a56铝合金显微组织及断口分析

a56铝合金显微组织及断口分析
a56铝合金显微组织及断口分析

目录

1 绪论 (1)

1.1断口分析的意义 (1)

1.2 对显微组织及断口缺陷的理论分析 (1)

1.3研究方法和实验设计 (3)

1.4预期结果和意义 (3)

2 实验过程 (4)

2.1 生产工艺 (4)

2.1.1 加料 (4)

2.1.2 精炼 (4)

2.1.3 保温、扒渣和放料 (5)

2.1. 4 单线除气和单线过滤 (5)

2.1. 5连铸 (6)

2.2 实验过程 (6)

2.2. 1 试样的选取 (6)

2.2.2 金相试样的制取 (8)

2.2.3 用显微镜观察 (9)

2.3 观察方法 (10)

2.3.1显微组织的观察 (10)

2.3.2 对断口形貌的观察 (11)

3 实验结果及分析 (11)

3.1对所取K模试样的观察 (11)

3.2 金相试样的观察及分析 (12)

3.2.1 对显微组织的观察 (12)

3.2.2 断口缺陷 (15)

结论 (23)

致谢 (24)

参考文献 (25)

附录 (27)

1 绪论

1.1断口分析的意义

随着现代科技的发展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向发展。长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的发展。尤其随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流动性好、气密性好、收缩率小和热裂倾向小,经过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒适、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。

然而,由于其凝固收缩,同时在熔融状态下很容易溶入氢,因此铸造铝合金不可避免地包含一定数量的缺陷,比如空隙、氧化物、孔洞和非金属夹杂物等[5-7]。这些缺陷对构件的力学性能影响较大,如含1%体积分数的空隙将导致其疲劳50%,疲劳极限降20%[8-9]。所以研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的影响具有重要意义[10]。而这些缺陷往往是通过显微组织和断口分析来研究的。

另外,通过显微组织和断口分析所得到的结果可以分析这些缺陷产生的原因,研究断裂机理,比结合工艺过程分析缺陷产生的原因,从而对改进工艺提出一定的有效措施,确定较好的生产工艺,以提高铝合金铸锭的性能。

但关于该合金的微观组织及其断口分析研究较少,研究内容深但不够综合,每篇论文多研究其部分缺陷,断口的获得多为拉伸端口。因此,希望对A356铝合金的断口缺陷有一个较为全面的研究。

1.2 对显微组织及断口缺陷的理论分析

铸件的力学性能与其微观组织有密切联系[11]。A356合金是一个典型的Al-Si-Mg系三元合金,它是Al-Si二元合金中添加镁、形成强化相Mg2Si,通过热处理来显著提高合金的时效强化能力,改善合金的力学性能。A356合金处于α-Al+Mg2Si+Si三元共晶系内,其平衡组织为初生α-Al+(α-Al+Si)共晶+

Mg2Si。其相图如右图1-1,在冷却时,由液相先析出α-Al铝,随着铝的析出,液相成分变至二元共晶线,发生共晶反应,反应式为:

L→α-Al+Si (1)

图1-1 铝硅镁三元共晶图

由于A356的含Si量仅为7%,所以,液相成分在达到三元共晶点之前,液相消失,凝固完全。凝固后的组织为初生α-Al基体+(α-Al+Si)共晶。凝固后铝固溶体含有Si和Mg元素,在继续冷却过程中析出Si和Mg2Si(如图1-1)。室温下的组织为初生α-Al、(α-Al+Si)共晶和Mg2Si。冷却速度较快时,次生相Si和Mg2Si弥散细小不易分辩,而表现出α-Al和(α-Al+Si)共晶。在实际铸造条件下(非平衡凝固),除基本相外,还可出现少量α-Al+Mg2Si+Si三元共晶体和杂质铁等构成的杂质相和一些复杂的多元共晶相[13]。

一般来说,铸造缺陷对构件的抗拉强度影响较小,但较显著影响构件的伸长率[14]。A356铝合金内部缺陷主要有偏析、缩松、缩孔、气孔、针孔、非金属夹杂和夹渣、金属夹杂、氧化铝膜、白点等。这些缺陷对其性能和强度有很大的影响。因为生产铝锭的铝水是电解铝液,电解铝液的温度一般在930℃以上,是过热金属[15]电解过程产生的H2和AL2O3夹杂直接进入铝液中,会造成H2含量高和AL2O3夹杂多[16],H2产生气孔、气泡和白点缺陷的重要因素,AL2O3易形成夹渣;

电解铝液中的杂质元素Fe、Si与合金中的Mn、Mg等元素作用形成Al-FeMnSi、Mg2Si等第二相,分布于晶粒内以及晶界处,影响基体连续性;铸造过程中由于清渣不彻底以及凝固过程中的选分结晶和冷却条件不当易于生成夹杂、缩松和缩孔[17];α-Al枝晶二次枝晶臂之间板片状共晶体是材料中最薄弱的区域,该区域中尺寸最大的Si颗粒首先发生断裂形成裂纹源。由于以上因素的影响,A356铝合金容易断裂,从而影响其强度、塑韧性和力学性能。若共晶Si呈灰色针状和片状,杂乱无章地分布在α-Al铝基体上,用光学显微镜可以看到铸造过程中的铸造缩孔、铸造气孔、氧化膜等缺陷。

1.3研究方法和实验设计

大颗粒夹杂:用肉眼观察其存在形式、数量、大小和分布特点(存在区域)以及夹杂物本身的形貌和大小,并结合冶炼工艺分析其来源;检测杂质净化效果和晶粒细化效果。

显微夹杂:用金相显微镜和扫描电镜观察其存在形式、数量、大小和分布特点(存在区域)以及夹杂物本身的形貌和大小,并结合冶炼工艺分析其来源;检测杂质净化效果和晶粒细化效果。

对A356铝合金显微组织的观察主要用金相显微镜进行观察。首先是取样:包括用长柄样勺从和料炉铝液、用短柄样勺从炉外取样以及取成品样,将取到的熔液倒入样饼模和K模得到样饼和K模试样,用上述取样方法选取不同工艺参数、不同生产阶段的试样。将取得的试样通过切、车、銑、磨、抛等步骤制成金相试样,通过不同的放大倍率观察索取试样的显微形貌,并获得各个形貌的照片。

对于断口的观察所用试样是公司提供的,将试样断口处切下,在车床上将试样切成金相试样大小,然后通过粗磨、细磨、抛光、浸蚀制成金相试样,通过金相显微镜观察并记录观察到的缺陷,分析缺陷产生的原因。

1.4预期结果和意义

1)结合企业生产需求,对A356铝合金进行金相及扫描电镜试验,对分布在初生α-Al基体上的共晶硅相、杂质相及气孔等进行观察,分析其分布特征、形貌及影响。

2)用扫描电镜观察铝合金断口形貌,并研究其断裂过程及机理。

3)将所观察的断口形貌进行分类。

2 实验过程

此次实验分为三个步骤:1)生产工艺,主要是了解生产的概况,记录生产过程中的工艺参数;2)实验阶段,是关键步骤,要熟悉实验过程中的每个步骤,掌握所需的参数;3)观察方法,是对试样进行观察的总结。

2.1 生产工艺

联信公司用的是魏桥铝厂提供的电解铝液,通过连铸生产A356铝合金铸锭。该厂有四个和料炉,每炉装料量为30t,从南到北分别为1#炉、2#炉、3#炉和4#炉。两条国内最大连铸生产线,单块铝锭规格:长:740mm;宽:105(95)mm;高:55mm;重量:约9.5Kg。整跺铝锭规格:740×740×760mm。每跺块数:93块。详细工艺过程如下。

2.1.1 加料

A356合金是一个典型的Al-Si-Mg系三元合金,主要成分是:Si6.5%-7.5%,Mg20%-0.40%,Cu≦0.20%,Zn≦0.10%,Mn≦0.10%,Ti≦0.20%,其他元素每种≦0.05%,其余是铝。该厂主要生产A356.2铝合金,加料方法为:向和料炉中加铝水分为两次,真空包(最大铝量为9000㎏)运来铝水后用天车吊到炉前,打开和料炉炉门开始倒铝水,此时铝液温度在840℃-880℃,5min左右倒完,开始熔炼。根据不同工艺设定熔炼温度和所要加的成及其用量计算加料量,如加硅、加镁、加钛、废铝锭等。下表是A356.2铝合金的成分表。

表2.1 A356.2铝合金化学成份(%)

Si Ti Mg Fe Cu Mn Zn P

6.5-

7.5 ≤0.20.30-0.45 ≤0.12 ≤0.1≤0.05 ≤0.05 痕迹2.1.2 精炼

加料后为了快速均匀成分和温度,在和料炉中进行电磁搅拌。搅拌时间在15-20min,根据不同工艺搅拌温度在690℃-740℃;炉内精炼是通过喷吹以氮气

作为载体将精炼剂和清渣剂加入炉内的,氮气纯度大于等于99.995%,喷吹时间为5min-10min。精炼剂和清渣剂的用量为0.1%-0.2%(与Al相比)。

精炼后取样分析,根据能谱仪结果判断各个元素含量是否合格,补加硅镁等矿石。

2.1.3 保温、扒渣和放料

精炼结束后保温一段时间(一般在10min-15min),待温度均匀后开始扒渣。该厂运用人工扒渣,扒渣时间在15min-30min,时间可长达40min,费时费力。扒渣完成后静置5min,使成分和温度均匀。待成分和温度符合放料条件时,打开和料炉炉门开始放料。

2.1. 4 单线除气和单线过滤

铝液出和料炉后先进行在线除气,在经过过滤,之后进入结晶器开始连铸。

2.1.4.1 单线除气

使用ALPUR-55旋转除气装置进行在线除气(图2-1)。这种除气装置为双石墨转子,最大金属流量为55t/h。ALPUR净化工艺是基于吸附净化原理,通过转子吹出精炼气体,借助旋转喷嘴产生均匀分布的微小气泡,并与反应室内的熔体充分接触反应使熔体净化。精炼气体可以是氮气,也可以是氮气与氯气的混合气体。

图2-1 ALPUR净化铝熔体示意图

2.1.4.2单线过滤

过滤除渣主要是靠过滤介质的阻挡作用、摩擦力或流体的压力使杂质沉降或堵滞,从而净化熔体。上述生产线采用CFF双级泡沫陶瓷过滤板,过滤箱安装2套平行过滤板,处理流量为55t/h。过滤板为双层30/50ppi复合泡沫陶瓷过滤板,上层过滤板的孔隙度为30ppi,底层过滤板的孔隙度为50ppi。CFF泡沫陶瓷过滤装置可以有效除去直径大于20um的夹渣物,过滤效率可达75%。图2-2为泡沫陶瓷过滤装置工作示意图。

图2-2 CFF泡沫陶瓷过滤装里工作示度图

2.1. 5连铸

过滤后的铝液通过溜槽流入结晶器,浇铸机转速为863rpm-864rpm,开始结晶出来的坯壳先由人工导入足辊,之后进入校直段。铝锭经过切定尺之后被切断。铝锭的冷却是通过喷水冷却的,分三段冷却。冷却水流速分别为0.137m/s、0.684m/s和1.478m/s;流量分别为133.7m3、401.1m3和883.1m3。剪切后的铝锭通过机械手堆垛,最后捆扎。

2.2 实验过程

对于显微组织及断口分析实验,主要工具是显微镜观察。因此实验主要分三个步骤:1)试样的选取;2)金相试样的制备;3)观察记录。

2.2. 1 试样的选取

取样时要注意取样阶段和参数,对各个试样的详细信息做记录。在1#、3#、4#炉内取样时按下表取样。表格如下。

表2-2 1#炉参数表

阶段时间取样温度

熔炼8 h 724℃

精炼0.5h 737℃

喷吹699℃过滤693℃

表2-3 3#炉和4#炉参数表

阶段时间取样温

3#炉熔炼8 h 747℃3#炉精炼0.5h 737℃4#炉熔炼702℃4#炉精炼699℃

1)炉内取样:炉内取样用长柄样勺(如图2-3),取样前先给样勺和模具刷一层涂料并烘烤干燥,保证样勺和模具干净。为保证所取铝液有代表性应该在炉膛中心取样,先用样勺扒开浮渣,然后将样勺深入液面100mm以下,防止带入渣子。将铝液取出后倒入样饼模(图2-2-1)得到样饼,倒入K模(K模包括有K 模本体,K模本体设置有一槽道,槽道内设置有至少一个沿槽道宽度方向布置的断裂楔块)中得到K模试样。在取K模时,一对模具要用一勺铝水同时浇铸完全,凡是其中一个不合格的要同时浇铸一对。

图2-3 长柄样勺

2)炉外取样:炉外取样与炉内取样大致相同,但用短柄样勺(图2-4-2)取样。取样时要逆着铝液流盛取。

图2-4 短柄取样勺和样饼模,1-样饼模,2-短柄样勺

3)成品样的选取:成品铝锭应选有代表性的,然后弄断,切下断口,采取一定措施保护断口防止断口被氧化。

2.2.2 金相试样的制取

用金相分析的方法来观察检验金属内部的组织结构是工业生产中的一种重要手段,例如对原材料的冶金质量情况如偏析、非金属夹杂物分布类型与级别检查;对铸造材料的铸造疏松、气孔、夹渣组织均匀性检查;对锻造件的表面脱碳、过热、过烧、裂纹、变形等情况检查。金相试样的制取是十分关键的一步[18],若制备不当,则可能出现假象,从而得出错误的结论[19]。金相试样的制备包括:切样、銑样、磨样、抛光和浸蚀。

1)切样和銑样:所取成品断口试样横截面大小不合适难以放进磨样机固定装置时,应该首先将试样切成一定大小和形状,注意不要破坏要观察的断面。在对断面和样饼进行磨制前应该先銑所要观察的那一面,以使盖面平整,便于磨制。

2)磨样:磨光过程是试样制备最重要的阶段,除使试样表面平整外,主要是使组织损伤层减少到最低程度。试样是用机械进行磨制的,每次可同时磨六个试样。首先将试样固定在固定装置上,然后设置参数,开启开关进行磨制。磨样过程分三步:粗磨、中磨和细磨。要求每次要覆盖上次的磨痕,磨完后要清洗掉砂纸上的残留。磨样过程中连续供水喷在磨样处。磨样时参数如下。

表2:磨样参数

磨样方式转速(rpm)时间(s) 压力(N)水砂纸型号冷却水流量粗磨150 90 30 80 大中磨150 150 40 220中

细磨150 180 50 1200 小

抛光:试样磨完后要进行机械抛光,抛光的目的是去除磨光时留下的磨痕,提高试样表面的光反射性,改善组织分辨率,要求将金相试样抛成镜面。抛光过程也分三步:粗抛、中抛和细抛,抛光时不喷水,有对应的抛光液。每次抛完要将抛光布上的残余洗净。抛光过程参数设置如下。

表3:抛光参数

抛样方式转速(rpm)时间(s))压力(N)抛光液型号(um)剂量/级别粗抛150 330 60 9 0/9 中抛150 270 60 3 0/0 细抛150 240 60 0.04 0/0

浸蚀:所有的金相试样都必须浸蚀,显微组织可以很清晰显示,便于观察。所用浸蚀剂为0.5%氢氟酸水溶液(HF0.5mL+蒸馏水100mL),浸蚀时间为10s-15s。浸蚀后用清水冲洗,然后用酒精擦拭,最后用电吹风吹干。

2.2.3 用显微镜观察

所利用的金相显微镜(如图2-5)型号为Fegrapol-31,是丹麦生产的。显微镜直接与电脑相连,所观察的图像可以直接被拍成照片传到电脑上。利用显微镜对所有试样进行显微组织观察和断口缺陷分析后可获得显微组织图像和断口缺陷图像。

图2-5金相显微镜

2.3 观察方法

实验观察的内容主要有:显微组织的观察主要是显微组织类型、形态和大小。断口观察主要是观察断口的缺陷、数量、形态和大小。

2.3.1显微组织的观察

1)α-Al基体和共晶Si相的观察:对视野中所呈现形态要首先认识组织的种类、颜色和数量等特征。对共晶Si相晶粒大小的测量首先要选定具有代表性的或颗粒便于测量的晶粒,要对不同处理的晶粒(如变质的与未变质的)进行观察。金相图中的晶粒尺寸大小、相的分布、各相相对含量、相的特征以及化学成分等都可以通过Image-Pro Plus的计算机数字化处理来完成。

2)二次枝晶的观察:对二次枝晶的研究主要是对枝晶间距的研究。二次枝晶间距的测量方法为截线法[20]。

如图2-4所示,即画一条平行于一次枝晶的线和若干条平行于二次枝晶臂且垂直于一次枝晶的线,通过测量各条平行线的间距大小并取平均值来计算二次枝晶的平均间距。只取与一次枝晶相连且二次枝晶臂完整的枝晶进行测量。

图2-4 二次枝晶测量方法

在金相图片中找出符合要求的位置,先画出一次枝晶的平行线,再画出垂直于一次枝晶并平行于二次枝晶臂的线,测量截线上两平行线间距,并计算平行线间二次枝晶臂的数量,将所得数值除以二次枝晶臂数量,即获得所需要测量的二次枝晶间距,为了准确获得二次枝晶间距,选取金相图E处测量位置,并将所获得的二次枝晶间距再次求平均值。近似计算DCS如下:

DCS= L / n (2)

式中,L为图像中任意截线的长度,n为截线所截胞界的总数或截线与共晶区域交点的总数。

2.3.2 对断口形貌的观察

1)肉眼观察:对于K模,主要是用来检查铝液纯净度的。将一对K模标记上1-10,然后弄断。检查对应断口,看断口的夹渣(即小黑点数)。将数出的黑点数除以10得到K值,根据K值判断铝液是否合格。表格如下:

表2.4 各阶段K值级别

其中,对于浇包A级为合格,静置炉B级合格,和料炉E级合格。

2)金相观察:对于显微缺陷的观察只能借助于显微镜,要不断移动物镜尽量观察断面所有的地方,用不同放大倍数的物镜观察,观察不同放大倍率下缺陷所呈现的形态。

3 实验结果及分析

主要分析实验过程所获取K模试样和金相试样。K模试样主要是用肉眼观察夹渣数;金相试样主要观察铝基体和共晶硅的形态以及断口缺陷形貌。

3.1对所取K模试样的观察

所取K模(如图3-1)分为精炼前、精炼后、过滤前和过滤后的铝液浇铸的,粗略地观察和分析铝水纯净度以及精炼、除气和过滤效果。

图3-1 K模试样

通过数所选K模断口夹渣数,得到K值分别如下表:

表3.1 各阶段所得K值

阶段 K值(加精炼剂) K值(加清渣剂)

熔炼 3.5 3.6

精炼 2.3 1.2

除气0.5 0.4

过滤0.1 0.1通过上述表格所得数值与标。表2.4比较可知,各阶段铝水均合格;通过各阶段数值比较可知:精炼后特别是加清渣剂后铝水纯净度升高,另外除气和过滤均有除渣效果。

3.2 金相试样的观察及分析

金相显微镜可以观察试样显微组织形态及分布,还可以对晶粒度大小和二次枝晶进行测量;对断口缺陷类型及形态、大小及数量和分布进行观测。

3.2.1 对显微组织的观察

主要观察铝合金中α-Al基体(如图3-2a和图3-3b、图3-3c、图3-3d中A)形态和共晶Si相形态、大小。根据Al-Si二元合金相图,A356铝合金属于亚共

晶合金,其凝固过程先析出初生Al枝晶,然后Al-Si共晶体在枝晶臂之间形成。

3.2.1.1未经变质处理

未经变质处理的共晶Si一般呈针状(如图3-2a和图3-3b、图3-3c、图3-3d 中B),颜色比α-Al基体深。裂纹的萌生与Si相有密切关系[21]:(1)共晶Si 与共晶Al界面为非共格界面,存在空位缺陷,在应力作用下这些空位互相结合长大,导致了共晶Si与Al基体的界面分离;(2)共晶Si与Al基体的塑性不同,Si相为脆性相,而Al基体为塑性相;在应力作用下直径最大的Si相[22]优先发生断裂,成为裂纹源。

共晶Si呈灰色针状杂乱无章地分布在α-Al铝基体晶界上(如图3-2a中方框内),当裂纹扩展遇到与裂纹前进方向相异的共晶硅粒子时,将截断共晶硅粒子,使硅粒子发生断裂[23],即穿晶断裂。

3.2.1.2 变质处理后

加锶变质效果最好,锶变质有很好的长效性,可使变质效果维持长达5-8小时。变质后的共晶硅颗粒大部分呈点球状或短纤维状(如图3-2b、图3-2d和图3-2c中的B2)。但研究表明,锶的加入加大了铝熔液的吸气性[24]。由于变质后共晶硅形态的改变,可使得合金性能有所提高。

图3-2 a 未变质无缺陷

图3-2b 典型缩松(变质后)

图3-2c 典型气孔+渣(变质后)

图3-2d 典型缩孔(变质后)

3.2.1.3 二次枝晶

二次枝晶(如图3-2b和3-2c中的B3)是在一次枝晶臂上生出来的,形状如树枝状,比一次枝晶要细。二次枝晶间距的大小是微观组织中一个重要数据,是衡量组织优劣的重要参数。二次枝晶间距大小是评判凝固组织优劣的重要特征,二次枝晶臂间距大小直接影响着成分偏析、第二相及显微孔洞的分布,另外,枝晶与枝晶间块状共晶体的强度高于二次枝晶臂之间板片状共晶体,因此板片状共晶体是A356合金的薄弱环节,裂纹首先在这个区域萌生[25]。

根据图2-4和式(2)可分别测量出图3-2b和3-2c中矩形方框中所标注的二次枝晶间距为:13.08um和17.78um。其中L分别为:65.36um和53.33um。n分别为:5和3。这个成果在国内同类行业中是比较先进的。

3.2.2 断口缺陷

断口缺陷分析是分析铝合金断裂机理的重要方式,在所取试样中观察到的缺陷有:缩松、缩孔、气孔、针孔、非金属夹杂和夹渣、氧化铝膜(表现为混皮、

渣皮等)。

3.2.2.1缩松和缩孔

1)缩松的形态:缩松(如图3-2b中的C和3-3a中的C)和缩孔(图3-3b 中的C和图3-2中的d)是铸锭在凝固过程中,由于合金在液态和固态的体积收缩得不到补充而产生的细小而分散的孔洞性缺陷。在金相显微镜下观察,缩松表现为沿晶界形成的形状不规则的图形,颜色单一且比基体深。缩孔表现为沿晶界较规则的图形,多近似为圆形,颜色单一且比基体深。

图3-3a 典型缩松(变质后)

图3-3b 典型缩孔(未变质)

2)产生原因:缩松一般包括收缩缩松和气体缩松。收缩缩松产生的机理是金属铸造结晶时从液态凝固成固态,体积收缩在树枝晶枝杈间因液体金属补缩不足而形成空腔,这种空腔即为收缩缩松。一般尺寸很小,难以避免。

气体缩松产生的机理是:熔体中未出去的气体氢气含量较高,气体被隐蔽在树枝晶枝杈间隙内,随着结晶的进行,树枝晶枝杈互相搭接形成骨架,枝杈间的气体和凝固时析出的气体无法逸出而集聚,结晶后这些气体占据的位置形成空腔,即为气体缩松。

当体积收缩大而液体金属补缩严重不足时就会形成缩孔。

3)危害:缩松使铸锭密度减小,致密性降低特别是降低高强铝合金的冲击韧性和断面收缩率,在热轧和锻造时易引起裂纹。缩孔破坏了金属的连续性,严重影响工艺性能,截取铸锭坯料时必须去掉。

4)预防措施:根据缩松和缩孔产生原因和形成过程可知,有如下的预防措施:

a)降低熔体中气体含量,如烘炉彻底、精炼剂和所需工具烘烤彻底、降低

各种材料的水含量、防止熔体在炉内时间过长、防止熔体过热等。

b)缩小铸锭中过渡带的尺寸,如:采用合适的漏斗均匀供流适当提高铸造温度和降低铸造速度、适当提高水压以提高铸锭冷却强度、适当降低开始凝固温度和凝固终了温度差。

3.2.2.2 气孔和渣孔

1)形态:气孔(如图3-2c中的D)是铸件组织中的圆形空洞,它是内表面光滑的球状空洞缺陷,其为未逸出的气泡在铸锭中形成的缺陷,其在显微镜下观察呈规则的圆形,但是析出位置不固定;渣孔(如图3-3c中的D)是气孔中卷入渣滓形成的,其内表面就不再是光滑的,在显微镜下观察呈不太规则的图形且颜色不一致。

图3-3c 典型渣孔(未变质)

2)产生原因:熔体中的气体以气泡析出,必须具备三个条件:一是溶解的气体处于过饱和状态;二是气泡内的压力之和大于作用与气泡的外压力;三是有大于临界尺寸的气泡核。在实际铸造条件下由于熔体中总是存在大量的非金属夹杂物、结晶体和精炼时未逸出的气泡因此熔体中的非自发气泡核很容易形成。另外结晶前沿造成的氢含量的过饱和对气泡的形成造成有利条件。

3)影响气孔和渣孔形成的主要因素:a)熔体原始含气量高。熔体原始含气

热处理对7075铝合金组织和性能的影响

热处理对7075铝合金组织和性能的影响 摘要:对7075铝合金进行了固溶和单级时效处理,研究了单级时效对铝合金组织和性能的影响,结果表明铝合金经单级时效后纤维组织消失,在晶界处生成第二相粒子。铝合金显微硬度的峰值时效温度为120℃,时间为16h,硬度为220HV。120℃/24h时效后合金的峰值强度为680.5MPa。本研究中主要阐述热处理对7075铝合金组织和性能的影响。 关键词:热处理;7075铝合金;组织性能 引言 近些年来,铝合金的发展历程先后经历了由单一的追求高强度到追求高强耐腐蚀,再到追求高强高韧耐腐蚀性能,又到高强高韧耐腐蚀抗疲劳,最终到现在的追求高淬透性高综合性能五个发展阶段。然后发展方向却集中在以满足高强高韧铝合金的航空航天领域以及适用于各种使用条件的民用铝合金领域。当前对于铝合金强韧化以及耐蚀性的研究已经成为了重中之重,相信随着综合性能的提高,铝合金在国民经济发展中的运用将更加广泛。 1、7xxx系铝合金概述 7xxx铝合金是以Al-Zn-Mg和Al-Zn-Mg-Cu合金为主的一种超高强度铝合金,它是超高系列铝合金的最主要代表,Fe和Si是7xxx铝合金的主要有害杂质。较2xxx高强度铝合金在强度和硬度方面高出许多。属于热处理可强化的合金。该系铝合金具有强度高、密度小、易加工、焊接性能良好等优良特点,并且一般耐蚀性较好,因此在航空航天工业、车辆、建筑、桥梁、工兵装备及大型压力容器方面得到了广泛的应用。现阶段7xxx铝合金的研究主要集中在通过调节合金化元素和优化热处理工艺来得到高强高韧耐腐蚀的综合性能[1]。这也是本文的研究方向的出发点。该系代表合金如7005、7050、7075等。 2、试验材料与方法 试验材料为7075铝合金,将铝合金(尺寸为20mmX20mmX160mm)在盐浴中进行固溶处理,处理工艺为480℃/2h铝合金固溶处理后在试验箱中进行单级时效处理,时效温度分别为100,120,150℃,时效时间为0-48h。 将试样按国标GB/T228-2010用线切割加工成拉伸试样,用酒精超声清洗去除表面油污,在MT810万能试验机上进行拉伸强度测试,取5个试样的平均值;采用

铝合金铸轧技术

第一章总则 ¢820ⅹ1600倾斜式双驱动轧机试车大纲适用于机列的空负荷式运转以及带负荷式生产空负荷式运转目的在于对新安装的设备在设计制造和安装方面的性能和质量作一次全面的检查和考验使设备操作手能更好的了解设备的性能确保设备的运转安全可靠使之达到预定指标带负荷试生产目的在于使设备在带负荷的条件下对设备的设计安装和综合性能进行一次综合考验使设备操作手能更好的了解设备的性能满足生产工艺的要求 第二章 一试运转前的准备工作 1 试车前所有参加人员必须对¢820ⅹ1600倾斜式双驱动轧机操作维护说明 书以及有关的机械电气液压图纸和铸轧工艺操作规程进行熟悉了解铸轧机构造和各部分的性能掌握操作程序和方法 2 确认机械液压电气部分安装全部完成无任何漏装现象 3 检查各齿轮箱液压系统油箱以及各执行件是否进行了加油 4 检查操作台各个操作手柄按钮是否搬动灵活控制部位是否正确控制度 是可靠 5 检查冷却系统的水压0.4—0.6Mpa 水温10——32° 6 检查供压缩空气的风压0.3-0.6mpa 7 检查电源是否已经通电 8 检查各部分装配零部件是否完好无损各连接部件是否紧固各种计量仪器 是否经过简练合格 二空负荷单体运转 铸轧机的空负荷试车步骤应遵循先单机后联机先无负荷后有负荷先辅机后主机的原则 1主机传动 要求达到轧辊升降速度平稳两辊的线速度要一致正反转切换顺利无明 显异常噪音电机冷却风机风量以及风向正常运转时间为4小时电机转 速为基速 2轧辊上下移动畅通无卡阻现象单侧压力调节方便无明显漏油保持时间为30分钟此次数为2次 3换辊系统 要求轧辊移动到位无卡组现象主传动座于轧辊付锁正常次数2次4火焰喷涂 上下喷枪运行平稳单双动可调速工作时间为连续运转30分钟次数2次5导出辊 运转灵活无卡组现象 6液压平动剪 剪刃向上移动到位自动复位正常平移灵活无卡组 7导板 导板抬起不得超过卷取机钳口落下不得触及地面连续动作5次8推料板

铜及铜合金的金相组织分析

铜及铜合金的金相组织分析一)结晶过程的分析 结晶是以树枝状的方式生长,树枝状的结晶容易造成夹渣外,通常形成显微疏松。 取决于模壁的冷却速度外,还取决于合金成分、熔化与浇注温度等。 (二)宏观分析中常见缺陷 在浇注过程中往往产生缩孔、疏松、气孔、偏析等缺陷。 浇注温度和浇注方式的影响,铸锭、紫铜中容易出现气孔和皮下气孔。 由于合金元素的熔点、比重不一,熔炼工艺不当造成铸锭的成分偏析。 铸造时热应力可产生裂纹。 浇注工艺不当(浇注温度过低),浇注时金属液的中断会造成冷隔。 (三)微观分析 与铜相互作用的性质,杂质可分三类: 1. 溶解在固态铜中的元素(铝、铁、镍、锡、锌、银、金、呻、锑)。 2. 与铜形成脆性化合物的元素(硫、氧、磷等)。 3. 实际上不溶于固态铜中与铜形成易熔共晶的元素(铅、铋等)。 铋与铜形成共晶呈网状分布于铜的基体上,淡灰色。 铅含量很少时和铋一样呈网状分布于晶界,其颜色为黑色; 铅含量大时在铜的晶粒间界上呈单独的黑点。 暗场观察:铅点呈黑色,孔洞为亮点。 硫与氧的观察:均与铜形成化合物(Cu2S、Cu2O),又以共晶形式(Cu2S+ Cu、 Cu2O+ Cu)分布在铜的晶界上。 氯化高铁盐酸水溶液浸蚀:Cu2O变暗,Cu2S不浸蚀。 偏振光观察:Cu2O呈暗红色。 QJ 2337-92 铍青铜的金相试验方法 金相分析晶粒度检测金属显微组织分析,晶粒度分析,GB/T 6394-02 金属平均晶粒度测定方法 ASTM E 112-96(2004) 金属平均晶粒度测定方法

YS/T 347-2004 铜及铜合金平均晶粒度测定方法 GB/T13298-91 金属显微组织检验方法 GB/T 13299-91 钢的显微组织评定方法 GB/T 10561-2005 钢中非金属夹杂物含量的测定标准评级图显微检验法 ASTM E45-05 钢中非金属夹杂物含量测定方法 GB/T 224-87 钢的脱碳层深度测定方法 ASTM E407-07 金属及其合金的显微腐蚀标准方法 GB/T 226-91 钢的低倍组织及缺陷酸蚀检验方法 GB/T 1979-2001 结构钢低倍组织缺陷评级图 GB/T 5168-85 两相钛合金高低倍组织 GB/T 9441-1988 球墨铸铁金相检验 ASTM A 247-06 铸件中石墨微结构评定试验方法 GB/T 7216-87 灰铸铁金相 EN ISO 945:1994 石墨显微结构 GB/T 13320-07 钢质模锻件金相组织评级图及评定方法 CB 1196-88 船舶螺旋桨用铜合金相含量金相测定方法 JB/T 7946.1-1999 铸造铝合金金相 铸造铝硅合金变质 JB/T 7946.2-1999 铸造铝合金金相 铸造铝硅合金过烧 JB/T 7946.3-1999 铸造铝合金金相铸造铝 氧是铜中最常见的杂质,可产生氢脆。所以含氧量应严格规定。 1、金属平均晶粒度【001】金属平均晶粒度测定… GB 6394-2002 自动评级【010】铸造铝铜合金晶粒度测定…GB 10852-89

A铝合金显微组织及断口分析

目录 1 绪论 (1) 1.1断口分析的意义 (1) 1.2 对显微组织及断口缺陷的理论分析 (1) 1.3研究方法和实验设计 (3) 1.4预期结果和意义 (3) 2 实验过程 (4) 2.1 生产工艺 (4) 2.1.1 加料 (4) 2.1.2 精炼 (4) 2.1.3 保温、扒渣和放料 (5) 2.1. 4 单线除气和单线过滤 (5) 2.1. 5连铸 (6) 2.2 实验过程 (6) 2.2. 1 试样的选取 (6) 2.2.2 金相试样的制取 (8) 2.2.3 用显微镜观察 (9) 2.3 观察方法 (10) 2.3.1显微组织的观察 (10) 2.3.2 对断口形貌的观察 (11) 3 实验结果及分析 (11) 3.1对所取K模试样的观察 (11) 3.2 金相试样的观察及分析 (12) 3.2.1 对显微组织的观察 (12) 3.2.2 断口缺陷 (15)

结论 (23) 致谢 (24) 参考文献 (25) 附录 (27)

1 绪论 1.1断口分析的意义 随着现代科技的发展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向发展。长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的发展。尤其随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流动性好、气密性好、收缩率小和热裂倾向小,经过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒适、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。 然而,由于其凝固收缩,同时在熔融状态下很容易溶入氢,因此铸造铝合金不可避免地包含一定数量的缺陷,比如空隙、氧化物、孔洞和非金属夹杂物等[5-7]。这些缺陷对构件的力学性能影响较大,如含1%体积分数的空隙将导致其疲劳50%,疲劳极限降20%[8-9]。所以研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的影响具有重要意义[10]。而这些缺陷往往是通过显微组织和断口分析来研究的。 另外,通过显微组织和断口分析所得到的结果可以分析这些缺陷产生的原因,研究断裂机理,比结合工艺过程分析缺陷产生的原因,从而对改进工艺提出一定的有效措施,确定较好的生产工艺,以提高铝合金铸锭的性能。 但关于该合金的微观组织及其断口分析研究较少,研究内容深但不够综合,每篇论文多研究其部分缺陷,断口的获得多为拉伸端口。因此,希望对A356铝合金的断口缺陷有一个较为全面的研究。 1.2 对显微组织及断口缺陷的理论分析 铸件的力学性能与其微观组织有密切联系[11]。A356合金是一个典型的Al-Si-Mg系三元合金,它是Al-Si二元合金中添加镁、形成强化相Mg2Si,通过热处理来显著提高合金的时效强化能力,改善合金的力学性能。A356合金处于α-Al+Mg2Si+Si三元共晶系内,其平衡组织为初生α-Al+(α-Al+Si)共晶+

铝合金热轧工艺

铝及铝合金热轧工艺 热轧坯料主要采用的是半连续、连续两种生产方式生产铝锭,现代化的热连轧大部分都是采用半连续铸造的生产方式生产铸锭,可生产出来的铸锭重量重,铸锭的尺寸、表面、化学成分和内部质量较高 一铸锭的制备和质量要求。 (1)铸锭的选择应考虑到客户的质量需求和自身设备能力和工艺水平。(举例子)(2)铸锭的厚度选择的依据:成品厚度和变形率 (3)铸锭宽度选择的依据:成品的宽度和合金的切边量 (4)铸锭长度的选择依据:热轧卷的卷径 二铸锭的断面形状: (1)圆弧形 (2)梯形 (3)V字形 (4)长方形 三铸锭切头尾的目的 四热轧前铸锭头尾的处理方式 (1)表面要求不高的产品可以对铸锭浇铸口和底部不做任何处理 (2)对表面要求高的产品必须将头尾铸造缺陷部分全部切除 五、热轧前铸锭的表面处理 1、铣面 铸锭铣面量的确定原则:产品的用途、合金特点。铸造技术,目前国内带侧面铣的的铣削量大面一般8-15mm.小面8-10 mm. 铣床的特点:干铣和湿铣 2铣面后的表面质量要求 (1)铸锭小面弯曲不易过大 (2)铣刀痕的控制,刀痕深度不得大于0.15MM (3)表面无粘铝现象 (4)无磕碰或存放时间过长

六、铸锭的加热 (1)天然气加热炉的基本特点,加热速度快、温度均匀、 (2)加热制度:均热温度,加热温度和炉内气氛 (3)加热温度必须满足热轧温度的要求,保证合金塑性高,变形抗力低 (4)装炉要求:先宽后窄,先一次后二次,先低温后高温,先小吨位后大吨位 七热轧工艺 (1)轧制方式和特点:纵轧、横轧、斜轧 (2)影响轧制的几个重要因素:轧制过程包括粗轧和精轧,在轧制过程中主要是轧辊,轧件和乳液三者之间的作用过程 (3)轧辊几个常用的术语 A:辊型 B:轧辊硬度 C表面粗糙度 D轧辊的基本结构 E轧辊的加工精度::尺寸精度、轧辊径向跳动、辊身两端直径差、配对辊 径差,表面状况。 八热轧制度设计 (1)热轧速度的确定 A开始轧制阶段,铸锭短且厚,绝对压下量大,咬入困难,一般为了咬入采用低速轧制 B 中间轧制阶段为了控制终轧温度和提高生产效率,一般都采用高速轧制 C 最后轧制阶段,因为带材变得薄而长,轧制过程温度降得太快,但是也 要控制表面所以要根据现场情况合理选择轧制速度。 热轧压下制度 热轧压下制度的确定主要包括热轧总加工率和道次加工率的确定(2)总加工率的确定原则 铝及铝合金板带材的热轧总加工率可达到90%以上,总加工率愈大,材 料的组织越均匀,性能越好, A合金材料的性质。纯铝以及软合金,其高温塑性范围较宽,热脆性小、 变形抗力低,因而其总加工率越大,硬合金则相反。 (3)满足最终产品表面质量和性能的要求 供给冷轧的坯料,热轧总加工率应留足冷变形量,以利于控制产品性能 和获得良好的冷轧表面质量;铝及铝合金热轧制品的总加工率应大于 80%。 (4)轧机能力及设备条件 轧机最大工作开口度和最小轧制厚度并差越大,铸锭越厚,热轧总加工 率越大,但铸锭厚度受轧机开口度和辊道长度的限制。铸锭尺寸及质量, 铸锭厚且质量好,加热均匀,热轧总加工率相应增加。 道次加工率的确定原则 制定道次加工率应考虑合金的高温性能、咬入条件、产品质量要求及设备能力。不同轧制阶段加工率确定原则是: (1)开始轧制阶段,道次加工率比较小,一般为2%~10%,因为前几道次主

常用金属材料的显微组织观察

工程材料学实验(常用金属材料的显微组织观察) 何艳玲编写 机电工程学院材料系

常用金属材料的显微组织观察 一、实验目的 1.观察各种常用合金钢,有色金属和铸铁的显微组织。 2.分析这些金属材料的组织和性能的关系及应用。 二、概述 1.几种常用合金钢的显微组织 合金钢依合金元素含量的不同,可分为三种:合金元素总量小于5%的称为低合金钢;合金元素为5~10%的称为中合金钢;合金元素大于10%的称为高合金钢。 1)一般合金结构钢、合金工具钢都是低合金钢。由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同,差别只是在于合金元素都使C曲线右移(除Co外),即以较低的冷却速度可获得马氏体组织。例如16Mn淬火后为马氏体组织,40Cr钢经调质处理后的显微组织是回火索氏体,如图1、2所示。GCrl5钢(轴承钢)840℃油淬低温回火试样的显微组织,与T12钢780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织,如图3所示。 图1 16Mn淬火组织图2 40Cr钢调质后的组织 图3 GCr15钢淬火低温回火后组织图4 W18Cr4V淬火三次回火后的组织

2)高速钢是一种常用的高合金工具钢,例如W18Cr4V。因为它含有大量合金元素,使铁碳相图中的E点大大向左移,以致它虽然只含有0.7~0.8%的碳,但也已经含有莱氏体组织,所以称为莱氏体钢。 高速钢的铸造状态下与亚共晶白口铸铁的组织相似。其中莱氏体由合金碳化物和马氏体或屈氏体组成。莱氏体沿晶界呈宽网状分布,莱氏体中的碳化物粗大,有骨架状,不能靠热处理消除,必须进行锻造打碎。锻造退火后高速钢的显微组织是由索氏体和碳化物所组成的。 高速钢优良的热硬性及高的耐磨性,只有经淬火及回火后才能获得。它的淬火温度较高,为1270~1280℃,以使奥氏体充分合金化,保证最终有高的热硬性。淬火时可在油中或空气中冷却。淬火组织为马氏体、碳化物和残余奥氏休。由于淬火组织中存在有较大量(25~30%)的残余奥氏体,一般都进行三次约560℃的回火。经淬火和三次回火后,高速钢的组织为回火马氏体、碳化物和少量残余奥氏体(2~3%)(图4)。 3)不锈钢是在大气、海水及其它浸蚀性介质条件下能稳定工作的钢种,大都属于高合金钢,例如应用很广的1Crl8Ni9即18-8钢。它的碳含量较低,因为碳不利于防锈;高的铬含量是保证耐蚀性的主要因素;镍除了进一步提高耐蚀能力以外,主要是为了获得奥氏体组织。这种钢在室温下的平衡组织是奥氏体十铁素体+(Cr,Fe)23C6。为了提高耐蚀性以及其它性能,必须进行固溶处理。为此加热到1050~1150℃,使碳化物等全部溶解,然后水冷,即可在室温下获得单一的奥氏体组织,如图5所示。 但是1Crl8Ni9在室温下的单相奥氏体状态是过饱和的,不稳定的,当钢使用时温度到达400~800℃的范围或者从较高温度,例如固溶处理温度下冷却较慢时,(Cr,Fe)23C6会从奥氏体晶界上析出,造成晶间腐蚀,使钢的强度大大降低。目前,防止这种晶间腐蚀的途经有两条:一是尽量降低碳含量,但有限度;二是加入与碳的亲和力很强的元素Ti,Nb等。因此出现了1Crl8Ni9Ti、0Crl8Ni9Ti 等及更复杂的牌号的奥氏体镍铬不锈钢。 200× 500× 图5 1Crl8Ni9钢固溶处理后的组织 2.几种常用有色金属的显微组织 1)铝合金应用十分广泛的铝合金主要分变形铝合金和铸造铝合金两类。依照热处理效果又可分为能热处理强化的铝合金及不能热处理强化的铝合金。

均匀化退火对6056铝合金组织与性能的影响

均匀化退火对6056铝合金组织与性能的影响 宁波科诺铝业有限责任公司,董培纯邱建平李博 摘要:采用热分析技术、扫描电子显微镜、拉伸试验研究均匀化退火处理对于6056铝合金微观组织和力学性能的影响。结果表明:6056铝合金铸态组织存在严重的枝晶偏析及明显的非平衡共晶组织,经过540℃×12 h 均匀化退火处理后,枝晶偏析和非平衡共晶组织明显消除,其强度降低、塑性大幅度提高。 关键词:均匀化退火;微观组织;力学性能 The effect of homogenizing annealing on microstructure and properties of 6056 aluminum alloy (Ningbo KENO Aluminum Co.,Ltd,Ningbo 315033,China) Abstract:The influence of homogenizing annealing on microstructure and properties of 6056 aluminum alloy is investigated by heat analysis technology,scan electrical microscope and tensile test. The results show that severe dendritic-segregation and unequilibrium phases exist in its as-cast structure,After 540℃×12h homogenizing annealing treatment,dendrite segregation and unequilibrium eutectic phases eliminate . The strength decrease and the ductility increase obviously. Keywords:Homogenization annealing;Microstructure;Mechanical properties 引言 6056铝合金是广泛应用于汽车和航空领域的一种Al-Mg-Si-Cu合金,其强度比6061铝合金高15%,可焊性、耐腐蚀性能和切削加工性能均优于7075和2024铝合金[1,2]。6056铝合金成分复杂,在半连续铸造过程中,铸锭组织会不同程度地偏离平衡状态,产生严重的枝晶偏析,形成大量的非平衡凝固共晶组织,因此,6056铝合金铸锭必须进行均匀化退火处理,以消除枝晶偏析,同时使合金中非平衡凝固共晶组织溶入基体,最大限度地减少基体中残留的结晶相,提高合金的塑性[3,4]。 均匀化退火处理是6056铝合金获得理想工艺性能和力学性能的关键环节之一。目前国内对于6065铝合金的均匀化退火处理的研究还不充分,本文通过研究均匀化退火对6065铝合金微观组织和性能的影响,为6056铝合金的生产提供试验指导。 试验材料与试验方法 按照表1所示的6056铝合金成分进行配料,使用中频感应炉熔炼,精炼后采用半连续铸造的方法铸成Φ85 mm的铸棒。在铸棒上取样,采用DSC进行热分析试验,得到铸棒中低熔点共晶组织的熔化温度,以确定均匀化退火温度,DSC试验的升温速率5 ℃/min,从室温加热到600 ℃。截取Φ85×100 mm的铸棒进行均匀化退火,均匀化退火温度为540 ℃,保温时间分别是6 h、12 h。从铸态和均匀化退火后的铸棒上切取金相试样,经机械研磨和抛光后,在2 ml HF、3 ml HCl、5 mlHNO3、250 mlH2O 腐蚀液中腐蚀10 s,用清水冲洗干净,然后用酒精擦净吹干,制得的试样采用扫描电子显微镜观察微观组织形貌。将铸态及均

铝材连续铸轧工艺技术操作详细说明祥解

连续铸轧工艺技术规程 目录 1.目的及适用范围 2.连续铸轧工艺流程 3.熔炼工艺技术规程 4.精练工艺技术规程 5.铸轧工艺技术规程 6.供料嘴组装工艺技术规程 7.液化气喷涂工艺技术规程 8.炉外除气工艺技术规程 9.附件: 9.1化学成分控制标准 9.2轧辊磨削工艺技术要求 9.3烘炉制度、洗炉制度 9.4废料分级标准 9.5试样切取要求

连续铸轧工艺技术操作规程 1目的及适用范围 1.1 目的:规范工艺操作,保证产品质量。 1.2 适用范围: 本规程适用于?960X1850mm倾斜式铸轧机连续铸轧工艺技术规程。 2 连续铸轧工艺流程 连续铸轧的原料为:铝锭、铝水、待回炉废料,成品为铸轧带材。其生产工艺流程如下: 铝锭、铝水、待回炉废料---熔炼及配料——精练—铸轧—成品铸轧卷 3 熔炼工艺技术规程 3.1、连续铸轧的原料为:铝水、铝锭、待回炉废料、中间合金、易挥发合金。 3.2、熔炼炉装炉顺序为:小片料---板片料----难熔难挥发合金---铝水---易挥发合金。 3.3、各种炉料应均匀平坦分布在炉子中央或稍靠近烟道及烧咀大火交叉处,同时不可堵住喷嘴。 3.4、使用电解铝水时必须配入30%~35%的冷料。 3.5、装炉炉料应干净,无油污、无杂质、无水分等。 3.6、按要求进行配料和装炉。加料要迅速,以尽量减少炉内热量损失,同

时计算各种牌号废杂料的化学成分及用量。 3.7、当炉料化平后应立即对熔体进行搅拌,加快固体料熔化速度并向炉内均匀撒入一层覆盖剂,用量为1kg/t.Al. 3.8、炉料完全融化完毕后进行取样分析,式样在炉子中间部位舀取,取样勺距炉底约100mm,式样在两个炉门共取两个,进行炉前分析,(最终试样以溜槽中所取为准)如果计算值与试样成份差值大于20%时应重新搅拌取样。 3.9、根据炉前分析结果进行配料,加入合金时要分别在两个炉门向不同位置加入,加入合金时铝液温度不得低于720℃。 3.10、向表面撒一层覆盖剂用量为20 kg,关闭炉门进行保温,准备倒炉。 3.11、倒炉时铝液温度控制在740℃~750℃(测量前应充分搅拌熔体,保证炉内熔体温度均匀),温度测量采用在两个炉门分别取三点的平均值。3.12、倒炉过程中导流流槽要加盖一层石棉毯,以防热量损失。 3.13、倒炉前后要对熔炼、保温炉导流口、导流竖管及倒流流槽进行检查清理,倒流流槽内刷滑石粉。 3.14、倒炉结束后应清理炉内铝渣。 3.15、倒炉时间不大于30分钟。 3.16、精炼完毕静置10~15分钟将表面浮渣扒净,扒渣应干净彻底,然后均匀撒入一层覆盖剂用量为20kg。 3.17、保温炉熔体温度控制在730℃~740℃之间。

铝合金显微组织图册

显微组织图册 1、4032挤压棒:500X下共晶硅(灰色相)尺寸---正常组织状态:H112 腐蚀时间:15-25S 2、4032铸棒: 铸态(共晶硅呈灰色条状,成团簇状)均质(共晶硅灰色圆形均匀分散在样品上 初晶硅一般>20um 2、合金:3003 状态:均质腐蚀时间:20-30S 200X 正常组织500X 正常组织正常组织(抛痕严重)

3、合金:6005 /6005A 状态:均质腐蚀时间:30-40S 200X 正常组织500X正常组织正常组织(抛光效果不好)4、合金:6061 状态:均质腐蚀时间:30-40S 200X正常组织500X正常组织 200X均质效果不佳500X均质效果不佳腐蚀时间过短,境界不明显5、合金:6063 状态:均质腐蚀时间:30-40S

200X正常组织500X正常组织 拖尾严重---抛一段时间后旋转180度,可避免此类事件发生磨痕(研磨效果不佳)6、合金:6088B 状态:均质腐蚀时间:30-40S

200X正常组织500X正常组织 200X均质效果不佳200X均质效果不佳7、合金:6B10 状态:均质腐蚀时间:30-40S 200X正常组织

200X正常组织500X正常组织 腐蚀时间过长腐蚀时间过短,晶界不明显9、合金:YF66C(同时测量晶粒尺寸)状态:均质腐蚀时间2-3min

YF66F 200X正常组织YF66F 500X正常组织 YF66H 100X 过烧组织YF66H 200X 过烧组织YF66H 200X 过烧组织11、合金:7032 状态:均质腐蚀时间:40-50S

研究铝合金连续铸轧数值模拟现状

研究铝合金连续铸轧数值模拟现状 发表时间:2018-10-29T16:35:45.657Z 来源:《防护工程》2018年第15期作者:曾宪林 [导读] 高性能的铝制材料被广泛应用于各行各业之中,我国市场对高性能的铝制材料需求很大。本篇文章主要讲了铝合金在连续铸轧的过程中数值模拟方法的种类和会出现的问题,并研究了国内现在铝合金连续铸轧的现状。 曾宪林 广西南南铝箔有限责任公司广西南宁市 530031 摘要:我国现代的铝合金业发展方向是流程短、连续自动化、节约能源以及质量好。高性能的铝制材料被广泛应用于各行各业之中,我国市场对高性能的铝制材料需求很大。本篇文章主要讲了铝合金在连续铸轧的过程中数值模拟方法的种类和会出现的问题,并研究了国内现在铝合金连续铸轧的现状。 关键词:铝合金;连续铸轧;数值模拟 当前我国生产铝板带材坯料(Aluminum Sheet Strip Blank)的方式包括热轧(Hot-rolling)以及连续铸轧(Continuous Cast Rolling),经由热轧加工而成的产品性能好,其中热连轧(Hot Continuous Rolling)是最先进的,由于需要进行的投资成本较大,导致我国并没有铝板带坯热连轧的生产线,我国铝板带坯的生产是运用双机架热轧,运用双机架热轧技术会让产品在精度以及性能上受到局限。但是连续铸轧与热轧相比,连续铸轧技术需要投入的资金少,且生产流程比较短,能源消耗也比较低,所以连续铸轧技术在二十世纪八十年代的中国就飞速的发展起来并变成主流的铝板带材坯料生产方式,我国能进行铸轧的合金品种非常少,所以我国的高性能铝板带材都是要进口的,就需要我国的研究人员要积极的开发先进的连续铸轧技术以及工艺,这对我国未来的发展非常重要。 1进行具体的分析我国连续铸轧工艺 随着我国连续铸轧技术的快速发展,通过运用连续铸轧工艺生产出来的铝合金板带坯增加了市场竞争。我国在进行研究铝合金连续铸轧的数值模拟上取得了非常大的进步。目前我国现代的连续铸轧工艺已经完全可以替代传统运用铸锭热轧工艺生产出的铝带坯。我国的连续铸轧工艺已经全面达到在铝合金生产中的自动化控制。铝加工业的不断发展让连续铸轧的设备也在一直变得更加先进。我国最先进的连续铸轧机降低了后道工序的压力,也节约了在生产铝箔上的投资以及能源,大大的提升了工厂的生产效率,并在竞争激烈的市场中占有着举重若轻的重要地位。 连续铸轧的工艺是指把金属熔体轧制成半成品带坯或者是成品带材的工艺。连续铸轧技术的特点是通过两根内部有冷却水系统的旋转铸轧辊(Rotary Casting Roll)做为结晶器,熔体是在旋转铸轧辊的缝隙之间在很短的时间之内就能完成凝固以及热轧这两个过程。铝带坯连续铸轧工艺(Continuous Casting Pocess of Aluminum Strip)具有低投入以及流程短的特点,通过运用连续铸轧工艺生产得到的铝合金板带材有凝固快以及定向型结晶的特点,并且晶体具有很强的生长方向。连续铸轧的过程非常复杂,熔体在进行连续的散热以及凝固的同时还会因为受轧制力的影响会发生形变,铸造的过程与热轧的过程这俩具有互相影响的作用。双辊连续铸轧工艺(Double Roll Continuous Casting Process)是把连续转动且具有水冷系统的轧辊作为结晶器,在经过轧辊缝之时会凝固并受到轧制力加工形成的一个工艺方法,双辊连续铸轧工艺的应用在我国的铝板带材生产中非常广泛。有效进行控制铸轧中的工艺参数可以让运用铸轧法做成的合金材料具有组织均匀且晶粒细小等这些特点。而且国内外已经有众多学者开始进行研究铝板带坯连续铸轧过程中的双辊式连续铸轧法。进行连续铸轧时金属的凝固以及变形这两者之间是能相互影响的。 图1 连续铸轧系统示意图 2研究连续铸轧过程中的数值 在进行铝带坯连续铸轧中金属的凝固成形过程非常复杂,它并非只是在传统的铝带成形工艺中将铸造以及热轧过程简简单单的进行融合。金属在连续铸轧工艺中会受到冷却以及凝固,并会受轧制力进而出现塑性变形,他们是可以进行相互的影响以及相互制约。在缩短连续铸轧技术的生产流程前提下会让连续铸轧中的过程及装备变复杂。在进行连续铸轧技术中基本上带坯出口的温度都是处在三至四百度之间,由此可知可以在三百至六百六十度之间的温度范围进行轧制变形,这样会加大难度来实际测量在连续铸轧中的工艺参数。可以通过合理的运用数值模拟来研究连续铸轧过程。目前国内外的铝加工业都处于飞速的发展阶段,需要我们有更高的标准去要求铝及铝合金的连续铸轧技术。近几年来在国内国外许许多多的研究学者都开始研究连续铸轧过程的数值模拟工作。 一些专家学者研究了运用温度为重点的连续铸轧中的数值模拟工作,主要是分析随着温度的变化怎样影响金属的铸轧,打造铸轧区以及铸坯的传热模型,建立理论的目的是可以简化在连续铸轧中因为变形会受到温度的影响,影响连续铸轧中的参数,在连续铸轧中金属温度的变化会直接影响到金属结构发生变形以及影响金属材料本身的性质,金属结构发生的变形也会运用变化热边界条件再让温度改变,在连续铸轧技术中温度与变形之间是存在着相互作用的。一些专家学者研究了运用变形场为重点的进行连续铸轧中的数值模拟工作,主要是分析在连续铸轧中的变形,在连续铸轧中通过降低由于温度场的变化影响到的变形场就可以建立起变形模型,在连续铸轧中因为部分参数的变化会影响到金属的变形。实际上一般在以变形场为主的数值模拟中会因为温度的改变严重影响到变形场。一些专家学者研究了运用热力耦合为重点的进行

工艺参数对3003铝合金组织与 性能的影响

Material Sciences 材料科学, 2018, 8(5), 603-608 Published Online May 2018 in Hans. https://www.360docs.net/doc/5510292278.html,/journal/ms https://https://www.360docs.net/doc/5510292278.html,/10.12677/ms.2018.85071 Effect of Process Parameters on Microstructure and Properties of 3003 Aluminum Alloy Yitan Wang1, Qingsong Dai1,2, Ping Fu1, Mingwei Zhao1 1Guangxi Liuzhou Yinhai Aluminum Co., Ltd., Liuzhou Guangxi 2School of Materials Science and Engineering, Central South University, Changsha Hunan Received: May 4th, 2018; accepted: May 20th, 2018; published: May 29th, 2018 Abstract Taking 3003 aluminum alloy as the research object, the effects of cold rolling rate and annealing temperature on the microstructure and properties of the sheet were studied. The results show that the work hardening of 3003 alloy sheet is significant. With the increasing of cold rolling de-formation, the tensile strength and yield strength of alloy plates increase gradually, while the elongation decreases. And during the annealing of the finished product, recovery and recrystalli-zation occur within the alloy. As the annealing temperature increases, the tensile strength and yield strength gradually decrease, and the elongation gradually increases. Keywords 3003 Aluminum Alloy, Cold Rolling Deformation, Annealing Temperature, Microstructure and Properties 工艺参数对3003铝合金组织与 性能的影响 王绎潭1,戴青松1,2,付平1,赵明伟1 1广西柳州银海铝业股份有限公司,广西柳州 2中南大学材料科学与工程学院,湖南长沙 收稿日期:2018年5月4日;录用日期:2018年5月20日;发布日期:2018年5月29日

铝合金杆(电缆)连铸连轧工序

铝合金杆(电缆)连铸连轧工序 铝连铸连轧生产属于热加工工艺。是电工用铝加工的第一道生产工序,也是公司生产中的重要生产工序。它的主要生产功能是把电工用铝锭加工成φ9.5大小的圆铝杆。 连轧机的主要控制参数有:保温炉铝液温度、浇铸下浇煲铝液温度、铸锭温度、冷却水温度、冷却水压力、乳化液温度、乳化液压力、浇铸电机反馈电压、连轧、电机反馈电压、连轧电机反馈电流等主要参数。 铝连铸连轧生产共分为9个生产工序,由3个操作机台来完成。 9个工序为:装料、熔化、保温、精炼、过滤、连续浇铸、剪头、连续轧制、成圈。 3个操作机台是:熔化、浇铸、轧制。其中装料、熔化、精炼工序为熔化机台部分;过滤、连续浇铸工序为浇铸机台部分;剪头、连续轧制工序为轧制机台部分。 一、装料工序 1、电线电缆使用的电工铝纯度一般要求不低于99.70%,并符合GB/T1196—93规定。为了防止铝单线出现裂纹倾向和单线机械强度不达标,必须使Fe含量大于Si含量,其中Fe含量和Si的比例应控制在1.3~2.0之间。 2.配方 2.1若铝锭中Fe含量和Si含量比例达不到1.3或Fe含量小于Si含量时,在尽量少降低铝导电率的条件下为了保证铝线的强度,应对铝进行控铁处理,在铝中加入适当的铝铁合金。 2.2若铝锭中V、Mn、Ti、Cr4种微量元素总量大于0.01%时,需加入铝硼合金。硼在铝中可以降低V、Mn、Ti、Cr微量元素杂质对导电率的影响。另外硼的加入

可以起细化晶粒的作用。 2.3若Si含量在0.09~0.13%时,在加料过程中加入一定的铝稀土合金,使硅与稀土结合形成化合物,减少游离硅对铝组织结构的危害,提高铝杆的导电性能与机械性能。 2.4对优质产品的化学成分应控制为:Fe<0.15%, Si<0.12%, Cu<0.01%。杂质总和小于0.29%。 开始上料时,应连续上料到炉满为止,炉膛上部空炉端不允许超过400mm,防止火焰外冲,也不允许装料过满。采用铝稀土、铝硼和铝铁中间合金作为辅助材料加入,根据原材料和可能的配料结果以及生产实践经验,可以采用一种或几种处理方法,以保证取得最佳的技术经济效果。 3.设备主要技术参数(提升小车及料斗) 提升高度:8.7m 最大提升重量:500㎏提升速度:2.5m/min 二、熔化工序 熔化工序在熔化炉(即冲天炉)中完成。熔化工序的作用是把铝锭通过加热熔化成铝液。铝锭熔化后铝液的温度控制在720℃~740℃,不大于760℃。温度过高,铝液大量吸气,气体与铝液在高温下反应形成铝液中夹渣,直接影响铝杆质量。 1. 技术参数 炉膛腔直径:1400mm 有效高度:7.14m 有效容积:10.8m3 熔炉总高:7.78m 熔化标称速度:5T/h 天然气用量:130m3/h 铝金属烧损:最佳状态0.5%~ 1.0%,平均值约为0.7%,最大烧损在3%以内。 2. 控制要点 2.1 尽量避免水分与铝液接触,与铝水接触的进出口、出水口、流槽等各类工具

连续铸轧技术总结

连续铸轧技术总结 我是1988年参加工作,公司的前身是冶金部铝加工试验厂,厂目的是:对变形铝合金连续铸轧技术的研发和推广,这给了解和学习连续铸轧理论知识和操作技能等方面提供了良好的条件。随着工艺规程的成熟和完善,产品质量也得到较大的提高。 在生产操作过程中,我虚心向技术人员和老师傅学习、请教。逐渐总结出一些切实可行而且行之有效的控制和提高产品质量的方法。 通过对基础理论的学习,我了解并掌握了铸轧生产过程中的铸轧板质量的有关操作和解决问题的方法。 1.连续铸轧的基本原理 从供料嘴子前沿到铸轧辊中心线之间的距离成为铸轧区,液体金属铝通过供料嘴进到铸轧区时,立即与两个相转动的铸轧辊相遇,液体金属铝的热量不断从垂直于铸轧辊面的方向传递到铸轧辊中,使附着在铸轧辊表面的液体金属铝的温度急剧下降,因此,液体金属铝在铸轧辊表面被冷却、结晶、凝固。随着铸轧辊的不断转动,液体金属铝的热量继续向铸轧中传递,并不断被铸轧辊中的冷却水带走,晶体不断向液体中生长,凝固层随之增厚。液体金属铝与两个铸轧辊基本同时接触,同时结晶,其结晶过程和条件相同,形成凝固层的速度和厚度相同,当两侧凝固层厚度随着铸轧辊的转动逐渐增加,并在两个铸轧辊中心线以下相遇时,即完成了铸造过程,并随之受到这两个铸轧辊对其凝固组织的轧制作用,并给以一定的轧制加工率,是液体金属铝被铸造、轧制成铸轧板,这就是连续铸轧的基本原理。 由此可见,通过供料嘴子从铸轧辊的一侧源源不断地供应液体金属铝,经过铸轧辊的连续冷却、铸造、轧制,从铸轧辊的另一侧不断铸轧出铸轧板,使进、出铸轧区的金属量始终保持平衡,这样就达到了连续铸轧的稳定过程。 生产铸轧板的连续铸轧工艺流程为: 炉子准备→配料→装炉→熔化→撒覆盖剂→搅拌→扒渣→取样→成分调整及再次取样→倒炉→静置炉内精炼→静置炉与保温→在线除气→过滤流槽系统→铸轧→铸轧板。 2.铝熔体质量的控制 铝熔体的质量是保证铸轧板质量的关键因素。消除铝及铝合金熔体中的气体、夹杂物和有害元素,(包括传统的静置炉内精炼和除气箱内在线精炼),同时避免铝熔体过烧和局部过热,才能得到质量上乘的铝熔体,保证铸轧板的质量和后续产品的质量。 2.1控制铝熔体的含氢量 铝熔体吸氢的主要反应是铝与水的反应,低于250℃时,铝与空气中的

浅析连续铸轧法生产铝带坯的现状

浅析连续铸轧法生产铝带坯的现状 发表时间:2018-09-10T09:40:01.563Z 来源:《基层建设》2018年第21期作者:曾宪林[导读] 摘要:本篇文章主要分析了我国运用连续铸轧技术(Continuous Casting Rolling Technology)生产铝带坯的现状以及运用连续铸轧技术生产铝及铝合金带坯的优势与弊端。 广西南南铝箔有限责任公司广西南宁市 530031 摘要:本篇文章主要分析了我国运用连续铸轧技术(Continuous Casting Rolling Technology)生产铝带坯的现状以及运用连续铸轧技术生产铝及铝合金带坯的优势与弊端。连续铸轧技术生产铝带坯在我国飞速的发展并成为重要的生产铝板带材坯料(Aluminum Sheet Strip Blank)的方式。目前我国的连续铸轧工艺在铝合金生产中已经达到能自动化。铝加工业的不断发展让连续铸轧的设备也更加先进。详细的探讨了传统的连续铸轧技术在现代的实际生产中所存在的问题及详细的分析了如何解决这些技术上问题。 关键词:连续铸轧;铝带坯;生产现状 高性能的铝制材料被广泛应用于各行各业之中,比如像航空航天行业、食品包装行业、交通运输行业、建筑装饰行业以及机械设备制造行业等等,伴随着我国计算机科学的迅猛发展,我国的科技技术也发生了日新月异的变化,同时铝带坯被应用的范围也更加的广泛。生产铝带坯的方法有热轧(Hot-rolling)以及铸轧(Cast Rolling)。运用热轧法生产出的铝带坯产品具有良好的深加工性能,铝及铝合金板带都可以运用热轧法来进行生产,运用多机架热连轧工艺(Frame Hot Continuous Rolling Process)是热轧法生产铝带坯方式中的具有最先进水平的技术,然而运用多机架热连轧技术生产铝带坯是需要投入大量资金。 1了解连续铸轧的基本含义 传统的双辊式连续铸轧(Traditional Double Roll Continuous Casting Rolling)与其他铸轧方法的区别就是铝熔体经由供料嘴在铸轧辊的一边进入铸轧区,进入铸轧区后马上接触两根在转动且已经被水冷却的铸轧辊,液态状态的铝熔体会在两个辊缝之间进行凝固,凝固态的铝熔体在铸轧区中受到轧制变形形成铝带坯。传统的双辊式连续铸轧的设备因为其本身的性质与受到我国传统技术的局限仅仅可以生产出铝合金的1系、3系、8系、5系中的部分合金以及6系中的部分合金。目前我国现代的连续铸轧工艺已经完全可以替代传统的运用铸锭热轧工艺进而生产出的铝带坯。 2运用连续铸轧技术生产铝带坯的基本内容把热轧法供坯与铸轧法供坯做对比,连续铸轧法的优点有需要投入的资金比较少、连续铸轧技术的设备规模小、连续铸轧技术的设备便于安装维修。铝带坯的生产周期较短、生产的工艺流程简单且能源消耗较低,所以生产铝带坯的成本就比较低。 热轧法供坯与连续铸轧法供坯的基本对比指标表 运用连续铸轧法生产的最大优势就是比热轧法成本低,现代铝加工行业日益激烈,这较低的价格就可以在市场之中占据重要地位,所以要合理的运用连续铸轧法进行生产,并要发挥出在连续铸轧法上最大的成本优势运用到生产铝箔坯料以及建筑装饰用材上。连续铸轧法在从投料进行到产出周期上也具有着很大的优势,缩短产品的交货周期能让公司取得信任并提高客户的满意程度,还能让用户能更好的进行反馈,方便能遵照订单量再进行生产,可以有效的减少企业占用流动资金,让企业保持正常的运营。运用连续铸轧法也存在着一些弊端就像是在进行铝带坯连续铸轧的时候铝熔体的冷却速度很快,运用连续铸轧法生产出来的铝板带具有向异性,而且产品的深加工性能远远不及热轧法,比较适合用于生产食品包装用铝箔或者是散热片产品等等。传统的连续铸轧技术操作流程比较短且消耗能源较低,但是在同一条的连续铸轧生产线和铸造生产线上需要一样的工作人员却在产品产量上低出许多,所以造成了在进行连续铸轧生产产品的过程中工作人员的人力成本实际上是远远比铸造生产要高出许多的。在进行铝合金连续铸轧技术中需要同时进行结晶以及轧制,但是因为结晶区间较短和对参数的匹配要求高,所以就要求运用于连续铸轧生产的熔体中有高的质量和外形尺寸,还有高要求的轧辊表面质量。在进行铝合金连续铸轧技术中一部分的铸轧机不具备自动化或是自动化能力不足,在进行人工操作时要严格要求设备操作人员的技能,要不然就会影响到产品的质量。国内许多的企业已经开始大规模的建立生产线装备数十台乃至上百台设备,在对企业的管理与运转上来说是一项极大的挑战。在运用传统的连续双辊铸轧上不能通过使用优化工艺产出在固液温差上差距较大的合金,但是有的企业一直在坚持进行试验以及实践但最后产出的产品质量都是无法达到规定要求的。在进行连续铸轧的过程中要严格的要求前箱液位高度以及机列震动,就是当在生产性能高的合金过程中细微的周期波动就会非常容易出现横纹,若尽管控制住没有出现横纹的话也会由于重力的作用让溶质都集合在铸轧的下板面,会导致成品的下板面出现非常明显的色差。因为在进行连续铸轧技术生产的过程流速较低而且产量比较小,所以过滤方式的选择板式过滤最合适,然而在进行安装以及更换板式过滤的过程中如果发生操作不当的话就会非常容易出现夹渣,这也是加大了产品生产运行的监控以及工艺过程管理的难度。在进行连续铸轧生产的过程中会严格要求铝合金熔体的质量,要不然的话在铸嘴唇口处就会非常容易发生堵塞进而出现晶粒不均匀或者是条纹这样的缺陷。 我们要积极努力的改进我国传统的铝带坯连续铸轧技术,让连续铸轧技术能具有可以生产所有系列铝合金的能力。还要深入的进行研究铝合金连续铸轧的快速凝固方面的理论,进行完善传统的浇铸模式和提高浇铸速度并提高生产线效率。建立具有完善工艺的铸轧生产线就能保障在铸轧生产中自动化的平稳完成运行,避免因为操作人员的因素影响铸轧过程,保障连续铸轧的顺利进行,积极完善连续铸轧铝带坯的质量,解决在连续铸轧工艺中出现的缺陷。 3结束语 随着我国科学技术的发展,经过多年的努力连续铸轧技术在我国已经得到非常迅速的推广和大范围的普及。我国现代的铝合金业发展方向是流程短、自动化、节约能源以及质量好。高性能的铝制材料被广泛应用于各行各业之中,我国市场对高性能的铝制材料需求很大。所以我国为了进一步加强连续铸轧技术研究人员要一直坚持不懈的学习和掌握国外最先进的技术,并要在开发以及制造上做出贡献,这也是为了更好的发展和巩固我国的连续铸轧技术。

相关文档
最新文档