单片机矩阵式键盘连接方法及工作原理

合集下载

51单片机矩阵键盘原理

51单片机矩阵键盘原理

51单片机矩阵键盘原理51单片机矩阵键盘原理矩阵键盘是一种常用的输入设备,可以通过少量的I/O口控制多个按键。

51单片机作为嵌入式系统中常用的控制器,也可以通过控制矩阵键盘来实现输入功能。

1. 矩阵键盘的结构矩阵键盘由多个按键组成,每个按键都有一个引脚与其他按键共用,形成了一个按键矩阵。

例如,4x4的矩阵键盘有16个按键,其中每行和每列各有4个引脚。

2. 矩阵键盘的工作原理当用户按下某一个按键时,该按键所在行和列之间会形成一个电路通路。

这时,51单片机可以通过扫描所有行和列的电路状态来检测到用户所按下的具体按键。

具体实现过程如下:(1)将每一行引脚设置为输出状态,并将其输出高电平;(2)将每一列引脚设置为输入状态,并开启上拉电阻;(3)逐一扫描每一行引脚,当发现某一行被拉低时,则表示该行对应的某一个按键被按下;(4)记录下该行号,并将该行引脚设置为输入状态,其余行引脚设置为输出状态;(5)逐一扫描每一列引脚,当发现某一列被拉低时,则表示该列对应的是刚才所记录下的行号及其对应的按键;(6)通过行号和列号确定具体按键,并进行相应的处理。

3. 代码实现下面是一个简单的51单片机矩阵键盘扫描程序:```c#include <reg52.h> //头文件sbit row1 = P1^0; //定义引脚sbit row2 = P1^1;sbit row3 = P1^2;sbit row4 = P1^3;sbit col1 = P1^4;sbit col2 = P1^5;sbit col3 = P1^6;sbit col4 = P1^7;unsigned char keyscan(void) //函数定义{unsigned char keyvalue; //定义变量while(1) //循环扫描{row1=0;row2=row3=row4=1; //设置行状态 if(col1==0){keyvalue='7';break;} //读取按键值 if(col2==0){keyvalue='8';break;}if(col3==0){keyvalue='9';break;}if(col4==0){keyvalue='/';break;}row2=0;row1=row3=row4=1;if(col1==0){keyvalue='4';break;}if(col2==0){keyvalue='5';break;}if(col3==0){keyvalue='6';break;} if(col4==0){keyvalue='*';break;}row3=0;row1=row2=row4=1; if(col1==0){keyvalue='1';break;} if(col2==0){keyvalue='2';break;} if(col3==0){keyvalue='3';break;} if(col4==0){keyvalue='-';break;}row4=0;row1=row2=row3=1; if(col1==0){keyvalue='C';break;} if(col2==0){keyvalue='0';break;} if(col3==0){keyvalue='=';break;} if(col4==0){keyvalue='+';break;}}return keyvalue; //返回按键值}void main() //主函数{unsigned char key;while(1) //循环读取{key = keyscan(); //调用函数}}```以上代码实现了一个简单的矩阵键盘扫描程序,可以通过调用`keyscan()`函数来获取用户所按下的具体按键值。

单片机 矩阵键盘实验 实验报告

单片机 矩阵键盘实验 实验报告

单片机矩阵键盘实验实验报告一、实验目的本次实验的目的是掌握原理和方法,利用单片机识别矩阵键盘并编程实现键码转换功能,控制LED点亮显示。

二、实验原理矩阵键盘是一种由多路单向控制器输入行选择信号与列选择信号连接而形成的一一对应矩阵排列结构。

它广泛应用于电子游戏机、办公自动化设备、医疗仪器、家电控制及书籍检索机器等方面。

本次实验采用的矩阵键盘是一个4 x 4矩阵,用4段数码管显示按键编码,每个按键都可以输入一个代码,矩阵键盘连接单片机,实现一个软件算法来识别键码转化。

从而将键盘中的按键的按下信号转换成程序能够识别的代码,置于相应的输出结果中,控制LED点亮,从而可以实现矩阵键盘按键的转换功能。

三、实验方法1.硬件搭建:矩阵键盘(4行4列)与单片机(Atmel AT89C51)相连,选择引脚连接,并将数码管和LED与单片机相连以实现显示和点亮的功能。

2.程序设计:先建立控制体系,利用中断服务子程序识别和码值转换,利用中断服务子程序实现从按键的按下信号转换为程序能够识别的代码,然后将该代码段编写到单片机程序中,每次按下矩阵键盘按键后单片机给出相应的按键编码输出,用数码管显示,控制LED点亮。

四、实验结果经过实验,成功实现了矩阵键盘与单片机之间的连接,编写了中断服务子程序,完成了按键编码输出与LED点亮的功能。

实验完成后,数码管显示各种按键的编码,同时LED会点亮。

本次实验介绍了矩阵键盘的原理,论述了键码转换的程序设计步骤,并实验完成矩阵键盘与单片机的连接,实现用LED点亮以及数码管显示按键的编码。

通过本次实验,受益匪浅,使我对使用单片机编写算法与程序有了更深入的认识,同时丰富了课堂学习的内容,也使我更加热爱自己所学的专业。

单片机矩阵键盘原理

单片机矩阵键盘原理

单片机矩阵键盘原理单片机矩阵键盘是一种常见的输入装置,它可以实现对数字、字母、符号等不同类型的输入,是单片机控制系统中不可或缺的一部分。

下面详细介绍单片机矩阵键盘的原理。

1. 键盘的基本原理键盘是一种能够将人体按压的操作转换成电信号输出的输入设备。

它由按键、矩阵电路和接口电路等多个部分组成。

其中最关键的是矩阵电路,它起到了连接按键和接口电路的桥梁作用。

2. 矩阵电路的构成矩阵电路主要由行列式组成,其中行和列的数量决定了键盘能够输入的按键数量。

例如一个4行4列的矩阵电路可以连接16个按键。

3. 按键的工作原理按键的工作原理是利用按键触点的开闭状态来变换电路状态,进而实现输入信号的转换。

按键的触点现在主要分为二态和三态两种,二态触点只能够开闭两种状态,而三态触点则可以在按键未按下、按下瞬间和按下保持三个状态之间变换。

在设计矩阵电路时需要根据按键的触点类型进行对应的接线方式。

4. 矩阵键盘的工作流程单片机矩阵键盘的工作流程主要包括按键扫描、按键代码转换和按键响应处理三步。

按键扫描的原理是利用矩阵电路的行列结构来进行扫描,每次扫描只需要对一个行和一个列进行检测,判断当前按键是否被按下。

如果检测到按键被按下,则会对应生成相应的按键代码,并将其发送到单片机系统进行处理。

5. 按键的编程实现在单片机的程序中,实现矩阵键盘的输入需要用到外部中断和定时器两个功能模块。

其中定时器用于产生定时器中断,从而保证按键信号的稳定性和准确性;而外部中断则在扫描矩阵电路时检测按键是否被按下,用于触发中断并响应按键事件。

总的来说,单片机矩阵键盘的原理涉及到电路接线、按键触点类型、按键扫描算法以及编程实现等多个方面。

在设计和实现过程中需要考虑多种因素,才能确保键盘输入的可靠性和稳定性。

单片机c语言程序设计---矩阵式键盘实验报告

单片机c语言程序设计---矩阵式键盘实验报告

单片机c语言程序设计---矩阵式键盘实验报告课程名称:单片机c语言设计实验类型:设计型实验实验项目名称:矩阵式键盘实验一、实验目的和要求1.掌握矩阵式键盘结构2.掌握矩阵式键盘工作原理3.掌握矩阵式键盘的两种常用编程方法,即扫描法和反转法二、实验内容和原理实验1.矩阵式键盘实验功能:用数码管显示4*4矩阵式键盘的按键值,当K1按下后,数码管显示数字0,当K2按下后,显示为1,以此类推,当按下K16,显示F。

(1)硬件设计电路原理图如下仿真所需元器件(2)proteus仿真通过Keil编译后,利用protues软件进行仿真。

在protues ISIS 编译环境中绘制仿真电路图,将编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

操作方完成矩阵式键盘实验。

具体包括绘制仿真电路图、编写c源程序(反转法和扫描法)、进行仿真并观察仿真结果,需要保存原理图截图,保存c源程序,总结观察的仿真结果。

完成思考题。

三、实验方法与实验步骤1.按照硬件设计在protues上按照所给硬件设计绘制电路图。

2.在keil上进行编译后生成“xxx.hex”文件。

3.编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

四、实验结果与分析void Scan_line()//扫描行{Delay(10);//消抖switch ( P1 ){case 0x0e: i=1;break;case 0x0d: i=2;break;case 0x0b: i=3;break;case 0x07: i=4;break;default: i=0;//未按下break;}}void Scan_list()//扫描列{Delay(10);//消抖switch ( P1 ){case 0x70: j=1;break;case 0xb0: j=2;break;case 0xd0: j=3;break;case 0xe0: j=4;break;default: j=0;//未按下break;}}void Show_Key(){if( i != 0 && j != 0 ) P0=table[ ( i - 1 ) * 4 + j - 1 ];else P0=0xff;}五、讨论和心得。

单片机4×4矩阵键盘设计方案

单片机4×4矩阵键盘设计方案

1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。

(2)键盘中对应按键的序号排列如图14.1所示。

2、参考电路图14.2 4×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。

(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。

4、程序设计内容(1)4×4矩阵键盘识别处理。

(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。

矩阵的行线和列线分别通过两并行接口和CPU通信。

键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。

键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。

两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。

5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START;;;;;;;;;;初始化程序;;;;;;;;;;CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;;PANDUAN: MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHJZ SW1LCALL DELAY10MS JZ SW1MOV A,P3ANL A,#0FHCJNE A,#0EH,K1 MOV COUNT,#0 LJMP DKK1: CJNE A,#0DH,K2 MOV COUNT,#4 LJMP DKK2: CJNE A,#0BH,K3 MOV COUNT,#8 LJMP DKK3: CJNE A,#07H,K4 MOV COUNT,#12K4: NOPLJMP DKSW1: MOV P3,#0FFH CLR P3.5MOV A,P3ANL A,#0FHJZ SW2LCALL DELAY10MS JZ SW2MOV A,P3ANL A,#0FHCJNE A,#0EH,K5 MOV COUNT,#1 LJMP DKK5: CJNE A,#0DH,K6 MOV COUNT,#5 LJMP DKK6: CJNE A,#0BH,K7 MOV COUNT,#9 LJMP DKK7: CJNE A,#07H,K8 MOV COUNT,#13K8: NOPLJMP DKSW2: MOV P3,#0FFH CLR P3.6MOV A,P3ANL A,#0FHJZ SW3LCALL DELAY10MS JZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9 MOV COUNT,#2 LJMP DKK9: CJNE A,#0DH,KA MOV COUNT,#6 LJMP DKKA: CJNE A,#0BH,KB MOV COUNT,#10 LJMP DKKB: CJNE A,#07H,KC MOV COUNT,#14 KC: NOPLJMP DKSW3: MOV P3,#0FFH CLR P3.7MOV A,P3ANL A,#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KDMOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KE MOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KF MOV COUNT,#11 LJMP DKKF: CJNE A,#07H,KG MOV COUNT,#15KG: NOPLJMP DKSW4: LJMP PANDUAN DK: RET ;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI: MOV A,COUNTMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;;DELAY10MS: MOV R6,#20D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H;;;;;;;;;;结束标志;;;;;;;;;;END7、C语言源程序#includeunsigned char code table[]={0x3f,0x66,0x7f,0x39,0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下//i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--) for(k=200;k>0;k--); i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。

【优】单片机矩阵键盘接口最全PPT资料

【优】单片机矩阵键盘接口最全PPT资料
电气自动化技术专业 教学资源库
单片机控制技术
知识点:单片机矩阵键盘接口
单片机控制技术
单片机矩阵键盘接口
目录
1 认识单片机键盘 2 矩阵式键盘接口电路 3 矩阵键盘按键识别技术
单片机控制技术
单片机矩阵键盘接口
一、认识单片机键盘
单片机应用系统通常需要优秀的人机交互接口。键盘是与单片机进行人机
一般,交矩阵互式的键盘最的行基线本由单的片机途输径出口。控制按,键列线的连接输单入片机状的输态入本口。质上是一个开关量,通过按键来 第二步设:向置所控有的制列线功上能输出或高电输平入,行数线输据出,低电以平(控行制列反单转)片,机然后运读入行列。信号。
按结构原理分类
(1)触点式按键——机械式、导电橡胶式 (2)无触点按键——电气式、磁感应按键
(前者造价低,后者寿命长)
按接口原理类
(1)独立式键盘——每键各接一根输入线 (2)行列式(矩阵)键盘——按行列交叉连线 (3)屏幕式键盘——触摸屏
按译码方式分类
(1)编码键盘——通过硬件实现译码 (2)非编码键盘——通过扫描程序实现译码
单片机矩阵键盘接口
三、矩阵键盘按键识别技术
首先判断是否有键按下:向所 有列线上输出低电平,再读入所 有的行信号; 如有任何一个键被按下,则读 入的行电平则不全为高;如无键 按下,则全高电平。
其次,逐列扫描判断具体的按键:
就是向列线上逐列送低电平。如果 读入的行值为全高,则表示此列无 键按下,否则有键按下。
单片机控制技术
单片机矩阵键盘接口
一、认识单片机键盘
独立式按键编程
开始
有按键闭合否 Y
延时10ms,软件去抖动
图3 独立式按键编程流程图
N

矩阵式键盘的接口设计与编程

矩阵式键盘的接口设计与编程

;<--------------------------判断是否真的有键按下--------------------->
T_KEY:
ACALL
DL_20MS
;调用延时子程序
ACALL
P_KEY
;再次调用“有无按键按下子程序”
JNZ
IN_SCAN
;若有键按下,则执行逐行扫描程序
AJMP
SCAN
;若无键按下,则不断查询
;<--------------------------扫描数据初始化----------------------->
单片机原理及应用技术
—1—
one 矩阵式键盘接口设计——基于行反转法
4×4矩阵式键盘接 口设计如图所示
—2—
图中P1口的低4位作为行线,P2口的低4位作为列线。行线通过74LS21进行逻辑与操作后作为单 片机的外部中断源输入,当有键按下时以中断形式去执行相应的按键处理程序。
行反转法因判键时将输入与输出线反转互换而得名,步骤如下:
PB口作为扫描口需要设为输出,PA口设为读入。 逐行扫描时,PB口的状态为:
PB7 PB6 PB5 PB4 111 1 111 1 111 1 111 1 111 0 110 1 101 1 011 1
PB3 PB2 PB1 PB0 1 110 1 101 1 011 0 111 1 111 1 111 1 111 1 111
—3—
【例9-3】 行反转法判断按键编号,并存入40H单元,程序如下
ORG
0000H
LJMP
MAIN
ORG
0003H
LJMP
INT0
ORGБайду номын сангаас

51单片机矩阵键盘原理

51单片机矩阵键盘原理

51单片机矩阵键盘原理介绍在嵌入式系统中,矩阵键盘是一种常见的输入装置。

51单片机是广泛使用的一种微控制器,结合矩阵键盘可以实现各种应用。

本文将详细介绍51单片机矩阵键盘的原理及其工作方式。

什么是矩阵键盘?矩阵键盘是将一组按钮布置成矩阵形式,以减少输入引脚的数量。

每个按钮在矩阵键盘中都会被分配一个坐标,通过扫描行和列,可以确定用户按下的是哪个按钮。

51单片机的输入输出结构51单片机具有强大的输入输出能力,可以连接各种外设。

在使用矩阵键盘时,通常使用IO口进行输入和输出操作。

矩阵键盘的接线方式将矩阵键盘与51单片机连接时,需要将键盘的行和列引脚分别连接到单片机的IO 口。

通过对行进行扫描,再根据列的输入状态判断按钮是否按下。

这种接线方式可以大大减少所需的IO口数量。

矩阵键盘的扫描原理矩阵键盘的扫描原理是通过不断扫描行并读取列的状态来判断按钮是否按下。

具体步骤如下: 1. 将所有行引脚设为输出,输出高电平。

2. 逐个扫描行,将当前行引脚设为低电平。

3. 读取所有列引脚的状态,如果有低电平表示有按钮按下。

4. 如果有按钮按下,则根据行和列的坐标确定按下的按钮。

51单片机矩阵键盘的实现以下是使用51单片机实现矩阵键盘的基本步骤: 1. 将行和列引脚连接到单片机的IO口。

2. 初始化IO口的状态。

3. 在主程序中进行循环扫描,根据扫描结果执行相应的操作。

优化矩阵键盘的扫描速度为了提高矩阵键盘的扫描速度,可以采用以下优化方法: 1. 使用硬件定时器来定时扫描行,减少CPU的负载。

2. 使用中断方式处理按键事件,从而减少程序中的轮询操作。

3. 将矩阵键盘的行和列布局进行优化,减少扫描的时间复杂度。

利用矩阵键盘实现密码输入矩阵键盘广泛应用于密码输入功能。

通过将矩阵键盘与51单片机结合,可以实现密码的输入、验证等功能。

以下是一个简单的密码输入的实现步骤: 1. 设置一个密码数组用于存储密码。

2. 使用矩阵键盘获取用户输入的密码,并依次存储到临时数组中。

(完整word版)4×4矩阵键盘原理及其在单片机中的简单应用(基Proteus仿真)

(完整word版)4×4矩阵键盘原理及其在单片机中的简单应用(基Proteus仿真)

4×4矩阵键盘原理及其在单片机中的简单应用基于Proteus仿真1、4×4矩阵键盘的工作原理如下图所示,4×4矩阵键盘由4条行线和4条列线组成,行线接P3。

0-P3。

3,列线接P3.4-P3。

7,按键位于每条行线和列线的交叉点上.按键的识别可采用行扫描法和线反转法,这里采用简单的线反转法,只需三步。

第一步,执行程序使X0~X3均为低电平,此时读取各列线Y0~Y3的状态即可知道是否有键按下。

当无键按下时,各行线与各列线相互断开,各列线仍保持为高电平;当有键按下时,则相应的行线与列线通过该按键相连,该列线就变为低电平,此时读取Y0Y1Y2Y3的状态,得到列码.第二步,执行程序使Y0~Y3均为低电平,当有键按下时,X0~X3中有一条行线为低电平,其余行线为高电平,读取X0X1X2X3的状态,得到行码。

第三步,将第一步得到的列码和第二步得到的行码拼合成被按键的位置码,即Y0Y1Y2Y3X0X1X2X3(因为行线和列线各有一条为低电平,其余为高电平,所以位置码低四位和高四位分别只有一位低电平,其余为高电平)。

也就是说,当某个键按下时,该键两端所对应的行线和列线为低电平,其余行线和列线为高电平。

比如,当0键按下时,行线X0和列线Y0为低电平,其余行列线为高电平,于是可以得到0键的位置码Y0Y1Y2Y3X0X1X2X3为0111 0111,即0X77。

当5键按下时,行线X1和列线Y1为低电平,其余行列线为高电平,于是可得到5键的位置码Y0Y1Y2Y3X0X1X2X3为1011 1011,即0XBB.全部矩阵键盘的位置码如下:2、4×4矩阵键盘在单片机的简单应用举例(一)如下图所示,运行程序时,按下任一按键,数码管会显示它在矩阵键盘上的序号0~F,并且蜂鸣器发出声音,模拟按键的声音。

此处采用线反转法识别按键。

C程序如下:#include〈reg51。

h〉#define uchar unsigned char#define uint unsigned intsbit buzzer=P1^0;uchar code dis[]= //0~9,A~F的共阳显示代码{0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0X88,0X83,0XC6,0XA1,0X86,0X8E};uchar code tab[]= //矩阵键盘按键位置码{0x77,0xb7,0xd7,0xe7,0x7b,0xbb,0xdb,0xeb,0x7d,0xbd,0xdd,0xed,0x7e,0xbe,0xde,0xee};void delay(uint x)//延时函数{uchar i;while(x-—)for(i=0;i<120;i++);}uchar scan() //矩阵键盘扫描函数,得到按键号,采用线反转法{uchar a,b,c,i;P3=0XF0;//P3口输出11110000a=P3; //读取列码delay(10);//防抖延时10msP3=0X0F;//P3口输出00001111b=P3;//读取行码c=a+b;//得到位置码for(i=0;i<16;i++)if(c==tab[i])return i;//查表得到按键序号并返回return —1; //无按键,则返回—1}void beep() //蜂鸣器发出声音,模拟按键的声音{ uchar i;for(i=0;i<100;i++){buzzer=~buzzer;delay(1);}buzzer=0;}void main(){uchar key;buzzer=0; //关闭蜂鸣器while(1){key=scan(); //得到按键号if(key!=—1)//有按键则显示,并且蜂鸣器发出声音{P0=dis[key];beep();delay(100);}}}Proteus仿真运行结果如下:3、4×4矩阵键盘在单片机的简单应用举例(二)如下图所示,运行程序时,按下的按键键值越大,点亮的LED灯越多,例如,按下1号键时,点亮一只LED 灯,按下2号键时,点亮两只LED灯,按下16号键时,点亮全部LED灯。

51单片机矩阵键盘设计

51单片机矩阵键盘设计

51单片机矩阵键盘设计
一、引言
AT89C51单片机矩阵键盘设计是嵌入式系统中一个重要的技术,它的
作用是以矩阵形式把外部按键与MCU相连,使得系统可以对外部的按键进
行检测和响应。

矩阵键盘设计在可编程嵌入式系统的设计中占有重要的地位,如智能交通系统、智能家居系统、航空电子系统等。

本文主要介绍了矩阵键盘设计中硬件电路的设计,包括按键、拉电阻、和矩阵编码等,同时给出系统的控制算法,使得系统可以实现有效的按键
检测和响应。

二、矩阵键盘概述
矩阵键盘是将多个按键排布成列行形式进行连接,一般来说,矩阵键
盘是由按键、拉电阻、矩阵编码器和控制器组成,按键是系统中重要的部件,其作用是将外部输入信号传递给控制器。

拉电阻起到的作用是防止按
键耦合,一般可以使用4.7KΩ拉电阻来防止按键耦合。

矩阵编码器用来
识别按键的状态,通常通过硬件把按键信号编码为数字信号,输入到处理
器或控制器。

控制器用来实现按键信号的检测,通过定义硬件定时器和软
件定时器,实现按键检测和处理。

1、硬件电路设计
应用AT89C51单片机矩阵键盘。

矩阵式键盘控制数码管显示

矩阵式键盘控制数码管显示
完成实训报告十
7
谢谢观赏!
二、工作原理
当扫描开始时, 首先将P1.7列初始值设置为低电平, 即P
3
三、程序流程图 ——主程序
开始
初始化
按键查询
YES
A=FFH?
NO
调用消除抖动子程序转Leabharlann 功能处理程序AAAA 1234
结束
4
四、程序清单
独立式键盘控制灯移动程序.doc
5
五、实验板上测试
观察实验结果并记录: 按下不同按键开关,可以看到P0端口的
实训十一: 矩阵式键盘控制数码管显示
功能说明: 使用4*4矩阵式键盘控制第一个数码
管显示0~F。
1
一、电路图
4条列线的一端分别与单片机P1口中的P1.4、 P1.5、 P1.6. P1.7 相接,另一端通过上拉电阻接到+5V电源上,平时使 列线处于高电平状态;而4条行线的一端分别与P1口中的 P1.0、 P1.1、 P1.2、 P1.3相接。16个按键设置在行、列 2 线交点上。
灯作不同方向的移动或闪烁,说明是在执 行不同功能键的处理程序。 按DL1键,亮灯从右向左移动 按DL2键,亮灯从左向右移动 按DL3键,左边4只灯与右边4只灯交替闪亮 按DL4键,8个灯闪烁
6
码管显示0; 作业布置按下DL2,第二个数
码管显示1; 按下DL3,第三个数 码管显示2; 按下DL4,第四个数 码管显示3 。

单片机8x8矩阵键盘原理说明

单片机8x8矩阵键盘原理说明

单片机8x8矩阵键盘原理说明
单片机8x8矩阵键盘原理说明
基于单片机接矩阵键盘原理单片机与矩阵键盘连接如下图:
此图用P1口P1.0---P1.3接4行P1.4--P1.7接4列
矩阵键盘工作原理:由于按键没有接地,4行4列正好占用8个I/O如果4行我们送P3.0到P3.3送入0111然后去读取4列的值,如果P3.0的按键按下那么P3.4---P3.7的值等于0111,假如是第2个键按下的话那么读回来的值是1011,如果第3个键按下去读回来的值是1101,如果第4个键按下去读回来的值是1110,如果没有键按下去读回来就是1111。

所以我们就根据读回来的值来判断按下去的是那个键。

当然这是对P3.0这一行,因为矩阵键盘是扫描的,所以下次把P3.0给1P3.1给0对第2行,陆续的第3行第4行,0111101111011110而每次都去从新扫描一遍列值列有4个值,以确定是那个键按下。

无论何时任何一个时间有一个按键被按下就跳出循环。

当然不可能有2个键刚好一起按下你的手没有这么好的力度,就算有2个键一起按键,程序也有先后检测的顺序,只能检测一个后面的检测不到。

P3=0XFE;//第一行给0
temp;定义个变量
temp=P3;读回来由于读需要先写1因为P3=FE已经把高4位给1了所以能读了temp">
启动后的原来图,还没有按键按下:
再来一张,有按键按下的情况:
代码如下:
#include《reg52.h》
#defineucharunsignedchar。

矩阵键盘电路

矩阵键盘电路
矩阵键盘电路
知识点目录
1
矩阵键盘电路结构与工作原理
矩阵键盘的编码
矩阵式键盘按键识别
键盘的工作方式
1.矩阵键盘电路结构与工作原理
2
矩阵式键盘又称为行列式键盘。用I/O接口线组成行和列结构,键位设置在行和 列的交叉点上。如图1所示,8个I/O口实现了16个按键。
图1 矩阵键盘电路结构
1.矩阵键盘电路结构与工作原理
3
工作原理:以第一组键盘为例。设置KeyOut1输出一个低电平,相当于KeyOut1接 地,电路相当于4个独立按键电路,此时KeyIn1-KeyIn4四个输入端为高电平;当 键盘K1按下时,由于电路导通,此时KeyIn1变为低电平。同理,哪个按键按下, 相对应的输入端为低电平,单片机通过读输入端的状态,判断是否有按键按下。 对应图1四组按键,当KeyOut1输出为低电平时,KeyOut2-KeyOut4输出必须为高 电平,才能避免相互间的干扰。
2.矩阵键盘的编码
பைடு நூலகம்
4
对于矩阵式键盘,按键的位置由行号 和列号唯一确定,因此可分别对行号 和列号进行二进制编码,然后将两值 合成一个字节,高4位是行号,低4位 是列号。
3.矩阵式键盘按键识别
5
扫描法:
1) 判断有无键按下。
2) 如果有键按下,识别是哪一个键按下,键盘扫描取得闭合键的行、列值。
3) 用计算法或查表法得到键值。
4) 判断闭合键是否释放,如没释放则继续等待。
5) 将闭合键键号保存,同时转去执行该闭合键的功能。
4.键盘的工作方式
6
(1)编程扫描方式
利用CPU在完成其它工作的空余时间,调用键盘扫描子程序来响应键盘输入 的要求。
(2)定时扫描工作方式

史上最详细矩阵键盘原理

史上最详细矩阵键盘原理

case(0Xd0): KeyValue=KeyValue+8;break;
case(0Xe0): KeyValue=KeyValue+12;break;
}
while((a<50)&&(GPIO_KEY!=0xf0)) //检测按键松手检测
{
delay(1000);
a++;
//a 的作用是用于去抖动,重复检测 50 次//
}
}
}
}
void main()
{
LSA=0; //给一个数码管提供位选//
LSB=0; //给一个数码管提供位选//
LSC=0; //给一个数码管提供位选//
while(1)
//无限循环//
{
KeyDown();
//调用按键判断函数//
GPIO_DIG=smgduan[KeyValue]; //将按键数值赋给 P0 口,控制锁存器//
当接收到的数据低四位不全为高电平时说明有按键按下然后通过接收的数据值判断是哪一列有按键按下然后再反过来高四位输出高电平低四位输出低电平然后根据接收到的高四位的值判断是那一行有按键按下这样就能够确定是哪一个按键按下了
史上最详细单片机矩阵键盘原理 广东阳西福达名苑梁智钧 20180131 一、矩阵按键扫描原理 方法一: 逐行扫描:我们可以通过高四位轮流输出低电平来对矩阵键盘进行逐行扫描,当低四位接收到的数据不全为 1 的 时候,说明有按键按下,然后通过接收到的数据是哪一位为 0 来判断是哪一个按键被按下。 方法二: 行列扫描:我们可以通过高四位全部输出低电平,低四位输出高电平。当接收到的数据,低四位不全为高电平时, 说明有按键按下,然后通过接收的数据值,判断是哪一列有按键按下,然后再反过来,高四位输出高电平,低四位输 出低电平,然后根据接收到的高四位的值判断是那一行有按键按下,这样就能够确定是哪一个按键按下了。 二、原理图:

44矩阵式按键的接法

44矩阵式按键的接法

在单片机按键使用过程中,当键盘中按键数量较多时为了减少端口的占用通常将按键排列成矩阵形式如下图所示,在矩阵式键盘中每条水平线和垂直线在交叉处不直接连通而是通过一个按键加以连接,到底这样做是出意何种目的呢?大家看下面电路图,单片机的整一个8位端口可以构成 4*4=16 个矩阵式按键,相比独立式按键接法多出了一倍,而且线数越多区别就越明显,假如再多加一条线就可以构成 20个按键的键盘,但是独立式按键接法只能多出1个按键。

由此可见,在需要的按键数量比较多时,采用矩阵法来连接键盘是非常合理的,矩阵式结构的键盘显然比独立式键盘复杂一些,单片机对其进行识别也要复杂一些。

确定矩阵式键盘上任何一个键被按下通常采用行扫描法。

行扫描法又称为逐行查询法它是一种最常用的多按键识别方法。

因此,我们就以行扫描法为例介绍矩阵式键盘的工作原理。

图5-4(4*4矩阵式按键的接法)首先,不断循环地给低四位独立的低电平,然后判断键盘中有无键按下。

将低位中其中一列线(P1.0~P1.3中其中一列)置低电平然后检测行线的状态(高4位,即P1.4~P1.7,由于线与关系,只要与低电平列线接通,即跳变成低电平),只要有一行的电平为低就延时一段时间以消除抖动,然后再次判断,假如依然为低电平,则表示键盘中真的有键被按下而且闭合的键位于低电平的4个按键之中任其一,若所有行线均为高电平则表示键盘中无键按下。

再其次,判断闭合键所在的具体位置。

在确认有键按下后 ,即可进入确定具体闭合键的过程。

其方法是: 依次将列线置为低电平,即在置某一根列线为低电平时,其它列线为高电平。

同时再逐行检测各行线的电平状态;若某行为低,则该行线与置为低电平的列线交叉处的按键就是闭合的按键。

下面图5-5是4*4矩阵式按键接法的软件算法操作流程。

下面程序按照上述算法流程去编写的,其电路如图5-6,只是在图5-5的基础上多加了P0端口的8只LED灯。

从键盘中检测到一个键值,然后将这个值写到LED数码管上显示。

单片机矩阵式键盘连接方法及工作原理

单片机矩阵式键盘连接方法及工作原理

矩阵式键盘的连接方法和工作原理什么是矩阵式键盘?当键盘中按键数量较多时,为了减少I/O 口线的占用,通常将按键排列成矩阵形式。

在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。

这样做有什么好处呢?大家看下面的电路图,一个并行口可以构成4*4=16 个按键,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别就越明显。

比如再多加一条线就可以构成20 键的键盘,而直接用端口线则只能多出一个键(9 键)。

由此可见,在需要的按键数量比较多时,采用矩阵法来连接键盘是非常合理的。

矩阵式结构的键盘显然比独立式键盘复杂一些,识别也要复杂一些,在上图中,列线通过电阻接电源,并将行线所接的单片机4 个I/O 口作为输出端,而列线所接的I/O 口则作为输入端。

这样,当按键没有被按下时,所有的输出端都是高电平,代表无键按下,行线输出是低电平;一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了,具体的识别及编程方法如下所述:二.矩阵式键盘的按键识别方法确定矩阵式键盘上任何一个键被按下通常采用“行扫描法”或者“行反转法”。

行扫描法又称为逐行(或列)扫描查询法,它是一种最常用的多按键识别方法。

因此我们就以“行扫描法”为例介绍矩阵式键盘的工作原理:1.判断键盘中有无键按下将全部行线X0-X3 置低电平,然后检测列线的状态,只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4 根行线相交叉的4 个按键之中;若所有列线均为高电平,则表示键盘中无键按下。

2.判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。

其方法是:依次将行线置为低电平(即在置某根行线为低电平时,其它线为高电平),当确定某根行线为低电平后,再逐行检测各列线的电平状态,若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。

下面给出一个具体的例子:单片机的P1 口用作键盘I/O 口,键盘的列线接到P1 口的低4 位,键盘的行线接到P1 口的高4位,也就是把列线P1.0-P1.3 分别接4 个上拉电阻到电源,把列线P1.0-P1.3 设置为输入线,行线P1.4-P1.7 设置为输出线,4 根行线和4 根列线形成16 个相交点,如上图所示。

矩阵键盘的工作原理和扫描确认方式

矩阵键盘的工作原理和扫描确认方式
在该方式中要使用mcu的一个定时器使其产生一个10ms的定时中断mcu响应定时中断执行键盘扫描当在连续两次中断中都读到相同的按键按下间隔10ms作为消抖处理mcu才执行相应的键处理程序中断方式
9.3.1 矩阵键盘的工作原理和扫描确认方式
来源:《AVR 单片机嵌入式系统原理与应用实践》M16 华东师范大学电子系 马潮 当键盘中按键数量较多时,为了减少对 I/O 口的占用,通常将按键排列成
矩阵形式,也称为行列键盘,这是一种常见的连接方式。矩阵式键盘接口见图 9-7 所示,它由行线和列线组成,按键位于行、列的交叉点上。当键被按下时,其交 点的行线和列线接通,相应的行线或列线上的电平发生变化,MCU 通过检测行 或列线上的电平变化可以确定哪个按键被按下。
图 9-7 为一个 4 x 3 的行列结构,可以构成 12 个键的键盘。如果使用 4 x 4 的行列结构,就能组成一个 16 键的键盘。很明显,在按键数量多的场合,矩 阵键盘与独立式按键键盘相比可以节省很多的 I/O 口线。
File name
: demo_9_3.c
Chip type
: ATmega16
Program type
: Application
Clock frequency
: 4.000000 MHz
// 输出行线电平 // 必须送 2 次!!!(注 1 // 读列电平 // 没有按键,继续扫描
// 有按键,停止扫描 // 转消抖确认状态
// 再次读列电平, // 与状态 0 的相同,确认按键 // 键盘编码,返回编码值
case 0b01000110:
key_return = K4_1;
break;
它们不仅与键盘的硬件连接有关系,同时还要注意他们在程序中是如何使用的, 其值的保存等等。

单片机控制的矩阵键盘

单片机控制的矩阵键盘

引言概述:
单片机控制的矩阵键盘已经成为现代电子设备中常见的输入方式之一。

该键盘具有结构简单、易于实现和使用方便等优点,广泛应用于各种电子产品中。

本文将对单片机控制的矩阵键盘的原理、设计和应用进行详细阐述。

正文内容:
一、矩阵键盘的原理
1.1矩阵键盘的基本结构
1.2矩阵键盘的电路连接方式
1.3矩阵键盘的工作原理
二、单片机控制的矩阵键盘的设计
2.1单片机的选择和配置
2.2键盘扫描算法的设计
2.3矩阵键盘的接口设计
2.4程序的编写和调试
2.5键盘输入的处理和应用
三、单片机控制的矩阵键盘的应用
3.1家电控制系统中的使用
3.2工控设备中的应用
3.3智能家居中的应用
3.4安防系统中的应用
3.5医疗设备中的应用
四、单片机控制的矩阵键盘的优缺点
4.1优点:
4.1.1结构简单,易于实现
4.1.2使用方便,操作灵活
4.1.3成本低廉,适合大规模生产
4.2缺点:
4.2.1键盘数量限制
4.2.2受到干扰可能导致误触发
五、单片机控制的矩阵键盘的发展趋势
5.1多功能键盘的设计
5.2无线键盘与蓝牙技术的结合
5.3舒适性与人机工程学的结合
5.4智能化与技术的应用
总结:
单片机控制的矩阵键盘是一种常见的输入方式,具有结构简单、易于实现和使用方便等优点。

本文对其原理、设计和应用进行
了详细阐述。

随着技术的不断发展,矩阵键盘在功能、无线化、舒适性和智能化方面也有了较大的进步和应用。

相信在未来,单片机控制的矩阵键盘将继续发挥重要作用,并与其他技术相结合,满足人们对输入设备的更高要求。

单片机矩阵按键原理

单片机矩阵按键原理

单片机矩阵按键原理
单片机矩阵按键的原理主要是通过行列结构来识别按键。

具体来说,它使用4条I/O线作为行线,4条I/O线作为列线,形成了一个4x4的矩阵。

在行线和列线的每个交叉点上,设置一个按键。

当某个按键被按下时,对应的行线和列线会被连通,导致行线和列线的电平发生变化。

单片机通过逐行扫描或逐列扫描的方式,读取I/O口的电平变化,从而确定哪个按键被按下。

具体来说,在行列扫描中,单片机先从P1口的高四位(四个行)输出高电平,低四位(四个列)输出低电平,如果有按键按下,从P1口的高四位读取键盘状态,判断高四位的四行哪一行变成了低电平,就知道是第几行。

然后从P1口的低四位(四个列)输出高电平,高四位(四个行)输出低电平,从P1口的低四位读取键盘状态,判断低四位的四列哪一行变成了低电平,就知道是第几列。

将两次读取结果组合起来就可以得到当前按键的特征编码。

使用这种行列结构能够有效地提高单片机系统中I/O口的利用率,节约单片机的资源。

以上内容仅供参考,建议查阅关于单片机矩阵按键的书籍或者咨询专业技术人员获取更准确的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵式键盘的连接方法和工作原理
什么是矩阵式键盘?当键盘中按键数量较多时,为了减少I/O 口线的占用,通常将按键排
列成矩
阵形式。

在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。

这样做有什么好处呢?大家看下面的电路图,一个并行口可以构成4*4=16 个按
键,比之直
接将端口线用于键盘多出了一倍,而且线数越多,区别就越明显。

比如再多加一条线就可以
构成20 键
的键盘,而直接用端口线则只能多出一个键(9 键)。

由此可见,在需要的按键数量比较多
时,采用矩
阵法来连接键盘是非常合理的。

矩阵式结构的键盘显然比独立式键盘复杂一些,识别也要复杂一些,在上图中,列线通过电
阻接
电源,并将行线所接的单片机4 个I/O 口作为输出端,而列线所接的I/O 口则作为输入端。

这样,当按
键没有被按下时,所有的输出端都是高电平,代表无键按下,行线输出是低电平;一旦有键
按下,则输
入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了,具体的识别及编
程方法如下
所述:
二.矩阵式键盘的按键识别方法
确定矩阵式键盘上任何一个键被按下通常采用“行扫描法”或者“行反转法”。

行扫描法又
称为
逐行(或列)扫描查询法,它是一种最常用的多按键识别方法。

因此我们就以“行扫描法”
为例介绍矩
阵式键盘的工作原理:
1.判断键盘中有无键按下
将全部行线X0-X3 置低电平,然后检测列线的状态,只要有一列的电平为低,则表示键盘
中有键
被按下,而且闭合的键位于低电平线与4 根行线相交叉的4 个按键之中;若所有列线均为
高电平,则表
示键盘中无键按下。

2.判断闭合键所在的位置
在确认有键按下后,即可进入确定具体闭合键的过程。

其方法是:依次将行线置为低电平(即

置某根行线为低电平时,其它线为高电平),当确定某根行线为低电平后,再逐行检测各列
线的电平状
态,若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。

下面给出一个具体的例子:
单片机的P1 口用作键盘I/O 口,键盘的列线接到P1 口的低4 位,键盘的行线接到P1 口
的高4
位,也就是把列线P1.0-P1.3 分别接4 个上拉电阻到电源,把列线P1.0-P1.3 设置为输入
线,行线
P1.4-P1.7 设置为输出线,4 根行线和4 根列线形成16 个相交点,如上图所示。

检测当前是否有键被按下:检测的方法是P1.4-P1.7 输出全“0”,读取P1.0-P1.3 的状态,

P1.0-P1.3 为全“1”,则说明无键闭合;否则有键闭合。

去除键抖动:当检测到有键按下后,延时一段时间再做下一次的检测判断,若仍有键按下,
应识
别出是哪一个键闭合,方法是对键盘的行线进行扫描,P1.4-P1.7 按下述4 种组合依次输
出:P1.7 1110;
P1.6 1101;P1.5 1011;P1.4 0111;在每组行输出时读取P1.0-P1.3;若全为“1”,则表
示为“0”这
一行没有键闭合;否则就是有键闭合。

由此得到闭合键的行值和列值,然后可采用计算法或
查表法将闭
合键的行值和列值转换成所定义的键值。

为了保证按键每闭合一次CPU 仅作一次处理,必
须去除键释放
时的抖动。

举个实例:
三.矩阵式键盘的实验程序
ORG 0030H ;
SCAN:MOV P1,#0FH ;
MOV A,P1 ;
ANL A,#0FH ;
CJNE A,#0FH,NEXT1 ;
SJMP NEXT3 ;
NEXT1:ACALL D20Ms ;
MOV A,#0EFH ;
NEXT2:MOV R1,A ;
MOV P1,A ;
MOV A,P1 ;
ANL A,#0FH ; CJNE A,#0FH,KCODE ;
MOV A,R1 ;
SETB C ;
RLC A ;
JC NEXT2 ; NEXT3:MOV R0,#00H ;
RET ; KCODE:MOV B,#0FBH ;
NEXT4:RRC A ;
INC B ;
JC NEXT4 ;
MOV A,R1 ;
SWAP A ;
NEXT5:RRC A ;
INC B ;
JC NEXT5 ; NEXT6:MOV A,P1 ;
ANL A,#0FH ; CJNE A,#0FH,NEXT6;
MOV R0,#0FFH ;
RET ;
END。

相关文档
最新文档