《水环境化学》水质模型

合集下载

水质模型分类

水质模型分类

/hhhbb/archive/2006/06/23/1681.html《QUAL 一 2 K模型及其主要参数确定》S —P模型的基本思路是:他们认为水中溶解氧( DO) 随时问减少的速率与B OD的浓度成正比,水中溶解氧的减少主要是由于水中有机物在好气菌在分解中消耗水中氧气所引起的,并且与BOD降解具有相同的速度,即复氧的速度与氧亏成正比。

S - P模型只考虑了有机物降解和大气复氧对DO的影响,没有考虑有机物沉浮、底泥吸附等对DO的影响,因此其结果与实际有一定的差别。

有很多学者对其进行了改进,主要有以下3种模型:( 1 ) Thomas模型:对一维稳态河流,在S---P模型基础上增加了一项因悬浮物的沉淀与浮所引起的BOD速率变化。

( 2 ) Camp—Dobbins模型:在Thomas的基础,增加了底泥释放BOD和地表径流所引起的BOD变化速率和藻类光合作用和呼吸作用以及地表径流引起的溶解氧速率变化。

( 3 ) Oconnor模型:假定总的BOD是由含碳BOD(CBOI))和含氮BOD(NBOD)两项组成,模型不仅考虑了含碳化合物的耗氧,而且也考虑了含氮化合物的耗氧。

《W A S P水质模型在辽河干流污染减排模拟中的应用》WASP水质模型:WASP(Water Quality Analysis Simulation Program)是由美国国家环保局开发的水质分析软件,可用来模拟常规污染物(包括溶解氧、生物耗氧量、营养物质以及海藻污染)和有毒污染物(包括有机化学物质、金属和沉积物)在水中的迁移和转化规律,是为分析池塘、湖泊、水库、河流、河口和沿海水域等一系列水质问题而设计的动态多箱模型。

WASP模型在中国渭河、苏州河、汉江等多个流域及水库已有成功的应用。

WASP模型由两个独立的计算机程序DYNHYD和WASP组成,两个程序可连接运行,也可以分开执行。

DYNHYD是一个简单的“Link—node”网络水力动态模型,产生的输出文件可为水质分析模拟程序WASP提供流量和体积参数。

水环境数学模型

水环境数学模型


(一) 基本控制方程 圣 • 维南方程组包括连续性方程和动量方程。 在渐变流流程s方向上取ds微元段为控制体积,由 质量守恒定律和动量守恒定律分别推导,并引入 渐变流静压分布的特性,以及速度沿断面均匀分 布的假定,可得明渠一维流动的连续性方程:
A Q 0 t s 明渠一维流动的动量方程为:
(3)以z、v为应变量的组合形式
z z A v v v iv M t s B s B v v z v2 v g g 2 t s s C R

WASP4水动力模型及其数值方法 —— 基于“道—节”网络的河流水动力模 型系统 WASP4(Water Ouality Analysis Simulation Programme Version 4)是 美国联邦环境保护局阿申斯环境研究 实验室开发的水动力与水质分析模拟 程序。
(5)实际流体与理想流体 根据流体的粘滞性,可以将其分为 理想流体和粘性流体。对于理想流体, 其分子粘性系数为零,从而其运动学粘 性系数也为零。对于自然水体的水动力 模型应将流体视为粘性流体。
(6)布辛尼斯克(Boussinesq)近似 这是流体力学、大气科学、水动力学研 究中研究热力流动(热对流)问题中常用的 一种近似处理。这一假设由法国19世纪物理 学家J. Boussinesq提出,该假设认为:除非 热膨胀造成浮力外,流体可以视为不可压缩 的。 在我们水环境问题中,我们采用 Boussinesq近似,则认为在水平方向上不考 虑密度差,而仅在垂直方向上才考虑。一般 地说,对于浅层流体的缓慢流动,由于其水 平方向上的密度差较小,均可采用 Boussinesq近似。
国际上将水质模型发展的基本历程分为四 个阶段: 第一阶段(1925年~1965年):开发了比较 简单的BOD—DO双线性系统模型。采用一 维计算方法。 第二阶段(1965年~1970年):继续研究发 展BOD—DO模型的多维参数估计问题,水 质模型的基本框架发展为六个线性系统。 计算方法从一维推进到二维。除了继续研 究河流、河口水质问题外,开始模拟计算 湖泊、水库及海湾的环境问题。

环境科学中的水环境模型的建立方法

环境科学中的水环境模型的建立方法

环境科学中的水环境模型的建立方法环境科学中的水环境模型是为了研究和预测水环境系统的动态变化而建立的一种预测模型。

通过使用水环境模型,我们可以模拟和预测水质、水量和污染物的传输、转化和分布规律,以及评估不同环境管理策略的效果。

水环境模型的建立涉及多学科的知识和方法,包括水环境学、物理学、化学、生物学等。

本文将介绍水环境模型的建立方法,包括数据收集与预处理、模型选择、参数估计和模型评估。

首先,数据的收集与预处理是水环境模型建立的第一步。

需要收集和整理的数据包括水流量、水质监测数据、陆地利用数据、地形数据等。

这些数据可以通过现场观测、实验室分析、遥感技术获取。

在收集数据的过程中,需要注意数据的准确性和完整性,并进行数据预处理,包括数据的插值、平滑和去噪等处理,以确保数据质量。

选择合适的水环境模型是建立水环境模型的关键步骤。

根据研究目的和数据情况,可以选择不同的模型。

常用的水环境模型包括统计模型、物理模型、数学模型等。

统计模型适用于描述和预测水环境系统的统计规律,如回归模型、时间序列模型等。

物理模型基于物理原理,模拟水流、水质的运动和转化过程,如水动力学模型、水质模型等。

数学模型通过建立数学方程,描述水环境系统的动态变化,如数学优化模型、系统动力学模型等。

在参数估计的过程中,需要根据实测数据对模型的参数进行估计。

参数估计的方法包括最小二乘法、贝叶斯估计等。

根据模型的复杂程度和数据的可用性,可以选择不同的参数估计方法。

在进行参数估计时,需要考虑参数的物理意义和范围,并通过敏感性分析和不确定性分析对参数估计结果进行评估。

模型无论好坏都需要进行模型评估。

模型评估是对模型性能和可靠性的评价。

评估水环境模型的方法包括误差分析、验证和验证数据、模拟结果的比较与对比等。

通过模型评估,可以判断模型的适用性和可靠性,并对模型进行修改和改进。

另外,在水环境模型建立的过程中,还需要考虑一些因素。

首先是模型精度和计算效率的权衡。

第三章水质模型

第三章水质模型

水质模型
1.1 水质模型的主要问题和分类
一、 问题 (1)为了避免一条河流产生厌氧而使水质保持 在给定的条件,应当在何处建立污水处理厂? 多大规模、什么样的处理效率才能保证溶解 氧浓度不低于水质标准? (2)为了合理地利用某一区域的水资源,该区 域应当发展何种工业以及多大规模的工业才 能使该地区的水资源得以充分利用并保证水 资源不至于受污染。
C0 1 k1x
Q
u
2019/11/25
25
例题2:河流的零维模型
• 有一条比较浅而窄的河流,有一段长1km的河段,稳 定排放含酚废水1.0m3/s;含酚浓度为200mg/L,上游 河水流量为9m3/s,河水含酚浓度为0,河流的平均流 速为40km/d,酚的衰减速率常数k=2 1/d,求河段出 口处的河水含酚浓度为多少?
• 水质模型的分类:
1、按水域类型:河流、河口、河网、湖泊 2、按水质组分:单一组分、耦合组分(BOD-DO模型)、
多重组分(比较复杂,如综合水生态模型) 3、按水力学和排放条件:稳态模型、非稳态模型
水质模型按 空间维数分类
零维水质模型 一维水质模型 二维水质模型 三维水质模型
2019/11/25
0
水质模型
(4)按水质组分是否作为随机变量,可分为随 机模型和确定性模型。
水质模型还可以按模型的其他特征分类。如 按水质组分的迁移特性,可分为对流模型, 扩散模型和对流-扩散模型。按水质组分的 转化特性可分为纯迁移模型,纯反应模型和 迁移-反应模型等。
0
水质模型
1.2 水质模型的发展及建立步骤
一、水质模型的发展过程 第一阶段(1925-1965年):开发了比较简单的 生物化学需氧量(BOD)和溶解氧(DO)的双线 性系统模型,对河流和河口的水质问题采用 了一维计算方法进行模拟。 第二阶段(1965-1970年):研究发展BOD—DO 模型的多维参数估值,将水质模型扩展为六 个线性系统模型。发展河流、河口、湖泊及 海湾的水质模拟,方法从一维发展到二维。

《水环境化学》课程标准

《水环境化学》课程标准

《水环境化学》课程标准一、前言(一)课程基本信息1.课程名称:水环境化学2.课程类别:专业基础课3.学时:60-804.适用专业:水环境监测与治理/城市水净化技术(二)课程性质本课程是高职高专水环境监测与治理专业基础课程。

本课程是培养和锻炼学生水环境污染分析能力的核心课程,使学生了解常见化学污染物质在水体环境中的行为、效应及其影响因素,掌握典型水污染事件的分析方法,获得水质关键指标的测定分析能力。

通过对《水环境化学》这门课程的学习,将使学生了解当代水环境问题,熟悉和掌握有关污染物在水环境介质中迁移、转化规律的基本知识、基本理论、基本技能和基本方法,使学生今后能够在水文水资源工程的专业岗位上,对各自区域内的水质和水量问题和水质问题作本课程以《分析化学》、《有机化学》和《仪器分析》等课程的学习为基础,为进一步学习《水质检验技术》、《给水处理》、《水污染控制技术》和《工业废水处理》等专业技术课程服务,为学生练就水质与水环境分析、水净化工程设计和水处理设施运行维护等岗位工作能力奠定知识和能力基础。

(三)课程标准的设计思路1.课程设置的依据经过企业调研、往届毕业生就业岗位调研和行业专家座谈,决定把水质检验分析岗位、水净化工程、水处理设施运行维护和水质工程辅助设计岗位作为城市水净化技术专业的就业核心岗位群,把水环境化学课程作为培养学生水质及水环境污染分析能力的核心专业基础课程。

2.课程改革的基本理念课程以工作任务确定职业能力,以职业能力为目标,对接行业标准,关注职业素养,构建由项目带动、任务驱动的工作过程化课程;教学中贯穿工学结合,体现工作过程,达到教、学、做的融合;注重运用多媒体教学、现场教学等教学手段;实施多元评价,全方位关注学生对知识和技能的掌握。

以现实存在的水环境污染事件为载体组织课程内容和课程教学,让学生在完成具体案例分析的过程中掌握知识和技能,通过一个个污染事件的分析、讨论和总结训练最终提高学生的行业知识和分析能力。

第三章水环境化学-第四节水质模型介绍

第三章水环境化学-第四节水质模型介绍
第四节 水质模型
水质模型,是一个用于描述物质在水环境中的混合、 迁移、扩散和转化过程(包括物理、化学、生物作用过 程)的数学方程(或方程组) .

水质模型的基本原理是质量守恒原理;建立水质模 型的目的是用来描述污染物数量与水环境影响因素之间 的定量关系,从而为水质分析、预测和水环境管理提供 基础的量化依据。

本节讨论的水质模型主要是:氧平衡模型、湖泊富 营养化模型和有毒有机污染物归趋模型。

一、氧平衡模型
1. Streeter-Phelps(S-P)模型(河流水质自净模型)

S-P模型的建立基于两项假设: (1)只考虑好氧微生物参加的有机物降解反应,并 认为该反应为一级反应。 (2)河流中的耗氧只是有机物降解反应引起的。有 机物的降解反应速率与河水中溶解氧(DO)的减少速 率相同,大气中的氧进入水体的复氧速率与河水中 的亏氧量 D 成正比。

极限距离:
极限溶解氧:
(DC为极限氧亏)
2.托马斯(Thomas)模型

对于一维静态河流,在S—P模型的基础上考虑沉淀、絮 凝、冲刷和再悬浮过程对BOD变化的影响,引入了BOD沉 浮系数k3 dL
u -(k1 k3 ) L dx u dD k L - k D 1 2 dx
湖泊水质模型的类型:
湖泊水质模型可划分为:多元相关模型;输入输出 模型;富营养化预测模型和扩散模型,这里仅讨论富 营养化预测模型。

2. 富营养化预测模型 对于停留时间很长、水质基本处于稳定状态的中小 型湖泊和水库,可视为一个均匀混合的水体。 沃兰伟德假定,湖泊中某种营养物的浓度随时间的 变化率,是输入、输出和在湖泊内沉积的该种营养物量 的函数,用质量平衡方程表示就是:

水质模型

水质模型

2
水质模型的类型
1、从空间维数上 零维、一维、二维和三维模型 2、是否含有时间变量 可分为动态和稳态模型 3、从模型的数学特征 随机性、确定性模型和线性、非线性模型 4、从描述的水体、对象、现象、物质迁移和反应动力学性质可分为 河流、湖泊、河口、海湾、地下水模型; 溶解氧、温度、重金属、有毒有机物、放射性模型; 对流、扩散模型以及迁移、反应、生态学模型等 。
第四节 水质模型 (Water Quality Model)
1
水质模型( 水质模型(water quality model) )
水质模型( 水质模型(water quality model) 根据物质守恒原理用 ) 数学的语言和方法描述参加水循环的水体中水质组分所发 生的物理、化学、生物化学和生态学诸方面的变化、 生的物理、化学、生物化学和生态学诸方面的变化、内在 规律和相互关系的数学模型。 规律和相互关系的数学模型。 描述环境污染物在水中的运动和迁移转化规律, 描述环境污染物在水中的运动和迁移转化规律,为水资源 保护服务。它可用于实现水质模拟和评价,进行水质预报 保护服务。它可用于实现水质模拟和评价, 和预测, 和预测,制订污染物排放标准和水质规划以及进行水域的 水质管理等,是实现水污染控制的有力工具。 水质管理等,是实现水污染控制的有力工具。
4
水质模型的发展阶段
1925-1960,S—P模型,BOD—DO耦合模型 , 模型, 模型 耦合模型 1960—1965,新发展,引进空间变量,动力学系数、 ,新发展,引进空间变量,动力学系数、 温度 1965—1970,光和作用、藻类的呼吸作用,沉降,悬 ,光和作用、藻类的呼吸作用,沉降, 浮,计算机的应用 1970 —1975,线性化体系,生态水质模型,有限元模 ,线性化体系,生态水质模型, 型,有限差分技术 最近30年 最近 年,改善模型的可靠性和评价能力

环境影响评价 ——水环境影响评价水质模型

环境影响评价 ——水环境影响评价水质模型

e BODc,A
-K1t A BODa
e BODc,B
-K1tB BODa
两式相比,并取对数可得:
1 K1 tB tA ln
BODc,A BODc,B
1 ln t
BOD, A BOD,B
测定出截面A、B处河水的BOD值、原河水的BOD值, 并中多计取算几出个河断水面在,两得截到面若间干的个流K行1,时然间后,取即平可均算值出。K1。实际
久性污染物);混和过程段应采用二维模式。
5、S-P模型的一般方程式:
模型的基本假定:
(1)BOD的衰减和溶解氧的复氧都是一级反应; (2)反应速率常数是定常的; (3)耗氧是由BOD衰减引起的,溶解氧来源则是 大气复氧。
S-P模式仅限于BOD5和DO的水质影响预测。
C

C0
exp
5km2表11地面水环境影响评价分级判据建设项目污水排放量m3d建设项目污水水质的复杂程度一级二级三级地面水域规模大小规模地面水水质要求水质类别地面水域规模大小规模地面水质要求水质类别地面水域规模大小规模地面水水质要求水质类别20000复杂大大中小中小中等大大中小中小简单大大中小中小建设项目污水排放量m3d建设项目污水水质的复杂程度一级二级三级地面水域规模大小规模地面水水质要求水质类别地面水域规模大小规模地面水质要求水质类别地面水域规模大小规模地面水水质要求水质类别lt
Ex xH gHI , x 140 ~ 300 对河宽为15~60m的河流 式中:H-平均水深;I-水力坡度;g-重力加速度
• 泰勒(Taylor)公式(适用于河流)
Ey 0.058H 0.0065BgHI1 2 •爱尔德(Elder)公式(适用于河流)

水环境数学模型研究进展

水环境数学模型研究进展

水环境数学模型研究进展一、本文概述水环境数学模型是理解和预测水环境行为、评估水资源利用和环境保护措施效果的重要工具。

随着科技的发展和环境保护的迫切需求,水环境数学模型的研究与应用逐渐受到广泛关注。

本文旨在全面综述水环境数学模型的研究进展,分析各类模型的优缺点,探讨其在水环境管理、水资源保护和生态修复等领域的应用前景。

文章将首先介绍水环境数学模型的基本概念和研究背景,阐述其在水资源科学、环境科学和生态学等领域的重要性。

随后,将重点综述近年来水环境数学模型的研究进展,包括模型的建立方法、模型的验证与优化、模型的应用案例等方面。

通过对各类模型的深入分析和比较,本文旨在揭示水环境数学模型的发展趋势和研究方向,为水环境管理和水资源保护提供科学依据和决策支持。

本文还将关注水环境数学模型在实际应用中所面临的挑战和问题,如模型的复杂性、不确定性、参数估计困难等。

通过分析和讨论这些问题,本文旨在为水环境数学模型的研究和应用提供有益的启示和建议,推动水环境数学模型的发展和完善,为水环境保护和水资源可持续利用贡献力量。

二、水环境数学模型的理论基础水环境数学模型作为理解和预测水环境行为的重要工具,其理论基础涉及多个学科领域,包括流体力学、环境科学、生态学、计算机科学等。

这些理论共同为水环境数学模型的构建和应用提供了支撑。

流体力学是水环境数学模型的理论基础之一。

流体力学中的基本原理,如连续性方程、动量方程和能量方程,为水环境数学模型提供了描述水流运动的基本框架。

这些方程可以用来描述河流、湖泊、海洋等水体的流动和混合过程,进而揭示水体中的污染物扩散和传输机制。

环境科学为水环境数学模型提供了对水体中各种化学和生物过程的深入理解。

这包括水体中的物理、化学和生物反应过程,以及这些过程如何影响水体中的污染物浓度和分布。

环境科学理论的应用使得水环境数学模型能够更准确地模拟和预测水体的环境质量变化。

生态学理论在水环境数学模型中扮演着重要角色。

历年各大学环境化学考研试题选

历年各大学环境化学考研试题选

历年各大学环境化学考研试题选20XX年武汉科技学院环境化学考研试题(A卷)一、名词解释(每小题5分,共40分)1 .光化学烟雾2 .温室效应3 、硫酸烟雾型污染4 .盐基饱和度5 .优先污染物6 .农药7 .生物浓缩因子8 .腐殖质二、选择题(每小题3分,共30分)1、属于环境化学效应的是______a. 热岛效应b. 温室效应c. 土壤的盐碱化d. 噪声2 、五十年代日本出现的痛痛病是由______ 污染水体后引起的。

a. Cdb. Hgc. Pbd. As3 、五十年代日本出现的水俣病是由______ 污染水体后引起的。

a. Cdb. Hgc. Pbd. As4 、大气逆温现象主要出现在______ 。

a. 寒冷的夜间b. 多云的冬季c. 寒冷而晴朗的冬天d. 寒冷而晴朗的夜间5 、某一水体的BOD20 为100 ppm ,其BOD5 约为__________ 。

a. 40 b.50 c. 35 d. 706 、随高度升高气温的降低率称为大气垂直递减率(Γ),对于逆温气层的大气垂直递减率。

a. Γ > 0b. Γ = 0c. Γ < 07 、腐殖质胶体是非晶态的无定形物质,有巨大的比表面,其范围为________ 。

a. 350-900m2/gb. 650-800m2/gc. 100-200m2/gd. 15-30m2/g8 、在土壤中,下列离子的交换吸附能力最强。

a. Ca2+b. Na+c. Fe3+d. H+9 、表面活性剂含有很强的,容易使不溶于水的物质分散于水体,而长期随水流迁移。

a. 疏水基团 b. 亲水基团 c. 吸附作用 d. 渗透作用10 、硫酸型烟雾污染多发生于季节。

a. 春季b. 夏季c. 秋季d. 冬季三、简答题(每小题10分,共30分)1、请叙述有机污染物在水环境中迁移、转化存在哪些重要过程。

2、植物对重金属产生耐性有哪几种机制。

3 、简述影响酸雨形成的因素。

水质模型

水质模型

湖泊富营养化
湖泊的富营养化是由磷、氮的化合物过多排放引起的 污染。主要表现为水体中藻类的大量繁殖,严重影响 了水质。
24
湖泊水质污染预测模型对于预测湖泊水质 发展趋势及提出相应的防治对策有着重要 的意义。 目前常采用的有多元相关模型、输入输出 模型、富营养化预测模型和扩散模型。前 三种模型实际上只能预测未来湖泊水质的 平均发展趋势,而扩散模型可以反映湖泊 水质的空间变化,预测污水入湖口附近局 部水域可能出现的严重污染程度。实际应 用时可根据湖泊的污染特征和基础资料等 情况选用相应模型。
26
为了求得在均匀混合条件下,V稳定时上述方 程的解,Vollenweider,Dillon,合田健和经济 合作与发展组织(OECD)还分别求得以下湖 水总磷质量浓度的计算公式。
1.Vollenweider公式 ρ=ρ1(1+√ Z/Q)-1 式中:ρ——湖水按容积加权的年平均总磷质量浓度,mg/L; ρ1——流入湖泊水量按流量加权的年平均总磷质量浓 度(包括入湖河道,湖区径流和湖面降水的总 量),mg/L; Z——湖泊的平均水深,可用湖泊容积(V)除以湖泊 相应的表面积求得,m; Q——湖泊单位面积上的水量负荷,可用湖泊的年流 入水量(qm)除以湖泊的表面积(A)来求得, t/(m2· a)。
17
S-P模型基本方程及其解
dL k1 L dt dD k1 L k 2 D dt
式中: L—河水中的BOD值,mg/L; D—河水中的亏氧值,mg/L,是饱和溶解氧浓度 Cs(mg/L)与河水中的实际溶解氧浓度C( mg/L)的差值; k1—河水中BOD衰减(耗氧)速度常数,1/d; k2—河水中的复氧速度常数,1/d; t—河水中的流行时间, d;
3.合田健公式 L ρ= ——————-----Z(qV/V+α)

第三章水环境化学

第三章水环境化学
总含盐量(TDS):
TDS=[K++Na++Ca2++Mg2+]+[HCO3-+NO3-+Cl-+SO42-
2、天然水的性质
(Characteristic of Natural Waters) (1)碳酸平衡(Balance of H2CO3) 水体中存在四种化合态:
CO2、CO32-、HCO3-、H2CO3
第三章 水环境化学
(Water Environmental Chemistry)
本章重点
1、无机污染物在水体中进行沉淀-溶解、氧化-还原、 配合作用、吸附-解吸、絮凝-沉淀的基本原理;
2、计算水体中金属存在形态;
3、pE计算;
4、有机污染物在水体中的迁移转化过程和分配系数、 挥发速率、水解速率、光解速率和生物降解速率的 计算方法。
农药
有机氯 有机磷
多氯联苯 (PCBS) 卤代脂肪烃 醚
单环芳香族化合物 苯酚类和甲酚类 酞酸酯类 多环芳烃(PAH) 亚硝胺和其他化合物
2、金属污染物 (Metal Pollutant)
Cd、 Hg、 Pb、 As、 Cr、 Cu、 Zn、 Tl、 Ni、 Be
第二节 水中无机污染物的迁移转化
强酸 弱酸 强酸弱碱盐
总酸度= [H+]+ [ HCO3-] +2[H2CO3*] - [ OH-] CO2酸度= [H+]+ [H2CO3*] - [CO32-] - [ OH-] 无机酸度= [H+]- [ HCO3-]-2 [CO32-] - [ OH-]
二、水中污染物的分布及存在形态
1、有机污染物 (Organic Pollutant)

《水质模型》课件

《水质模型》课件

确保数据质量
实际监测的水质数据质量直接影 响验证与评估的结果,因此要确 保数据的准确性和可靠性。
多种方法综合评估
单一的验证与评估方法可能存在 局限性,应采用多种方法进行综 合评估。
误差的可接受范围
应根据实际情况确定误差的可接 受范围,判断模型是否满足实际 应用的需求。
PART 06
水质模型的应用案例
总结词
预测不同水文条件下的水质变化
详细描述
通过建立水质模型,可以预测在不同水文条件下的水质变 化,为水资源管理和调度提供决策依据,确保供水安全。
水质模型在湖泊中的应用案例
总结词
模拟湖泊中污染物的分布、迁移和归宿
详细描述
水质模型在湖泊中的应用主要集中在模拟湖泊中污染物的 分布、迁移和归宿,探究不同污染物在湖泊中的扩散、转 化和归宿规律,为湖泊污染治理提供科学依据。
总结词
模拟地下水与地表水的相互关系
详细描述
地下水与地表水之间存在密切的相互关系,水质模型可以 模拟地下水与地表水的相互关系,探究不同因素之间的相 互作用和影响机制,为水资源管理和保护提供决策支持。
建立水质模型的常用软件和工具
MATLAB
01
一款功能强大的数学计算软件,可用于水质模型的建立、模拟
和数据分析。
MIKE
02
一款专业的水质模拟软件,具有强大的三维模拟功能和可视化
界面。
HYDSIM
03
一款针对河流、湖泊等水体的水质模拟软件,适用于一维和二
维模型的建立。
PART 04
水质模型的参数估计
水质模型在地下水中的应用案例
总结词
预测地下水中污染物的扩散和迁移
详细描述
地下水是重要的水资源之一,水质模型在地下水中的应用 主要集中在预测地下水中污染物的扩散和迁移,评估地下 水水质状况和变化趋势,为地下水保护提供科学依据。

(完整版)第三章水环境化学

(完整版)第三章水环境化学
化学反应平衡:
分布分数:α0 、α1、α2分别表示化合物在总量中的比 例则:
α0=[H2CO3*]/{[H2CO3*]+[HCO3]+[CO32-] } α1 =[HCO3-]/{[H2CO3*]+[HCO]+[CO32-] } α2=[CO32-]/{[H2CO3*]+[HCO3-]+[CO32-] }
2003年我国万元GDP用水量为465m3,是世界平均水平的4 倍;农业灌溉用水有效利用系数为0.4~0.5,是发达国家 的1/2;水的重复利用率为50%,发达国家已达到了85%; 全国城市供水管网漏损率达20%左右。
水危机的出现
根据水利部《21世纪中国水供求》分析,2010年 我国工业、农业、生活及生态环境总需水量在中 等干旱年为6988亿立方米,供水总量6670亿立方 米,缺水318亿立方米。这表明,2010年后我国 将开始进入严重的缺水期。
CT=[H2CO3*]+[HCO3- ]+[CO32- ]
试计算封闭体系和开放体系中各碳酸形态的表示式? (1)封闭体系
总碳酸量不变 (2)开放体系
[H2CO3*]保持不变
封闭体系:
0
H]
k1k2 [H ]2
)1
1
HCO3 CT
(1
[H k1
]
k2 [H
)1 ]
溶解于水中气体的量可能高于亨利定律表示的量。
氧在25℃ ,1.013X105Pa下溶解度计算:
由亨利定律[G(aq)]=KH*pG
不同温度下,气体在水中溶解度的计算:
CO2在25℃ ,1.013X105Pa下溶解度计算
(4)水体富营养化(eutrophication) 由于水体中氮磷营养物质的富集,引起

水质模型

水质模型
第四节 水质模型
水质模型 — 可较好描述污染物在水环境中 的复杂规律及其影响因素之间的相互关系,因此 水质模型是研究水环境的重要工具。 水质模型的基本原理是根据质量守恒原理。 污染物在水环境中的物理、化学和生物过程 的各种模型,大体经历了三个发展阶段, 即简单的氧平衡模型阶段,形态模型阶段和多介质 环境结合生态模型阶段。
2.Thomas模型(忽略离散作用)
在s—P模型的基础上,增加固悬浮物的沉 淀和上浮引起的删的变化速率(K3L0),则:
二、 湖泊富营养化模型
目前常采用的有多元相关模型、输入输出模 型、富营养化预测模型和扩散模型。
前三种模型实际上只能预测未来湖泊水质的 平均发展趋势,而扩散模型可反映湖泊水质的空 间变化,预测污水人湖口附近局部水域可能出现 的严重污染程度。 实际应用时可根据湖泊的污染特征和基础资 料等情况选用相应模型。

一、 氧平衡模型
1.Streeter—Phelps模型(S—P模型)
假定河流的自净过程中存在着两个相反的过程.
a.
有机污染物在水体中先发生氧化反应,消耗水体 中的氧,其速率与其在水中的有机污染物浓度成 正比
b.
大气中的氧不断进入水体,其速率与水中的氧亏z 值成正比.
根据质量守衡原理,提出一维稳态河流的 BOD—DO藕合模型的基本方程式如下:
当人湖污染物为氮、磷等营养物时,根据质量守恒原理.湖水中污染物 的变化不仅与进出湖泊的数量有关,而且还受其沉降速率的影响。

水环境数学模型-第七章-湖泊水库富营养化模型

水环境数学模型-第七章-湖泊水库富营养化模型

(7-14)
式中
PT =总磷浓度, kg / m 3 ;
W =磷年流入量, kg / y ;
=磷沉降率, 1 / y ;
V =湖泊(水库)总体积等于 fA , m 3 ;
f =湖泊(水库)平均深度, m ; A =湖泊(水库)水表面面积, m 2 ; Q0 =输出流量, m 3 / y ; t =时间, y 。
湖泊的总磷负荷 P / T ( ZA)
其中
Z =湖泊的平均深度; A =湖泊的表面面积; T =时间。
CI
CE
CL

图 7.1 湖泊“搅拌箱” C E =C L ;C L ≠C I
N,P输入
温水层(混合) 低温层(混合)
N,P藻类 等输出 N和P的循环
藻类的沉降
底泥(未混合)
图 7.2
三组分体系分层湖泊和沉降模型
7.3.5 氧平衡
在分层的湖泊(水库)中,氧平衡出现在温水层,有效的中断了再曝气。所 以,平衡可以表示为:
DOt DOO RK D SA VH
(7-13)
式中, DOO 和 DOt 分别是开始和时间 t 时氧浓度; K D 是水底细菌活性速率 转换成氧单位的转换系数; SA 和 VH 分别是底泥的表面积和温水层的体积。 当水体不分层时,氧平衡比较复杂,因为其他过程,如光合作用、呼吸、复 氧以及输出输入等都是很重要的。
的湖泊分成若干个搅拌箱,其中的化学污染物可用一级衰变方程来描述: dC 2 / dt 1 KC 2 V M QC 2
式中
(7-1)
C 2 湖泊中物质的浓度 ;
M 质量负荷率,等于 Q C1 流入的物质浓度 ;
VC1

V 湖泊水体体积 ; K 衰变速率 。 这个方程可用于计算负荷率与产物浓度(湖泊内和流出物中) ,以 C1 为例, 图 7.3 表示了一湖泊 C1 变化的情况,应当注意影响时间的长度,这可用分析解 来完成: C 2t C 2 o C1 C 2 o e

水质模型及其应用研究进展

水质模型及其应用研究进展

水质模型及其应用研究进展随着环境保护意识的不断提高,水质模型的研究与应用逐渐成为水环境管理领域的热点话题。

本文将概述水质模型的概念、定义及其应用背景,并综述近年来水质模型的研究进展,以期为相关领域的研究和实践提供有益的参考。

水质模型是描述水中污染物传输、转化和降解过程的数学模型,广泛应用于水环境质量评价、污染物排放控制、水处理工艺设计等领域。

随着计算机技术的发展,水质模型的应用逐渐由定性描述向定量预测转变。

本文将从研究现状和模型应用两个方面,探讨水质模型的研究进展及其在实际问题中的应用。

近年来,水质模型的研究取得了长足的进展。

根据模型的原理和应用范围,可将现有的水质模型大致分为三类:物理模型、化学模型和生态模型。

物理模型主要水体中污染物的扩散、对流和吸附等物理过程。

常用的物理模型包括扩散对流方程、表面张力模型等。

这些模型的优势在于能够准确描述污染物的空间分布和动态变化,但往往忽略了污染物的化学和生物过程。

化学模型则重点水中污染物的化学反应过程,如氧化还原反应、络合反应等。

典型的水质化学模型有零维或多维扩散方程,以及基于反应动力学的模型。

化学模型具有较好的理论依据,但对反应机制和动力学参数的要求较高。

生态模型则结合了物理和化学模型的优势,同时考虑了水生生物和环境因素对水质的影响。

典型的生态模型包括河流生态系统模型、湖泊生态系统模型等。

这些模型通过模拟生物群落的结构和功能,能够更全面地评估水环境的质量状况。

然而,生态模型的应用仍面临数据获取和处理等方面的挑战。

为了提高模型的预测精度,研究者们还提出了多种耦合模型,即将不同类型的模型进行组合,以弥补单一模型的不足。

例如,物理-化学耦合模型综合考虑了污染物的物理和化学过程,能够更准确地模拟水质的动态变化。

生态-化学耦合模型、生态-物理耦合模型等也逐渐得到应用。

这些耦合模型的发展为水质模型的未来研究提供了新的方向。

水质模型在实际问题中的应用取得了丰硕的成果。

第七章 水质模型

第七章 水质模型

QUAL2K相对于QUAL2E模型而言,它不仅适用于混合的枝状河 流系统,而且允许多个排污口、取水口的存在以及支流汇入和流
出,尤其对藻类、营养物质、光三者之间的相互作用进行了矫正,
并在模拟过程对输入和输出等程序有了进一步改进,主要增强功
能包括计算功能的扩展、新反应因子的增加,如藻类BOD、反硝
化作用和固着植物引起的DO变化。对于任意一种水质组分,有:
水质模型研究的深 化、完善与广泛。 考虑水质模型与面 源模型的对接,并 采用多种新技术方 法,如:随机数学、 模糊数学、人工神 经网络、专家系统 等。
四、建立水质模型的基本步骤
调查研究,获取资料 模型的一般性质研究 初步建立模型 模型验证 模型应用
§6-2 河流水质模型
一、BOD-DO耦合模型(S-P模型)及其修正模型
k1 x / u
S-P适用的5个条件

a、河流充分混合段; b、污染物为耗氧性有机污染物; c、需要预测河流溶解氧状态; d、河流为恒定流动; e、污染物连续稳定排放。
25 20 15 10
L mg/L DOmg/L
DOmg/L
L mg/L
5 0 0
氧垂曲线示意图
2
4
6
8
10 X km
(四)奥康纳模型
LC u (k1 k3 ) LC x LN u k N LN x D u k1 LC k N LN k 2 D x
kN—硝化BOD耗氧系数,1/d;
( k1 k3 ) x / u L L e 其解析解为: C 0C kN x /u L L e N 0N k1 L0 ( k1 k3 ) x / u k2 x / u k2 x / u D D e ( e e ) 0 k2 k1 k3 k L N 0 N (e k N x / u e k2 x / u ) k2 k N

环境化学复习总结全部(戴树桂)

环境化学复习总结全部(戴树桂)

第三章:水环境化学第一节:天然水的基本特征及污染物的存在形式1.水中八大离子:K+,Ca+,Na+,Mg+,HCO3-,NO3-,Cl-,SO4(2-)2.气体在水中的溶解度服从Henry定律:一种气体在液体中的溶解度正比于液体所接触的该种气体的分压。

溶解度【X(aq)】=K H×p G K H为气体一定温度下Henry定律常数,p G分压3.氧在水中的溶解度CO2的溶解度P150页4.:BOD(生化需氧量):在一定体积水中有机物降解所需消耗的氧的量。

BOD5=DO1-DO55.碳酸平衡P152-P157计算题重点区域★★★6.水中污染物的分布和存在形态:A.有机污染物:农药(有机氯、磷,氨基甲酸醇),多氯联苯PCBs,卤代脂肪烃,醚类,单环芳香族化合物,苯酚类和甲酚类,钛酸酯类,多环芳烃PAH,亚硝胺和其他化合物B.金属污染物:镉,汞,铅,砷,铬,铜,锌,铊等7.优先污染物:有毒物质品种繁多,在众多的污染物中筛选出潜在危险大的作为优先研究和控制对象。

8.水中的营养元素:N,P,C,O和微量元素9.水体富营养化:生物所需的N,P等营养物质大量进入湖泊,河口等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,鱼类及其他生物大量死亡的现象。

10.N/P>100,贫营养化;N/P<10,富营养化;第二节:水中无机污染物的迁移转化一,颗粒物与水之间的迁移:1水中颗粒物类别:矿物微粒和黏土矿物,金属水合氧化物,腐殖质,水体悬浮沉积物2.水环境中胶体颗粒物的吸附作用类别:表面吸附,离子交换吸附,专属吸附。

3.表面吸附:胶体具有巨大的比表面积和表面能,因此固液界面存在表面吸附作用,属于物理吸附。

4.离子交换吸附:环境中大部分胶体带负电荷,容易吸附阳离子,在吸附过程中,胶体每吸附一部分阳离子,同时也放出等量的其他阳离子。

5.专属吸附:除了化学键的作用外,尚有加强的憎水键和范德华力或氢键在起作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 水质模型
水质模型的基本原理: 污染物在水环境中的物理化学和生物过程遵守质 量守恒定律,模型发展大体经历了简单的氧平衡 模型阶段、形态模型阶段和多介质环境结合生态 模型阶段。
第四节 水质模型
氧平衡模型
1。 Streeter-Phelps 模型
水体有机污染物(浓度用BOD表示)消耗速率为
L t
便可得出有机毒物在系统内的浓度和半衰期。
K1L
u
L x
K1L
Fick第二定律,河流的离散导致的BOD的变化为
u
L x
Ex
2L x 2
则BOD变化速率为:
L
2L
u x Ex x2 K1L
3.菲克第二定律:解决溶质浓度随时间变化的情况
两个相距dx垂直x轴的平面组成的微体积,J1、J2为进入、
流出两平面间的扩散通量,扩散中浓度变化为 c,则单元体
1
Z (q /V )
2. OECD公式
1
1
7
0.5
Z
V qv
0.6
1
第四节 水质模型
三、有毒污染物的归趋模型 摒弃经验参数,在模型中只出现表征化合物固有性 质的参数(实验室测定,与时间地点无关)和表征 环境特征所测量的参数。 主要考察动力学过程 酸碱平衡,水解,生物降解,光解作用,挥发,沉 淀-溶解作用,吸附解吸作用,生物浓缩,沉积作用 以及污水排放等uxEx2
x 2
K2(s
) K1L
第四节 水质模型
1。 Streeter-Phelps 模型
若忽略河流离散作用
u
L x
K1L
u
x
K2(s
) K1L
t时刻BOD和溶解氧的值分别为
L
L0
exp(
K1 u
x
)
s
(s
0 )
exp(
K2x) u
(
K1L0 K1 K2
)[exp(
K1x ) u
exp(
K2 x )] u
第四节 水质模型
1。 Streeter-Phelps 模型
当 0时,溶解氧浓度为极值,即 K2(s ) K1L
x
代入
s
(s
0 )
exp(
K2x) u
(
K1L0 K1 K2
)[exp(
K1x ) u
exp(
K2 x )] u
得 溶解氧的极限距离
xc
K2
u
K1
ln
K2 K1
1
(s
0 )(K2
L0 K1
K1
)
第四节 水质模型
2。 Thomas模型
在S-P模型的基础上,增加因悬浮物的沉淀引起的 BOD变化速率
单位时间内BOD的变化率
L u x (K1 K3)L
单位时间内溶解氧的变化率
c u x K1L K2 (cs c)
ln L K1 K3 x
L0
t
积中溶质积累速率为
c t
dx
J1
J2
J1
D(
c x
)
x(Fick第一定律)
菲克第二定律的推导
J2
D
c x
xdx
(Fick第一定律)
J1
x
D
c x
dx
(即第二个面的扩散通量为第一个
面注入的溶质与在这一段距离内溶质浓度变化引起的扩散
通量之和)
若D不随浓度变化,则
c t
dx
J1
J2
第四节 水质模型
三、有毒污染物的归趋模型 有机物在水体中的迁移转化包括一下几个过程: 负载过程:污水排放、大气沉降、地表径流等将有机毒物引
入天然水体。 形态过程:①酸碱平衡,影响挥发等作用;②吸着作用,悬
浮物的迁移影响其归趋。 迁移过程:①沉淀-溶解作用;②对流作用;③挥发作用;
④沉积作用。 转化过程:①生物降解作用;②光解作用;③水解作用;④
L0=500*2000/200000=5mg/L
ln L K1 K3 5
5
40
D
(cs
c0 ) exp(
K2 x ) u
( K1
K1L0 K3
K2
)[exp(
K1
u
K3
x)
exp(
K2 x )] u
第四节 水质模型
二、湖泊富营养化预测模型
基本原理:
当入湖污染物为N、P等营养物时,根据质量守 恒定律,湖水中污染物浓度的变化不仅与进出湖 泊的数量有关,而且还其沉降速率的影响。
D
x
c dx x
D
2c x 2
dx

c t
D
2c x 2
第四节 水质模型
1。 Streeter-Phelps 模型
大气中的氧气进入水体的速率与水中的氧亏值成正比
u
x
K2(s
)
水体BOD氧化引起的溶解氧消耗
u x K1L
河流离散作用引起的溶解氧浓度变化
u
x
Ex
2
x 2
水体溶解氧变化速率
考察湖中磷的变化时
水体污染物日变化速率=日输入-日输出-日沉积
V
dc dt
Ip
qc
p
V
c
第四节 水质模型
二、湖泊富营养化预测模型
1. Vollenweider公式
1
1 1 Z / Q
2. Dillon公式
L(1 Rp )
Z qv /V
第四节 水质模型
二、湖泊富营养化预测模型
3. 合田健公式
氧化还原作用。 生物累积过程:①生物浓缩作用;②生物放大作用
第四节 水质模型
有机毒物归趋的基本原理:
1. 单个过程使某种化合物从水环境中消失速率之和是该化 合物在水环境中消失的总速率
2. 有机物的存在不改变环境参数 3. 吸着速率远快于挥发和转化速率 4. 计算有机物因挥发和转化过程而从水环境中消失的速率 5. 考虑吸着过程对有机物消失过程的影响 6. 考虑有机物的输入、稀释及最终从系统中输出的速率,
u
c
cs
(cs
c0 ) exp(
K2x) (
u
K1
K1L0 K3
)[exp( K2
K1
K3 u
x) exp(
K2 x )] u
D
Dc0
exp(
K2x) u
( K1
K1L0 K3
K2
)[exp(
K1
u
K3
x)
exp(
K2x )] u
第四节 水质模型
河段流量200000m3/d,流速40km/d, cs=9.0mg/L;BOD5=500mg/L污水以 2000m3/d排放,下游5km处情况
相关文档
最新文档