基坑工程施工监测方案

合集下载

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。

本文将就深基坑施工监测方案进行探讨。

一、监测目标深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。

通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。

二、监测方法1. 土壤位移监测采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。

监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。

2. 支撑结构变形监测选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。

监测频次为每天、每班、每小时,并及时记录监测数据。

3. 地下水位监测使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。

监测频次为每天、每周,并记录监测数据。

同时,要与附近建筑物及地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。

4. 沉降监测采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行沉降监测。

经验法包括基坑周边建筑物的观测和技术交底,仪器法则使用精密测量仪器进行监测,并将监测数据进行分析和评估。

5. 裂缝变化监测通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂缝变化进行监测。

监测频次为每日、每周,并记录监测数据,并及时采取措施进行处理。

三、监测数据处理在监测过程中,应将监测数据进行及时整理和处理,主要包括以下几个方面:1. 数据分析将监测数据进行统计分析和评估,以便了解施工过程中存在的问题和隐患,并及时采取相应的措施进行调整和整改。

2. 结果报告每次监测结束后,应编制监测结果报告,详细记录监测过程、数据和分析结果。

报告中应包括监测数据的图表展示和文字说明,以便后续工作的参考。

四、应急措施1. 监测告警在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急措施进行应对。

基坑工程监测方案实例

基坑工程监测方案实例

基坑工程监测方案实例一、前言基坑工程施工是指在城市建设中对地下空间进行开挖的工程,由于基坑开挖对周围环境和地下管线等设施会产生影响,因此需要进行监测。

本文以某城市的一个大型基坑工程为例,阐述基坑工程监测方案的具体内容和实施过程。

二、基坑工程概况某城市X区位于该城市的繁华商业区,由于城市规划的需要,一座大型的综合体建筑即将在该区域内兴建。

由于该地区地下管线较为集中,地下空间较为复杂,因此在施工前需要对基坑开挖进行严格的监测,以确保基坑开挖过程中不会对周围环境和设施造成不良影响。

三、基坑工程监测方案1.监测项目和监测内容基坑工程监测主要包括以下内容:(1)地表沉降监测-通过安装测量点,对基坑周边地表进行沉降监测,及时发现地表沉降情况,防止发生地陷事故。

(2)周边建筑物位移监测-对基坑周边建筑物的位移情况进行监测,及时掌握变形情况,确保周围建筑物的安全。

(3)基坑支护结构变形监测-对基坑支护结构(如桩墙、支撑等)进行变形监测,确保支护结构的变形不超过规定范围,以保证基坑的稳定。

(4)地下管线位移监测-对基坑周边地下管线的位移情况进行监测,及时排除地下管线的变形风险,确保管线的正常运行。

2.监测方案和技术手段基坑工程监测采用的监测方案和技术手段如下:(1)地表沉降监测-采用全站仪、GPS定位等设备,设置监测点对基坑周边地表进行沉降监测。

(2)周边建筑物位移监测-采用静电位移仪、测斜仪等设备,在建筑物上设置监测点,对周边建筑物的位移情况进行实时监测。

(3)基坑支护结构变形监测-采用变形监测仪、应变片等设备,对基坑支护结构的变形情况进行实时监测。

(4)地下管线位移监测-采用地下管线位移监测仪、地下雷达等设备,对基坑周边地下管线的位移情况进行监测。

3.监测频次和报告基坑工程监测的频次和报告如下:(1)监测频次-地表沉降、周边建筑物位移、基坑支护结构变形和地下管线位移的监测频次为每日一次,在基坑开挖期间,对监测数据进行实时采集和记录。

基坑工程施工方案监测监控

基坑工程施工方案监测监控

基坑工程施工方案监测监控一、项目概况基坑工程是建筑施工中常见的一种重要工程,其在城市建设和地下空间利用中具有重要作用。

基坑工程的施工过程中会受到各种外力和内力的影响,因此需要进行严格的监测和监控,以确保工程安全和质量。

本文将围绕基坑工程监测监控的施工方案展开讨论。

二、监测监控的重要性在基坑工程中,土体和地下水的变化会对工程的稳定性和安全性产生影响,因此必须对基坑工程的变化进行监测和监控。

监测监控的主要目的是:1)及时发现基坑工程施工中可能发生的问题,如土体变形、地下水涌入等;2)对施工现场进行实时监控,及时调整施工方案,确保工程安全;3)为后续工程施工和运营提供数据支持,保障工程的长期稳定性。

三、监测监控的内容基坑工程的监测监控内容包括土体变形监测、地下水位监测、基坑周边建筑物及地下管线的变形监测等。

具体包括以下内容:1. 土体变形监测这是基坑工程中最重要的监测内容之一。

土体的变形会对基坑工程的稳定性造成影响,因此需要对土体变形进行实时监测。

常用的监测方法包括:GPS监测、倾斜仪监测、测斜仪监测等。

这些监测手段可以对土体的位移和变形进行准确监测,为工程施工提供及时数据支持。

2. 地下水位监测地下水位对基坑工程的稳定性和安全性具有重要的影响。

地下水的涌入会导致基坑工程的底部软土层流失,从而使工程发生下沉等问题。

因此需要对地下水位进行实时监测,确保基坑工程不受到地下水的影响。

地下水位监测通常通过井孔水位计、压力计等设备来进行实时监测。

3. 周边建筑物及地下管线的变形监测基坑工程的施工会对周边建筑物和地下管线产生影响,因此需要对周边建筑物和地下管线的变形进行监测。

这主要通过建筑物倾斜监测仪和管线位移计等设备进行实时监测。

四、监测监控的方法和手段为了实现以上监测监控内容,需要采用一系列先进的监测手段和方法。

下面介绍几种主要的监测方法和手段。

1. 自动监测系统自动监测系统是一种将各类监测设备连接到一台计算机上,实时监测各项数据并进行分析的系统。

基坑监测方案

基坑监测方案

基坑监测方案一、引言基坑工程是现代建设中常见的一项工程活动,其施工会涉及到土壤力学、结构力学、水文地质等多个学科。

为了确保基坑工程的安全施工和后期使用,需要进行基坑监测。

本文将就基坑监测方案进行详细介绍。

二、监测目标基坑监测的目标是为了掌握基坑施工过程中的变形、位移、应力等信息,以及周边环境的变化情况,以提供监测数据支持,为工程提供安全、稳定的施工条件。

监测目标包括以下几个方面:1. 基坑变形监测:通过监测基坑周边地表的沉降、侧移等变形情况,掌握基坑结构的变形状态,及时发现可能存在的安全隐患。

2. 基坑地下水位监测:监测基坑附近地下水位的变化情况,了解地下水对基坑的影响,并根据监测数据进行相应的水文调节。

3. 基坑支护结构监测:对基坑支护结构的应力、位移等进行监测,以确保支护结构的稳定性和安全性。

4. 周边建筑物监测:对接近基坑的周边建筑物进行监测,防止基坑施工对周边建筑物造成不可逆的影响。

三、监测方法与方案基坑监测应综合运用现场监测和远程监测两种方法,以确保监测数据准确可靠。

本方案提出以下监测方法与方案:1. 现场监测(1)地表变形监测:通过布设测点,使用测量仪器(如全站仪、水准仪等),定期监测地表的沉降、侧移等变形情况。

(2)支护结构监测:在基坑支护结构上设置应变计、位移计等传感器,实时检测支护结构的应力、位移等变化。

(3)地下水位监测:设置水位监测井,并配备合适的水位传感器,进行地下水位的定期监测。

(4)周边建筑物监测:通过定点振动传感器、应变计等监测周边建筑物的位移、应力等参数。

2. 远程监测(1)数据采集与传输:将现场监测获得的数据通过数据采集终端进行采集,并通过无线信号、有线传输等方式传输到远程监测中心。

(2)数据处理与分析:在远程监测中心对采集到的数据进行处理与分析,并生成监测报告,及时反馈给相关监理单位和工程管理人员。

四、监测频率与报告基坑监测应根据工程的实际情况,结合监测目标和监测指标的要求,确定监测频率。

基坑工程现场监测方案

基坑工程现场监测方案

基坑工程现场监测方案一、前言基坑工程是指在承载土体的工程基础体系周围凿挖一定的深度和宽度,以满足地下空间利用要求的一种工程。

其施工过程中可能存在土体塑性变形、地下水位变化、地下管线和建筑物变形等多种风险,因此需要对其现场进行全面的监测,及时掌握施工情况,保障工程顺利进行。

二、监测目标基坑工程的监测目标主要包括以下几个方面:1、土体变形监测:监测基坑周边土体的沉降变形情况,及时发现并控制土体的变形,防止地质灾害发生。

2、地下水位监测:监测基坑周边地下水位的变化情况,控制基坑内的地下水位在合理范围内,避免基坑水灾发生。

3、地下管线监测:监测基坑周边地下管线的变形情况,控制地下管线的变形,防止对施工安全造成影响。

4、建筑物变形监测:监测基坑周边建筑物的倾斜、裂缝等变形情况,确保周边建筑物的安全。

5、施工工艺参数监测:监测基坑支护结构的变形、应力、变形等参数,保障支护结构的稳定性。

三、监测方案1、土体变形监测:采用全站仪、GPS、精度水准仪等仪器对基坑周边土体进行定点观测,记录土体的沉降、水平位移、倾斜等信息,检测变形情况。

对于变形较大的地点,可采用测量点云技术,实时监测土体的三维形变情况。

2、地下水位监测:利用水位计、压力计对基坑周边的不同深度和位置进行地下水位的监测,并且建立水位监测井,实时监测地下水位的变化情况。

同时,采用地下水位自动监测系统,可以实时监测并记录地下水位的变化。

3、地下管线监测:采用地下管线监测仪器对基坑周边的地下管线进行监测,记录管线的变形、位移等信息,及时发现问题并采取相应的措施。

4、建筑物变形监测:采用倾斜仪、位移监测仪等仪器对基坑周边的建筑物进行倾斜、位移等变形情况的监测,确保建筑物的安全。

5、施工工艺参数监测:采用应力应变计、变形仪器、位移传感器等仪器对基坑支护结构进行监测,记录支护结构的变形、位移、应力等参数,及时掌握支护结构的稳定性。

四、监测频次1、土体变形监测:根据基坑的深度和地质条件,制定不同监测频次,一般情况下,每日至少监测一次,夜间施工时,应加强监测频次。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、工程概述本次深基坑工程位于_____,周边环境较为复杂,临近既有建筑物、道路及地下管线等。

基坑开挖深度为_____米,面积约为_____平方米。

为确保施工过程中的安全及周边环境的稳定,需对深基坑进行全面、系统的监测。

二、监测目的1、及时掌握基坑围护结构及周边土体的变形情况,为施工提供可靠的数据支持。

2、预警施工过程中可能出现的异常情况,以便采取相应的措施,保障施工安全。

3、为优化设计和施工方案提供依据,降低工程风险。

三、监测依据1、(GB 50497-2019)2、本工程的相关设计文件及施工方案3、其他相关的规范、标准和技术要求四、监测内容1、围护结构水平位移监测在围护结构的关键部位设置监测点,采用全站仪或测斜仪进行监测,监测频率为每天_____次。

2、围护结构竖向位移监测利用水准仪对围护结构顶部的监测点进行测量,监测频率同水平位移监测。

3、支撑轴力监测在支撑结构上安装轴力计,实时监测支撑轴力的变化,监测频率为每_____小时一次。

4、地下水位监测通过在基坑周边设置水位观测井,使用水位计测量地下水位的变化,每天监测_____次。

5、周边建筑物沉降及倾斜监测在周边建筑物上设置沉降观测点和倾斜观测点,使用水准仪和全站仪进行监测,监测频率为每周_____次。

6、周边道路及地下管线沉降监测沿周边道路及地下管线布置监测点,采用水准仪进行监测,监测频率为每三天_____次。

五、监测点布置1、围护结构水平位移和竖向位移监测点沿基坑周边每隔_____米布置一个监测点,在阳角、阴角等关键部位适当加密。

2、支撑轴力监测点选择具有代表性的支撑构件,每个构件上布置_____个轴力计。

3、地下水位监测点在基坑周边每隔_____米布置一个水位观测井。

4、周边建筑物沉降及倾斜监测点在建筑物的四角、大转角处及沿外墙每隔_____米布置一个沉降观测点,倾斜观测点布置在建筑物的顶部和底部。

5、周边道路及地下管线沉降监测点沿道路及地下管线每隔_____米布置一个监测点。

基坑工程监测检测方案

基坑工程监测检测方案

基坑工程监测检测方案一、前言基坑工程是城市建设中的重要组成部分,其安全施工和监测检测工作至关重要。

在建设过程中,需要对基坑工程进行监测检测,以确保施工过程中的安全以及结构稳定。

本文将针对基坑工程的监测检测方案进行详细的介绍。

二、监测检测的目的基坑工程监测检测的主要目的是为了掌握工程施工过程中的变形和变化规律,对施工现场的安全进行有效监控和控制;同时也是为了对基坑支护结构的受力进行实时监测,保证基坑支护结构的稳定性和安全性;对基坑周边环境进行监测,以保护周边建筑和地下管线的安全。

三、监测检测的内容1. 地表沉降监测:通过设置地表沉降监测点,进行实时监测,了解地表变形情况。

可以采用测量仪器,如沉降仪、倾斜仪等进行监测,并采用自动化数据采集系统进行数据存储和分析。

2. 基坑轴线监测:针对基坑的变形情况进行监测,了解基坑结构的稳定性。

可以采用全站仪、GPS等工具进行轴线监测,实时记录基坑的变形情况。

3. 支护结构受力监测:对基坑支护结构的受力情况进行监测,确保支护结构的安全性。

可以采用应变计、位移计等仪器进行实时监测。

4. 地下水位监测:对基坑附近地下水位进行监测,了解地下水位的变化情况。

可以通过长期监测和数据分析,掌握地下水位的变化规律。

5. 基坑周边环境监测:对基坑周边建筑和地下管线进行监测,确保工程施工过程中的安全。

可以采用地质雷达、声波检测等技术进行监测,确保基坑工程对周边环境的影响最小化。

四、监测检测方法1. 传统监测方法:采用常规测量仪器进行监测,如全站仪、GPS、沉降仪、倾斜仪、应变计等。

这些仪器可以准确监测基坑工程的变形情况,并且数据可以实时采集分析。

2. 自动化监测系统:采用自动化监测系统进行监测,实现数据实时采集和存储。

可以采用传感器、数据采集器、数据传输设备等进行布设,实现对基坑工程的全方位监测。

3. 遥感监测技术:利用遥感技术进行基坑工程的监测,减少人工操作和提高监测效率。

可以采用卫星遥感、无人机等技术进行监测,实现对基坑工程的大范围监测。

基坑工程监测方案完整版

基坑工程监测方案完整版

基坑工程监测方案完整版一:(详细版)基坑工程监测方案完整版一、前言本旨在规划基坑工程的监测方案,确保施工过程中的安全和质量。

本方案详细介绍了监测的目的、内容、方法及具体实施步骤,以供参考。

二、监测目的基坑工程的监测目的是为了及时掌握基坑工程施工过程中的变形和破坏情况,预测和评估可能带来的风险,并采取相应的措施以确保工程的顺利进行。

三、监测内容1. 地面沉降监测地面沉降监测旨在记录基坑周围地面的垂直位移情况,以评估基坑开挖对周边建造物和地下管线的影响。

2. 基坑顶部水平位移监测基坑顶部水平位移监测旨在记录基坑各个部位的水平位移情况,以评估基坑结构的稳定性。

3. 地下水位监测地下水位监测旨在记录基坑周围地下水位的变化情况,以评估基坑排水系统的效果。

4. 基坑支护结构变形监测基坑支护结构变形监测旨在记录基坑支护结构的变形情况,以评估支护结构的稳定性。

五、实施步骤1. 建立监测点根据监测内容确定监测点的位置,并进行标记和记录。

2. 部署监测仪器根据监测内容选择合适的监测仪器,并按照要求进行部署和安装。

3. 数据采集和处理定期对监测仪器进行数据采集,并对数据进行处理和分析,监测报告。

4. 监测报告及时反馈及时将监测报告反馈给相关责任方,并提供相应的建议和措施。

六、附件本所涉及附件如下:1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》:指中华人民共和国建造领域的专门法律法规。

2.《施工安全管理条例》:指中华人民共和国施工领域的专门法律法规。

二:(简洁版)基坑工程监测方案完整版一、前言本为基坑工程监测方案,旨在确保工程施工过程的安全和质量。

详细介绍了监测的目的、内容、方法及实施步骤。

二、监测目的基坑工程监测的目的是为了及时掌握工程变形和破坏情况,预测风险并采取措施,确保工程顺利进行。

三、监测内容1. 地面沉降监测2. 基坑顶部水平位移监测3. 地下水位监测4. 基坑支护结构变形监测五、实施步骤1. 建立监测点2. 部署监测仪器3. 数据采集和处理4. 监测报告及时反馈六、附件1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》2.《施工安全管理条例》。

建筑工程基坑监测施工方案

建筑工程基坑监测施工方案

建筑工程基坑监测施工方案一、监测设备1. 地质监测设备在基坑施工现场周围设置地质监测点,采用地下水位监测仪、土体变形监测仪等设备,对地下水位、土体变形情况进行实时监测。

2. 地下水监测设备在基坑周边设置地下水监测点,采用水位计和水质采样仪等设备进行地下水位和水质的监测。

3. 土体变形监测设备在基坑周围设置土体变形监测点,采用变形仪、应变片等设备进行土体变形情况的监测。

4. 施工过程监测设备在基坑施工过程中,设置高精度的位移监测仪、测斜仪等设备,对基坑支护结构、地下管线等进行监测。

二、监测方案1. 地质监测方案对基坑周围的地质情况进行详细勘察和分析,建立地质监测点,实时监测地下水位和土体变形情况,并根据监测数据进行分析和评估,及时调整施工方案。

2. 地下水监测方案对基坑周边地下水位进行监测,及时发现地下水位的变化,并根据监测数据调整抽水和排水方案,以确保基坑施工过程中地下水的稳定。

3. 土体变形监测方案对基坑周边土体的变形情况进行监测,及时发现土体变形的情况,并采取相应的支护措施,以确保基坑施工过程中土体的稳定。

4. 施工过程监测方案对基坑支护结构、地下管线等进行实时监测,确保施工过程中的安全和稳定。

三、应急预案1. 地下水突发情况一旦发现地下水位出现异常变化,立即停止施工,及时排查原因,并采取相应的措施,以确保地下水位的稳定。

2. 土体变形突发情况一旦发现土体出现异常变形情况,立即停止施工,及时排查原因,并采取相应的支护措施,以确保基坑施工的安全。

3. 施工过程突发情况一旦发现基坑支护结构、地下管线等出现异常情况,立即停止施工,及时排查原因,并采取相应的措施,以确保施工的安全和稳定。

四、监测报告1.监测人员应每日定时向施工负责人提交监测报告,报告内容包括地质、地下水位、土体变形、施工过程监测等情况的详细数据和分析结果,并根据报告对施工提出相应的建议和措施。

2.监测报告需由监测人员和施工负责人签字确认,并留存备案。

6基坑监测施工方案

6基坑监测施工方案

6基坑监测施工方案基坑监测在施工过程中是非常重要的一项工作,可以帮助监测基坑周围的土体变形情况,保障基坑施工的安全和稳定。

为了确保基坑监测的有效性和准确性,需要制定详细的监测施工方案。

一、监测设备的选择1.需要选择高质量的基坑监测设备,如倾斜仪、位移仪、桩身位移仪等,以确保监测数据的准确性和实时性。

2.在选择设备时,需要考虑设备的灵敏度、稳定性和耐用性,以保证设备在基坑施工过程中能够持续稳定运行。

3.可以选择具有实时数据传输功能的监测设备,方便监测人员及时获取监测数据并进行分析。

二、监测方案的编制1.制定详细的监测方案,包括监测人员的职责分工、监测设备的布设位置、监测频率、监测数据的处理方式等内容。

2.在制定监测方案时,需要充分考虑基坑周围环境的影响因素,如地下水位、土体性质、周边建筑物等,以确保监测数据的准确性和可靠性。

3.需要定期对监测方案进行评估和调整,根据实际情况及时调整监测方案,以保证监测工作的顺利进行。

三、监测过程的操作1.在监测过程中,需要确保监测设备的准确性和稳定性,及时维护设备,保证设备正常运行。

2.监测人员需要按照监测方案进行操作,确保监测数据的准确性和一致性。

3.如发现监测数据异常,需要及时进行分析处理,并进行必要的调整和修正。

四、监测数据的处理与分析1.监测数据需要及时传输和存储,确保数据安全和完整性。

2.监测数据的处理需要采用专业的数据处理软件,进行数据分析和比较,得出监测结果。

3.需要定期对监测数据进行分析报告,及时汇总监测结果并向相关部门汇报。

五、监测结果的应用1.监测结果可以为基坑施工提供参考和指导,及时发现基坑变形情况,采取相应的措施保障基坑施工的安全和稳定。

2.监测结果也可以为基坑周边建筑物提供参考,及时发现地基沉降情况,采取相应的补救措施。

3.监测结果可以为基坑施工的后续工程提供参考和指导,保证后续工程的顺利进行。

六、监测工作的总结与改进1.在监测工作结束后,需要对监测工作进行总结和评估,总结经验教训,发现问题并提出改进意见。

基坑工程的施工监测方案

基坑工程的施工监测方案

基坑工程的施工监测方案一、前言基坑工程是市政工程和房地产工程中常见的一种重要施工项目。

在基坑开挖过程中,由于地下水、土壤及相邻结构体存在不确定性,因此必须对基坑开挖施工过程及其周边环境进行科学合理的监测,以便及时发现问题并采取相应的措施,确保工程安全和顺利进行。

因此,制定一份合理的基坑工程施工监测方案显得尤为重要。

二、监测对象基坑工程施工监测的对象主要包括:1. 基坑开挖的变形及沉降监测:包括基坑边坡、支撑体系、相邻建筑结构等的变形和沉降监测。

2. 基坑周边环境监测:包括地下水位、土壤压力、地下管线变形等的监测。

3. 基坑开挖过程施工监测:包括土体开挖过程、支护结构施工过程等的监测。

4. 基坑安全监测:包括基坑周边环境和结构安全性的监测。

三、监测手段基坑工程施工监测主要采用以下手段进行:1. 变形监测:通过安装变形测点,包括测斜仪、水准仪、位移计等,对相关结构的变形进行实时监测。

2. 沉降监测:通过设置沉降点,使用水准仪、测距仪等设备,对土体和结构体的沉降进行监测。

3. 地下水监测:在基坑周边设置地下水位监测井,并配备相应的地下水位监测设备,以便对地下水位变化进行监测。

4. 土压力监测:在基坑周边设置土压力监测点,并采用合适的土压力计进行监测。

5. 环境监测:对基坑周边的环境参数,包括温度、湿度、气压等进行实时监测。

6. 安全监测:通过设置报警装置和视频监控系统,对基坑施工安全进行实时监控。

四、监测方案1. 监测方案的编制在制定监测方案时,应充分考虑基坑工程所处的地质情况、环境影响、施工工艺等多方面因素,确保监测手段和监测频次的合理性和有效性。

2. 监测方案的实施基坑工程施工监测应实行全过程监测,即对基坑开挖前、开挖过程和开挖后三个阶段进行监测。

并在施工现场设立专门的监测点,并配备专业的监测人员进行监测。

3. 监测方案的调整在监测过程中,如发现某些监测数据异常或不符合设计要求,应及时进行调整,并及时采取相应的技术措施,确保基坑施工安全。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。

本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。

二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。

2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。

3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。

三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。

2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。

3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。

四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。

3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。

五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。

2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。

3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。

六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。

建筑基坑工程监测方案

建筑基坑工程监测方案

建筑基坑工程监测方案建筑基坑工程监测方案一、项目背景随着城市建设的不断发展,建筑基坑工程在市区中越来越常见。

建筑基坑工程的稳定性和安全性是保障周边居民和建筑本身的重要因素。

因此,通过建立建筑基坑工程监测方案,可以及时掌握工程的变化情况,以减少潜在的风险和损害。

二、监测目标1.监测地形变化:通过监测基坑工程周边的地质变形,以及土体的沉降和侧向位移,以评估工程的稳定性。

2.监测水位变化:监测地下水位的变化情况,以评估地下水对于基坑工程的影响。

3.监测周边建筑物的变形:监测周边建筑物的裂缝和变形情况,以评估基坑工程对于周边建筑物的影响。

4.监测环境变化:监测建筑基坑工程对周边环境的影响,包括噪音、震动、粉尘等。

三、监测手段1.地形变化监测:通过测量基坑工程周边的起伏、沉降和侧向位移,可以使用以下方法:(1)灵敏基坑板测量:在基坑四周埋设一定数量的测量点,定期进行测量,以确定地形变化情况。

(2)摄影测量:通过采集基坑工程周边的影像资料,利用数字摄影测量的方法,计算地形变化的范围和速率。

2.水位变化监测:通过监测地下水位的变化情况,可以使用以下方法:(1)井筒测量:在基坑工程周边钻井设置测量点,定期测量地下水位的高程和流速。

(2)测井:通过在钻孔中安装水压力计和水温计,记录地下水位的变化情况。

(3)无线监测系统:使用无线传感器监测地下水位的变化,并将数据传输至监测中心。

3.建筑物变形监测:通过监测周边建筑物的裂缝和变形情况,可以使用以下方法:(1)视觉测量:通过人工观察建筑物的裂缝和变形情况,定期记录测量数据。

(2)测量仪器:使用高精度的测量仪器,在建筑物表面进行测量,以获取变形的信息。

4.环境变化监测:通过监测建筑基坑工程对周边环境的影响,可以使用以下方法:(1)噪音监测:在工程周边设置噪音监测仪器,定期记录噪音水平,并评估对周边居民的影响。

(2)震动监测:在工程周边设置震动监测仪器,记录震动强度和频率,并评估对周边建筑物的影响。

施工单位基坑监测方案

施工单位基坑监测方案
施工单位基坑监测方案
第1篇
施工单位基坑监测方案
一、工程概况
本项目位于XXX地区,为高层建筑,设地下室,基坑开挖深度约XX米。根据地质勘察报告,场地土层分布主要为:①杂填土,②粉质粘土,③砂质粘土,④碎石土。地下水类型为孔隙潜水,水位受季节性变化影响。
二、监测目的
为确保基坑施工安全,预防事故发生,及时掌握基坑变形及周围环境变化情况,对基坑施工过程进行监测,为施工提供科学依据。
-遇预警情况,及时启动应急预案,采取相应措施。
九、质量保证措施
1.确保监测设备的高质量和高精度,定期进行校准和检验。
2.强化监测人员的专业技能培训,提升监测水平。
3.建立完善的数据管理体系,确保数据的真实、准确、连续和完整。
十、结语
本基坑监测方案旨在为施工提供科学、严谨的指导,确保工程安全。施工过程中应持续关注监测数据,及时调整施工策略。各方应密切协作,共同保障基坑施工的顺利进行。
2.对监测设备进行定期检查、校验,保证设备性能稳定。
3.加强监测人员培训,提高监测水平。
4.建立监测数据档案,确保数据完整、连续。
九、结语
本方案旨在为基坑施工提供科学、严谨的监测依据,确保施工安全。在施工过程中,应密切关注监测数据,及时调整施工措施,确保工程顺利进行。同时,各方应密切配合,共同为基坑施工安全保驾护航。
4.基坑围护结构顶部水平位移监测
5.基坑围护结构顶部垂直位移监测
6.基坑围护结构深层水平位移监测
7.基坑支撑轴力监测
8.基坑地下水位监测
五、监测方法及频率
1.监测方法
(1)地表沉降监测:采用电子水准仪、铟钢尺进行监测。
(2)建筑物沉降监测:采用电子水准仪、铟钢尺进行监测。

基坑监测施工方案

基坑监测施工方案

基坑监测施工方案监测频率要求:开挖期间开挖侧每天观测一次,非开挖期间每3-5天观测一次;当变形超限时应加密观测,当有危险事故征兆时应连续观测。

当基坑变形、地面沉降达到预警值,应立即通知查明原因,及时采取有效的措施。

(一)监测目的1、在基坑施工过程中,只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,以确保工程的顺利进行,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计参数。

2、检验设计所采取的各种假设和参数的正确性,指导基坑开挖和支护结构的施工。

3、确保基坑支护结构和相邻建筑物的安全。

4、积累工程经验,为提高基坑工程的设计和施工的整体水平提供依据。

5、将监测数据与预测值相比较以判断前一步施工工艺和施工参数是否符合要求,以确定和优化下一步的施工参数,做到信息化施工。

6、将现场测量结果用于信息化反馈优化设计,使实际达到优质安全、经济合理、施工快捷的目的。

(二)监测原则深基坑工程是一项技术上复杂,不确定因素较多,风险性很大的系统工程。

根据该基坑支护及周边环境的特点,在确定监测方法及监测内容时,需考虑以下原则:1、保证重点:该工程为深基坑,所以基坑支护结构本身是本工程需监测的重点。

沿基坑四周在基坑原土位置布置测斜管、在桩顶布置测量点进行位移和变形监测,以保证支护结构整体安全。

2、兼顾环境:由于本工程地下场区地下水主要有孔隙水及基岩裂隙水,其中孔隙水为区内地下水的主要赋存形式。

3、为了保证周围建(构)筑物及地下管线的正常安全使用,应布置测点进行变形观测。

4、信息化施工:监测资料的及时整理和快速反馈给设计单位、监理单位、建设单位非常重要。

支护结构本身的变形是否超过报警值,地面沉降是否超过报警值,需要测试结果的及时反馈,以便使施工单位及时调整施工方案和顺序,或采取必要措施保证基坑和周围环境的安全。

5、经济合理:对选定监测内容,以保证安全为前提。

深基坑监测专项施工方案

深基坑监测专项施工方案

一、工程概况本工程为深基坑施工项目,基坑深度约8米,占地面积约500平方米。

基坑周边环境复杂,包括地下管线、周边建筑物等。

为确保施工安全和工程质量,特制定本深基坑监测专项施工方案。

二、监测目的1. 监测基坑围护结构的变形和稳定性,确保施工安全;2. 监测周边地下管线和建筑物的沉降,防止对周边环境造成影响;3. 为施工提供实时数据,指导施工方案的调整。

三、监测内容1. 基坑围护结构水平位移监测;2. 基坑围护结构竖向位移监测;3. 周边地下管线沉降监测;4. 周边建筑物沉降监测。

四、监测方法1. 水平位移监测:采用测斜仪进行监测,测量基坑围护结构水平位移;2. 竖向位移监测:采用水准仪进行监测,测量基坑围护结构竖向位移;3. 地下管线沉降监测:采用精密水准仪进行监测,测量地下管线沉降;4. 周边建筑物沉降监测:采用精密水准仪进行监测,测量周边建筑物沉降。

五、监测频率1. 基坑围护结构水平位移和竖向位移监测:每日监测一次;2. 地下管线沉降监测:每周监测一次;3. 周边建筑物沉降监测:每周监测一次。

六、监测数据处理1. 对监测数据进行实时记录,确保数据的准确性;2. 对监测数据进行整理和分析,发现异常情况及时报告;3. 对监测数据进行统计和评估,为施工方案的调整提供依据。

七、监测设备配置1. 测斜仪:用于监测基坑围护结构水平位移;2. 水准仪:用于监测基坑围护结构竖向位移、地下管线沉降和周边建筑物沉降;3. 数据采集器:用于实时记录监测数据;4. 软件系统:用于监测数据分析和处理。

八、监测人员要求1. 监测人员应具备相关专业知识和技能,熟悉监测设备的操作和维护;2. 监测人员应严格遵守监测规程,确保监测数据的准确性;3. 监测人员应定期参加培训和考核,提高监测技能。

九、监测安全管理1. 监测现场应设置警示标志,防止人员误入;2. 监测设备应妥善保管,防止损坏和丢失;3. 监测人员应遵守安全操作规程,确保自身安全。

基坑监测工程施工方案

基坑监测工程施工方案

基坑监测工程施工方案:一、监测目标1、通过对监测数据分析,判断上一步施工工艺和施工参数是否符合或达到预期要求,同时实现对下一步的施工工艺和施工进度控制,从而切实实现信息化施工;2、通过监测,及时掌握和提供基坑、围(支)护系统、地表及周边建(构)筑物的变化信息和工作状态,确保本工程基坑开挖期间周边的建筑物、道路、管线正常运行;3、通过监测及时发现基坑施工过程中的环境变形发展趋势,及时反馈信息,达到有效控制施工对建筑物及管线影响的目的;4、通过监测及时调整支撑系统的受力均衡问题,使得整个基坑开挖过程能始终处于安全、可控的范畴内;5、及时预报险情,以便采取措施,防止事故发生;6、将现场监测结果反馈给建设单位、监理单位、设计单位,使设计能根据现场工况发展,进一步优化方案,达到优质安全、经济合理、施工快捷的目的;7、通过跟踪监测,在换撑和支撑拆除阶段,施工科学有序,保障基坑始终处于安全运行的状态;8、必要时为业主提供法律及公证所需要的证据。

二、监测遵循技术规范(1)《城市轨道交通工程测量规范》GB50308-2008(2)《建筑变形测量规范》JGJ8-2007(3)《建筑基坑工程监测技术规范》GB50497-2009(4)天津地标《岩土工程技术规范》DB29-20-2000(5)《建筑地基基础设计规范》GB50007-2011(6)《工程测量规范》GB50026-2007(7)《城市测量规范》CJJ/T8-2011(8)《建筑基坑支护技术规程》JGJ120-2012(9)《天津市建设工程质量管理条例》(10)《天津市建筑基坑工程技术规程》DB29-202-2010(11)其它有关国家行业和地方技术规程、规范及施工验收规范等三、监测项目本工程的监测项目主要包括:围护结构自身的监测,基坑周边1~3倍坑深范围内的建筑物、地表、地下管线的监测。

1、围护结构监测:(1)水平位移监测(2)垂直位移监测(3)深层水平位移监测(4)支撑梁轴力监测(5)立柱隆沉监测2、相邻环境监测:(1)周边建筑物沉降监测及倾斜观测(2)周边建筑物裂缝监测(3)周边地表沉降监测(4)周边地下管线沉降监测3、地下水监测:(1)地下水水位监测四、监测采用仪器设备及监测方法㈠现场安全巡视1、现场安全巡视对象及范围现场安全巡视的主要对象为本工程围护结构自身、施工工况、周边环境及监测设施,巡视的范围包括所有的现场安全监测对象以及和工程施工有关的被影响对象。

基坑工程的监测方案

基坑工程的监测方案

基坑工程的监测方案一、前言随着城市建设规模的扩大以及土地资源的有限性,挖掘深度较大的基坑工程越来越多地出现在城市规划中。

基坑工程的安全稳定性直接影响到周边建筑、道路和地下管线等设施的安全。

因此,在基坑工程施工过程中,进行全面、及时、有效的监测尤为重要。

基坑工程的监测旨在实时掌握基坑周边地下和地表的变化情况,为施工过程中出现的问题提供可靠的依据,保障基坑结构的安全稳定。

本文旨在就基坑工程监测方案进行深入探讨,为工程监测提供可行的技术方案。

二、基坑工程监测的目的1. 掌握基坑周边地下和地表变化情况,对监测结果进行实时分析。

2. 提前发现基坑支护结构的变形和破坏情况,及时采取有效的措施进行补救。

3. 为基坑工程施工提供技术支撑和参考,确保工程施工安全、稳定。

4. 提供基坑工程施工监测数据支持,为基坑工程验收提供科学依据。

三、基坑工程监测的内容1. 地表沉降监测:主要监测基坑工程周边地表的沉降情况,以及是否存在沉降过快或过大的情况。

2. 基坑支护结构变形监测:监测基坑支护结构的变形情况,如钢支撑的变形、混凝土墙体的变形等。

3. 地下水位监测:监测地下水位的变化情况,以及是否存在地下水涌现的情况。

4. 基坑周边建筑、道路和地下管线的变形监测:监测周边建筑、道路和地下管线的变形情况,以及是否受到基坑工程影响。

5. 地下管线位移监测:监测地下管线的位移情况,确保基坑施工对地下管线没有破坏或影响。

四、基坑工程监测的方法1. 地表沉降监测方法:采用测量仪器进行地表沉降监测,如激光水准仪、全站仪等,通过定点观测的方式,对地表沉降情况进行实时监测。

2. 基坑支护结构变形监测方法:采用位移传感器和应变传感器进行基坑支护结构的变形监测,如应变片、拉线式位移计等,通过布设在支撑结构上的传感器,实时监测支撑结构的变形情况。

3. 地下水位监测方法:采用水位计和井内观测仪器进行地下水位监测,如浮子式水位计、井内水准仪等,通过在井内布设测量仪器,实时监测地下水位的变化情况。

基坑监测方案2024

基坑监测方案2024

引言:概述:正文内容:1. 地质勘察与监测1.1. 地质调查与分析:对基坑所在地区的地质情况进行详细的调查和分析,了解地层结构、土壤条件、地下水位等因素,为后续监测工作提供依据。

1.2. 地质灾害风险评估:根据地质调查结果,对基坑所处地区的地质灾害潜在风险进行评估,确定监测的重点和方向。

1.3. 地下水位监测:通过布置地下水位监测孔,实时监测地下水位的变化情况,及时掌握基坑水平。

1.4. 地质灾害预警:根据地质灾害风险评估和监测数据,制定相应的预警方案,一旦发生地质灾害,可以及时采取措施避免危害。

2. 土体变形监测2.1. 支撑结构监测:对基坑周边支撑结构进行安装应变计、水平位移仪等监测设备,监测支撑结构的变形情况,确保其稳定性。

2.2. 土体位移监测:通过安装监测孔和地表应变测量点,实时监测土体位移的情况,及时掌握基坑变形情况,确保工程的稳定进行。

3. 土体力学参数监测3.1. 土压力监测:通过安装土压力计,实时监测基坑周边土体的压力变化情况,判断土体与支撑结构之间的相互作用。

3.2. 土体力学参数测试:采集土体样本,进行室内试验,获取土体的力学参数,为工程施工提供依据。

3.3. 强度指标监测:对于基坑周边土体的强度指标进行实时监测,及时发现并解决可能出现的强度问题。

4. 建筑物变形监测4.1. 建筑物结构监测:通过安装挠度计、应变计等监测设备,实时监测建筑物结构的变形情况,确保其稳定性和安全性。

4.2. 建筑物沉降监测:通过设置沉降点,实时监测建筑物的沉降情况,及时掌握建筑物沉降的速度和变化趋势。

5. 施工期基坑开挖监测5.1. 土方开挖监测:通过地下位移监测仪和支护结构监测点,实时监测土方开挖过程中的变形情况,预测土方塌陷风险。

5.2. 施工振动监测:通过振动传感器,实时监测施工过程中的振动情况,确保施工振动对周边建筑物和土体的影响控制在合理范围内。

总结:基坑监测方案是保障基坑工程施工安全和顺利进行的重要措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目名称:镇江新区姚桥安置房地下车库基坑监测施工方案建设单位:镇江瑞城房地产开发有限公司总包单位:镇江振兴建筑安装工程有限公司设计单位:常州市基础工程公司施工单位:无锡水文工程地质勘察院二○一三年四月六日一、工程概况镇江新区城市建设投资公司为加快安置房建设,拟在镇江新区姚桥镇北侧、X105县道东侧、滨江路西侧兴建姚桥安置房住宅区项目。

拟建场地内没有任何建构筑物。

根据甲方提供的资料表明场地内没有地下管线。

拟建两地下车库,地库A和地库B,挖深3.5M。

总包单位为:镇江振兴建筑安装程有限公司。

二、监测目的与技术要求在基坑桩基施工期间,须周期性对周边环境进行观测,及时发现隐患,并根据监测成果相应地及时调整施工速率及采取相应的措施,确保道路、市政管线及建(构)筑物的正常使用。

在基坑开挖过程中,由于地质条件、荷载条件、材料性质、施工条件和外界其它因素的复杂影响,很难单纯从理论上预测工程中可能遇到的问题,而且,理论预测值还不能全面而准确地反映工程的各种变化。

所以,在理论指导下有计划地进行现场工程监测十分必要。

特别是对于类似本工程复杂的、规模较大的工程,就必须在施工组织设计中制定和实施周密的监测计划。

本工程监测的目的主要有:(1)通过将监测数据与预测值作比较,判断上一步施工工艺和施工参数是否符合或达到预期要求,同时实现对下一步的施工工艺和施工进度控制,;(2)通过监测及时发现围护施工过程中的环境变形发展趋势,及时反馈信息,达到有效控制施工对建(构)筑物、道路、管线影响的目的;(3)将现场监测结果反馈设计单位,使设计能根据现场工况发展,进一步优化方案,达到优质安全、经济合理、施工快捷的目的;(4)通过跟踪监测,保障基坑始终处于安全运行的状态。

三、设计基本原则1、系统性原则(1)所设计的监测项目有机结合,并形成有效四维空间,测试的数据相互能进行校核;(2)运用、发挥系统功效对基坑进行全方位、立体监测,确保所测数据的准确、及时;(3)在施工工程中进行连续监测,确保数据的连续性;(4)利用系统功效减少监测点布设,节约成本。

2、可靠性原则(1)设计中采用的监测手段是已基本成熟的方法;(2)监测中使用的监测仪器、元件均通过计量标定且在有效期内;(3)在设计中对布设的测点进行保护设计。

3、与结构设计相结合原则(1)对结构设计中使用的关键参数进行监测,达到进一步优化设计的目的;(2)对结构设计中,在专家审查会上有争议的方法、原理所涉及的受力部位及受力内容进行监测,作为反演分析的依据;(3)依据设计计算情况,确定围护结构及支撑系统的报警值;(4)依据业主、设计单位提出的具体要求进行针对性布点。

4、关键部位优先、兼顾全面的原则(1)对围护体及支撑系统中相当敏感的区域加密测点数和项目,进行重点监测;(2)对勘察工程中发现地质变化起伏较大的位置,施工过程中有异常的部位进行重点监测;(3)除关键部位优先布设测点外,在系统性的基础上均匀布设监测点。

5、与施工相结合原则(1)结合施工实际确定测试方法、监测元件的种类、监测点的保护措施;(2)结合施工实际调整监测点的布设位置,尽量减少对施工质量的影响;(3)结合施工实际确定测试频率。

6、经济合理原则(1)监测方法的选择,在安全、可靠的前提下结合工程经验尽可能采用直观、简单、有效的方法;(2)监测元件的选择,在确保可靠的基础上择优选择国产及进口之仪器设备;(3)监测点的数量,在确保全面、安全的前提下,合理利用监测点之间联系,减少测点数量,提高工作效率,降低成本。

四、设计依据1、建设部《建筑物形变测量规程》JGJ/T8—20072、《建筑基坑支护技术规程》JGJ120-993、《工程测量规范》GB50026-20074、《精密水准测量规范》GB/T15314-9405、《城市测量规范》GJJ8-996、《岩土工程试验监测手册》7、《建筑地基基础设计规程范》GB5007-20028、《建筑基坑工程监测技术规范》GB50497-20099、本工程相关围护设计说明及图纸。

五、监测项目内容根据本工程的要求、周围环境、基坑本身的特点及相关工程的经验,按照安全、经济、合理的原则,拟设置的监测项目如下:1、围护顶部垂直位移监测2、围护顶部水平位移监测3、坑内地下水位监测六、监测与测试的控制要求1、监测内容:1、沿支护结构顶部每隔15布设一个水平位移监测点,共40个点2、支护结构顶部每隔15设一个沉降监测点,共40个点2、监测的控制要求:1、支护结构:水平位移速率≤3mm/d,位移总量≤40mm。

2、沉降速率≤2mm/d;沉降总量小于20mm。

基坑监测单位应根据设计要求编写基坑监测方案,在监测期间应及时将观测结果反馈给业主、监理、设计和施工单位指导施工。

七、测点设置根据监测要求与测区实际情况,各监测项目的测点布置见基坑监测图。

八、测试方法原理为保证所有监测工作的统一,提高监测数据的精度,使监测工作有效的指导整个工程施工,监测工作采用整体布设,分级布网的原则。

即首先布设统一的监测控制网,再在此基础上布设监测点。

1、垂直位移监测高程控制网测量在远离施工影响范围以外布置3个以上稳固高程基准点,这些高程基准点与施工用高程控制点联测,沉降变形监测基准网以上述稳固高程基准点作为起算点,组成水准网进行联测。

基准网按照国家Ⅱ等水准测量规范和建筑变形测量规范二级水准测量要求执行,精密水准测量的主要技术参照下表:精密水准测量的主要技术要求L或1.0n41 2外业观测使用Ni 007精密水准仪(标称精度:±0.3mm/km)往返实施作业。

观测措施:本高程监测基准网使用Ni 007精密水准仪及配套因瓦尺,外业观测严格按规范要求的二等精密水准测量的技术要求执行。

为确保观测精度,观测措施制定如下。

●作业前编制作业计划表,以确保外业观测有序开展。

●观测前对水准仪及配套因瓦尺进行全面检验。

●观测方法:往测奇数站“后—前—前—后”,偶数站“前—后—后—前”;返测奇数站“前—后—后—前”,偶数站“后—前—前—后”。

往测转为返测时,两根标尺互换。

●测站观测限差见下表●两次观测高差超限时重测,当重测成果与原测成果分别比较其较差均没超限时,取三次成果的平均值。

垂直位移基准网外业测设完成后,对外业记录进行检查,严格控制各水准环闭合差,各项参数合格后方可进行内业平差计算。

内业计算采用EXCEL进行简易平差计算,高程成果取位至0.01mm。

2、监测点垂直位移测量按国家二等水准测量规范要求,历次垂直位移监测是通过工作基点间联测一条二等水准闭合或附合线路,由线路的工作点来测量各监测点的高程,各监测点高程初始值在监测工程前期两次测定(两次取平均),某监测点本次高程减前次高程的差值为本次垂直位移,本次高程减初始高程的差值为累计垂直位移。

3、监测点水平位移测量采用轴线投影法。

在某条测线的两端远处各选定一个稳固基准点A、B,经纬仪架设于A点,定向B点,则A、B连线为一条基准线。

观测时,在该条测线上的各监测点设置觇板,由经纬仪在觇板上读取各监测点至AB基准线的垂距E,某监测点本次E 值与初始E值的差值即为该点累计水平位移,各变形监测点初始E值均为取两次平均的值。

采用SET 2C全战仪来测试。

九、监测周期及预警措施基坑开挖施工前进行第一次观测,观测值作为初始值,基坑开挖前期每1-2天观测一次,中期每两天观测一次,基坑及周围环境位移变形较大时,每天观测一次。

基坑出现险情时,随测。

观测成果及时反馈给业主,监理,设计和施工单位。

1、支护桩顶水平位移(1)、基坑开挖初期(挖深小于3.0米),每隔1-2天监测一次。

如出现异常现象加密监测。

(2)、基坑挖深超过3米时,每隔1天监测一次。

如出现异常现象每天监测一次。

(3)基坑开挖接近坑底及挖到标高后一周期内,每天监测一次。

如出现异常加密监测,甚至24小时连续监测。

(4)基坑底板施工期间,每隔1天监测一次,如出现异常现象每天监测一次。

(5)基坑底板浇筑完毕后,每隔2-3天监测一次。

当超过报警值时,应根据具体情况及时调整监测时间间隔,加密监测频率,甚至跟踪监测。

2、坡顶土体沉降频率(1)、围护施工期间,做好观测初始值。

(2)、土方开挖到主体结构施工至±0.00期间,监测频率与围护桩变形频率一致。

十、提交成果每次监测工作完成后,及时提供有关监测数据资料。

监测工作结束后提交总的监测报告,报告内容包括水位曲线图,沉降和水平位移变化曲线图以及技术总结报告。

十一、质量目标和保证措施1、质量目标本项目质量目标:创优。

严格执行施工组织设计的内容,主动配合业主和总包在施工过程中各方面的协调工作,处理好各相关单位和人员的关系。

服务于全过程。

及时做好各类质量信息的收集、汇总、分析和反馈。

认真完成本项目由于设计与施工变更等原因而增加的工作量,并保证要求和工作质量不变。

2、监测工作的管理(1) 实行项目经理负责制项目组成员服从项目经理的统一调配,并在日常监测工作中严格按投标方案的要求带领作业人员实施作业,并经常保持与建设单位、总包单位的联系,及时了解场地施工进度,安排与落实监测工作的步骤,配合施工的顺利进行。

(2) 监测过程的质量控制作业人员应严格按方案要求及相应规范进行作业,发现超出允许误差时应及时纠正或进行返工。

技术问题由工程负责人与审核人审定人商量后作出决定,工程负责人与审核人实施监测过程中的质量控制,杜绝质量问题的产生。

(3) 文件与资料的管理监测工作中的相关函件、以及日常监测工作中的内外业资料等应分类装订统一管理,或者有计算机备份以防丢失。

提交的监测成果资料应统一格式并进行签收登记。

3、保证监测质量的措施(1) 仪器、仪表a、将按设计图纸和文件以及生产厂家的产品说明书对所采购的仪器设备进行测试、校正,以防质量不合格元件的埋入。

各测点初始值的测定应待测点埋设稳定后进行(一般7~10天)。

b、监测仪器要经国家法定计量检定机构或授权的计量机构进行校准,并取得《检定证书》后方可使用。

如需更换仪表时,应先检验是否有互换性,并进行对比检测,以保持监测数据的延续性。

(2) 野外作业a、组成强有力的项目组,抽调业务水平高,责任心强,工作认真负责的人员担任项目组主要负责人。

项目组的其它管理人员、操作人员具有相应的管理水平和技术操作能力,关键、特殊岗位人员持证上岗。

b、监测工程专业技术强,我司将对职工进行宣贯、培训,对职工加强质量意识教育,把“质量第一”从思想上落实到行动中去。

对埋设全过程进行详细的施工记录。

c、进场前,组织全体人员学习监测施工的技术方案,每个施工人员了解项目的总体要求,熟悉各自岗位的职责、技术要求和作业程序,严格按施工组织设计执行。

d、加强测点的保护工作,测点周围设置明显标志并进行编号,严防施工时损坏。

相关文档
最新文档