括疾病预测、个性化医疗、 药物研发等。
物联网
物联网产生的海量数据需要大 数据技术进行处理和分析,以 实现智能化应用。
6
02
大数据技术基础
Chapter
2024/3/26
7
分布式计算技术
2024/3/26
MapReduce
01
一种编程模型,用于大规模数据集的并行计算,将问题拆分为
若干个可以在集群中并行处理的小任务。
Spark
02

大数据ppt课件

大数据ppt课件

数据清洗的主要技术包括去重技 术、异常值处理、缺失值处理等

数据清洗需要考虑数据清洗的质 量和效率。
数据挖掘
数据挖掘是大数据处理流程中 最为核心的部分,主要目的是 从海量数据中提取有用的信息
和知识。
数据挖掘的主要技术包括关 联分析、聚类分析、分类和
预测等。
数据挖掘需要考虑数据挖掘的 准确性和可解释性。
数据可视化
1
数据可视化是大数据处理流程中的重要环节,主 要目的是将复杂的数据以直观的方式呈现给用户 。
2
数据可视化的主要技术包括图表、地图、动画等 。
3
数据可视化需要考虑数据可视化的易用性和美观 性。Biblioteka 03大数据的应用场景
商业智能
总结词
通过大数据技术,企业可以收集、整合和分析海量数据,从而做出更明智的商业决策。
大数据在物联网中的应用
物联网设备产生的大量数据为大数据提供了丰富的数据源,有助于更好地了解用户 需求和行为。
大数据在物联网中的应用包括智能家居、智能交通、智能医疗等领域,将提高生活 和工作的便利性和安全性。
大数据在物联网中的应用将促进各行业的数字化转型,提高生产效率和降低成本。
大数据在云计算中的发展
大数据面临的挑战与解决方案
数据安全与隐私保护
数据安全风险
随着大数据的广泛应用,数据泄 露和恶意攻击的风险也随之增加

隐私保护挑战
如何在收集和使用大数据的同时保 护个人隐私,是一个亟待解决的问 题。
解决方案
采用加密技术、访问控制和审计机 制等手段,确保数据安全和隐私权 益。
数据质量与准确性问题
数据来源多样
数据存储
01
数据存储是大数据处理流程中的重要环节,主要解 决如何高效地存储和管理海量数据的问题。

大数据培训课件ppt

大数据培训课件ppt
总结词:辅助诊断、病患监测、药物研发
详细描述
总结词:城市管理、政策制定、社会治理
详细描述
政府机构利用大数据分析城市运行状况、交通流量和环境质量,提高城市管理的科学性和精细化水平。
大数据可以为政策制定提供实证依据,评估政策实施效果,优化资源配置和提高公共服务的效率。
通过大数据分析社会舆情、犯罪率和公共安全事件等,有助于提高社会治理的针对性和有效性。
数据存储
去除重复、无效、错误数据,对缺失数据进行填充或删除,确保数据质量。
将不同来源的数据进行整合,形成统一的数据视图,便于后续的数据分析和挖掘。
数据整合
数据清洗
利用机器学习、统计学等方法,从大量数据中发现隐藏的模式和规律。
数据挖掘
运用可视化工具和统计分析方法,对数据进行深入分析,揭示数据背后的意义和趋势。
大数据可以帮助企业实时监控库存情况,预测未来需求,优化库存管理,避免缺货或积压现象。
总结词:提升营销效果、优化库存管理、个性化推荐
通过大数据分析疾病流行趋势和药物疗效,有助于药物研发和临床试验,加速新药上市进程。
大数据可以实时监测患者的生理指标和健康状况,实现远程监控和预警,提高医疗服务质量。
医疗机构通过大数据分析患者的症状、病史和治疗反应,为医生提供辅助诊断依据。
大数据培训课件
目录
contents
大数据概述大数据处理技术大数据应用案例大数据安全与隐私保护大数据未来发展展望
大数据概述
CATALOGUE
01
总结词
大数据是指数据量巨大、类型多样、处理复杂的数据集合,具有4V(体量、速度、多样性和价值)的特点。
要点一
要点二
详细描述
大数据通常指数据量达到TB级别以上的数据集合,这些数据可能来自各种不同的源,包括社交媒体、企业数据库、物联网设备等。大数据的特点可以概括为4V,即体量(Volume)、速度(Velocity)、多样(Variety)和价值(Value)。体量指数据的庞大数量,速度指数据处理的速度快,多样指数据的种类繁多,价值指从大数据中挖掘出的有用信息。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用分布式文件系统、数据仓库、关系数据库、NoSQL数据库 、云数据库等,实现对结构化、半结构化和非结构化海量数据 的存储和管理
利用分布式并行编程模型和计算框架,结合机器学习和数据挖 掘算法,实现对海量数据的处理和分析;对分析结果进行可视 化呈现,帮助人们更好地理解数据、分析数据
在从大数据中挖掘潜在的巨大商业价值和学术价值的同时,构 建隐私数据保护体系和数据安全体系,有效保护个人隐私和数 据安全
表1-1 三次信息化浪潮
信息化浪潮 发生时间
标志
第一次浪潮 1980年前后 个人计算机
解决问题
代表企业
信息处理
Intel、AMD、IBM、 苹果、微软、联想、 戴尔、惠普等
第二次浪潮 1995年前后 互联网
2010年前后 计算和大数
1.2.2 数据类型繁多
n 大数据是由结构化和非结构化数据组成的
– 10%的结构化数据,存储在数据库中
– 90%的非结构化数据,它们与人类信 息密切相关
p科学研究 –基因组 –LHC 加速器 –地球与空间探测
p企业应用 –Email、文档、文件 –应用日志 –交易记录
pWeb 1.0数据 –文本 –图像 –视频
继续装ing
1.3大数据的影响
图灵奖获得者、著名数据库专家Jim Gray 博士观察并总结人类自古以来,在 科学研究上,先后历经了实验、理论、计算和数据四种范式
实验
理论
计算
数据
1.3大数据的影响
• 在思维方式方面,大数据完全颠覆了传统的思维方式: – 全样而非抽样 – 效率而非精确 – 相关而非因果
“谷歌流感趋势”,通过跟踪 搜索词相关数据来判断全美地区 的流感情况
1.5大数据关键技术
技术层面 数据采集
数据存储和管理 数据处理与分析 数据隐私和安全
表1-5 大数据技术的不同层面及其功能
功能
利用ETL工具将分布的、异构数据源中的数据如关系数据、平 面数据文件等,抽取到临时中间层后进行清洗、转换、集成, 最后加载到数据仓库或数据集市中,成为联机分析处理、数据 挖掘的基础;或者也可以把实时采集的数据作为流计算系统的 输入,进行实时处理分析
1.3大数据的影响
• 在社会发展方面,大数据决策逐渐成为一种新的决策方式,大数据应用 有力促进了信息技术与各行业的深度融合,大数据开发大大推动了新技 术和新应用的不断涌现
• 在就业市场方面,大数据的兴起使得数据科学家成为热门职业 • 在人才培养方面,大数据的兴起,将在很大程度上改变中国高校信息技
术相关专业的现有教学和科研体制
1.5大数据关键技术
两大核心技术 大数据
分布式存储
分布式处理
GFS\HDFS
BigTable\HBase NoSQL(键值、列族、图形、文档数据库) NewSQL(如:SQL Azure)
提纲
1.1 大数据时代 1.2 大数据概念 1.3 大数据的影响 1.4 大数据的应用 1.5 大数据关键技术 1.6 大数据计算模式 1.7 大数据产业 1.8 大数据与云计算、物联网的关系
1.1大数据时代
1.1.1第三次信息化浪潮
• 根据IBM前首席执行官郭士纳的观点,IT领域每隔十五年就会迎来一 次重大变革
大数据应用渗透各行各业,数据驱动决策, 信息社会智能化程度大幅提高
1.2大数据概念
1.2.1数据量大
n根据IDC作出的估测,数据一直都在以每年50%的速度增长,也就是说每两年就增长一倍(大数 据摩尔定律) n人类在最近两年产生的数据量相当于之前产生的全部数据量 n预计到2020年,全球将总共拥有35ZB的数据量,相较于2010年,数据量将增长近30倍
pWeb 2.0数据 –查询日志/点击流
–Twitter/ Blog / SNS
–Wiki
1.2.3处理速度快
p 从数据的生成到消耗,时间窗口非常小,可用于生成决策的时间非常少 p 1秒定律:这一点也是和传统的数据挖掘技术有着本质的不同
1.2.4价值密度低
价值密度低,商业价值高 以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒,但是 具有很高的商业价值

信息爆炸
将涌现出一批新的市 场标杆企业
1.1.2信息科技为大数据时代提供技术支撑
1. 存储设备容量不断增加
图1-1 存储价格随时间变化情况
1.2信息科技为大数据时代提供技术支撑
来自斯威本科技大学(Swinburne University of Technology)的研究团队, 在2013年6月29日刊出的《自然通讯(Nature Communications)》杂志的 文章中,描述了一种全新的数据存储方式,可将1PB(1024TB)的数据存 储到一张仅DVD大小的聚合物碟片上。
1.4大数据的应用
• 大数据无处不在,包括金融、汽车、零售、餐饮、电信、能源、政务、 医疗、体育、娱乐等在内的社会各行各业都已经融入了大数据的印迹
典型的大数据应用实例
Kevin Spacey
David Fincher
大数据分析
英国同名小说《纸牌屋》
风靡全球的美剧《纸牌屋》
典型的大数据应用实例
从谷歌流感趋势看大数据的 应用价值
1.1.2信息科技为大数据时代提供技术支撑
2. CPU处理能力大幅提升
图1-3 CPU晶体管数目随时间变化情况
1.1.2信息科技为大数据时代提供技术支撑
3. 网络带宽不断增加
图1-4 网络带宽随时间变化情况
1.1.3数据产生方式的变革促成大数据时代的来临
图1-5 数据产生方式的变革
1.1.4 大数据的发展历程
表1-2 大数据发展的三个阶段
阶段
时间
第一阶段:萌 芽期
上世纪90年 代至本世纪 初
第二阶段:成 本世纪前十
熟期

第三阶段: 规模应用期
2010年以后
内容
随着数据挖掘理论和数据库技术的逐步成熟 ,一批商业智能工具和知识管理技术开始被 应用,如数据仓库、专家系统、知识管理系 统等。
Web2.0应用迅猛发展,非结构化数据大量产 生,传统处理方法难以应对,带动了大数据 技术的快速突破,大数据解决方案逐渐走向 成熟,形成了并行计算与分布式系统两大核 心技术,谷歌的GFS和MapReduce等大数据技 术受到追捧,Hadoop平台开始大行其道
相关文档
最新文档