实验二 叠加原理的验证

合集下载

实验二叠加原理的验证

实验二叠加原理的验证

实验二 叠加原理的验证一、 实验目的验证线性电路叠加原理和基尔霍夫定律的正确性,从而加深对线性电路的叠加性和齐次性的认识和理解。

二、 原理说明叠加原理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上产生的电流或电压的代数和。

线性电路的齐次性是指当激励型号(某独立源的值)增加或减少K 倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加和减少K 倍。

基尔霍夫电流定律:任何集中参数电路中,任意时刻流进任意一个结点的所有支路电流的代数和总是为零。

基尔霍夫电压定律:任何集中参数电路中,任意时刻绕任意一个回路一周所有支路电压的代数和总是为零。

三、 实验设备四、 实验内容实验电路如图2-1所示1、按图2-1电路接线,取V E VE 61221+=+=。

2、令1E 电源单独作用,用直流数字电压表和毫安表测量各支路电流及各电阻元3、令2E 电源单独作用,用直流数字电压表和毫安表测量各支路电流及各电阻元件两端电压,数据记入表格中。

4、令1E 、2E 电源共同作用,用直流数字电压表和毫安表测量各支路电流及各电阻元件两端电压,数据记入表格中。

5、将2E 的数值调至+12V ,用直流数字电压表和毫安表测量各支路电流及各电阻元件两端电压,数据记入表格中。

五、 实验注意事项1、测量各支路电流时,应注意仪表的极性,及数据表格中的“+”“—”号的记录。

2、注意仪表的量程的及时更换。

六、 预习思考题1、叠加原理中1E 、2E 分别单独作用,在实验中应该如何让操作?,可否直接将不作用的电源致零?2、 实验电路中,若有一个电阻器改为二极管,试问叠加原理的叠加性和齐次性还成立吗,为什么?七、 实验报告1、根据实验数据验证线性电路的叠加性和齐次性。

2、根据实验数据验证基尔霍夫定律。

3、各电阻器所消耗的功率能否用叠加原理计算得出?试用上述实验数据,进行计算并得出结论。

实验二叠加原理的验证(有数据)

实验二叠加原理的验证(有数据)

试验二叠加原理的验证一、试验目的验证线性电路叠加原理的正确性,从而加深对线性电路的叠加性和齐次性的生疏和理解。

二、原理说明叠加原理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小K倍。

三、试验设备四、试验内容试验电路如图2-1所示1.按图2-1电路接线,Ei为+6V、+12V切换电源,取Ei =+12V, E2为可调直流稳压电源,调至+6V。

2.令E电源单独作用时(将开关Si投向Ei侧,开关&投向短路侧),用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端电压,数据记入表格中。

gig (图2T3.令E2电源单独作用时(将开关&投向短路侧,开关S2投向E?侧),重复试验步骤2的测量和记录。

4.令E和E2共同作用时(开关*和S2分别投向E和E?侧),重复上述的测量和记录。

5.将E2的数值调至+ 12V,重复上述第3项的测量并记录。

五、试验留意事项1.测量各支路电流时,应留意仪表的极性,及数据表格中“ +、一”号的记录。

2.留意仪表量程的准时更换。

六、预习思考题1.叠加原理中E2分别单独作用,在试验中应如何操作?可否直接将不作用的电源(%或E2)置零(短接)?不能直接短接,这样会烧坏电源。

2.试验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗?为什么?不成立,电阻器是线性的,二极管是非线性的。

七、试验报告1.依据试验数据验证线性电路的叠加性与齐次性。

上述数据中阅历证E1+E2大约等于El E2共同作用,2E2大约等于E2单独作用的二倍。

2.各电阻器所消耗的功率能否用叠加原理计算得出?试用上述试验数据,进行计算并作结论。

实验2--验证叠加原理

实验2--验证叠加原理

验证叠加原理一. 实验目的1. 验证叠加定理,加深对该定理的理解 2. 掌握叠加原理的测定方法 3. 加深对电流和电压参考方向的理解 二. 实验原理与说明对于一个具有唯一解的线性电路,由几个独立电源共同作用所形成的各支路电流或电压,是各个独立电源分别单独作用时在各相应支路中形成的电流或电压的代数和。

(a)电压源电流源共同作用电路 (b)电压源单独作用电路 (c)电流源单独作用电路图5-1 电压源,电流源共同作用与分别单独作用电路图5-1所示实验电路中有一个电压源Us 及一个电流源Is 。

设Us 和Is 共同作用在电阻R 1上产生的电压、电流分别为U 1、I 1,在电阻R 2上产生的电压、电流分别为U 2、I 2,如图5-1(a)所示。

为了验证叠加原理令电压源和电流源分别作用。

当电压源Us 不作用,即Us=0时,在Us 处用短路线代替;当电流源Is 不作用,即Is=0时,在Is 处用开路代替;而电源内阻都必须保留在电路中。

(1) 设电压源Us 单独作用时(电源源支路开路)引起的电压、电流分别为'1U 、'2U 、'1I 、'2I ,如图5-1(b)所示。

(2) 设电流源单独作用时(电压源支路短路)引起的电压、电流分别为"1U 、"2U 、"1I 、"2I ,如图5-1(c)所示。

这些电压、电流的参考方向均已在图中标明。

验证叠加定理,即验证式(5-1)成立。

"1'11U U U +="2'22U U U +="1'11I I I +=式(5-1)"2'22I I I +=三. 实验设备名称 数量 型号 1. 直流稳压电源 1台 0~30V 可调 2. 固定稳压电源 1台 +15V 3. 万用表 1台4. 电阻 3只 51Ω*1 100Ω*1 330Ω*1 5. 短接桥和连接导线 若干 P8-1和50148 6. 实验用9孔插件方板 1块 297mm ×300mm四. 实验步骤1. 按图5-2接线,取直流稳压电源U S1=10V ,U S2=15V ,电阻R 1=330Ω,R 2=100Ω,R 3=51。

实验二 叠加原理的验证

实验二 叠加原理的验证

实验二叠加定理的验证一、实验目的1. 学习MULTISIM的使用方法2.验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。

2. 理解线性电路的叠加性和齐次性。

二、实验原理叠加定理描述了线性电路的可加性或叠加性,其内容是:在有多个独立源共同作用下的线性电路中,任一电压或电流都是电路中各个独立电源单独作用时,在该处产生的电压或电流的叠加。

通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

齐性定理的内容是:在线性电路中,当所有激励(电压源和电流源)都同时增大或缩小K倍(K为实常数)时,响应(电压或电流)也将同时增大或缩小K倍。

这是线性电路的齐性定理。

这里所说的激励指的是独立电源,并且必须全部激励同时增加或缩小K倍,否则将导致错误的结果。

显然,当电路中只有一个激励时,响应必与激励成正比。

使用叠加原理时应注意以下几点:1)叠加原理适用于线性电路,不适用于非线性电路;2)在叠加的各分电路中,不作用的电压源置零,在电压源处用短路代替;不作用的电流源置零,在电流源处用开路代替。

电路中的所有电阻都不予更动,受控源则保留在分电路中;3)叠加时各分电路中的电压和电流的参考方向可以取为与原电路中的相同。

取和时,应注意各分量前的“+”“-”号;4)原电路的功率不等于按各分电路计算所得功率的叠加,这是因为功率是电压和电流的乘积。

三、实验内容1.验证叠加定理(1)将两路稳压源的输出分别调节为6V和12V,接入U1=6V和U2=12V处。

依次令电源单独作用、共同作用,用直流数字电压表和电流表测量各支路电流及各电阻元件两端的电压,数据记入表1。

在表1中电流的单位为毫安(mA),电压的单位为伏特(V)。

图1 叠加原理电路原理图电路仿真参考图如图2:图2 Multisim叠加原理仿真电路.将R5(330Ω)换成二极管1N4007(即将开关K3投向二极管IN4007侧),重复1~4的测量过程,数据记入表4-2。

实验二 叠加定理和戴维宁定理的验证

实验二 叠加定理和戴维宁定理的验证
将被测有源网络内的所有独立源置零将电流源断开去掉电压源us并在原电压源所接的两点用一根短路导线相连然后用伏安法或者直接用万用表的欧姆档去测定负载rl开路时ab两点间的电阻此即为被测网络的等效内阻r0或称网络的入端电阻ri用万用表直接测r0时网络内的独立源必须先置零以免损坏万用表
实验二 叠加定理和戴维宁定理的验证
一、实验目的
1.通过实验加深对基尔霍夫定律、叠加原理和戴维南定理的理解。 2.学会用伏安法、短路电流法、二次电压法测一端口网络等效内阻。 3.正确使用直流电压表、电流表及直流稳压电源。
二、预习要求
1.阅读本次实验各项内容及附录,熟悉实验电路图,了解各仪器仪表的使用方法。 2.复习基尔霍夫定律、叠加原理和戴维南定理。分析电路时注意标明电流、电压的正 方向。 3.了解测试有源一端口网络开路电压和等效电阻的方法。
测量项目 实验内容 U1 单独作用 U2 单独作用 U1、 U2共 同 作 用
ቤተ መጻሕፍቲ ባይዱ
U1 (V)
U2 (V)
I1 (mA)
I2 (mA)
I3 (mA)
UAB (V)
UCD (V)
UAD (V)
UDE (V)
UFA (V)
3. 令 U2 电源单独作用(将开关 S1 投向短路侧,开关 S2 投向 U2 侧) ,重复实验步骤 2 的测量,记录之。 4. 令 U1 和 U2 共同作用(开关 S1 和 S2 分别投向 U1 和 U2 侧) , 重复上述的测量,并 记录之。 5. 将 R5(330Ω)换成二极管 1N4007(即将开关 S3 投向二极管 IN4007 侧) ,重复 1~ 5 的测量过程,记录之。
3
Ω
I
(a) 电路的 Uoc、R0 和诺顿等效电路的 ISC、R0。

实验二 叠加定理

实验二 叠加定理

实验二 叠加定理一、实验目的1、验证线性电路叠加原理的正确性,从而加深对线性电路叠加性的认识和理解。

2、正确使用直流稳压电源、电压表和电流表。

二、实验原理叠加原理不仅适用于线性直流电路,也适用于线性交流电路,为了测量方便,我们用直流电路来验证它。

叠加原理可简述如下:在线性电路中,任一支路中的电流(或电压)等于电路中各个独立源分别单独作用时在该支电路中产生的电流(或电压)的代数和。

所谓一个电源单独作用是指除了该电源外其他所有电源的作用都去掉,即理想电压源所在处用短路代替,理想电流源所在处用开路代替,但保留它们的内阻,电路结构也不作改变。

由于功率是电压或电流的二次函数,因此叠加定理不能用来直接计算功率。

例如在2-1中''1'11I I I -= ''2'22I I I +-=''3'33I I I +=显然 12''112'11)()(R I R I P R +≠图2-1E 1E 26V E 1 12V E 2 6V三、仪器设备四、实验内容与步骤1、按图2-1计算电路中电压电流,并将计算值填入表2-1中。

2、 实验箱电源接通220V 电源,调节输出电压,使第一路输出端电压1E =12V ;2E =6V ,(须用万用表重新测定),断开电源开关待用。

按图2-2接线。

图2-23、测量1E 、2E 同时作用和分别单独作用时的支路电流,并将数据记入表格2-2中。

注意:一个电源单独作用时,另一个电源从电路中取断开。

还要注意电流(及电压)的正、负极性。

(注意:用指针表时,凡表针反偏的表示该量的实际方向与参考方向相反,应将表针反过来测量,数值取为负值!)4、测定各电阻元件上的电压,将数据记入表格2-2中。

E 1 12VE 26V表2-2五、实验报告要求1、用实验数据验证支路的电流是否符合叠加原理,并对实验误差进行适当分析。

实验二:叠加定理

实验二:叠加定理

实验二:叠加定理一、实验目的(1)、验证线性电路理论中的叠加原理,加深对线性电路的叠加性和齐次性的认识。

(2)、学习叠加定理的Multisim仿真的使用方法。

二、仿真电路设计原理1、在线性电阻电路中,任一支路电流(电压)都是电路中各个独立电源单独作用时在该支路产生的电流(电压)之叠加。

都可以看成是各个独立源分别发单独作用时,在该支路上所产生电流(电压)代数和。

2、方法是将电路中的各个独立源分别单独列出,此时其他的电源置零——独立电压源用短路线代替,独立电流源用开路代替——分别求取出各独立源单独作用时产生的电流或电压。

计算时,电路中的电阻、受控源元件及其联接结构不变。

三、Multisim仿真内容与步骤:1、求下图所示电路中流经R1的电流理论计算: 80V 单独作用8571.080604020802=+⨯=I A218080I U -=432.11=VA R U I 5716.011)80(1==100V 单独作用7857.14010080201003=+⨯=I A32140100I U -=572.28=V 4286.111)100(1==R U I A两者相加:A I I I 0002.24286.15716.0)100(1)80(11=+=+=2、建立电路仿真图:(80V 单独作用)(100V单独作用)(80V与100V共同作用)四结果与误差分析通过实验证得在两个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看做是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

理论计算结果与仿真测量结果有一定的误差。

主要原因有:(1)理论计算是理想状态的分析结果,仿真电路比较接近实际测量情况。

比如,电压表和电流表都有内阻存在,会对测量产生一定的影响。

(2)软件显示的数字位数限制了更精确的读数。

我们只要精心准备仿真试验,尽力减小各种因素的影响,就可以得到较好的仿真结果。

五、实验小结与分析1、在本实验中我遇到的第一个问题是在保留其中一个独立源时,对于另一个独立源的处理,遵从电压源变导线,电流源开路的原则,后经改正使实验得以顺利进行。

实验二叠加原理的验证

实验二叠加原理的验证

实验二叠加原理的验证实验目的:1. 了解信号的叠加原理;2. 通过实验验证信号的叠加原理。

实验器材:1. 示波器;2. 任意波形发生器;3. 信号发生器;4. 各种不同频率的信号产生源。

实验原理:叠加原理是指有多个信号同时出现时,它们在某一点处的总和等于这些信号分别在该点处的幅值之和。

这个原理是用来分析线性系统中的复杂信号的重要工具。

在实际问题中,几个不同频率的正弦波和/或余弦波可以使用叠加原理简化复杂信号的分析。

实验内容:根据实验目的,通过示波器检测不同频率的正弦波的叠加情况,从而验证信号的叠加原理。

步骤:1. 将示波器与任意波形发生器连接,并令任意波形发生器输出一个正弦波的信号。

在这一步中,我们将这个信号视为“信号1”。

3. 调节示波器,观察两个信号在屏幕上的表现。

5. 重复步骤2-4,观察三个或更多信号的叠加情况。

实验结果:在实验中,我们观察到了不同频率的信号的叠加情况,并发现所有信号都可以在示波器上看到。

当信号相互叠加时,观察到了信号幅值的变化。

通过实验结果,我们可以发现信号的叠加原理得到了验证。

通过实验验证了信号的叠加原理,即叠加原理可以用于分析不同频率信号的合成。

信号的叠加不会影响每个信号分别在某一点处的幅值,但会影响所有信号在该点处的总和。

此外,通过实验结果,我们可以看出,不同频率信号的叠加可以产生新的频率,这也是在信号处理中要注意的一个重点。

实验思考:在实验过程中,我们需要注意控制信号幅值相对大小,从而得到更明显的叠加效果。

此外,我们还可以使用各种不同频率的信号产生源,进一步验证信号的叠加原理,同时进一步了解信号处理的相关知识。

实验二叠加原理的验证

实验二叠加原理的验证

Ω实验二 叠加原理的验证一、实验目的1.验证叠加原理的正确性,加深对叠加原理的理解。

2.验证叠加原理不适用于非线性电路。

3.验证齐次性原理。

二、实验原理1.叠加原理指出,在有几个独立源共同作用下的线性电路中,通过每个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

2.当一个独立源单独作用时,应将其余恒压源短路处理,恒流源开路处理。

3.叠加原理只适用于线性电路。

只能用来求电压和电流,不能用来求功率。

4.当所有激励同时增加或减小K 倍时,电路的响应也将增加或减小K 倍,这个原理也称为齐次性原理。

三、实验器材1.直流电压源2.直流电流源3.直流电流表4. 直流电压表5.电阻6.二极管四、实验步骤(一)验证叠加原理的正确性。

1.测量电压源、电流源共同作用下的各电压、电流。

按图2-1连接线路,点击运行按扭,将数据记入表2-1中。

2.测量电压源单独作用时的各电 压、电流。

按图2-2连接线路, 点击运行按扭,将数据记入 表2-1中。

图2-2 电压源单独作用3.测量电流源单独作用时的各电压、 电流。

按图2-3连接线路,点击运行 按扭,将数据记入表2-1中。

(二) 验证叠加原理不适用于非 线性电路。

按图2-4、2-5、2-6联 接电路,点击运行按扭,将数据 记入表2-2中。

图2-4图2-5 图2-6表2-2 验证叠加原理不适用于非线性电路(三)验证齐次性原理。

按 图2-7连接线路,点击运行按扭, 将数据记入表2-3中,并与 表2-1进行比较。

图2-7 验证齐次性原理表2-3 验证齐次性原理五、思考题•试计算各电阻在三种情况下消耗的功率,由此能说明什么?•分析误差原因。

叠加原理的验证实验(电工学实验)

叠加原理的验证实验(电工学实验)

叠加原理的验证一、实验目的1. 验证叠加定理,加深对该定理的理解。

2. 掌握叠加原理的测定方法。

3. 加深对电流和电压参考方向的理解。

二、实验原理与说明对于一个具有唯一解的线性电路,由几个独立电源共同作用所形成的各支路电流或电压,是各个独立电源分别单独作用时在各相应支路中形成的电流或电压的代数和。

图2-1所示实验电路中有一个电压源Us 及一个电流源Is 。

设Us 和Is 共同作用在电阻R 1上产生的电压、电流分别为U 1、I 1,在电阻R 2上产生的电压、电流分别为U 2、I 2,如图2-1(a)所示。

为了验证叠加原理令电压源和电流源分别作用。

当电压源Us 不作用,即Us=0时,在Us 处用短路线代替;当电流源Is 不作用,即Is=0时,在Is 处用开路代替;而电源内阻都必须保留在电路中。

(1) 设电压源Us 单独作用时(电源源支路开路)引起的电压、电流分别为'1U 、'2U 、'1I 、'2I ,如图2-1(b)所示。

(2) 设电流源单独作用时(电压源支路短路)引起的电压、电流分别为"1U 、"2U 、"1I 、"2I ,如图2-1(c)所示。

这些电压、电流的参考方向均已在图中标明。

验证叠加定理,即验证式(2-1)成立。

"1'11U U U +="2'22U U U +="1'11I I I +=式(2-1)"2'22I I I +=序号 名称型号与规格 数量 备注 1 直流稳压电源0~30V 可调二路 2 万用表 1 自备 3 直流数字电压表 0~200V 1 4 直流数字毫安表 0~200mV1 5迭加原理实验电路板1TT-DG-003四、实验内容实验线路如图6-1所示,用TT-DG-003挂箱的“基尔夫定律/叠加原理”线路。

1. 将两路稳压源的输出分别调节为12V 和6V ,接入U 1和U 2处。

叠加原理验证实验报告

叠加原理验证实验报告

叠加原理验证实验报告叠加原理验证实验报告引言:在物理学中,叠加原理是一项重要的基本原理,它指出在线性系统中,多个波或信号的叠加等效于单独处理每个波或信号的结果的叠加。

为了验证叠加原理的有效性,我们进行了一系列实验。

实验目的:本实验旨在通过实际操作验证叠加原理,并观察叠加原理在不同物理现象中的应用。

通过实验,我们希望加深对叠加原理的理解,并提供实验数据来支持这一原理的有效性。

实验装置:1. 信号发生器:用于产生不同频率和振幅的信号。

2. 示波器:用于观察和测量信号的波形和振幅。

3. 电阻器:用于调节电路中的电阻。

4. 电容器和电感器:用于构建RC和RL电路。

实验步骤:1. 实验一:叠加原理在电路中的应用a. 搭建一个简单的串联电路,包括一个信号发生器、一个电阻器和一个电容器。

b. 将信号发生器的频率设置为f1,并记录电容器上的电压。

c. 将信号发生器的频率设置为f2,并记录电容器上的电压。

d. 将信号发生器的频率设置为f1+f2,并记录电容器上的电压。

e. 比较f1、f2和f1+f2时的电容器电压,观察是否符合叠加原理。

2. 实验二:叠加原理在波动现象中的应用a. 使用示波器观察单个波的波形和振幅。

b. 产生两个不同频率的波,并记录每个波的振幅。

c. 将这两个波进行叠加,并记录叠加波的振幅。

d. 比较单个波和叠加波的振幅,验证叠加原理在波动现象中的应用。

实验结果与分析:1. 实验一的结果表明,当两个信号频率分别为f1和f2时,它们在电容器上的电压分别为V1和V2。

当这两个信号叠加时,电容器上的电压为V1+V2。

实验结果与叠加原理的预期结果一致,验证了叠加原理在电路中的应用。

2. 实验二的结果表明,当两个波进行叠加时,叠加波的振幅等于两个单独波的振幅之和。

这进一步验证了叠加原理在波动现象中的应用。

结论:通过以上实验,我们验证了叠加原理在电路和波动现象中的应用。

实验结果表明,叠加原理在线性系统中是成立的,多个波或信号的叠加等效于单独处理每个波或信号的结果的叠加。

实验二叠加原理实验

实验二叠加原理实验

实验二叠加原理实验实验目的:1.理解二叠加原理的概念及其应用;2.掌握二叠加原理在电路中的使用方法;3.通过实验验证二叠加原理的有效性。

实验器材:1.直流电源;2.数字万用表;3.电阻箱;4.开关;5.连接线。

实验原理:二叠加原理是指在线性电路中,若有多个独立电源作用于电路中,各个电源产生的效应可以相互叠加。

即,若有n个独立电源作用于同一个电路,每个电源单独作用于电路时产生的效应可以分别计算,然后再将各个电源产生的效应叠加在一起,得到整个电路的响应。

实验步骤:1.组装电路:将直流电源、电阻、开关依次连接起来,按照图示搭建电路;2.测量电压:使用数字万用表分别测量每个电源产生的电压,记录下测量结果;3.打开第一个电源:将第一个电源接入电路,打开开关,记录下电流表中的电流值;4.打开第二个电源:将第二个电源接入电路,打开开关,记录下电流表中的电流值;5.依次打开其他电源:重复步骤4,逐一将其他电源接入电路,记录下电流表中的电流值;6.计算电流:使用二叠加原理,将每个电源产生的电流值相加,得到整个电路的总电流值;7.验证结果:将计算得到的总电流值与实际测量结果进行比较,验证二叠加原理的有效性。

实验注意事项:1.实验过程中应保持实验环境的安静,避免外界干扰;2.在测量电流值时,要保证电路中的负载电阻始终保持不变;3.搭建电路时,要确保连接线的接触良好,接口处不应出现松动。

实验结果分析:通过实验,可以得到每个电源单独作用于电路时的电流值,并通过二叠加原理将它们相加得到整个电路的总电流值。

理论上,实际测量得到的总电流值应与计算得到的总电流值相同。

若两者相符,则说明实验中二叠加原理得到了有效验证。

实验结论:通过本次实验,我们验证了二叠加原理在电路中的应用,以及通过其可以得到整个电路响应的有效性。

实验结果表明,在线性电路中,多个独立电源作用于同一个电路时,各个电源产生的效应可以相互叠加。

这对于电路设计和分析具有重要意义,可以简化复杂电路的计算过程,提高工作效率。

叠加原理实验报告

叠加原理实验报告

叠加原理实验报告篇一:2.基尔霍夫定律和叠加原理的验证(实验报告答案)含数据处理实验二基尔霍夫定律和叠加原理的验证一、实验目的1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。

2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。

3.进一步掌握仪器仪表的使用方法。

二、实验原理1.基尔霍夫定律基尔霍夫定律是电路的基本定律。

它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。

(1)基尔霍夫电流定律(KCL)在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。

(2)基尔霍夫电压定律(KVL)在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。

基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。

当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。

基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。

2.叠加原理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。

某独立源单独作用时,其它独立源均需置零。

(电压源用短路代替,电流源用开路代替。

)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K 倍。

三、实验设备与器件1.直流稳压电源 1 台2.直流数字电压表 1 块3.直流数字毫安表 1 块4.万用表 1 块5.实验电路板1 块四、实验内容1.基尔霍夫定律实验按图2-1接线。

图2-1 基尔霍夫定律实验接线图(1)实验前,可任意假定三条支路电流的参考方向及三个闭合回路的绕行方向。

图2-1中的电流I1、I2、I3的方向已设定,三个闭合回路的绕行方向可设为ADEFA、BADCB 和FBCEF。

实验2 叠加原理与等效电源定理的研究-实验报告

实验2 叠加原理与等效电源定理的研究-实验报告

实验2 叠加原理与等效电源定理的研究一、实验名称叠加原理与等效电源定理的研究二、实验任务及目的1.基本实验任务验证叠加原理和戴维宁定理。

2.扩展实验任务验证最大功率传输定理。

3.实验目的掌握应用叠加原理和戴维宁定理分析电路的方法和使用条件;掌握有源二端网络等效参数的测量方法;掌握等效电路的应用;理解电路有载、开路和短路的状态以及测试方法;理解阻抗匹配的概念。

三、实验原理及电路1.实验原理叠加原理,在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。

戴维宁定理,任何一个线性有源二端网络,总可以用一个理想电压源和一个等效电阻串联来代替。

最大功率传输定理,当外阻等于内阻时,负载获得最大功率。

2.实验电路图2.1 叠加原理实验电路S2=8V2DU S11B四、实验仪器及器件1.实验仪器双路直流稳压电源1台,直流电流表1台,万用表1台。

2.实验器件双刀双掷开关2个,电阻箱1个,电流插孔3个,200Ω/2W 电阻1个,300Ω/2W 电阻1个,470Ω/2W 电阻1个,1k Ω/2W 电阻1个。

五、实验方案与步骤1.用万用表直流电压档监测,调节直流稳压电源两路输出分别为16V 和8V 。

2.按图2.1接线,根据计算值,选择电流表、万用表合适量程,测量并记录实验数据。

3.按图2.2接线,根据计算值,选择电流表、万用表合适量程,测量并记录实验数据;按图2.3接线,重新用万用表直流档监测,调节直流稳压电源电压为开路电压U OC ,用电阻箱调出等效内阻R 0,选择电流表、万用表合适量程,测量并记录实验数据。

4.按图2.4接线,用万用表直流档监测,调节直流稳压电源电压为10V ,根据计算值,选择电流表、万用表合适量程,测量并记录实验数据。

六、实验数据1.基本实验内容 (1)验证叠加原理R LR 0图2.3 戴维宁等效电路D1U S1R L =100ΩB D图2.2 戴维宁定理实验电路LR o =200E =10V图2.4 最大功率传输条件的验证实验电路J1Key = 1图2.5 U S1单独作用仿真图 表2.1 U 单独作用数据J1Key = 1图2.6 U S2单独作用仿真图表2.2 U单独作用数据J1Key = 1图2.7 U S1和U S2共同作用仿真图 表2.3 U 和U 共同作用数据(2)验证戴维宁定理ACJ1Key = 1图2.8 戴维宁定理U OC 仿真图J1Key = 1图2.9 戴维宁定理I S 仿真图图2.10 戴维宁定理R O 仿真图AC J1Key = 1图2.11 戴维宁定理U L 、I L 仿真图表2.4 戴维宁定理数据C J1Key = 1图2.12 戴维宁定理等效电路仿真图表2.5 戴维宁等效电路数据2.扩展实验内容图2.13 负载100Ω时输出功率仿真图表2.6 负载100Ω时输出功率数据表2.7 负载200Ω时输出功率数据表2.8 负载300Ω时输出功率数据表2.9 负载400Ω时输出功率数据表2.10 负载500Ω时输出功率数据七、测量数据的分析1.依据实验结果,验证叠加原理的正确性。

实验二直流电路叠加原理与戴维南定理的验证

实验二直流电路叠加原理与戴维南定理的验证
二、原理说明
戴维南定理 任何一个线性有源网络,总可以用一
个电压源与一个电阻的串联来等效代替,此电压源的 电动势Us等于这个有源二端网络的开路电压Uoc, 其 等效内阻R0等于该网络中所有独立源均置零(理想电 压源视为短接,理想电流源视为开路)时的等效电阻。
名词解释:
二端网络:若一个电路只通过两个输出端与外电路 相联,则该电路称为“二端网络”。 (Two-terminals = One port)
路.首先从叠加原理实验板上去含有电流表的支路 AD,其电阻为RL的值,即510 ,再从电阻箱上取得按 步骤“4”所得的等效电阻R0之值,将二者串联, 然 后令其与直流稳压电源(调到步骤“3”时所测得的 开路
电压Uoc之值)相串联,,用直流数字毫安表(接 电流插头)测量支路电流I′,并记录表2 6. 比较步骤2与步骤5所测电流的值,并得出结论。
=
+
3. 解题时要标明各支路电流、电压的正方向。
4.
原电路中各电压、电流的最后结果是
5.
6. 各电压分量、 电流分量的代数和。
与支路电流、电压方向一致的各电流、电压分量取正 与支路电流、电压方向相反的各电流、电压分量取负
三、实验设备
四、实验内容 实验线路如图所示,用TKDG-03挂箱的“基 尔霍夫定律/叠加原理”电路板。
表2 戴维南验证实验数据
I (mA) UOC (V) R () I (mA)
六、实验注意事项
1.注意仪表量程的及时更换,改接线路时,要关掉电 源。
2.步骤“5”中,电压源置零时不可将稳压源短接 。 3.用万用表直接测R0时,网络内的独立源必须先置零 ,以免损坏万用表。其次,欧姆档必须经调零后再 进行测量。
2. 用直流数字毫安表(接电流插头)测量支路电流 I,并记录入表2 。

实验2 基尔霍夫定律和叠加原理的验证

实验2 基尔霍夫定律和叠加原理的验证

暨南大学本科实验报告专用纸课程名称电路原理成绩评定实验项目名称基尔霍夫定律和叠加原理的验证实验项目编号08063034902 实验项目类型验证型实验地点暨南大学珠海学院电路原理实验室指导教师李伟华学生姓名学号学院系专业实验时间年月日午~月日午温度℃湿度一、实验目的1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。

2. 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的理解。

3. 学会用电流插头、插座测量各支路电流的方法。

二、实验要求1. 根据实验数据,选定节点A,验证KCL的正确性。

2. 根据实验数据,选定实验电路中的任一闭合回路,验证KVL的正确性。

3. 将支路和闭合回路的电流方向重新设定,重复1、2两项验证。

4. 验证线性电路的叠加性与齐次性。

5. 各电阻器所消耗的功率能否用叠加原理计算得出?根据实验数据计算并作结论。

6. 通过验证叠加原理的实验步骤(6)及分析表格3的数据,你能得出什么样的结论?7. 根据实验数据,归纳总结实验结果;心得体会及其他。

三、原理说明1. 基尔霍夫定律是电路的基本定律。

测量某电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫电流定律(KCL)和电压定律(KVL)。

即对电路中的任一个节点而言,应有ΣI=0;对任何一个闭合回路而言,应有ΣU=0。

运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。

2. 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。

四、实验设备五、实验内容1. 验证基尔霍夫定律实验线路如图1所示,用HE-12挂箱的“基尔霍夫定律/叠加原理”线路,步骤如下:图1(1)实验前先任意设定三条支路和三个闭合回路的电流正方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二叠加原理的验证
一、实验目的
验证线性电路叠加原理的正确性,从而加深对线性电路的叠加性和齐次性的认识和理解。

二、原理说明
叠加原理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小K倍。

三、实验设备
a.直流电压表20V档(实验台右上侧)
b.直流毫安表(实验台右侧)
c.恒压源6V、12V、0~30V(下组件)
e.EEL-01组件
四、实验内容
实验线路如图2-1所示:
(1)按图2-1 , E1为+6V、+12V切换电源,取E1=+12V,E2为可调直流稳压电源调至+6V;
(2)令E1电源单独作用时(将开关K1投向E1侧,开关K2投向短路侧),用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,记入表格2-1。

表2-1
(3)令E2电源单独作用时(将开关K1投向短路侧,开关K2投向E2侧),重复实验步骤2的测量和记录。

(4).令E1和E2共同作用时(开关K1和K2分别投向E2和E2侧,重复上述的测量和记录。

(5).将E2的数值调至+12V,重复上述3项的测量并记录。

(6).将R5换成一只二极管1N4007(即将开关K3投向二极管V D侧),重复1~5的测量过程,数据记入表2—2
表2—2
五、实验注意事项
1.用电流插头测量各支路电流时,应注意仪表的极性,及数据表格中“+、-”号的记录。

2.注意仪表量程的及时更换。

六、预习思考题
1.叠加原理中E1、E2分别单独作用,在实验中应如何操作?可否直接将不作用的电源(E1或E2)置零(短接)?
2.实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗?为什么?
七、实验报告
1.根据实验数据表格,进行分析、比较、归纳、总结实验结论,即验证线性电路的叠加性与齐次性。

2.各电阻器所消耗的功率能否用叠加原理计算得出?试用上述实验数据,进行计算并作结论。

3.通过实验步骤6及分析数据表格2—2 , 你能得出什么样的结论?
4.心得体会及其他。

相关文档
最新文档