(完整版)人教版九年级数学上册《旋转》知识点及复习题

合集下载

九年级上册旋转数学知识点

九年级上册旋转数学知识点

九年级上册旋转数学知识点九年级上册旋转数学知识点1.旋转的定义:把一个图形绕着某一O转动一个角度的图形变换叫做旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点。

重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。

2.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等3.作图:在画旋转图形时,要把握旋转中心与旋转角这两个元素。

确定旋转中心的关键是看图形在旋转过程中某一点是“动〞还是“不动〞,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角。

作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.知识点二、中心对称与中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.2.中心对称的两条基本性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.3.中心对称图形把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.初中数学重要考点数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(三要素)②任何一个有理数都可以用数轴上的一个点来表示。

人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

旋转基础练习附答案时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC可以看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形可以看成由基本图形________经过________次旋转而成.5.如图J23-3-2,一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观察图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特征:特征1:____________________;特征2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特征.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯一).图DJ3以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

人教版初中九年级数学上册第二十三章《旋转》知识点复习(含答案解析)

人教版初中九年级数学上册第二十三章《旋转》知识点复习(含答案解析)

一、选择题1.下列图形一定不是中心对称图形的是( )A .正六边形B .线段()213y x x =-+≤≤C .圆D .抛物线2y x x =+ 2.如图,将△ABC 绕点C(0,1)旋转180°得到△A′B′C′,设点A 的坐标为(,)a b ,则点A′的坐标为( )A .(,)a b --B .2(),a b --+C .(),1a b --+D .(,1)a b --- 3.如图,在等边△ABC 中,AC=8,点O 在AC 上,且AO=3,点P 是边AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( ).A .4B .5C .6D .8 4.以原点为中心,将点P (3,4)旋转90°,得到的点Q 所在的象限为( ) A .第二象限 B .第三象限 C .第四象限 D .第二或第四象限 5.下列图形中,是中心对称图形的是( )A .B .C .D . 6.如图,在平面直角坐标系中,点A 的坐标为(3,1)-,将OA 绕原点O 按顺时针方向旋转90︒得到OA ',则点A '的坐标为( )A .(3,1)B .(3,1)-C .(1,3)--D .(1,3)7.如图,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,1BC =,A B C ''由ABC 绕点C 顺时针旋转得到,其中点A '与点A 、点B '与点B 是对应点,连接AB ',且点A 、B '、A '在同一条直线上,则AA '的长为( )A .3B .23C .4D .458.下列四个图案中,是中心对称图形的是( )A .B .C .D .9.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为4;③150AOB ︒∠=;④633AOBO S '=+四边形.其中正确的结论有( ).A .1个B .2个C .3个D .4个10.如图,等边△OAB 的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把△OAB 逆时针转90︒,则旋转后点A 的对应点A '的坐标是( )A .(-13)B 3-1)C .(31-,)D .(-2,1) 11.已知等边△ABC 的边长为8,点P 是边BC 上的动点,将△ABP 绕A 逆时针转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是 ( )A .2B .23C .4D .不能确定 12.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 13.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D . 14.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )A .(﹣4,﹣2﹣3)B .(﹣4,﹣2+3)C .(﹣2,﹣2+3)D .(﹣2,﹣2﹣3)15.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,且AD ⊥BC ,∠BAC 的度数为( ).A .60 °B .75°C .85°D .90°二、填空题16.有两个直角三角板,其中45E ∠=︒,30C ∠=︒,按图①的方式叠放,先将ABC固定,再将AED 绕顶点A 顺时针旋转,使//BC DE (如图②所示),则旋转角BAD ∠的度数为______.17.若点M (3,a ﹣2),N (b ,a )关于原点对称,则ab =_____.18.如图,将边长为6的正方形ABCD 绕点A 逆时针方向旋转30︒后得到正方形A B C D '''',则图中阴影部分面积为____________.19.在ABC 中,2AB =,3AC =,以CB 为边作一个形状等边三角形BCD △,则DA 的最大值是________.20.如图,正方形ABCD 的边长为6,点E 在边CD 上.以点A 为中心,把ADE 顺时针旋转90︒至ABF 的位置,若2DE =,则FC =________.21.如图,在ABC 中,4AB =, 5.8BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转得到ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为________.22.如图,在平面直角坐标系中,若△ABC≌△DEF关于点H成中心对称,则对称中心H 点的坐标是_________.23.如图,△ABC中,∠A=60°,∠ABC=80°,将△ABC绕点B逆时针旋转,得到△DBE,若DE∥BC,则旋转的最小度数为_____.24.如图,△ABC中,∠BAC=20°,△ABC绕点A逆时针旋转至△AED,连接对应点C、D,AE垂直平分CD于点F,则旋转角度是_____°.25.如图,在Rt ABC中,∠C=90°,AC=6cm,BC=8cm.将Rt ABC绕点A逆时针旋转△,使点C '落在AB边上,连结BB',则BB'的长度为_________.得到Rt AB C''26.一副直角三角尺叠放,如图①所示,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两个三角尺有一组边互相平行.例如图②,当∠BAD=15°时,BC∥DE,当90°<∠BAD<180°时,∠BAD的度数为___.三、解答题27.如图,在一个1010⨯的正方形网格中有一个,ABC ABC ∆∆的顶点都在格点上.(1)在网格中画出ABC ∆向下平移4个单位,再向右平移6个单位得到的111A B C ∆. (2)在网格中画出ABC ∆关于点P 成中心对称得到的222A B C ∆.(3)若可将111A B C ∆绕点О旋转得到222A B C ∆,请在正方形网格中标出点O ,连接12A A 和12B B ,请直接写出四边形2211A B A B 的面积.28.已知30AOB ∠=,P 为射线OB 上一点,M 为射线OA 上一动点,连接PM , 满足OMP ∠为钝角,将线段PM 绕点 P 顺时针旋转150,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)在射线 MA 上取点D ,点M 关于点D 的对称点为E ,连接EP ,当PDO ∠= 时,使得对于任意的点M ,总有ON EP =,并证明29.如图,四边形ABCD 中,45ABC ADC ∠=∠=︒,将BCD △绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △.(1)请求出旋转角的度数;(2)请判断AE与BD的位置关系,并说明理由.30.江都大润发超市销售一种利润为每千克10元的水产品,一个月能销售出500千克.经市场分析,销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,若设单价每千克涨价x元,请解答以下问题:(1)填空:每千克水产品获利元,月销售量减少千克;(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应涨价为多少元?。

九年级上册 旋转知识点

九年级上册 旋转知识点

九年级上册旋转知识点旋转知识点旋转是几何学中的一个重要概念,它在我们的日常生活和数学学科中都有着广泛的应用。

在九年级上册的数学课程中,我们将学习有关旋转的基本知识和技巧。

本文将围绕旋转知识点展开,探讨旋转的定义、性质以及应用。

一、旋转的定义和性质1.1 旋转的定义旋转是指一个图形以某个固定点为中心,按照一定的角度绕该中心点旋转。

在数学中,我们常用坐标系来描述旋转的过程。

以平面坐标系为例,对于一个点P(x, y),以原点O为中心,按照逆时针方向旋转θ角度后得到点P'(x', y'),那么点P'的坐标可以通过旋转公式计算得出。

1.2 旋转的性质旋转具有以下几个性质:(1)旋转保持距离不变:在旋转过程中,图形上任意两点之间的距离在旋转后保持不变。

(2)旋转保持角度不变:在旋转过程中,图形上任意两条线段之间的夹角在旋转后保持不变。

(3)旋转满足合成律:若将一个图形绕A旋转得到的结果再绕B旋转,与直接将图形绕某个点C旋转得到的结果相同。

(4)旋转是可逆的:对于一个旋转变换,可以通过逆时针旋转相同的角度实现逆变换。

二、旋转的应用举例旋转在许多实际问题中具有广泛的应用。

以下是旋转在几个不同领域中的应用举例。

2.1 几何学中的旋转在几何学中,旋转被广泛应用于图形的变换。

例如,通过旋转可以得到图形的对称图形,从而帮助我们探索图形的性质和关系。

另外,旋转还可以用于构造各种几何体,如球体、圆柱体等。

2.2 物理学中的旋转在物理学中,旋转是描述物体旋转运动的重要概念。

例如,地球的自转和公转运动使得我们有了白天和黑夜、不同季节的变化。

旋转还与转动惯量、角动量等物理量有关。

2.3 生物学中的旋转在生物学中,旋转可以描述生物体的运动方式。

例如,蜜蜂在空中飞行时会以身体某一点为中心旋转飞行,这种旋转飞行方式减小了空气阻力,使得蜜蜂能够更加灵活地飞行。

2.4 工程学中的旋转在工程学中,旋转被广泛应用于机械设计和运动控制系统中。

人教版初中九年级数学上册第二十三章《旋转》经典题(含答案解析)

人教版初中九年级数学上册第二十三章《旋转》经典题(含答案解析)

一、选择题1.下列图形中,不是中心对称图形的是()A.B.C.D.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项不符合题意;故选:A.【点睛】本题考查了中心对称图形的概念.中心对称是要寻找对称中心,旋转180°后与原图重合.2.以原点为中心,将点P(3,4)旋转90°,得到的点Q所在的象限为()A.第二象限B.第三象限C.第四象限D.第二或第四象限D 解析:D【分析】根据旋转的性质,以原点为中心,将点P(3,4)旋转90°,分两种情况讨论即可得到点Q 所在的象限.【详解】Q,如图,点P(3,4)按逆时针方向旋转90°,得到点1Q,按顺时针方向旋转90°,得到点2得点Q所在的象限为第二、四象限.【点睛】本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质.注意分类讨论.3.以下四幅图案,其中图案是中心对称图形的是()A.B.C.D.A解析:A【分析】根据中心对称图形的定义逐一分析即可.【详解】解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意.故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解题的关键.4.如图,△ABC中,AB=6,AC=4,以BC为对角线作正方形BDCF,连接AD,则AD长不可能是()A.2 B.4 C.6 D.8D解析:D【分析】将△ABD绕点D顺时针旋转90º得△ECD,AB=EC,DE=AD,等腰Rt△ADE中2AD,在△ACE中由三边关系得,CE-AC<AE<CE+AC,即2<2AD<10求出AD的范围即可.【详解】将△ABD绕点D顺时针旋转90º得△ECD,AB=EC=6,DE=AD,在Rt△ADE中由勾股定理得2AD,在△ACE中由三边关系得,CE-AC<AE<CE+AC,即2<2AD<10,<,2<AD<52=508【点睛】本题考查AD 的范围问题,掌握正方形的性质,和旋转性质,由条件分散,将已知与未知化归一个三角形中,利用旋转构造等腰直角三角形△ACE 实现转化,利用三边关系确定AE 的范围是解题关键.5.如图,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,1BC =,A B C ''由ABC 绕点C 顺时针旋转得到,其中点A '与点A 、点B '与点B 是对应点,连接AB ',且点A 、B '、A '在同一条直线上,则AA '的长为( )A .3B .3C .4D .45解析:A【分析】 先利用互余计算出∠BAC =30°,再根据含30度的直角三角形三边的关系得到AB =2BC =2,接着根据旋转的性质得A 'B '=AB =2,B 'C =BC =1,A 'C =AC ,∠A '=∠BAC =30°,∠A 'B ' C =∠B =60°,于是可判断CA A '为等腰三角形,所以∠CA A '=∠A '=30°,再利用三角形外角性质计算出∠B 'CA =30°,可得B 'A =B 'C =1,然后利用A A '=A B '+A 'B '进行计算.【详解】解:∵∠ACB =90°,∠B =60°,∴∠BAC =30°,∴AB =2BC =2×1=2,∵ABC绕点C顺时针旋转得到A'B'C,∴A'B'=AB=2,B'C=BC=1,A'C=AC,∠A'=∠BAC=30°,∠A'B'C=∠B=60°,∴CA A'为等腰三角形,∴∠CA A'=∠A'=30°,∵A、B'、A'在同一条直线上,∴∠A'B'C=∠B'AC+∠B'CA,∴∠B'CA=60°﹣30°=30°,∴B'A=B'C=1,∴A A'=A B'+A'B'=2+1=3.故选:A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.6.若点P(-m,m-3)关于原点对称的点是第二象限内的点,则m满足( )A.m>3 B.0<m≤3C.m<0 D.m<0或m>3C 解析:C【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(-m,m-3)关于原点O的对称点是P′(m,3-m),再由第二象限内的点横坐标为负数,纵坐标为正数,可得m的取值范围.【详解】解:点P(-m,m-3)关于原点O的对称点是P′(m,3-m),∵P′(m,3-m),在第二象限,∴30 mm<⎧⎨->⎩,∴m<0.故选:C.【点睛】本题考查了关于原点对称的点的坐标,注意掌握:两个点关于原点对称时,它们的坐标符号相反.7.如图,点E,F,G,H分别为四边形ABCD四条边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的是()A.不是平行四边形B.不是中心对称图形C.一定是中心对称图形D.当AC=BD时,它为矩形C 解析:C【分析】先连接AC,BD,根据EF=HG=12AC,EH=FG=12BD,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.【详解】连接AC,BD,如图:∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG=12AC,EH=FG=12BD,∴四边形EFGH是平行四边形,故选项A错误;∴四边形EFGH一定是中心对称图形,故选项B错误;当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,故选项D错误;∴四边形EFGH可能是轴对称图形,∴四边形EFGH是平行四边形,四边形EFGH一定是中心对称图形.故选:C.【点睛】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.8.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60 °B.75°C.85°D.90°C解析:C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点: 旋转的性质.9.如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.1.5 B.1.4 C.1.3 D.1.2B解析:B【分析】运用旋转变换的性质得到AD=AB,进而得到△ABD为等边三角形,求出BD即可解决问题.【详解】解:如图,由题意得:AD=AB,且∠B=60°,∴△ABD为等边三角形,∴BD=AB=2,∴CD=3.6﹣2.2=1.4.故选:B.【点睛】该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.10.如图,已知△ABC与△CDA关于点O成中心对称,过点O任作直线EF分别交AD,BC于点E,F,则下则结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE 与△COF成中心对称.其中正确的个数为 ( )A.2 B.3 C.4 D.5D解析:D【分析】由于△ABC与△CDA关于点O对称,那么可得到AB=CD、AD=BC,即四边形ABCD是平行四边形,由于平行四边形是中心对称图形,且对称中心是对角线交点,可根据上述特点对各结论进行判断.【详解】△ABC与△CDA关于点O对称,则AB=CD、AD=BC,所以四边形ABCD是平行四边形,因此点O就是▱ABCD的对称中心,则有:(1)点E和点F;B和D是关于中心O的对称点,正确;(2)直线BD必经过点O,正确;(3)四边形ABCD是中心对称图形,正确;(4)四边形DEOC与四边形BFOA的面积必相等,正确;(5)△AOE与△COF成中心对称,正确;其中正确的个数为5个,故选D.【点睛】熟练掌握平行四边形的性质和中心对称图形的性质是解决此题的关键.二、填空题11.如图.面积为8的正方形ABCD的顶点A在数轴上,点A表示实数2-,正方形ABCD绕点A旋转时,顶点B的运动轨迹与数轴的交点表示的数为______________或﹣【分析】先由正方形的面积公式求出AB=再根据点A表示实数即可求出顶点B的运动轨迹与数轴的交点表示的数【详解】解:∵正方形ABCD的面积为8∴AB=∵点A表示实数∴顶点B 的运动轨迹与数轴的交点表示2或﹣32【分析】先由正方形的面积公式求出AB=22A表示实数2-,即可求出顶点B的运动轨迹与数轴的交点表示的数.【详解】解:∵正方形ABCD 的面积为8,∴AB=22, ∵点A 表示实数2-,∴顶点B 的运动轨迹与数轴的交点表示的数为2-+22=2或2-﹣22=﹣32, 故答案为:2或﹣32.【点睛】本题考查了正方形的面积、实数和数轴、旋转的性质、算术平方根、二次根式的加减运算,理解实数与数轴的关系是解答的关键.12.如图,正方形ABCD 的边长为6,点E 在边CD 上.以点A 为中心,把ADE 顺时针旋转90︒至ABF 的位置,若2DE =,则FC =________.8【分析】先根据旋转的性质和正方形的性质证明CBF三点在一条直线上又知BF =DE =2可得FC 的长【详解】∵四边形ABCD 是正方形∴∠ABC =∠D =90°AD =AB 由旋转得:∠ABF =∠D =90°BF 解析:8【分析】先根据旋转的性质和正方形的性质证明C 、B 、F 三点在一条直线上,又知BF =DE =2,可得FC 的长.【详解】∵四边形ABCD 是正方形,∴∠ABC =∠D =90°,AD =AB ,由旋转得:∠ABF =∠D =90°,BF =DE =2,∴∠ABF +∠ABC =180°,∴C 、B 、F 三点在一条直线上,∴CF =BC +BF =6+2=8,故答案为:8.【点睛】本题主要考查了正方形的性质、旋转变换的性质,难度适中.由旋转的性质得出BF =DE 是解答本题的关键.13.如图,在ABC 中,4AB =, 5.8BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转得到ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为________.【分析】先根据旋转的性质可得再根据等边三角形的判定与性质可得然后根据线段的和差即可得【详解】由旋转的性质得:是等边三角形故答案为:【点睛】本题考查了旋转的性质等边三角形的判定与性质等知识点熟练掌握旋解析:1.8【分析】先根据旋转的性质可得AB AD =,再根据等边三角形的判定与性质可得4BD AB ==,然后根据线段的和差即可得.【详解】由旋转的性质得:4AB AD ==,60B ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,5.8BC =,5.84 1.8CD BC BD ∴=-=-=,故答案为:1.8.【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.14.在平面直角坐标系中,点()4,6P -与点()4,1Q m -+关于原点对称,那么m =______.5【分析】先根据关于原点对称的点坐标规律可得一个关于m 的一元一次方程再解方程即可得【详解】关于原点对称的点坐标规律:横纵坐标均互为相反数则解得故答案为:5【点睛】本题考查了关于原点对称的点坐标规律熟解析:5【分析】先根据关于原点对称的点坐标规律可得一个关于m 的一元一次方程,再解方程即可得.【详解】关于原点对称的点坐标规律:横、纵坐标均互为相反数,则610m -++=,解得5m =,故答案为:5.【点睛】本题考查了关于原点对称的点坐标规律,熟练掌握关于原点对称的点坐标规律是解题关键.15.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值和最大值的和为_____.﹣1【分析】由轴对称的性质可知AM=AD故此点M在以A圆心以AD为半径的圆上故此当点AMC在一条直线上时CM有最小值【详解】解:如图所示:连接AM∵四边形ABCD为正方形∴AC==∵点D与点M关于A解析:2﹣1【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【详解】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC2222AD CD+=+211∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′2﹣1,21.【点睛】本题主要考查的是旋转的性质,正方形的性质,依据旋转的性质确定出点M 运动的轨迹是解题的关键.16.如图,在ABC 中,AB =2,AC =1,∠BAC =30°,将ABC 绕点A 逆时针旋转60°得到11AB C △,连接BC 1,则BC 1的长为__________ .【分析】先根据旋转的定义和性质可得从而可得再利用勾股定理即可得【详解】由旋转的定义和性质得:在中故答案为:【点睛】本题考查了旋转的定义和性质勾股定理熟练掌握旋转的性质是解题关键 解析:5 【分析】 先根据旋转的定义和性质可得111,60A AC C CAC ==∠=︒,从而可得190BAC ∠=︒,再利用勾股定理即可得.【详解】由旋转的定义和性质得:111,60A AC C CAC ==∠=︒,30BAC ∠=︒,1190AC BAC AC B C ∴∠=+=∠∠︒,在1Rt ABC 中,222211215BC AB AC =+=+=,故答案为:5.【点睛】本题考查了旋转的定义和性质、勾股定理,熟练掌握旋转的性质是解题关键.17.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________. 9【分析】根据旋转的性质得到△ABC ≌△A1BC1A1B=AB=6所以△A1BA 是等腰三角形依据∠A1BA=30°得到等腰三角形的面积由图形可以知道S 阴影=S △A1BA+S △A1BC1﹣S △ABC=解析:9【分析】根据旋转的性质得到△ABC ≌△A 1BC 1,A 1B=AB=6,所以△A 1BA 是等腰三角形,依据∠A 1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S △A1BA +S △A 1BC 1﹣S △ABC=S △A 1BA ,最终得到阴影部分的面积.【详解】解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA 是等腰三角形,∠A1BA=30°,∴S△A1BA= 12×6×3=9,又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=9.故答案为9.【点睛】本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.18.如图,在Rt△ABC中,∠ABC=90°,∠BAC=32°,斜边AC=6,将斜边AC绕点A逆时针方向旋转26°到达AD的位置,连接CD,取线段CD的中点N,连接BN,则BN的长为_________.【分析】设M为AC中点连接ANBMMN根据直角三角形斜边中点定理得出MB=MN=同时算出∠BMN=90°最后利用勾股定理算出BN的长【详解】解:设M为AC中点连接ANBMMN由旋转可知:AC=AD=解析:32【分析】设M为AC中点,连接AN,BM,MN,根据直角三角形斜边中点定理得出MB=MN=132AC ,同时算出∠BMN=90°,最后利用勾股定理算出BN的长.【详解】解:设M为AC中点,连接AN,BM,MN,由旋转可知:AC=AD=6,∠CAD=26°,∵∠BAC=32°,∠ABC=90°,∴∠ACB=58°,∵AC=AD,N为CD中点,M为AC中点,∴MB=MC=MN=3,∴∠MBC=∠MCB=58°,∠MCN=∠MNC=(180-26)÷2=77°,∴∠BMC=64°,∠CMN=26°,∴∠BMN=90°,即△BMN为等腰直角三角形,∴BN=22+=.3332故答案为:32.【点睛】本题考查了直角三角形的性质,等腰三角形的判定和性质,旋转的性质,三角形内角和,解题的关键是找出AC中点M,构造等腰直角三角形.19.如图,在△ABC中,∠C=90°,BC=3,AC=5,点D为线段AC上一动点,将线段BD 绕点D逆时针旋转90°,点B的对应点为E,连接AE,则AE长的最小值为_____.【分析】由旋转的性质可知BD=DE∠C=90°则容易想到构造一个直角三角形与Rt△BCD全等即过E点作EH⊥AD于点H设CD=x则可用x表示AE的长从而判断什么时候AE取得最小值【详解】设CD=x则解析:2【分析】由旋转的性质可知BD=DE,∠C=90°,则容易想到构造一个直角三角形与Rt△BCD全等,即过E点作EH⊥AD于点H,设CD=x,则可用x表示AE的长,从而判断什么时候AE取得最小值.【详解】设CD=x,则AD=5﹣x,过点E作EH⊥AD于点H,如图:由旋转的性质可知BD=DE,∵∠ADE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠ADE=∠CBD,∴△BCD ≌△DHE ,∴EH =CD =x ,DH =BC =3.∵AD =5﹣x ,∴AH =AD ﹣DH =5﹣x ﹣3=2﹣x ,∵在Rt △AEH 中,AE 2=AH 2+EH 2=(2﹣x )2+x 2=2x 2+4x +4=2(x ﹣1)2+2,所以当x =1时,AE 2取得最小值2,即AE 取得最小值2.故答案是:2.【点睛】考查了全等三角形的性质和判定,解此题的关键灵活其相关的知识点进行推理证明. 20.如图,在正方形ABCD 内部有一点P ,PB =1,PC =2,135BPC ∠=︒,则PA = ____.【分析】将△PBA 沿B 点顺时针旋转90°此时A 与C 点重合P 点旋转到E 点连接PE 易证△BPE 是等腰直角三角形利用勾股定理可求出PE 的长再证明△PCE 是直角三角形利用勾股定理求出CE 的长即可得到PA 的长 解析:6【分析】将△PBA 沿B 点顺时针旋转90°,此时A 与C 点重合,P 点旋转到E 点,连接PE ,易证△BPE 是等腰直角三角形,利用勾股定理可求出PE 的长,再证明△PCE 是直角三角形.利用勾股定理求出CE 的长,即可得到PA 的长.【详解】将△PBA 沿B 点顺时针旋转90°,此时A 与C 点重合,P 点旋转到E 点,连接PE ,∴PB=BE=1,PA=EC ,∠BPE=90°∴△PEB 是等腰直角三角形,∴∠PEB=∠EPB =45°,∴22,∴∠EPC=135°-45°=90°,∴在直角△PEC 中,EC=()2222226PC PE +=+=, ∴PA=EC 6=,故答案为:6.【点睛】本题考查了正方形的性质、旋转的性质、等腰直角三角形的判断和性质以及勾股定理的运用,解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.三、解答题21.如图,△ABC 的顶点坐标分别为(﹣2,﹣4),B (0,﹣4),C (2,﹣1). (1)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1,直接写出点C 1的坐标为 . (2)画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2,直接写出点C 2的坐标为 . (3)若△ABC 内一点P (m ,n )绕原点O 逆时针旋转180°的对应点为Q ,则Q 的坐标为 .解析:(1)图见解析,()2,1-;(2)图见解析,()1,2;(3)(),m n --【分析】(1)分别画出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)分别画出A ,B ,C 的对应点A 2,B 2,C 2即可.(3)根据中心旋转图形的性质解决问题即可.【详解】解:(1)如图,△A 1B 1C 1即为所求,点C 1的坐标为(﹣2,1).故答案为:(﹣2,1).(2)如图,△A 2B 2C 2即为所求,点C 2的坐标为(1,2),故答案为:(1,2).(3)若△ABC 内一点P (m ,n )绕原点O 逆时针旋转180°的对应点为Q ,则Q 的坐标为(﹣m ,﹣n ).故答案为:(﹣m ,﹣n ).【点睛】本题考查作图-旋转变换,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.22.(1)问题发现:如图1,ACB △和DCE 均为等边三角形,当DCE 旋转至点A ,D ,E 在同一直线上,连接BE .①填空:AEB ∠的度数为______.②线段AD 、BE 之间的数量关系是_______.(2)拓展研究:如图2,ACB △和DCE 均为等腰三角形,且90ACB DCE ∠∠==,点A 、D 、E 在同一直线上,若15AE =,7DE =,求AB 的长度.(3)探究发现:图1中的ACB △和DCE ,在DCE 旋转过程中当点A ,D ,E 不在同一直线上时,设直线AD 与BE 相交于点O ,试在备用图中探索AOE ∠的度数,直接写出结果,并说明理由.解析:(1)①60°;②AD BE =;(2)AB 的长度为17;(3)60°或120°,证明见解析.【分析】(1)由条件易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.(2)仿照(1)中的解法可求出∠AEB 的度数,证出AD=BE ;由△DCE 为等腰直角三角形及CM 为△DCE 中DE 边上的高可得CM=DM=ME ,从而证到AE=2CH+BE .(3)由(1)知△ACD ≌△BCE ,得∠CAD=∠CBE ,由∠CAB=∠ABC=60°,可知∠EAB+∠ABE=120°,根据三角形的内角和定理可知∠AOE=60°.【详解】(1)①如图1,∵ACB △和DCE 均为等边三角形,∴CA CB =,CD CE =,60ACB BCE ∠=∠=,∴ACD BCE ∠=∠,在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴()?ACD BCE SAS ≌, ∴ADC BEC ∠∠=, ∵DCE 为等边三角形,∴60CDE CED ∠=∠=,∵点A ,D ,E 在同一直线上,∴120ADC ∠=,∴120BEC ∠=,∴60AEB BEC CED ∠=∠-∠=.故答案为:60°.②∵≌ACD BCE ,∴AD BE =,故答案为:AD BE =.(2)∵ACB △和DCE 均为等腰直角三角形, ∴CA CB =,CD CE =,90ACB DCE ∠∠==,∴ACD BCE ∠=∠,在ACD △和BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴()ACD BCE SAS △≌△,∴8AD BE AE DE ==-=,ADC BEC ∠∠=,∵DCE 为等腰直角三角形,∴45CDE CED ∠=∠=,∵点A ,D ,E 在同一直线上,∴135ADC ∠=,∴135BEC ∠=,∴90AEB BEC CED ∠=∠-∠=, ∴2217AB AE BE =+=.(3)如图3,由(1)知≌ACD BCE ,∴CAD CBE ∠=∠,∵60CAB CBA ∠=∠=,∴120OAB OBA ∠+∠=,∴18012060AOE ∠=-=,如图4,同理求得60AOB ∠=,∴120AOE ∠=,∵AOE ∠的度数是60°或120°.【点睛】此题是几何变换综合题,主要考查了等边三角形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形全等的判定与性质等知识,得出△ACD ≌△BCE (SAS )是解本题的关键.23.如图,在Rt ABC 中,90ACB ∠=︒,点D ,E 分别在AB ,AC 上,CE BC =,连结CD ,将线段CD 绕点C 按顺时针方向旋转90︒后得CF ,连结EF .(1)补充完成图形;(2)求证:BD EF =.解析:(1)见解析;(2)见解析【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF 为直角,由EF 与CD 平行,得到∠EFC 为直角,利用SAS 得到三角形BDC 与三角形EFC 全等,利用全等三角形的性质即可得证.【详解】解:(1)补全图形,如图所示(2)由旋转的性质得:CD CF =,90DCF ∠=︒,∴90DCE ECF ∠+∠=︒,∵90ACB ∠=︒,∴90DCE BCD ∠+∠=︒,∴BCD ECF ∠=∠,在BDC 和EFC 中=DC FC BCD ECF BC EC =⎧⎪⎨⎪=⎩∠∠,∴()SAS BDC EFC △≌△∴BD EF =.【点睛】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.24.如图,将矩形ABCD 绕点C 旋转得到矩形EFGC ,点E 在AD 上.延长AD 交FG 于点H .求证:EDC HFE ≅.解析:证明见解析.【分析】先根据矩形的性质可得,90AB CD A B ADC =∠=∠=∠=︒,再根据旋转的性质可得,90,90EF AB F A CEF B =∠=∠=︒∠=∠=︒,从而可得,90CD EF EDC F =∠=∠=︒,然后根据直角三角形的性质、角的和差可得DCE FEH ∠=∠,最后根据三角形全等的判定定理即可得证.【详解】四边形ABCD 是矩形,,90AB CD A B ADC ∴=∠=∠=∠=︒,由旋转的性质得:,90,90EF AB F A CEF B =∠=∠=︒∠=∠=︒,,90CD EF EDC F ∴=∠=∠=︒,又90,90EDC CEF ∠=︒∠=︒,90CED DCE CED FEH ∴∠+∠=∠+∠=︒,DCE FEH ∴∠=∠,在EDC △和HFE 中,EDC F CD EF DCE FEH ∠=∠⎧⎪=⎨⎪∠=∠⎩,()DC A∴≅.E ASHFE【点睛】本题考查了矩形的性质、旋转的性质、三角形全等的判定定理等知识点,熟练掌握矩形和旋转的性质是解题关键.25.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-1,1)、B(-3,1)、C(-1,4).(1)画出△ABC绕点C顺时针旋转90°后得到的△A1B1C;(2)画出△ABC关于点P(1,0)对称的△A2B2C2.解析:(1)见解析;(2)见解析【分析】(1)分别作出点A、B绕点C顺时针旋转90°后得到的对应点,再顺次连接可得;(2)分别作出点A、B、C关于点P的对称点,再顺次连接可得.【详解】(1)如图,△A1B1C即为所求;(2)如图,△A2B2C2即为所求.【点睛】本题考查了作图-旋转变换,中心对称等知识,解题的关键是熟练掌握旋转变换的定义和性质.26.在Rt ABC ∆中,,90,,AC BC ACB M N ︒=∠=在直线AB 上,且222MN AM BN =+.(1)如图1,当点,M N 在线段AB 上时,求证:45MCN ︒∠=.(2)如图2,当点M 在BA 的延长线上且点N 在线段AB 上时,上述结论是否成立?若成立,请证明,若不成立,请说明理由.解析:(1)证明见解析;(2)成立,证明见解析.【分析】(1)将ACM ∆绕点C 逆时针旋转90︒,得到'BCM ∆,利用旋转的性质和等腰三角形的性质证明'NBM ∆为直角三角形,可证明'MN M N =,利用全等三角形的判定(SSS )可证明()'CMN CM N SSS ∆≅∆,即可证得1'452MCN MCM ︒∠=∠=; (1)仿照(1)中方法将CMA ∆绕点C 逆时针旋转90︒得到CDB ∆,证明DBN ∆为直角三角形,再证DN=MN ,进而证明()CMN CDN SSS ∆≅∆即可得出结论.【详解】()1如图1,,90AC BC ACB ︒=∠=,将ACM ∆绕点C 逆时针旋转90︒,得到'BCM ∆,则'ACM NCM ∆≅∆,',','ACM BCM CM CM AM BM ∴∠=∠==,连接'M N ,'CAM CNM ∠=∠=45°,''90M BN CBM CBA ︒∴∠=∠+∠=,'NBM ∴∆为直角三角形,22222''NM BN BM BN AM ∴=+=+,又222MN AM BN =+,'MN M N ∴=,在CMN ∆和'CM N ∆中''CM CM MC M N CN CN =⎧⎪=⎨⎪=⎩,()'CMN CM N SSS ∴∆≅∆,'MCN M CN ∴∠=∠, 1'452MCN MCM ︒∴∠=∠=, 即45MCN ︒∠=;()2如图2,,90AC BC ACB ︒=∠=,将CMA ∆绕点C 逆时针旋转90︒得到CDB ∆,CMA CDB ∴∆≅∆,,,135CM CD AM BD CAM CBD ︒∴==∠=∠=,90DBN CBD CBA ︒∴∠=∠-∠=,DBN ∴∆为直角三角形,22222DN BD BN AM BN ∴=+=+,又222MN AM BN =+,DN MN ∴=, 在CMN ∆和CDN ∆中CM CD CN CN MN DN =⎧⎪=⎨⎪=⎩,()CMN CDN SSS ∴∆≅∆,1452MCN DCN MCD ︒∴∠=∠=∠=, 45MCN ︒∴∠=.【点睛】本题考查了等腰三角形的性质、旋转的性质、全等三角形的判定与性质、勾股定理,熟练掌握全等三角形的判定与性质,利用旋转性质旋转△ACM 构造直角三角形是解答的关键. 27.江都大润发超市销售一种利润为每千克10元的水产品,一个月能销售出500千克.经市场分析,销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,若设单价每千克涨价x元,请解答以下问题:(1)填空:每千克水产品获利元,月销售量减少千克;(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应涨价为多少元?解析:(1)(10+x);10x;(2)10【分析】(1)根据获利=原利润+涨价即可得出答案;根据销售单价每涨价1元,月销售量就减少10千克即可得出月销售量减少的数量;(2)利用“每千克水产品获利×月销售量=总利润”列出方程,解方程即可求出结果.【详解】解:(1)(10+x),10x;(2)由题意,得:(10+x)(500﹣10x)=8000;化简为:x2﹣40x+300=0;解得:x1=10,x2=30.∵“薄利多销”,∴x=30不符合题意,舍去.答:销售单价应涨价10元.【点睛】本题考查了一元二次方程的应用,正确表示出月销售量是解题的关键.28.在图中网格上按要求画出图形,并回答下列问题:(1)把△ABC平移,使点A平移到图中点D的位置,点B、C的对应点分别是点E、F,请画出△DEF;A B C;(2)画出△ABC关于点D成中心对称的△111A B C(填“是”或“否”)关于某个点成中心对称,如果是,请在图(3)△DEF与△111中画出对称中心,并记作点O.解析:(1)见解析;(2)见解析;(3)是,见解析【分析】(1)由题意得出,需将点B与点C先向左平移3个单位,再向下平移1个单位,据此可得;(2)分别作出三顶点分别关于点D的对称点,再首尾顺次连接可得;(3)连接两组对应点即可得.【详解】(1)如图所示,△DEF即为所求.(2)如图所示,△A1B1C1即为所求;(3)如图所示,△DEF与△A1B1C1是关于点O成中心对称,故答案为:是.【点睛】本题主要考查了作图-旋转变换和平移变换,解题的关键是熟练掌握旋转变换和平移变换的定义和性质,并据此得出变换后的对应点.。

新人教版九年级上册数学[《旋转》全章复习与巩固--知识点整理及重点题型梳理](提高)

新人教版九年级上册数学[《旋转》全章复习与巩固--知识点整理及重点题型梳理](提高)

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△A B C''').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转【: 388636:经典例题2-3】3.(2015•北京校级模拟)如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是;∠EFD的度数为;(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,并直接写出线段EF与FC的关系(无需证明).【思路点拨】(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;(3)基本方法同(2).【答案与解析】解:(1)EF=FC,90°.(2)延长CF到M,使CF=FM,连接DM、ME、EC,如下图2∵FC=FM,∠BFC=∠DFM,DF=FB,∴△BFC≌△DFM,∴DM=BC,∠MDB=∠FBC,∴MD=AC,MD∥BC,∵ED=EA,∠MDE=∠EAC=135°,∴△MDE≌△CAE,∴ME=EC,∠DEM=∠CEA,∴∠MEC=90°,∴EF=FC,EF⊥FC(3)图形如下,结论为:EF=FC,EF⊥FC.【总结升华】延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.举一反三:【变式】如图,△ABC 中,∠BAC=90°,AC=2,AB=23,△ACD 是等边三角形. (1)求∠ABC 的度数.(2)以点A 为中心,把△ABD 顺时针旋转60°,画出旋转后的图形. (3)求BD 的长度.【答案】(1)Rt △ABC 中,AC=2,AB=23, ∴BC=4, ∴∠ABC=30° (2)如图所示:(3)连接BE .由(2)知:△ACE ≌△ADB , ∴AE=AB ,∠BAE=60°,BD=EC , ∴BE=AE=AB=23,∠EBA=60°, ∴∠EBC=90°, 又BC=2AC=4,∴Rt △EBC 中,EC=2223+4=27()4.(2015•东西湖区校级模拟)如图,Rt△ABC中,AC=BC,∠ACB=90°,点E在线段AB上,CF⊥CE,CE=CF,EF交AC于G,连接AF.(1)填空:线段BE、AF的数量关系为,位置关系为;(2)当=时,求证:=2;(3)若当=n时,=,请直接写出n的值.【思路点拨】(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;(3)根据(2)的推理过程,知S△AEG=nS△AFG,则,即可求得n的值.【答案与解析】(1)解:∵∠ACB=90°,CF⊥CE,∴∠ECB=∠ACF.又AC=BC,CE=CF,∴△ECB≌△FCA.∴BE=AF,∠CBE=∠CAF,又∠CBE+∠CAB=90°,∴∠CAF+∠CAB=90°,即BE=AF,BE⊥AF.(2)证明:作GM⊥AB于M,GN⊥AF于N,∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,∴AF=BE,∠CAF=∠CBE=45°.∴AE=2AF,∠CAF=∠CAB,∴GM=GN.∴S△AEG=2S△AFG,∴EG=2GF,∴=2.(3)解:由(2),得当=n时,S△AEG=nS△AFG,则, ∴当n=时,=.【总结升华】此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律. 【:388636:经典例题4-5】5.已知:点P 是正方形ABCD 内的一点,连结PA 、PB 、PC ,(1)若PA=2,PB=4,∠APB=135°,求PC 的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.【思路点拨】通过旋转,把PA 、PB 、PC 或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APD . 【答案与解析】(1)∵AB=BC,∠ABC=90°,∴△CBP 绕点B 逆时针旋转90°,得到△ABE, ∵BC=BA,BP=BE,∠CBP=∠ABE ∴△CBP ≌△ABE ∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=42 又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:PE=2BP,PC=AE ∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90°又∵由(1)证得∠BAE=∠BCP∴∠PAB+∠BCP=90又∵∠ABC=90°∴点A,P,C三点共线,即P必在对角线AC上.【总结升华】注意勾股定理及逆定理的灵活运用.举一反三:【变式】如图,在四边形ABCD中,AB=BC,,K为AB上一点,N为BC上一点.若的周长等于AB的2倍,求的度数.【答案】显然,绕点D顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;⑵将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;⑶将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm(即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.。

人教版初中九年级数学上册第二十三章《旋转》知识点(含答案解析)

人教版初中九年级数学上册第二十三章《旋转》知识点(含答案解析)

一、选择题1.如图,在△ABC 中,AB =AC ,∠BAC =45°,点D 在AC 边上.将△ABD 绕点A 逆时针旋转45°得到△ACD ′,且D ′、D 、B 三点在同一条直线上,则∠ABD 的大小为( )A .15°B .22.5°C .25°D .30°2.下面四个图案是常用的交通标志,其中为中心对称图形的是( )A .B .C .D . 3.如图,OAB 绕点O 逆时针旋转80°到OCD 的位置,已知45AOB ∠=︒,则AOD ∠等于( )A .45°B .35°C .25°D .15° 4.如图,将△ABC 绕点C(0,1)旋转180°得到△A′B′C′,设点A 的坐标为(,)a b ,则点A′的坐标为( )A .(,)a b --B .2(),a b --+C .(),1a b --+D .(,1)a b --- 5.如图所示,把ABC 绕C 点旋转35︒,得到A B C ''',A B ''交AC 于点D ,若90A DC '∠=︒,则A ∠等于( )A .35︒B .65︒C .55︒D .45︒6.如图,正方形ABCD 的边长为1,将其绕顶点C 旋转,得到正方形CEFG ,在旋转过程中,则线段AE 的最小值为( )A .32-B .2-1C .0.5D .512- 7.如图,将一个含30角的直角三角尺AOB 放在平面直角坐标系中,两条直角边分别与坐标轴重叠.已知30OAB ∠=︒,12AB =,点D 为斜边AB 的中点,现将三角尺AOB 绕点O 顺时针旋转90︒,则点D 的对应点D 的坐标为( )A .(33,3)B .(63,6)-C .(3,33)-D .(33,3)- 8.已知Rt ABC ∆中,两条直角边4AC =,3BC =,将ABC ∆绕斜边中点O 旋转,使直角顶点与点B 重合,得到与ABC ∆全等的EDB ∆,BE 边和AC 相交于点F ,则EF 的值是( )A .78B .1C .45D .239.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .10.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是()A.B.C.D.11.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能12.已知等边△ABC的边长为8,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是( )A.22B.4 C.23D.不能确定13.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转90 得到月牙②,则点A的对应点A’的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)14.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.15.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .二、填空题16.若点M (3,a ﹣2),N (b ,a )关于原点对称,则ab =_____.17.如图,O 是正方形ABCD 的中心,M 是ABCD 内一点,90DMC ∠=︒,将DMC 绕O 点旋转180°后得到BNA .若3MD =,4CM =,则MN 的长为______.18.如图,在ABC 中,AB AC =,30B ∠=︒,将ABC 绕点A 沿顺时针方向旋转一周,当BC 边的对应边与AC 平行时,旋转角为______度.19.在Rt ABC △中,90ACB ∠=︒,将ABC 绕顶点C 顺时针旋转得到A B C '',点M 是BC 的中点,点P 是A B ''的中点,连接PM .若4BC =,30A ∠=︒,则在旋转一周的过程中线段PM 长度的最大值等于_____.20.如图所示,把一个直角三角尺ACB 绕30角的顶点B 顺时计旋转,使得点A 落在CB 的延长线上的点E 处,则BCD ∠的度数为______.21.如图,把△ABC 绕点C 顺时针旋转得到△A 'B 'C ',此时A ′B ′⊥AC 于D ,已知∠A =50°,则∠B ′CB 的度数是_____°.22.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件_____,使四边形ABCD 为矩形.23.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.24.如图,小正方形方格的边长都是1,点A 、B 、C 、D 、O 都是小正方形的顶点.若COD 是由AOB 绕点O 按顺时针方向旋转一次得到的,则至少需要旋转______°.25.如图,正方形ABCD 的边长为2,BE 平分∠DBC 交CD 于点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,延长BE 交DF 于G ,则BF 的长为_____.26.如图,O 是正△ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',下列结论正确有______.(请填序号)①点O 与O '的距离为4;②150AOB ∠=︒;③633AOBO S '=+四边形④9634AOC AOB S S +=+△△.三、解答题27.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-1,1)、B (-3,1)、C (-1,4).(1)画出△ABC 绕点C 顺时针旋转90°后得到的△A 1B 1C ;(2)画出△ABC 关于点P (1,0)对称的△A 2B 2C 2.28.在ABC ∆中,AB AC =,BAC α∠=.(1)直接写出ABC ∠的大小为______.(用含α的式子表示)(2)当060α︒<<︒时,将线段BC 绕点B 逆时针旋转60︒得到线段BD ,连接AD 、CD .①求证:ABD ACD ∆≅∆;②当40α=︒,求ACD ∠的度数.29.在平面直角坐标系中,四边形AOBC 是矩形,点(0 0)O ,,点(10 0)A ,,点(0 6)B ,.以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为点D ,E , F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB △≌BCA ;②求出ABH 面积.30.某学习小组在探究三角形全等时,发现了下列两种基本图形,请给予证明.(1)如图1,AC 与BD 交于点O ,AB ∥CD ,AB=CD ,求证:OA=OC .(2)如图2,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .求证:BD =AE .(3)数学老师赞赏了他们的探索精神,并鼓励他们用图1或图2的基本图形来解决问题:如图3,把一块含45°的直角三角板ABC (即ABC ∆是等腰直角三角形,90C =∠,AC BC =)绕点A 逆时针旋转后成为ADE ∆,已知点B 、C 的对应点分别是点D 、E .连结BD ,并作射线CE 交BD 于点F ,试探究在旋转过程中,DF 与BF 的大小关系如何,并证明.。

人教版九年级数学旋转知识点总结与练习

人教版九年级数学旋转知识点总结与练习

人教版九年级数学旋转知识点总结与练习旋转知识点总结与练知识点1:旋转的定义旋转是指将平面图形绕着平面内某一点O转动一个角度的图形变换,其中点O称为旋转中心,旋转角为旋转的角度。

旋转的三个要素是旋转中心、旋转方向和旋转角度。

1.如图,将正方形图案绕中心O旋转180°后,得到的图案是()。

2.如图2,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()。

知识点1:旋转的性质旋转具有以下性质:1)对应点到旋转中心的距离不变;2)对应点与旋转中心所连的线段的夹角等于旋转角度;3)旋转前后的两个图形全等。

图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转。

3.如图,将△XXX绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()。

4.如图,直线y=-4x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO' B',则点B'的坐标是()。

知识点1:旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形。

5.在下图4×4的正方形网格中,△XXX绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()。

知识点2:中心对称中心对称是指将一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,旋转后能够重合的对应点叫做关于对称中心的对称点。

中心对称的两个图形能够完全重合,即形状大小都相同,位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合。

6.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有()。

中心对称的性质是,中心对称的两个图形,对称点所连线段经过对称中心,并且被对称中心所平分。

九年级旋转知识点

九年级旋转知识点

九年级旋转知识点一、旋转的定义。

1. 在平面内,把一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点叫做旋转中心,转动的角叫做旋转角。

- 例如,将三角形ABC绕点O顺时针旋转30°,点O就是旋转中心,30°就是旋转角。

2. 旋转三要素:旋转中心、旋转方向(顺时针或逆时针)、旋转角度。

二、旋转的性质。

1. 对应点到旋转中心的距离相等。

- 在图形旋转过程中,若点A旋转后得到点A',那么OA = OA',这里O为旋转中心。

2. 对应点与旋转中心所连线段的夹角等于旋转角。

- 假设图形绕点O旋转,点B的对应点是B',那么∠BOB'就是旋转角。

3. 旋转前后的图形全等。

- 即旋转不改变图形的形状和大小。

如果四边形ABCD绕点P旋转得到四边形A'B'C'D',那么四边形ABCD≌四边形A'B'C'D'。

三、旋转作图。

1. 确定旋转中心、旋转方向和旋转角度。

2. 找出原图形的关键点(如多边形的顶点)。

3. 连接关键点与旋转中心,按照旋转方向和旋转角度旋转这些线段。

- 例如,要将三角形ABC绕点O逆时针旋转60°,先连接OA、OB、OC,然后将OA绕点O逆时针旋转60°得到OA',同理得到OB'和OC',最后连接A'B'、B'C'、C'A'得到旋转后的三角形A'B'C'。

4. 顺次连接旋转后的关键点,得到旋转后的图形。

四、中心对称。

1. 定义。

- 把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形中的对应点叫做关于中心的对称点。

- 例如,平行四边形ABCD中,点O是对角线AC与BD的交点,那么平行四边形ABCD绕点O旋转180°后能与自身重合,平行四边形ABCD就是中心对称图形,点O是对称中心。

新人教版九年级上册数学[图形的旋转--知识点整理及重点题型梳理]

新人教版九年级上册数学[图形的旋转--知识点整理及重点题型梳理]

新人教版九年级上册数学[图形的旋转--知识点整理及重点题型梳理]本文介绍了旋转的概念、性质和作图方法。

旋转是指将一个图形绕着某一点转动一个角度的变换,其中旋转中心、旋转方向和旋转角度是旋转的三个要素。

旋转有三个基本性质:对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角、旋转前后的图形全等。

在作图时,需要确定旋转中心和图形的关键点,然后将这些关键点沿指定的方向旋转指定的角度,连接对应的部分,形成相应的图形。

例如,在例题中,四边形AOBC绕点O旋转得到四边形DOEF,旋转中心是点O,旋转方向是顺时针方向,点A的对应点是点D,点B的对应点是点E,旋转角为∠AOD和∠BOE,四边形AOBC与四边形DOEF的图形全等,即形状一致,大小相等,AO=DO,BO=EO,∠AOD=∠BOE。

总结升华】本题考查了对称的概念和性质,要求学生能够通过已知条件作出对称中心,是一道基础性的几何作图题目。

变式】如图,已知正三角形ABC,将其绕点A逆时针旋转120°得到正三角形A1BC1将其绕点B逆时针旋转120°得到正三角形AB1C1连接线段A1C1求证:线段A1C1垂直于BC.答案与解析】如图所示,连接线段AA1BB1CC1由于△ABC是正三角形,所以∠ABC=60°,又因为A 1BC1是正三角形,所以∠A1BC160°,所以∠___∠A1BC1即∠ABD=∠BDC,所以线段A1C1垂直于BC.总结升华】本题考查了旋转的性质和垂直的判定方法,要求学生能够通过旋转的方法求证垂直关系,是一道较为典型的几何证明题目。

人教版初中九年级数学上册第二十三章《旋转》经典题(含答案解析)

人教版初中九年级数学上册第二十三章《旋转》经典题(含答案解析)

一、选择题1.下面四个图案是常用的交通标志,其中为中心对称图形的是( )A .B .C .D . 2.如图,OAB 绕点O 逆时针旋转80°到OCD 的位置,已知45AOB ∠=︒,则AOD ∠等于( )A .45°B .35°C .25°D .15°3.如图,在等边△ABC 中,AC=8,点O 在AC 上,且AO=3,点P 是边AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( ).A .4B .5C .6D .84.如图所示,把ABC 绕C 点旋转35︒,得到A B C ''',A B ''交AC 于点D ,若90A DC '∠=︒,则A ∠等于( )A .35︒B .65︒C .55︒D .45︒5.下列图形中,是中心对称图形的是( )A .B .C .D.6.在一个无盖的正方体玻璃容器内装了一些水,把容器按不同方式倾斜一点,容器内的水面的形状可能是()A.B.C.D.7.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能8.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60 °B.75°C.85°D.90°9.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转90 得到月牙②,则点A的对应点A’的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)10.如图所示的图形中,是中心对称图形的是( )A.B.C.D.11.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.14.如图,以点A为中心,把△ABC逆时针旋转120°,得到△AB'C′(点B、C的对应点分别为点B′、C′),连接BB',若AC'∥BB',则∠CAB'的度数为()A.45°B.60°C.70°D.90°15.如图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的12,如图②,移动正方形A的位置,使正方形B的一个顶点与正方形A的对称中心重合,则重叠部分面积是正方形B面积的()A .12B .14C .16D .18二、填空题16.如图,在边长为1的正方形ABCD 中,将射线AC 绕点A 按顺时针方向旋转α度(0<α≤360°),得到射线AE ,点M 是点D 关于射线AE 的对称点,则线段CM 长度的最小值和最大值的和为_____.17.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分,若菱形的面积为20cm 2,则阴影部分的面积为_____cm 2.18.将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD =_________.(结果保留根号)19.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.20.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是_____.21.如图,平行四边形ABCD 的两条对角线AC 与BD 相交于直角坐标系的原点.若点A 的坐标为(-2,3),则点C 的坐标为___________.22.如图,在平面直角坐标系中,将ABC 绕点A 顺时针旋转到111A B C △的位置,点,B O 分别落在点11,B C 处,点1B 在x 轴上,再将111A B C △绕点1B 顺时针旋转到112A B C的位置,点2C 在x 轴上,再将112A B C 绕点2C 顺时针旋转到222A B C △的位置,点2A 在x轴上,依次进行下去,······,若点()3,0,0,2,2A B ⎛⎫ ⎪⎝⎭则点2020B 的坐标为__________________.23.如图,△ABC 中,∠BAC =20°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点C 、D ,AE 垂直平分CD 于点F ,则旋转角度是_____°.24.如图,在Rt △ABC 中,∠ABC =90°,∠BAC =32°,斜边AC =6,将斜边AC 绕点A 逆时针方向旋转26°到达AD 的位置,连接CD ,取线段CD 的中点N ,连接BN ,则BN 的长为_________.25.直角坐标系中,已知A (3,2),作点A 关于y 轴对称点A 1,点A 1关于原点对称点A 2,点A 2关于x 轴对称点A 3,A 3关于y 轴对称点A 4,……,按此规律,则点A 2019的坐标为_____.26.如图,把Rt ABC ∆绕点A 逆时针旋转40︒,得到Rt AB C ''∆,点C '恰好落在边AB 上,连接BB ',则BB C ''∠=___________度.三、解答题27.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .若AE=1,求FM 的长.28.如图,在10×10的正方形方格之中,ABC 的顶点都在格点上(1)在图1中画出ABC 关于格点O 成中心对称的A B C '''.(2)在图2中画出格点ABEF ,使得ABE A C F B S S =.29.如图,ABC ∆和ECD ∆都是等边三角形,直线AE ,BD 交于点F .(1)如图1,当A ,C ,D 三点在同一直线上时,AFB ∠的度数为_____,线段AE 与BD 的数量关系为_____.(2)如图2,当ECD ∆绕点C 顺时针旋转α()0360α︒≤<︒时,(1)中的结论是否还成立?若不成立,请说明理由:若成立,请就图2给予证明.(3)若4AC =,3CD =,当ECD ∆绕点C 顺时针旋转一周时,请直接写出BD 长的取值范围.30.如图,己知点()2,4A ,()1,1B ,()3,2C .(1)将MBC 绕点O 逆时针旋转90°得111A B C △,画出111A B C △,并写出点C 的对应点1C 的坐标为_____;(2)画出ABC 关于原点成中心对称的图形222A B C △,并写出点A 的对称点2A 的坐标为______.。

部编数学九年级上册23.10《旋转》全章复习与巩固(培优篇)(人教版)含答案

部编数学九年级上册23.10《旋转》全章复习与巩固(培优篇)(人教版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题23.10 《旋转》全章复习与巩固(培优篇)(专项练习)一、单选题1.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A 的坐标是(1,3),则点M 和点N 的坐标分别是( )A .M (1,﹣3),N (﹣1,﹣3)B .M (﹣1,﹣3),N (﹣1,3)C .M (﹣1,﹣3),N (1,﹣3)D .M (﹣1,3),N (1,﹣3)2.如图,在Rt △ABC 中,∠ACB =90°,AC BC ==△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则12BE AB +的值为( )A B .C D 3.如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC △绕点A 逆时针旋转后,得到MAB △,则APB Ð等于( ).A .120°B .135°C .150°D .160°4.如图,在Rt ABC V 中,90BAC Ð=°,AB AC =,点D 为BC 的中点,直角MDN Ð绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF V 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是( )A .1B .2C .3D .45.在矩形ABCD 中,AB =4,BC =3,CE =2BE ,EF =2,连按AF ,将线段AF 绕着点A 顺时针旋转90°得到AP ,则线段PE 的最小值为( )A .B 2C .4D 16.如图,在平面直角坐标系中,Y OABC 的顶点A 在x 轴上,定点B 的坐标为(8,4),若直线经过点D (2,0),且将平行四边形OABC 分割成面积相等的两部分,则直线DE 的表达式是( )A .y=x-2B .y=2x-4C .y=x-1D .y=3x-67.如图,已知等腰直角三角形ABC 中,AC=BC ,把AB 绕点B 逆时针旋转一定角度到点D ,连接AD 、DC ,使得∠DAC=∠BDC ,当时,线段AC 的长 ( )A .3B .C .D 8.对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P (2,3)经1次斜平移后的点的坐标为(3,5).已知点A 的坐标为(2,0),点Q 是直线l 上的一点,点A 关于点Q 的对称点为点B ,点B 关于直线l 的对称点为点C ,若点B 由点A 经n 次斜平移后得到,且点C 的坐标为(8,6),则△ABC 的面积是( )A .12B .14C .16D .189.在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---10.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()2,0,()0,2,()2,0-.一个电动玩具从原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点2P 与点1P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称;第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;….电动玩具照此规律跳下去,则点2021P 的坐标是( ).A .()4,-0B .()4,0C .()4,4D .()0,4-二、填空题11.如图,已知△ABC 中,∠C =90°,AC =BC =△ABC 绕点A 逆时针反向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为_____.12.如图,在Rt △ABC 中,90ACB Ð=o ,30BAC Ð=o ,BC =2,线段BC 绕点B 旋转到BD ,连AD ,E 为AD 的中点,连接CE ,则CE 的最大值是___.13.如图,在平行四边形ABCD 中,2AB =,60ABC Ð=°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是______.14.如图,点P 是等边三角形ABC 内一点,且PA =PB =PC个等边三角形ABC 的边长为________.15.如图,在矩形ABCD 中,5AB =,9BC =,E 是边AB 上一点,2AE =,F 是直线BC 上一动点,将线EF 绕点E 逆时针旋转90°得到线段EG ,连接CG ,DG ,则+CG DG 的最小值是________.16.如图,C 为线段AB 的中点,D 为AB 垂直平分线上一点,连接BD ,将BD 绕点D顺时针旋转60°得到线段DE ,连接AE ,若AB =6AE =,则CD 的长为 __________ .17.如图所示,抛物线y =x 2+2x ﹣3顶点为Q ,交x 轴于点E 、F 两点(F 在E 的右侧),T 是x 轴正半轴上一点,以T 为中心作抛物线y =x 2+2x ﹣3的中心对称图形,交x 轴于点K 、L 两点(L 在K 的右侧),已知∠FQL =45°,则新抛物线的解析式为 __.18.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形AB 1C 1D 1 ;把正方形 A 1 B 1 C 1 D 1 边长按原法延长一倍得到正方形 A 2 B 2 C 2 D 2 (如图1(2));以此下去,则正方形 A n B n C n D n 的面积为________.三、解答题19.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(1,1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,画出△ABC关于原点O对称的△A2B2C2,并写出点B2的坐标____________;(3)请在x 轴上找一点D 得到▱ACDB ,则点D 的坐标为________,若直线y =32-x +b 平分▱ACDB 的面积,则b =_______.20.如图,一伞状图形,已知120AOB Ð=°,点P 是AOB Ð角平分线上一点,且2OP =,60MPN Ð=°,PM 与OB 交于点F ,PN 与OA 交于点E .(1)如图一,当PN 与PO 重合时,探索PE ,PF 的数量关系(2)如图二,将MPN Ð在(1)的情形下绕点P 逆时针旋转a 度()060a <<°,继续探索PE ,PF 的数量关系,并求四边形OEPF 的面积.21.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB V V ≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE V 的面积,求S 的取值范围(直接写出结果即可).22.[问题提出](1)如图,ABC ADE V V ①、均为等边三角形,点D E 、分别在边AB AC 、上.将ADE V绕点A 沿顺时针方向旋转,连结BD CE 、.在图②中证明△≌△ADB AEC .[学以致用](2)在()1的条件下,当点D E C 、、在同一条直线上时,EDB Ð的大小为 度.[拓展延伸](3)在()1的条件下,连结CD .若6,4,BC AD ==直接写出DBC △的面积S 的取值范围.23.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM Ð=°,求线段AM 长的最大值及此时点P 的坐标.24.(1)观察理解:如图 1,ABC D 中,90,ACB AC BC Ð=°=,直线l 过点C ,点,A B 在直线l 同侧, ,BD l AE l ^^,垂足分别为,D E ,由此可得:90AEC CDB Ð=Ð=°,所 以90CAE ACE Ð+Ð=°, 又 因为90ACB Ð=°, 所以90BCD ACE Ð+Ð=°,所以CAE BCD Ð=Ð,又因为AC BC =,所以AEC CDB D @D ( );(请填写全等判定的方法)(2)理解应用:如图2,AE AB ^,且,AE AB BC CD =^,且BC CD =,利用(1)中的结论,请按照图中所标的数据计算图中实线所围成的图形的面积S =_________;(3)类比探究:如图 3, Rt ABC D 中,90ACB Ð=°,4AC =,将斜边AB 绕点A 逆时针旋转 90°至AB ¢,连接B C ¢,则AB C ¢D 的面积=_________ .(4)拓展提升:如图4,等边EBC D 中,3EC BC ==cm ,点O 在BC 上,且2OC =cm ,动点P 从点E 沿射线EC 以1cm/s 速度运动,连接OP ,将线段OP 绕点O 逆时针旋转 120°得到线段OF ,设点P 运动的时间为t 秒.①当t =________秒时,OF ∥ED ;②当t =________秒时,点F 恰好落在射线EB 上.参考答案1.C解:M 点与A 点关于原点对称,A 点与N 点关于x 轴对称,由平面直角坐标中对称点的规律知:M 点与A 点的横、纵坐标都互为相反数,N 点与A 点的横坐标相同,纵坐标互为相反数.所以M (-1,-3),N (1,-3).2.C【分析】连接EC ,过E 作EH ⊥BC 于H ,先利用勾股定理、旋转的性质可得2,60AB CAE =Ð=°,再根据等边三角形的判定与性质可得AE CE ==,然后根据勾股定理分别求出EH BE 、,由此即可得出答案.解:连接EC ,过E 作EH ⊥BC 于H ,在Rt △ABC 中,AC BC ==∴2AB ===,∴112AB =,由旋转可知:60AC AE CAE ==Ð=°,∴ACE V 是等边三角形,∴60AC AE EC ACE ===Ð=°,∴30BCE Ð=°,∴12EH EC ==∴CH ==∴BH BC CH =-=,∴1BE =====,∴1112BE AB +=+=故选:C.【点拨】本题考查了勾股定理、旋转的性质、等边三角形的判定与性质、,通过作辅助线,构造等边三角形是解题关键.3.C【分析】利用旋转变换的性质、勾股定理及其逆定理、等边三角形判定与性质等知识点,通过旋转的性质得出△APM为等边三角形以及△PMB是直角三角形,从而求得∠APB的度数.解:连接PM,如图,由旋转性质可知,△APC≌△AMB,∴AP=AM,MB=PC=10,∵∠MAP=60°,∴△APM是等边三角形,∴PM=AP=6,∵PB=8,∴MB2=PB2+MP2,∴△PMB是直角三角形,∴∠MPB=90°,∵∠MPA=60°,∴∠APB=150°.【点拨】本题主要考查了旋转变换的性质、勾股定理及其逆定理、等边三角形判定与性质等知识点,难度较大.通过旋转的性质得出△APM 为等边三角形以及△PMB 是直角三角形是解答本题的第一个关键.4.C【分析】根据等腰直角三角形的性质可得∠CAD =∠B =45°,根据同角的余角相等求出∠ADF =∠BDE ,然后利用“角边角”证明△BDE 和△ADF 全等,判断出③正确;根据全等三角形对应边相等可得DE =DF 、BE =AF ,从而得到△DEF 是等腰直角三角形,判断出①正确;再求出AE =CF ,判断出②正确;根据BE +CF =AF +AE ,利用三角形的任意两边之和大于第三边可得BE +CF >EF ,判断出④错误.解:∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形,∠B =45°,∵点D 为BC 中点,∴AD =CD =BD ,AD ⊥BC ,∠CAD =45°,∴∠CAD =∠B ,∠BDE +∠ADE =∠ADB =90°∵∠MDN 是直角,∴∠ADF +∠ADE =90°,∴∠ADF =∠BDE ,在△BDE 和△ADF 中,CAD B AD BD ADF BDE ÐÐìïíïÐÐî===,∴△BDE ≌△ADF (ASA ),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①正确;∵AE =AB -BE ,CF =AC -AF ,∴AE =CF ,故②正确;∵△BDE ≌△ADF∴BDE ADFS S =V V ∴12ADE ADF ADE BDE BDA ABC AEDF S S S S S S S =+=+==△△△△△△四边形故③正确;∵BE +CF =AF +AE >EF ,∴BE +CF >EF ,故④错误;综上所述,正确的是①②③,故选:C.【点拨】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质、三角形的三边关系、同角的余角相等,熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.5.B【分析】连接AE ,过点A 作AG ⊥AE ,截取AG =AE ,连接PG ,GE ,通过SAS 证明△AEF ≌△AGP ,得PG =EF =2,再利用勾股定理求出GE 的长,在△GPE 中,利用三边关系即可得出答案.解:连接AE ,过点A 作AG ⊥AE ,截取AG =AE ,连接PG ,GE ,∵将线段AF 绕着点A 顺时针旋转90°得到AP ,∴AF =AP ,∠PAF =90°,∴∠FAE +∠PAE =∠PAE +∠PAG =90°,∴∠FAE =∠PAG ,在△AEF 和△AGP 中,,AF AP FAE PAG AE AG =ìïÐ=Ðíï=î∴△AEF ≌△AGP (SAS ),∴PG =EF =2,∵BC =3,CE =2BE ,∴BE =1,在Rt △ABE 中,由勾股定理得:AE ==,∵AG =AE ,∠GAE =90°,∴GE =,在△GPE 中,PE >GE -PG ,∴PE 的最小值为GE -PG 2,故选:B .【点拨】本题主要考查了旋转的性质,全等三角形的判定与性质,三角形的三边关系等知识,作辅助线构造出全等三角形是解题的关键.6.A【分析】过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可.解:∵点B 的坐标为(8,4),∴平行四边形的对称中心坐标为(4,2),设直线DE 的函数解析式为y=kx+b ,则4220k b k b +=ìí+=î,解得12k b =ìí=-î,∴直线DE 的解析式为y=x-2.故选:A .【点拨】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.7.D【分析】如图(见分析),先根据等腰直角三角形的性质可得45,BAC AC AB Ð=°=,再根据旋转的性质、等腰三角形的性质可得,45AB BD ADC BAC =Ð=Ð=°,然后根据三角形全等的判定定理与性质可得45,BEC ADC BE AD Ð=Ð=°=,从而可得,2,4BE AD AE DE BE AD ^====,最后利用勾股定理即可得.解:如图,过点C 作CE CD ^,交AD 于点E ,连接BE ,ABC Q V 是等腰直角三角形,AC BC =,45,BAC AB \Ð=°==,即AC AB =,由旋转的性质得:AB BD =,BAD BDA \Ð=Ð,DAC B B C C AC AD D \Ð+=ÐÐ+Ð,DAC BDC Ð=ÐQ ,45ADC BAC \Ð=Ð=°,CDE \V是等腰直角三角形,2,45CE CD DE CED \====Ð=°,又90DCE ACB Ð=Ð=°Q ,DCE ACE ACB ACE \Ð+Ð=Ð+Ð,即ACD BCE Ð=Ð,在BCE V 和ACD △中,BC AC BCE ACD CE CD =ìïÐ=Ðíï=î,()BCE ACD SAS \@V V ,45,BEC ADC BE AD \Ð=Ð=°=,90BED BEC CED \Ð=Ð+Ð=°,即BE AD ^,又AB BD =Q ,2AE DE \==(等腰三角形的三线合一),24BE AD DE \===,在Rt ABE △中,AB ==AC AB \===故选:D .【点拨】本题考查了等腰直角三角形的判定与性质、三角形全等的判定定理与性质、旋转的性质、勾股定理等知识点,通过作辅助线,构造等腰直角三角形和全等三角形是解题关键.8.A【分析】连接CQ ,根据中心和轴对称的性质和直角三角形的判定得到∠ACB =90,延长BC 交x 轴于点E ,过C 点作CF ⊥AE 于点F ,根据待定系数法得出直线的解析式进而解答即可.解:连接CQ ,如图:由中心对称可知,AQ =BQ ,由轴对称可知:BQ =CQ ,∴AQ =CQ =BQ ,∴∠QAC =∠ACQ ,∠QBC =∠QCB ,∵∠QAC +∠ACQ +∠QBC +∠QCB =180°,∴∠ACQ +∠QCB =90°,∴∠ACB =90°,∴△ABC 是直角三角形,延长BC 交x 轴于点E ,过C 点作CF ⊥AE 于点F ,如图,∵A (2,0),C (8,6),∴AF =CF =6,∴△ACF 是等腰直角三角形,∵18090ACE ACB Ð=°-Ð=°,∴∠AEC =45°,∴E 点坐标为(14,0),设直线BE 的解析式为y =kx +b ,∵C ,E 点在直线上,可得:14086k b k b ì+=ïí+=ïî,解得:114k b ì=-ïí=ïî,∴y =﹣x +14,∵点B 由点A 经n 次斜平移得到,∴点B (n +2,2n ),由2n =﹣n ﹣2+14,解得:n =4,∴B (6,8),∴△ABC 的面积=S △ABE ﹣S △ACE =12×12×8﹣12×12×6=12,故选:A .【点拨】本题考查轴对称的性质,中心对称的性质,等腰三角形的判定与性质,求解一次函数的解析式,得到B 的坐标是解本题的关键.9.A【分析】先求出C 点坐标,再设新抛物线上的点的坐标为(x ,y ),求出它关于点C 对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.解:当x =0时,y =5,∴C (0,5);设新抛物线上的点的坐标为(x ,y ),∵原抛物线与新抛物线关于点C 成中心对称,由20x x ´-=-,2510y y ´-=-;∴对应的原抛物线上点的坐标为(),10x y --;代入原抛物线解析式可得:()()21045y x x -=--×-+,∴新抛物线的解析式为:245y x x =--+;故选:A .【点拨】本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.10.A【分析】根据题意,先求出前几次跳跃后1P 、2P 、3P 、4P 、5P 、6P 、7P的坐标,可得出规律,继而可求点2021P 的坐标.解:由题意得:点()14,0P 、()24,4P -、()30,4P -、()44,4P 、()54,0P -、()60,0P 、()74,0P ,∴点P 的坐标的变化规律是6次一个循环,∵20216336...5¸=,∴点2021P 的坐标是()4,-0.故选:A .【点拨】本题主要考查了中心对称及点的坐标的规律,解题的关键是求出前几次跳跃后点的坐标并总结出一般规律.11.1【分析】连接BB ′,设BC ′与AB ′交点为D ,根据∠C =90°,AC =BC =AB=2,根据旋转,得到∠AC ′B ′=∠ACB =90°,AC ′=AC =B ′C ′=BC ,AB =AB ′=2,∠BAB ′=60°,推出BC ′垂直平分AB ′,△ABB ′为等边三角形,得到C ′D 12=AB ′=1,'60ABB Ð=°,推出1''302ABD B BD ABB Ð=Ð=Ð=°,得到BD =′C ′B =C ′D +BD =1.解:连接BB ′,设BC ′与AB ′交点为D ,如图,△ABC中,∵∠C=90°,AC=BC=∴AB===2,∵△ABC绕点A逆时针反向旋转60°到△AB′C′的位置,∴∠AC′B′=∠ACB=90°,AC′=AC=B′C′=BC,AB=AB′=2,∠BAB′=60°,∴BC′垂直平分AB′,△ABB′为等边三角形,∴C′D12=AB′=1,'60ABBÐ=°,∴1''302ABD B BD ABBÐ=Ð=Ð=°,∴BD=∴C′B=C′D+BD=1故答案为1【点拨】本题考查了旋转图形全等的性质,线段垂直平分线判定和性质,等边三角形的判定与性质,等腰直角三角形的性质,含30°角的直角三角形边的性质,作辅助线构造出等边三角形,求出'C D,BD的长是解题的关键.12.3【分析】通过已知求得D在以B为圆心,BD长为半径的圆上运动,∵E为AD的中点,∴E在以BA中点为圆心,12B D长为半径的圆上运动,再运用圆外一定点到圆上动点距离的最大值=定点与圆心的距离+圆的半径,求得CE的最大值.解:∵BC=2,线段BC绕点B旋转到BD,∴BD =2,∴112BD =.由题意可知,D 在以B 为圆心,BD 长为半径的圆上运动,∵E 为AD 的中点,∴E 在以BA 中点为圆心,12B D 长为半径的圆上运动,CE 的最大值即C 到BA 中点的距离加上12BD 长.∵90ACB Ð=o ,30BAC Ð=o ,BC =2,∴C 到BA 中点的距离即122AB =,又∵112BD =,∴CE 的最大值即1121322AB BD +=+=.故答案为3.【点拨】本题考查了与圆相关的动点问题,正确识别E 点运动轨迹是解题的关键.13【分析】以AB 为边向右作等边△ABK ,连接EK ,证明△ABF ≌△KBE (SAS ),推出AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,EK 的值最小,求出EK 即可解决问题.解:如图,以AB 为边向右作等边△ABK ,由60ABC Ð=°可知点K 在BC 上,连接EK ,∵BE=BF,BK=BA,∠EBF=∠ABK=60°,∴∠ABF=∠KBE,∴△ABF≌△KBE(SAS),∴AF=EK,根据垂线段最短可知,当KE⊥AD时,EK的值最小,即AF的值最小,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAK=∠AKB=60°,∴∠AKE=30°,∵AB=AK=2,AK=1,∴AE=12∴EK=,∴AF【点拨】本题考查旋转的性质,平行四边形的性质,等边三角形的性质,全等三角形的判定和性质,垂线段最短,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.14【分析】将三角形BCP绕点B逆时针旋转60°得三角形BDA,过B作BH⊥直线AP于H,先证明三角形BDP为等边三角形,利用勾股定理逆定理得∠DPA=90°,进而得∠BPH=30°,利用勾股定理解直角三角形即可得答案.解:将三角形BCP绕点B逆时针旋转60°,得三角形BDA,BC边落在AB上,过B作BH ⊥直线AP 于H ,如图所示,由旋转知,△BDP 为等边三角形,AD =PC =,∴BP =PD =BD ,∠BPD =60°,∵PA ,∴222PD PA AD +=,∴∠APD =90°,∴∠BPH =30°,∴BH =12BP =,由勾股定理得:AB.【点拨】本题考查了等边三角形的性质与判定、勾股定理逆定理、旋转变换的应用等知识点,解题关键是作旋转变换,将分散的条件集中在同一三角形中.15.13【分析】将FBE V 绕点E 逆时针旋转90°得到GHE △,延长GH 交BC 于点M ,延长CB 至点N ,使CM NM =,连接DN ,由矩形的条件和旋转的性质可得3EH EB ==,90B BEH EHG Ð=Ð=Ð=°,可说明四边形EBMH 是矩形,然后由正方形的性质可得到12CN =,GM CN ^,从而说明GM 是CN 的垂直平分线,进一步推导出CG DG NG DG ND +=+³,当点N ,G ,D 三点共线时,+CG DG 取最小值,最后由勾股定理可求解.解:将FBE V 绕点E 逆时针旋转90°得到GHE △,延长GH 交BC 于点M ,延长CB 至点N ,使CM NM =,连接DN ,∵在矩形ABCD 中,5AB =,9BC =,2AE =,∴3EB AB AE =-=,90B BCD Ð=Ð=°,5CD =,∴3EH EB ==,90B BEH EHG Ð=Ð=Ð=°,∴90EHM Ð=°,∴四边形EBMH 是矩形,∴3BM EH ==,90BMH Ð=°,∴()229312CN CM ==´-=,GM CN ^,∴GM 是CN 的垂直平分线,∴CG NG =,∵F 是直线BC 上一动点,∴CG DG NG DG ND +=+³,∴当点N ,G ,D 三点共线时,+CG DG 取最小值ND ,在Rt NCD V 中,12CN =,5CD =,13ND ===,∴+CG DG 的最小值是13.故答案为:13.【点拨】本题考查了旋转的性质,矩形的性质,垂直平分线,三角形三边的关系,勾股定理等知识,采用了转化的思想方法.确定点C 关于GM 的对称点N 是解题的关键.16.9【分析】连接AD 、BE ,过点E 作EH ⊥AB 于H ,由旋转知,DE =DB ,∠BDE =60°,可证△BDE 是等边三角形,利用等边对等角结合三角形内角和为180°求出18018022ADB ADE BAD EAD °-а-ÐÐ=Ð=,,从而得到3601502BDE BAE °-ÐÐ==°,进而可求出∠HAE =30°.再根据含30度角的直角三角形的性质可求出EH ,AH ,再利用勾股定理即可先后求出BE 和CD .解:如图,连接AD 、BE ,过点E 作EH ⊥AB 于H ,由旋转知,DE =DB ,∠BDE =60°,∴△BDE 是等边三角形,∴BE =BD .∵C 为AB 中点,点D 在AB 的垂直平分线上,∴AD =BD =DE ,12BC AB ==∴18018022ADB ADE BAD EAD °-а-ÐÐ=Ð=,,∴()36036022ADB ADE BDE BAD EAD °-Ð+а-ÐÐ+Ð==,即3602BDE BAE °-ÐÐ=.∵∠BDE =60°,∴∠BAE =150°,∴∠HAE =180°-150°=30°.∵AE =6,∴132EH AE ==,∴AH ==∴BH AH AB =+=∴BE ==,∴BD =,∴9CD ==.故答案为:9.【点拨】本题考查了图形的旋转,三角形内角和定理,线段垂直平分线的性质,勾股定理以及含30°的直角三角形的性质等知识,通过作辅助线构造出直角三角形是解题的关键.17.y=﹣x2+18x﹣77【分析】根据顶点式求得Q点的坐标,进而令0y=求得点,E F的坐标,作QP⊥x轴于P,过F点作FM⊥FQ交QL于M.作MN⊥x轴于N,根据∠FQL=45°,证明△PQF≌△NFM(AAS),进而求得点M的坐标,求得直线QL的解析式为y11133x=-,继而求得L(11,0),T点坐标为(4,0),根据中心对称的性质可得K(7,0),根据交点式即可写出新抛物线的解析式.解:∵y=x2+2x﹣3=(x+1)2﹣4,∴Q(﹣1,﹣4),当y=0时,x2+2x﹣3=0,解得x1=﹣3,x2=1,∴E(﹣3,0),F(1,0),作QP⊥x轴于P,过F点作FM⊥FQ交QL于M.作MN⊥x轴于N,如图,∵∠FQL=45°,∴△QFM为等腰直角三角形,∴FQ=FM,∵∠PFQ+∠PQF=90°,∠PFQ+∠MFN=90°,∴∠PQF=∠MFN,∴△PQF≌△NFM(AAS),∴PQ=FN=4,MN=PF=2,∴M(5,﹣2),设直线QL的解析式为y=kx+b,把Q (﹣1,﹣4),M (5,﹣2)代入得452k b k b -+=-ìí+=-î,解得13113k b ì=ïïíï=-ïî,∴直线QL 的解析式为y 11133x =-,当y =0时,11133x -=0,解得x =11,∴L (11,0),∵点E (﹣3,0)和点L (11,0)关于T 对称,∴T 点坐标为(4,0),∵点F 与点K 关于T 点对称,∴K (7,0),∵新抛物线与抛物线y =x 2+2x ﹣3关于T 对称,∴新抛物线的解析式为y =﹣(x ﹣7)(x ﹣11),即y =﹣x 2+18x ﹣77.故答案为y =﹣x 2+18x ﹣77.【点拨】本题考查了二次函数的性质,中心对称的性质,等腰直角三角形的性质与判定,求抛物线的解析式,求得对称中心是解题的关键.18.5n解:根据三角形的面积公式,知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.如图(1),已知小正方形ABCD 的面积为1,则把它的各边延长一倍后,三角形AA 1B 1的面积是1,新正方形A 1B 1C 1D 1的面积是5,从而正方形A 2B 2C 2D 2的面积为5×5=25,正方形A n B n C n D n 的面积为5n .考点:找规律-图形的变化【点拨】解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.19.(1)见分析(2)画图见分析,B 2(-5,-2)(3)(3,0),6【分析】(1)分别作出点A、B以C为中心,顺时针旋转90°后的对应点A1、B1即可解答;(2)根据中心对称的坐标特征:横纵坐标互为相反数;求得A2、B2、C2的坐标即可;(3)C点先向下平移1个单位,再向右平移2个单位,即可得到点D(3,0);求出平行四边形ACDB的中心坐标,根据中心对称图形的性质可得直线y经过中心坐标,进而求得b;(1)解:如图,分别作出点A、B以C为中心,顺时针旋转90°后的对应点A1、B1,连接相应顶点得△A1B1C即为所求;(2)解:∵A(3,3),B(5,2),C(1,1),∴A、B、C关于原点的对称点坐标为:A2(-3,-3),B2(-5,-2),C2(-1,-1),如图,△A2B2C2即为所求,(3)解:如图,C点先向下平移1个单位,再向右平移2个单位,得到点D(3,0),连接相应顶点,四边形ACDB为平行四边形;∵A 点先向下平移1个单位,再向右平移2个单位,可得到点B ,∴BD 可由AB 平移得到,即BD ∥AB ,BD =AB ,∴四边形ACDB 是平行四边形,∵C (1,1),B (5,2),平行四边形是中心对称图形,∴平行四边形ACDB 的中心坐标为(3,32),如图所示,当直线y 经过平行四边形中心时,直线两侧的图形关于中心点对称面积相等,∴(3,32)代入直线y =32-x +b ,可得b =6;【点拨】本题考查了图形旋转,中心对称图形的性质,坐标的平移和对称变换,平行四边形的判定和性质;掌握中心对称图形的性质是解题关键.20.(1)=PE PF ,证明详见分析;(2)=PE PF 【分析】(1)根据角平分线定义得到∠POF=60°,推出△PEF 是等边三角形,得到PE=PF ;(2)过点P 作PQ ⊥OA ,PH ⊥OB ,根据角平分线的性质得到PQ=PH ,∠PQO=∠PHO=90°,根据全等三角形的性质得到PE=PF ,S 四边形OEPF =S 四边形OQPH ,求得OQ=1,解:(1)∵120AOB а=,OP 平分AOB Ð,∴60POF а=,∵60MPN а=,∴60MPN FOP Ðа== ,∴PEF D 是等边三角形,∴=PE PF ;(2)过点P 作PQ OA ^,PH OB ^,∵OP 平分AOB Ð,∴PQ PH =,90PQO PHO Ðа==,∵120AOB а=,∴∠QPH =60°,∴QPE FPH EPH Ð+Ð+Ð,∴QPE EPF ÐÐ=,在QPE D 与HPF D 中EQP FHP QPE HPF PQ PH Ð=ÐìïÐ=Ðíï=î,∴QPE HPF AAS D D ≌(),∴=PE PF ,OEPF OQPH S S 四边形四边形=,∵PQ OA ^,PH OB ^,OP 平分AOB Ð,∴30QPO а=,∴1OQ =,QP=∴112OPQ S D ´´=∴四边形OEPF 的面积=2OPQ S D【点拨】本题考查了旋转的性质,角平分线的性质,全等三角形的判定和性质,三角形的面积,正确的作出辅助线是解题的关键.21.(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见分析;②点H 的坐标为17(,3)5.(Ⅲ)S £分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO Ð=Ð,再根据矩形的性质得CBA OAB Ð=Ð.从而BAD CBA Ð=Ð,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(ⅢS ££解:(Ⅰ)∵点()5,0A ,点()0,3B ,∴5OA =,3OB =.∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C Ð=Ð=°.∵矩形ADEF 是由矩形AOBC 旋转得到的,∴5AD AO ==.在Rt ADC V 中,有222AD AC DC =+,∴DC = 4==.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE Ð=°.又点D 在线段BE 上,得90ADB Ð=°.由(Ⅰ)知,AD AO =,又AB AB =,90AOB Ð=°,∴Rt ADB Rt AOB V V ≌.②由ADB AOB V V ≌,得BAD BAO Ð=Ð.又在矩形AOBC 中,//OA BC ,∴CBA OAB Ð=Ð.∴BAD CBA Ð=Ð.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC V 中,有222AH AC HC =+,∴()22235t t =+-.解得175t =.∴175BH =.∴点H 的坐标为17,35æöç÷èø.(ⅢS ££【点拨】本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.22.(1)见分析;(2)60或120;(3)1212S ££【分析】(1)运用SAS 证明△≌△ADB AEC 即可;(2)分“当点E 在线段CD 上”和“当点E 在线段CD 的延长线上”两种情况求出EDB Ð的大小即可;(3)分别求出DBC △的面积最大值和最小值即可得到结论解:(1),ABC ADE Q V V 均为等边三角形,AD AE \=,AB AC =,DAE BAE BAC BAE \Ð-Ð=Ð-Ð,即BAD CAEÐ=Ð在ADB △和AEC △中AD AE BAD CAEAB AC =ìïÐ=Ðíï=î()ABD ACE SAS \@V V ;(2)当,,D E C 在同一条直线上时,分两种情况:①当点E 在线段CD 上时,如图,∵ADE V 是等边三角形,60ADE AED \Ð=Ð=°,180120AEC AED \Ð=-Ð=°°,由(1)可知,ADB AEC @V V ,120ADB AEC \Ð=Ð=°,1206060EDB ADB ADE \Ð=Ð-=-°=°Ð°②当点E 在线段CD 的延长线上时,如图,ADE Q V是等边三角形,60ADE AED \Ð=Ð=°180120ADC ADE \Ð=-Ð=°°,由(1)可知,ADB AEC@V V 60ADB AEC \Ð=Ð=°,60EDB ADB ADE \Ð=Ð+Ð=° 60120+=°°综上所述,EDB Ð的大小为60°或120°(3)过点A 作AF BC ^于点F ,当点D 在线段AF 上时,点D 到BC 的距离最短,此时,点D 到BC 的距离为线段DF 的长,如图:ABC Q V 是等边三角形,AF BC ^,6BC =6AB BC \==,132BF BC ==AF \==4DF \=此时1164)1222DBC S BC DF =×=´´=V ; 当D 在线段FA 的延长线上时,点D 到BC 的距离最大,此时点D 到BC 的距离为线段DF 的长,如图,ABC Q V 是等边三角形,AF BC ^,6BC =6AB BC \==,132BF BC ==,AF \==4AD =Q4DF AF AD \=+=此时,1164)1222DBC S BC DF =×=´´=V ;综上所述,DBC △的面积S 取值是1212S -££【点拨】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.23.(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见分析;②BE 的最大值是4;(3)AM 的最大值是P 的坐标为()【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN。

人教版初中数学九年级上册旋转重点知识归纳

人教版初中数学九年级上册旋转重点知识归纳

人教版初中数学九年级上册旋转重点知识归纳知识点1旋转的相关概念1.概念:在同一平面内,将一个图形绕某一个定点O沿某个方向转动一个角度,这样的图形运动叫旋转。

定点O叫旋转中心,转动的角称为旋转角。

2.旋转对称图形:绕某一点旋转一定角度后能与自身完全重合的图形。

3.图形旋转三要素:旋转中心、旋转方向、旋转角知识点2 旋转的性质1.旋转的性质:只改变位置,不改变图形的形状和大小。

(1)对应点到旋转中心的距离相等;(2)对应点与对应中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。

2.旋转中心的确定:旋转中心是两对对应点所连线段的垂直平分线的交点。

3.旋转作图具体步骤(1)定:确定图形中的每一个关键点和旋转中心;(2)连:连接图形中每一个关键点和旋转中心;(3)转:把连线按要求绕旋转中心转动一定角度(作旋转角);(4)截:在角的另一边上截取与对应的关键点到旋转中心距离相等的线段,得到各点的对应点;(5)连:顺次连接所得到的各对应点;(6)写:写出结论,说明作出的图形。

【核心提示】找、连、作。

找出关键点,连线并转动一定的角度,连接对称点并作出图形。

4.旋转与平移、轴对称的相同点和不同点知识点3 中心对称如果把一个图形(如△ABO)绕定点O旋转180º,它能够与另一个图形(如△CDO)重合,那么就说这两个图形△ABO与图形△CDO关于这个点对称或中心对称,点O就是对称中心。

知识点4 中心对称性质1.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.(即对称点与对称中心三点共线);2.中心对称的两个图形是全等形。

4.中心对称与中心对称图形的区别与联系知识点5 中心对称图形1.定义:一个图形绕某个点旋转180度,如果旋转后的图形能与原来的图形完全重合,则这个图形叫做中心对称图形。

其中,这个点叫做该图形的对称中心。

2.中心对称图形判定依据(三要素):①绕某点;②旋转180º;③与本身重合。

2022-2023学年人教版九年级数学上册《第23章旋转》期末综合复习题(附答案)

2022-2023学年人教版九年级数学上册《第23章旋转》期末综合复习题(附答案)

2022-2023学年人教版九年级数学上册《第23章旋转》期末综合复习题(附答案)一.选择题1.如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A.3种B.6种C.8种D.12种2.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5C.4D.3.正方形ABCD与正五边形EFGHM的边长相等,初始如图所示,将正方形绕点F顺时针旋转使得BC与FG重合,再将正方形绕点G顺时针旋转使得CD与GH重合…按这样的方式将正方形依次绕点H、M、E旋转后,正方形中与EF重合的是()A.AB B.BC C.CD D.DA4.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=()A.1:B.1:2C.:2D.1:5.若一个图形绕着一个定点旋转一个角α(0°<α≤180°)后能够与原来的图形重合,那么这个图形叫做旋转对称图形.例如:等边三角形绕着它的中心旋转120°(如图),能够与原来的等边三角形重合,因而等边三角形是旋转对称图形.显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,旋转对称图形个数有()A.1B.2C.3D.46.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B 为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2022的坐标是()A.(2022,2)B.(2022,﹣2)C.(2024,﹣2)D.(0,2)7.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)8.如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a.﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)9.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种10.对如图的几何体变换位置或视角,则可以得到的几何体是()A.B.C.D.二.填空题11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有种.12.如图所示,在正方形网格中,图①经过变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”).13.如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为平方单位.14.如图,AB⊥BC,AB=BC=2cm,弧OA与弧OC关于点O中心对称,则AB、BC、弧CO、弧OA所围成的面积是cm2.15.如图是两张全等的图案,它们是轴对称图形,其中的三角形是正三角形,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,至少旋转度角后,两张图案构成的图形是中心对称图形.16.如图所示是一个坐标方格盘,你可操纵一只遥控机器蛙在方格盘上进行跳步游戏,机器蛙每次跳步只能按如下两种方式(第一种:向上、下、左、右可任意跳动1格或3格;第二种跳到关于原点的对称点上)中的一种进行.若机器蛙在点A(﹣5,4),现欲操纵它跳到点B(2,﹣3),请问机器蛙至少要跳次.三.解答题17.在平面直角坐标系中有△ABC与△A1B1C1,其位置如图所示,(1)将△ABC绕C点按(填“顺”或“逆”)时针方向旋转度时与△A1B1C1重合.(2)若将△ABC向右平移2个单位后,只通过一次旋转变换能与△A1B1C1重合吗?若能,请直接指出旋转中心的坐标、方向及旋转角度;若不能,请说明理由.18.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.19.附加题:A、计算:2﹣1=;B、在正方形、直角三角形、梯形这三个图形中,为中心对称图形的是.20.如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.21.如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.22.如图,△ABC三个顶点均在边长为1的正方形网格点上,以网格点O为坐标原点建立平面直角坐标系.请按要求解答下列问题.(1)作出△ABC关于x轴对称的图形△A1B1C1.并求写出sin∠B1的值.(2)画出△ABC关于原点O对称的图形△A2B2C2.(3)将△ABC绕原点O顺时针旋转90°,画出旋转后的图形△A3B3C3.23.如图,梯形ANMB是直角梯形.(1)请在图上拼上一个直角梯形MNPQ,使它与梯形ANMB构成一个等腰梯形;(2)将补上的直角梯形MNPQ以点M为旋转中心,逆时针旋转180°得梯形MN1P1Q1,再向上平移一格得B1M1N2P2.(不要求写作法,但要保留作图痕迹)参考答案一.选择题1.解:由网格可知:a=,b=d=,c=2,则能组成三角形的只有:a,b,d可以分别通过平移ab,ad,bd得到三角形,平移其中任意两条线段方法各有两种,即能组成三角形的不同平移方法有6种.故选:B.2.解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠CAB=45°,∴△ACO是等腰直角三角形,∴∠ACO=∠BCO=45°,∵CA=CB,∴AO=CO=AB=×6=3,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选:B.3.解:∵正方形ABCD与正五边形EFGHM的边长相等,∴从BC与FG重合开始,正方形ABCD的各边依次与正五边形EFGHM的各边重合,而与EF重合是正方形的边与正五边形的边第五次重合,∴正方形中与EF重合的是BC.故选:B.4.解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:3,∴AP=3P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=3x,根据勾股定理,PP′===2x,∴PP′=PB=2x,解得PB=2x,∴P′A:PB=x:2x=1:2.故选:B.5.解:图1绕中心旋转60°后能够与原来的图形重合,所以这个图形是旋转对称图形;图2中,无论怎么样旋转都无法重合,除非旋转360度,但超出条件范围,故图2不是旋转对称图形;图3绕中心旋转120°后能够与原来的图形重合,所以这个图形是旋转对称图形;图4绕中心旋转72°后能够与原来的图形重合,所以这个图形是旋转对称图形.故选:C.6.解:根据题意,以A为对称中心作点P(0,2)的对称点P1,即A是PP1的中点,又由A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(2,0);同理P2的坐标是(2,﹣2),记P2(a2,b2),其中a2=2,b2=﹣2.根据对称关系,依次可以求得:P3(﹣4﹣a2,﹣2﹣b2),P4(2+a2,4+b2),P5(﹣a2,﹣2﹣b2),P6(4+a2,b2),令P6(a6,b2),同样可以求得,点P10的坐标为(4+a6,b2),即P10(4×2+a2,b2),由于2022=4×505+2,所以点P2022的坐标是(2022,﹣2),故选:B.7.解:如图,分别连接AD、CF,然后作它们的垂直平分线,它们交于P点,则它们旋转中心为P,根据图形知道△ABC绕P点顺时针旋转90°得到△DEF,∴P的坐标为(5,2).故选:A.8.解:把AA′向上平移1个单位得A的对应点A1坐标为(a,b+1).因A1、A2关于原点对称,所以A′对应点A2(﹣a,﹣b﹣1).∴A′(﹣a,﹣b﹣2).故选:D.9.解:得到的不同图案有:,共6种.故选:C.10.解:本题中,只有B的几何体和题目中的几何体一致.故选:B.二.填空题11.解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,3处,7处,6处,5处,选择的位置共有5处.故答案为:5.12.解:根据题意:观察可得:图①与图②对应点位置不变,通过平移可以得到;根据旋转中心的确定方法,两组对应点连线的垂直平分线的交点,可确定图②经过旋转变换得到图③的旋转中心是A.故答案为:平移,A.13.解:设B′C′和CD的交点是O,连接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四边形AB′OD=2S△AOD=2××=2,∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣2.14.解:连接AC.∵与关于点O中心对称,∴点O为AC的中点,∴AB、BC、弧CO、弧OA所围成的面积=△BAC的面积==2cm2.故答案为:2.15.解:正三角形要想变成和正偶数边形有关的多边形,边数最少也应是6边形,而六边形的中心角是60°,所以至少旋转60°角后,两张图案构成的图形是中心对称图形.16.解:若机器蛙在点A(﹣5,4),根据跳步游戏规则,可以先向右跳三步,再向下跳一步,然后跳到关于原点的对称点即可跳到点B(2,﹣3).这个路径步数最少是3步.三.解答题17.解:(1)依题意根据图形可知将△ABC绕C点按逆时针方向旋转90度时与△A1B1C1重合;(2)若将△ABC向右平移2个单位后,只通过一次旋转变换能与△A1B1C1重合,如图,分别连接A1A′,B1B′,然后分别作C1C′、B1B′、A1A′的垂直平线,三条垂直平分线交于P点,故把平移后的△A′B′C′绕点O逆时针旋转90°后即可与△A1B1C1重合.18.(1)证明:∵用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),∴AB=AF,∠BAM=∠F AN,在△ABM和△AFN中,,∴△ABM≌△AFN(ASA),∴AM=AN;(2)解:当旋转角α=30°时,四边形ABPF是菱形.理由:连接AP,∵∠α=30°,∴∠F AN=30°,∴∠F AB=120°,∵∠B=60°,∴∠B+∠F AB=180°,∴AF∥BP,∴∠F=∠FPC=60°,∴∠FPC=∠B=60°,∴AB∥FP,∴四边形ABPF是平行四边形,∵AB=AF,∴平行四边形ABPF是菱形.19.解:A、2﹣1=;B、正方形既是中心对称图形,也是轴对称图形;直角三角形和梯形既不是轴对称图形,也不是中心对称图形,故是中心对称图形的是正方形.20.解:(1)点A的坐标是(﹣2,0),点C的坐标是(1,2).(2)连接AC,在Rt△ACD中,AD=OA+OD=3,CD=2,∴AC2=CD2+AD2=22+32=13,∴AC=.21.解:(1)Rt△A1B1C1如图所示,A1(﹣4,0);(2)Rt△A2B2C2如图所示,根据勾股定理,A1C1==,所以,点C1所经过的路径长==π.22.解:(1)△A1B1C1如图所示,根据勾股定理,B1C1==2,所以,sin∠B1==;(2)△A2B2C2如图所示;(3)△A3B3C3如图所示.23.解:(1)按要求作出梯形MNPQ.(2)按要求作出梯形MN1P1Q1.按要求作出梯形B1M1N2P2.。

人教版初三数学:《旋转》全章复习与巩固--知识讲解(提高)(1)

人教版初三数学:《旋转》全章复习与巩固--知识讲解(提高)(1)

《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转【高清课堂:高清ID号: 388636关联的位置名称(播放点名称):经典例题2-3】3.(2015•北京校级模拟)如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是;∠EFD的度数为;(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,并直接写出线段EF与FC的关系(无需证明).【思路点拨】(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;(3)基本方法同(2).【答案与解析】解:(1)EF=FC,90°.(2)延长CF到M,使CF=FM,连接DM、ME、EC,如下图2∵FC=FM,∠BFC=∠DFM,DF=FB,∴△BFC≌△DFM,∴DM=BC,∠MDB=∠FBC,∴MD=AC,MD∥BC,∵ED=EA,∠MDE=∠EAC=135°,∴△MDE≌△CAE,∴ME=EC,∠DEM=∠CEA,∴∠MEC=90°,∴EF=FC,EF⊥FC(3)图形如下,结论为:EF=FC,EF⊥FC.【总结升华】延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.举一反三:【变式】如图,△ABC 中,∠BAC=90°,AC=2,AB=23,△ACD 是等边三角形. (1)求∠ABC 的度数.(2)以点A 为中心,把△ABD 顺时针旋转60°,画出旋转后的图形. (3)求BD 的长度.【答案】(1)Rt △ABC 中,AC=2,AB=23, ∴BC=4, ∴∠ABC=30° (2)如图所示:(3)连接BE .由(2)知:△ACE ≌△ADB , ∴AE=AB ,∠BAE=60°,BD=EC , ∴BE=AE=AB=23,∠EBA=60°, ∴∠EBC=90°, 又BC=2AC=4,∴Rt △EBC 中,EC=2223+4=27()4.(2015•东西湖区校级模拟)如图,Rt △ABC 中,AC=BC ,∠ACB=90°,点E 在线段AB 上,CF ⊥CE ,CE=CF ,EF 交AC 于G ,连接AF .(1)填空:线段BE 、AF 的数量关系为 ,位置关系为 ; (2)当=时,求证:=2;(3)若当=n 时,=,请直接写出n 的值.【思路点拨】(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;(3)根据(2)的推理过程,知S△AEG=nS△AFG,则,即可求得n的值.【答案与解析】(1)解:∵∠ACB=90°,CF⊥CE,∴∠ECB=∠ACF.又AC=BC,CE=CF,∴△ECB≌△FCA.∴BE=AF,∠CBE=∠CAF,又∠CBE+∠CAB=90°,∴∠CAF+∠CAB=90°,即BE=AF,BE⊥AF.(2)证明:作GM⊥AB于M,GN⊥AF于N,∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,∴AF=BE,∠CAF=∠CBE=45°.∴AE=2AF,∠CAF=∠CAB,∴GM=GN.∴S△AEG=2S△AFG,∴EG=2GF,∴=2.(3)解:由(2),得当=n时,S△AEG=nS△AFG,则,∴当n=时,=.【总结升华】此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律.【高清课堂:高清ID号:388636关联的位置名称(播放点名称):经典例题4-5】5.已知:点P 是正方形ABCD 内的一点,连结PA 、PB 、PC , (1)若PA=2,PB=4,∠APB=135°,求PC 的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.【思路点拨】通过旋转,把PA 、PB 、PC 或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APD . 【答案与解析】(1)∵AB=BC,∠ABC=90°,∴△CBP 绕点B 逆时针旋转90°,得到△ABE, ∵BC=BA,BP=BE,∠CBP=∠ABE ∴△CBP ≌△ABE ∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=42 又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:PE=2BP,PC=AE ∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90° 又∵由(1)证得∠BAE=∠BCP ∴∠PAB+∠BCP=90 又∵∠ABC=90° ∴点A,P,C 三点共线, 即P 必在对角线AC 上.【总结升华】注意勾股定理及逆定理的灵活运用.举一反三:【变式】如图,在四边形ABCD中,AB=BC,,K为AB上一点,N为BC上一点.若的周长等于AB的2倍,求的度数.【答案】显然,绕点D顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;⑵将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;⑶将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm(即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r,侧面展开图中的扇形圆心角为n°,则圆锥的侧面积2360lS rlππ=扇n=,圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB切⊙O于点B,OA=23AB=3,弦BC∥OA,则劣弧BC的弧长为().A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)CBAO【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120° ∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)【答案】连结AD ,则AD ⊥BC ,△ABC 的面积是:BC•AD=×4×2=4, ∠A=2∠EPF=80°.则扇形EAF 的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC 的面积-扇形EAF 的面积=84-9π. 图(2) 故选B .A EB DC F P类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三单元旋转
一、旋转
1、定义
把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质
(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称
1、定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质
(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征(3分)
1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)
2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)
3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)
单元测试
1.下列正确描述旋转特征的说法是()
A.旋转后得到的图形与原图形形状与大小都发生变化.
B.旋转后得到的图形与原图形形状不变,大小发生变化.
C.旋转后得到的图形与原图形形状发生变化,大小不变.
D.旋转后得到的图形与原图形形状与大小都没有变化.
2.下列描述中心对称的特征的语句中,其中正确的是()
A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心
B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段
C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分
D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分
3.
4.下列图形中即是轴对称图形,又是旋转对称图形的是()
A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)
5.下列图形中,是中心对称的图形有()
①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。

A.5个 B.2个 C.3个 D.4个
6.在平面直角坐标系中,点P(2,—3)关于原点对称的点的坐标是()
A.(2,3) B.(—2,3) C.(—2,—3) D.(—3,2)
7.将图形按顺时针方向旋转900后的图形是( )
A B C D
8.将一图形绕着点O顺时针方向旋转700后,再绕着点O逆时针方向旋转1200,这时如果要使图形
回到原来的位置,需要将图形绕着点O什么方向旋转多少度?()
A、顺时针方向 500
B、逆时针方向 500
C、顺时针方向 1900
D、逆时针方向 1900
9.如图所示,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()
A.l个B.2个C.3个D.4个
10.如下左图,ΔABC和ΔADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,ΔABC 绕着A点经过逆时针旋转后能够与ΔADE重合得到图23—A—4,再将图23—A—4作为“基本图形”绕着A点经过逆时针连续旋转得到右图.两次旋转的角度分别为().
A.45°,90° B.90°,45° C.60°,30° D.30°,60°
11.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为()
A.︒
30 B.︒
60 C.︒
120 D
12.一条线段绕其上一点旋转90°与原来的线段位置关系.
13.下列大写字母A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z旋转90°和原来形状一样的有,旋转180°和原来形状一样的有.14.钟表的分针匀速旋转一周需要60分钟,它的旋转中心是____________,经过20分钟,分针旋转了____________。

15.如图所示,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,
将AB,CD分别平移到EF和EG的位置,则△EFG为________三角形,若
AD=2cm,BC=8cm,则FG=____________。

A B
C
D E
A B
C
D E
,A
B
C
D
E
18.如图,△ABC 中,∠BAC =90°,AB =AC =5cm , △ABC 按逆时针方向旋转一个角度后,成为△ACD ,则图中的____________是旋转中心,旋转角是___________。

B A
C
D
19.在图,把△ABC 向右平移5个方格, 再绕点B 的对应点顺时针方向旋转90度. (1)画出平移和旋转后的图形,并标明对 应字母;
(2)能否把两次变换合成一种变换,如
果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.
20.观察下图所示的图形是否有其中一个图形,是另一个图形经旋转得到的.
C B
A
21.你能分析出下图中旋转的现象吗?
22.已知如图,△ABC是等腰直角三角形,∠C直角.
(1)画出以A为旋转中心,逆时针旋转45°后的图形.
(2)指出面ABC三边的对应线段.
【参考答案】
1.D 2.D 3.D 4.C 5.D 6.B 7.B 8.A 9.B 10.A 11.D
12.垂直 13.O X ; H I O X 14
.表盘中心 120° 15.直角 6cm 16.120 17.120° 30° 18.点A 90° 19.(1)如图
(2)能,将△ABC 绕CB 、C ”B ”延长线的交点顺时针旋转90度。

20.答:有。

将图形顺时针或(逆时针)旋转72°、144°、216°。

21.图①由基本图形
绕中点O 顺时针(逆时针)旋转90°、180°、270°得到的. 图②由基本图形绕中O 顺时针(逆时针)旋转90°、180°、270°得到的.
22.①如图所示
②AB 与AB ′,AC 与AC ′,BC 与BC ′分别为对应边.
C"B"
A''
C'
B'A'
C
B
A。

相关文档
最新文档