PCB电源供电系统设计方案
电源pcb设计指南包括PCB安规emc布局布线PCB热设计PCB工艺
电源pcb设计指南包括:PCB安规、emc、布局布线、PCB热设计、PCB工艺导读1.安规距离要求部分2.抗干扰、EMC部分3.整体布局及走线部分4.热设计部分5.工艺处理部分1.安规距离要求部分安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。
1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。
2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。
一、爬电距离和电气间隙距离要求,可参考NE61347-1-2-13/GB19510.14.(1)、爬电距离:输入电压50V-250V时,保险丝前L—N≥2.5mm,输入电压250V-500V时,保险丝前L—N≥5.0mm;电气间隙:输入电压50V-250V时,保险丝前L—N≥1.7mm,输入电压250V-500V时,保险丝前L—N≥3.0mm;保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。
(2)、一次侧交流对直流部分≥2.0mm(3)、一次侧直流地对地≥4.0mm如一次侧地对大地(4)、一次侧对二次侧≥6.4mm,如光耦、Y 电容等元器零件脚间距≤6.4mm 要开槽。
(5)、变压器两级间≥6.4mm 以上,≥8mm加强绝缘。
2.抗干扰、EMC部分在图二中,PCB 布局时,驱动电阻R3应靠近Q1(MOS管),电流取样电阻R4、C2应靠近IC1的第4 Pin,如图一所说的R应尽量靠近运算放大器缩短高阻抗线路。
因运算放大器输入端阻抗很高,易受干扰。
输出端阻抗较低,不易受干扰。
一条长线相当于一根接收天线,容易引入外界干扰。
在图三的A中排版时,R1、R2要靠近三极管Q1放置,因Q1的输入阻抗很高,基极线路过长,易受干扰,则R1、R2不能远离Q1。
在图三的B中排版时,C2要靠近D2,因为Q2三极管输入阻抗很高,如Q2至D2的线路太长,易受干扰,C2应移至D2附近。
二、小信号走线尽量远离大电流走线,忌平行,D>=2.0mm。
电气工程中的电路板设计规范要求与布局原则
电气工程中的电路板设计规范要求与布局原则电气工程中,电路板设计是至关重要的一环,直接关系到电子设备的性能和稳定性。
良好的电路板设计可以提高信号传输的效率,降低功耗,提升系统的可靠性。
为了满足设计需求,下面将介绍电路板设计的规范要求与布局原则。
一、电路板设计规范要求1. 尺寸和形状:电路板的尺寸和形状应与设备外壳相匹配,确保电路板能够完美安装在设备中。
同时,需要预留足够的空间布局各个元器件和信号走线。
2. PCB层数:根据实际需要,选择适当的PCB层数。
一般情况下,双面布线已经满足大部分应用需求,如果有高密度信号和较复杂布线要求,可以考虑多层布线。
3. 线路宽度和间距:根据电流大小和信号传输速率,合理选择线路宽度和间距。
一般情况下,线路宽度越宽,电阻越小,信号传输越稳定。
而线路间距越大,避免了线间串扰的问题。
4. 禁止过小孔径:过小孔径会导致打孔困难,降低钻孔精度,容易引起掉铜、起焊等问题。
因此,电路板设计中需要遵守合理的孔径规范,以确保制造质量。
5. 接地和屏蔽:合理的接地和屏蔽设计能够有效降低电磁干扰和噪音。
将信号地、电源地和机壳地分离,避免共地和回路间相互干扰。
对敏感信号进行屏蔽处理,提高系统的可靠性。
二、电路板布局原则1. 元器件布局:按照电路流程和信号路径的顺序,合理布置元器件。
将频率较高、噪音敏感的元器件远离信号走线和电源线,减少相互之间的干扰。
同时,遵循最短路径原则,减少信号传输路径的长度,降低传输损耗和延迟。
2. 供电和地引线:合理安排供电和地引线的布局,减少电流的回流路径,降低功耗和电磁干扰。
将供电和地引线尽量贴近元器件,减少回路的面积,提高系统的稳定性。
3. 信号走线:信号走线的布局应遵循最佳布线原则,避免交叉和环行。
对于差分信号,要保持两个信号线的长度一致,减少差异传输引起的相位失真。
对于高速信号,要避免尖角和突变,采取较圆滑的走线方式,减少信号反射和串扰。
4. 散热和散布:合理的散热设计可以提高电子元器件的工作效率和寿命。
项目1直流稳压电源的原理图与PCB设计
加强对目标市场的调研,了解 用户需求,为产品开发提供更
有针对性的方向。
THANKS FOR WATCHING
感谢您的观看
Altium Designer
功能强大的电子设计自动 化软件,支持原理图、 PCB设计和FPGA设计。
Circuit Maker
开源的在线电路设计工具, 适合初学者和小型项目。
03 PCB设计
PCB材料与层数选择
材料选择
通常选用FR4材料,其具有较好的电 气性能和稳定性。
层数选择
根据电路复杂度和成本考虑,可以选 择单层、双层或四层PCB。
测试方法
按照预定的测试计划进行测试,包括常规测试、极限测试和异常测试等。
测试标准
参考相关国家和国际标准,如GB/T14719-2008《直流稳压电源通用技术条 件》。
常见故障分析与排除
故障1
输出电压不稳定。可能原因是滤 波电路不良或反馈回路故障。排 除方法:检查滤波电容是否正常, 反馈电阻是否变值,反馈电路是
项目1直流稳压电源的原理图与 PCB设计
目 录
• 直流稳压电源概述 • 原理图设计 • PCB设计 • 直流稳压电源的调试与测试 • 设计总结与展望
01 直流稳压电源概述
定义与特点
定义
直流稳压电源是一种能够提供稳定直 流电压的电源设备。
特点
具有电压稳定度高、纹波系数低、安 全可靠等优点,广泛应用于电子设备、 仪器仪表、通信设备等领域。
将理论知识与实际应用相结合,提高了我 的知识应用能力,加深了对专业知识的理 解。
改进方案与展望
技术升级
未来可以考虑采用更先进的电 源管理技术,以提高电源的性
能和效率。
PCB设计-Microchip
PCB布线设计(一)Microchip公司/BonnieC.Baker在当今激烈竞争的电池供电市场中,由于成本指标限制,设计人员常常使用双面板。
尽管多层板(4层、6层及8层)方案在尺寸、噪声和性能方面具有明显优势,成本压力却促使工程师们重新考虑其布线策略,采用双面板。
在本文中,我们将讨论自动布线功能的正确使用和错误使用,有无地平面时电流回路的设计策略,以及对双面板元件布局的建议。
自动布线的优缺点以及模拟电路布线的注意事项设计PCB时,往往很想使用自动布线。
通常,纯数字的电路板(尤其信号电平比较低,电路密度比较小时)采用自动布线是没有问题的。
但是,在设计模拟、混合信号或高速电路板时,如果采用布线软件的自动布线工具,可能会出现一些问题,甚至很可能带来严重的电路性能问题。
例如,图1中显示了一个采用自动布线设计的双面板的顶层。
此双面板的底层如图2所示,这些布线层的电路原理图如图3a和图3b所示。
设计此混合信号电路板时,经仔细考虑,将器件手工放在板上,以便将数字和模拟器件分开放置。
采用这种布线方案时,有几个方面需要注意,但最麻烦的是接地。
如果在顶层布地线,则顶层的器件都通过走线接地。
器件还在底层接地,顶层和底层的地线通过电路板最右侧的过孔连接。
当检查这种布线策略时,首先发现的弊端是存在多个地环路。
另外,还会发现底层的地线返回路径被水平信号线隔断了。
这种接地方案的可取之处是,模拟器件(12位A/D转换器MCP3202和2.5V参考电压源MCP4125)放在电路板的最右侧,这种布局确保了这些模拟芯片下面不会有数字地信号经过。
图3a和图3b所示电路的手工布线如图4、图5所示。
在手工布线时,为确保正确实现电路,需要遵循一些通用的设计准则:尽量采用地平面作为电流回路;将模拟地平面和数字地平面分开;如果地平面被信号走线隔断,为降低对地电流回路的干扰,应使信号走线与地平面垂直;模拟电路尽量靠近电路板边缘放置,数字电路尽量靠近电源连接端放置,这样做可以降低由数字开关引起的di/dt效应。
PCB设计方案分析报告
通过热仿真软件对PCB设计方案进行热模拟,预测在不同 工作负载和环境条件下的温度分布和热点位置,为散热设 计提供参考。
散热设计
评估PCB设计方案中的散热措施,如散热孔、散热鳍片、 风扇等,以确保PCB在高功率应用下的散热性能。
可靠性评估
耐候性
评估PCB设计方案在恶劣环境条件下的耐候性,包括温度、湿度、盐雾等环境因素对PCB 性能和寿命的影响。
抗振性
分析PCB设计方案在振动和冲击条件下的可靠性,评估固定方式、元器件布局等因素对抗 振性的影响。
可维护性
评估PCB设计方案的可维护性,包括元器件布局、维修通道、标识清晰度等因素,以确保 在维修和更换元器件时的便捷性和高效性。
05
PCB设计方案改进建议
布局优化建议
元器件布局优化
根据电路功能和信号流向,合理布置元器件位置,缩短关键信号路径,降低信号延迟和失真。同时,将相互干扰较大 的元器件适当隔开,减少串扰和电磁干扰。
01
阻抗匹配设计
02
终端电阻设计
针对高速信号传输线,应进行阻抗匹 配设计,确保信号在传输过程中的幅 度和相位稳定性,降低反射和失真。
在长距离传输线或总线系统中,合理 设置终端电阻,以消除信号反射和振 铃现象,提高信号质量。
03
差分信号设计
对于易受干扰的敏感信号,可采用差 分信号设计,提高信号抗干扰能力和 共模抑制比。同时,保持差分线对之 间的间距一致,确保差分阻抗匹配。
电源和接地分析
电源稳定性
分析PCB板的电源设计,评估电 源稳定性,确保在各种工况下均
能提供稳定的电压和电流。
接地设计
检查接地设计是否满足抗干扰能 力和安全性能要求,分析接地电 阻的大小,以及接地线的布局和
PCB设计指南
PCB设计指南1、微调您的元件布置PCB布局过程的元件放置阶段既是科学又是艺术,需要对电路板上可用的主要元器件进行战略性考虑。
虽然这个过程可能具有挑战性,但您放置电子元件的方式将决定您的电路板的制造难易程度,以及它如何满足您的原始设计要求。
虽然存在元件放置的常规通用顺序,如按顺序依次放置连接器,印刷电路板的安装器件,电源电路,精密电路,关键电路等,但也有一些具体的指导方针需要牢记,包括:取向 - 确保将相似的元件定位在相同的方向上,这将有助于实现高效且无差错的焊接过程。
布置 - 避免将较小元件放置在较大元件的后面,这样小元件有可能受大元件焊接的影响而产生装贴问题。
组织 - 建议将所有表面贴装(SMT)元件放置在电路板的同一侧,并将所有通孔(TH)元件放置在电路板顶部,以尽量减少组装步骤。
最后还要注意的一条PCB设计指南 - 即当使用混合技术元件(通孔和表面贴装元件)时,制造商可能需要额外的工艺来组装电路板,这将增加您的总体成本。
良好的芯片元件方向(左)和不良的芯片元件方向(右)良好的元件布置(左)和不良元件布置(右)2、合适放置电源,接地和信号走线放置元件后,接下来可以放置电源,接地和信号走线,以确保您的信号具有干净无故障的通行路径。
在布局过程的这个阶段,请记住以下一些准则:1)、定位电源和接地平面层始终建议将电源和接地平面层置于电路板内部,同时保持对称和居中。
这有助于防止您的电路板弯曲,这也关系到您的元件是否正确定位。
对于给IC供电,建议为每路电源使用公共通道,确保有坚固并且稳定的走线宽度,并且避免元件到元件之间的菊花链式电源连接。
2)、信号线走线连接接下来,按照原理图中的设计情况连接信号线。
建议在元件之间始终采取尽可能短的路径和直接的路径走线。
如果您的元件需要毫无偏差地固定放置在水平方向,那么建议在电路板的元件出线的地方基本上水平走线,而出线之后再进行垂直走线。
这样在焊接的时候随着焊料的迁徙,元件会固定在水平方向。
cyusb3014硬件设计方案
cyusb3014硬件设计方案CYUSB3014是一款高性能USB 3.1 Gen 1外围设备控制器,广泛应用于各种USB接口设备中。
本文将详细介绍CYUSB3014的硬件设计方案,包括电路原理图、PCB布局、供电系统等关键设计要点。
一、总体设计方案CYUSB3014的硬件设计方案主要包括如下几个方面:电源管理、时钟系统、传输接口、外设接口以及调试接口等。
1. 电源管理CYUSB3014采用3.3V供电,需要提供一个稳定可靠的电源系统。
一般建议使用线性稳压器或者开关稳压器来提供3.3V电源,同时要遵循电源滤波、去耦、综合保护等设计原则。
2. 时钟系统CYUSB3014需要外部提供参考时钟,常用的方案是使用晶体振荡器与时钟输入引脚相连,振荡器的频率一般为19.2MHz。
此外,还需要为CYUSB3014提供一个时钟源,用于USB通信的时钟同步。
3. 传输接口CYUSB3014支持USB 3.1 Gen 1传输接口,可通过SuperSpeed USB 连接到主机。
在设计传输接口时,需要合理布局USB差分信号对,保证信号传输的稳定性和可靠性。
此外,还需要为数据线提供合适的阻抗匹配电路,以减少信号损耗。
4. 外设接口CYUSB3014支持多种外设接口,如UART、SPI、I2C等。
在设计外设接口时,需要根据实际需求选择合适的接口类型,并遵循相应的电气规范和信号传输原则。
5. 调试接口为了方便调试和测试,CYUSB3014提供了JTAG调试接口。
在设计时,需要保留JTAG接口的引脚,并为其提供合适的连接器,以便于联机调试和故障排除。
二、电路原理图设计电路原理图是CYUSB3014硬件设计的基础,它展示了CYUSB3014与其他电路元件之间的连接关系。
在绘制电路原理图时,需要清晰标注各个元器件的型号、数值和引脚信息,并按照信号流的方向进行布局。
三、PCB布局设计PCB布局设计是CYUSB3014硬件设计中至关重要的一环,它直接关系到电路的稳定性和性能。
板级电源完整性设计与分析
影响旁路电容器工作性能因素
等效串联电阻(ESR):电容器电极是由电导率有限的导体组成, 所以电容器存在与其本身有关的阻抗成为等效电阻。 等效串联电感(ESL):时变电流流过电容器产生磁场所引起的 电感成为电容器的等效串联电感。 ESL与电容器电容之间的相互作用产生谐振。当频率低于谐振频 率时电容器表现为容性,而当频率高于谐振频率时则表现为感性。 谐振频率公式:f=1/(2π LC )
电路板级电源完整性设计
电源配送中的问题
供电电源(电压和电流的源端)通常体积很大,不能直接接到IC的Vdd 和Gnd端。因此,不得不用具有电阻和电感的连线互联到一起。流过这些导 线的电流在IC的Vdd和Gnd端 引发了包括直流压降和时变电压波动等问题, 这对IC内部晶体管电路都是有害的。所以,必须在供电电源和IC之间建立一 个合适的电源配送网络(PDN),及时调节供电电压,使得在要求的时间区间 内能够为IC提供足够的电流。IC端电源的电压波动成为电源噪声,IC工作过 程中内部晶体管处于开关工作模式,将会导致这种噪声,所以也叫开关噪声。 该噪声将会导致以下问题: IC端电压的降低将减慢或阻止内部晶体管状态切换; IC端电压的升高将引发可靠性问题; 导致时序电路波形失真;
Z频率曲线
处理器PDN目标阻抗发展趋势
电路板级电源完整性设计
PDN的设计 阻抗和噪声电压
如下图供电电压为2V,要满足5%容限、10A平均电流,则目标阻 抗为10mΩ 。电源到电容器的分布电阻和电感分别为3mΩ 和320pH。当 电流从电源流到电容器(通过互联)对电容器充电时,分布电阻和分 布电感导致阻性和感性压降。电容器参数为:等效串联电阻(ESR) =10mΩ ,等效串联电感(ESL)=1nH,C=100UF,其谐振频率 f=1/(2π LC )=0.5MHZ
pcblayout电源完整性设计详解
于博士信号完整性研究网电源完整性设计详解作者:于争 博士2009年4月10日目 录1 为什么要重视电源噪声问题?....................................................................- 1 -2 电源系统噪声余量分析................................................................................- 1 -3 电源噪声是如何产生的?............................................................................- 2 -4 电容退耦的两种解释....................................................................................- 3 -4.1 从储能的角度来说明电容退耦原理。
..............................................- 3 -4.2 从阻抗的角度来理解退耦原理。
......................................................- 4 -5 实际电容的特性............................................................................................- 5 -6 电容的安装谐振频率....................................................................................- 8 -7 局部去耦设计方法......................................................................................- 10 -8 电源系统的角度进行去耦设计..................................................................- 12 -8.1 著名的Target Impedance(目标阻抗)..........................................- 12 -8.2 需要多大的电容量............................................................................- 13 -8.3 相同容值电容的并联........................................................................- 15 -8.4 不同容值电容的并联与反谐振(Anti-Resonance)......................- 16 -8.5 ESR对反谐振(Anti-Resonance)的影响......................................- 17 -8.6 怎样合理选择电容组合....................................................................- 18 -8.7 电容的去耦半径................................................................................- 20 -8.8 电容的安装方法................................................................................- 21 -9 结束语..........................................................................................................- 24 -电源完整性设计详解1、为什么要重视电源噪声问题?芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。
JW5026在PCB电源系统设计中的应用研究
110第44卷 第3期2021年3月Vol.44 No.3Mar.2021水 电 站 机 电 技 术Mechanical & Electrical Technique of Hydropower StationJW5026在PCB电源系统设计中的应用研究李海燕,吴琳君,吴 敏,孙新志,陈建敏(广州擎天实业有限公司,广东 广州 510860)摘 要: 针对目前PCB电源系统设计中采用三端稳压芯片造成的电源转换效率低以及采用电源模块存在的高成本现状,设计了一种基于DC-DC降压转换芯片JW5026的电源降压转换电路。
通过对该电路转换效率、输出电压波形以及纹波测量,证实了该电路的正确性以及高转换效率、高性价比优势。
关键词: PCB电源系统;JW5026;高转换效率中图分类号:TN803.5 文献标识码:B 文章编号:1672-5387(2021)03-0110-02DOI:10.13599/ki.11-5130.2021.03.0361 引言在PCB设计过程中,板级电源电路设计以及元器件布局对提高PCB质量,改善控制系统电磁兼容性起至关重要的作用。
随着PCB设计复杂度的逐步提高,对于信号完整性的分析除了反射、串扰以及EMI之外,稳定可靠的电源供应也成为设计者们重点研究的方向之一。
如果PCB电源电路设计缺陷,将直接导致PCB发热异常、元器件供电不稳定以及电源电压纹波超过元器件允许范围造成采样波动,程序跑飞失控等严重后果,最终导致设计失败,无法实现预期设计目标。
对于大多数PCB电源系统设计来说,目前常用的PCB器件电压分布图如图1所示。
图1 PCB板件常用电压分布图2 常见PCB电源系统设计方案对比针对PCB内部运算放大器以及单片机等各种芯片工作电源电压要求不同,在PCB电源电路设计中,常见的降压电路采用的控制芯片主要包括了7805以及AMS1117-3.3等三端稳压芯片。
部分降压电路也采用了金升阳、顺源等品牌的小功率电源模块。
高速数字系统PCB电路中的信号完整性设计方案
现在的高速数字系统的频率可能高达数百兆Hz,其快斜率瞬变和极高的工作频率,以及很大的密集度,必将使得系统表现出与低速设计截然不同的行为,出现了信号完整性问题。
破坏了信号完整性将直接导致信号失真、定时错误,以及产生不正确数据、地址和控制信号,从而造成系统误工作甚至导致系统崩溃。
因此,信号完整性问题已经越来越引起高速设计人员的关注。
1 信号完整性问题及其产生机理信号完整性SI(Signal Ingrity)涉及传输线上的信号质量及信号定时的准确性。
在数字系统中对于逻辑1和0,总有其对应的参考电压,正如图1(a)中所示:高于ViH的电平是逻辑1,而低于ViL的电平视为逻辑0,图中阴影区域则可视为不确定状态。
而由图1(b)可知,实际信号总是存在上冲、下冲和振铃,其振荡电平将很有可能落入阴影部分的不确定区。
信号的传输延迟会直接导致不准确的定时,如果定时不够恰当,则很有可能得到不准确的逻辑。
例如信号传输延迟太大,则很有可能在时钟的上升沿或下降沿处采不到准确的逻辑。
一般的数字芯片都要求数据必须在时钟触发沿的tsetup前即要稳定,才能保证逻辑的定时准确(见图1(c))。
对于一个实际的高速数字系统,信号由于受到电磁干扰等因素的影响,波形可能会比我们想象中的更加糟糕,因而对于tsetup 的要求也更加苛刻,这时,信号完整性是硬件系统设计中的一个至关重要的环节,必须加以认真对待。
一个数字系统能否正确工作其关键在于信号定时是否准确,信号定时与信号在传输线上的传输延迟和信号波形的损坏程度有关。
信号传输延迟和波形的原因复杂多样,但主要是以下三种原因破坏了信号完整性:(1)反射噪声其产生的原因是由于信号的传输线、过孔以及其它互连所造成的阻抗不连续。
(2)信号间的串扰随着印刷板上电路的密集度不断增加,间的几何距离越来越小,这使得信号间的电磁已经不能忽略,这将急剧增加信号间的串扰。
(3)电源、地线噪声由于芯片封装与电源平面间的寄生和的存在,当大量芯片内的电路和输出级同时动作时,会产生较大的瞬态,导致电源线上和地线上的电压波动和变化,这也就是我们通常所说的地跳。
pcb设计方案分析
03
CATALOGUE
软件设计
操作系统选择
实时操作系统(RTOS):具有实时性要求高的应用场景,如工业控制和医疗设备。
嵌入式操作系统(RTOS或Linux):适用于复杂系统和大型设备,如手机和电视。
通用操作系统(如Windows和Linux):适用于PC和服务器,具有强大的软件生态 和兼容性。
编程语言选择
可靠性。
考虑信号完整性
在PCB设计中,应考虑信号完 整性,包括信号的稳定性和噪 声干扰等。
优化元件布局
元件布局应合理、紧凑,以减 小PCB的尺寸和成本,同时有 利于信号传输。
遵循布线规则
布线应遵循合理的规则和走向 ,以减小信号干扰和传输损耗
。
02
CATALOGUE
硬件设计
芯片选型
01
02
03
性能与成本
在选择芯片时,需要综合 考虑其性能与成本,以实 现性价比最优。
功耗与散热
要关注芯片的功耗以及 PCB板的散热设计,以确 保整机的稳定性和可靠性 。
兼容性与升级
考虑芯片与其他部件的兼 容性以及未来可能的升级 需求。
电源设计
电源稳定性
确保电源的稳定性,防止 因电源波动对整个PCB板 的影响。
电源滤波与防干扰
pcb设计方案分 析
汇报人: 2023-11-20
contents
目录
• pcb设计基础 • 硬件设计 • 软件设计 • 性能测试与分析 • 可靠性测试与分析 • 设计优化与建议
01
CATALOGUE
pcb设计基础
pcb的基本构成
01
02
03
04
铜膜
PCB的导电部分,连接所有电 子元件。
PCB设计过程中可能存在的问题及解决方案
环测威官网:/与软件系统的发展相比,电子硬件设计及其优化已经出现了长时间消耗和高成本等实际问题。
然而,在实际设计中,工程师倾向于更多地关注高度原则性的问题,但是导致对印刷电路板操作的巨大影响只是一些我们必须反复纠正的详细错误。
完美生成PCB是不可能的,但可以逐步优化。
本文将首先列出电路设计,PCB生产和维护方面的一些问题,然后提供一些易于使用的方法,以有限的成本优化定制PCB。
多通道功率整流LED的耐压保护以走廊公共电力设备为例。
为了保证电路的正常工作,利用多通道电源为AC-DC模块的电源模块供电,参数“Uin =AC85~264V”。
采用300Ω1/ 2W碳电阻串联的IN4007整流LED 用于多路输入隔离。
图1是该产品的电路图。
从理论上讲,这是一个完美的想法,而实际使用中存在严重问题。
在没有考虑尖峰电压的情况下,在正常情况下,多通道电源之间的电压可以达到AC400V,IN4007的耐压可以达到1000V。
正确的组件被拿起来,对吗?但事实是由于耐压问题经常发生短路爆炸,导致整个环测威官网:/产品的废料。
当然,不可否认的是,低质量的元件和LED的老化也会导致问题。
但即使安装了具有更高耐压的高质量LED或LED而不是之前的那些,问题仍然存在。
考虑到保修期内早期疲劳的质量问题和吞吐量(TPY)的存在,组件几乎不可能达到100%TPY。
对于该电路,该先进电路需要24个整流LED,废品率范围为2.4%至7.2%。
具有这种品质的PCB永远无法完全满足客户的需求。
事实上,这是一种易于使用的方法来处理这个问题。
只要在每个循环中再放置一个IN4007系列,就可以轻松解决这个问题。
因为此时,电路电压降低了0.7V,对输出没有影响。
只需稍微增加成本就可以产生双耐压值,并将误差发生率降低到0.5%。
小型继电器频繁运行解决电磁干扰问题由于电弧放电时小型继电器在PCB上产生的电磁干扰会在切断高电流时产生。
干扰不仅影响CPU的正常运行,导致频繁的复位,而且使解码器和驱动器产生错误的信号和指令,导致组件实现的错误。
印刷电路板(PCB)供电网络 (PDN)设计方法
AN 574
定义 PCB PDN 截止频率 设计供电网络时,Altera 的器件专用 PDN 工具会基于您的 PCB 设计计算出一个唯一的频率目标。 该频率在工具中被称为 FEFFECTIVE,是在充分考虑了 PCB、封装以及您在工具中所选择芯片的寄生计 算得出的。FEFFECTIVE 的作用包括: 提供对封装/芯片接收 (take over) 跃迁频率的指导。 提供对 PCB 去耦有效频率范围进行相当准确的评估。选择超出 FEFFECTIVE 的 SRF 的去耦电容
器,会导致 PCB 过设计,并且芯片的总阻抗性能也无改善。
PCB 去耦 FEFFECTIVE 由 PDN 工具计算得到的 PCB PDN 截止频率 (FEFFECTIVE) 取决于 PCB 的设计平衡方法。FEFFECTIVE 对于 OPD 和非 OPD 封装的作用分析如下。
非 OPD 情况 图 9 显示了无封装上去耦电源轨的简单拓扑结构。 图 9、非 OPD 拓扑结构
图 10 显示的是图 9 探针位置处芯片的阻抗情况。该仿真的探针点不同于 BGA 过孔探针位置。BGA 过孔探针位置用于绘制没有 FPGA 器件条件下 PDN 工具中的 ZEFF。用于生成图 10 所示波形的芯 片(Rdie 和 Cdie)和封装(Lpkg)寄生并非基于 Altera 器件的特定电源轨。这些仿真均用于说明 PDN 设计概念。为了表明谐振频率对 PCB 电感变化的敏感度,假设存在一个低值封装电感(Lpkg)以及 高芯片电容(Cdie)。 产生图 10 中谐振频率(F1、F2 和 F3)的因为,PCB 相关电容串联组合与片上电容封装的相互作 用。您可以利用方程式 4,计算得到该谐振频率。
AN 574
两电池供电时的电源切换设计
两电池供电时的电源切换设计问题现象:如下图,大电池BAT1和小电池BAT2一起给系统供电,当用到低电状态拔下大电池时,系统直接关机。
客户要求:当拔掉大电池后,系统还能工作一段时间。
问题分析:从电路来看,大电池和小电池是并联在一起的,它们充电一起充,放电一起放,到低电状态时两种电池都电压较低,所以系统供电不足直接关机。
设计思路:为符合客户要求,设计成当大电池接上时,就让小电池不供电,就是说当放电时只有大电池放电,当充电时两者都能充电。
设计要求:从PCB板布局空间和生产成本上要求电路尽量简单,所用元器件量最少。
设计电路1:(1)如下图,大电池接口用的是刀片接口座,从上往下刀片对应原理图符号,第一片对应符号上的1、4,中间片对应符号上的3、6,第三片对应符号上的2、5。
(2)如下图是大电池及电池上的接口电路板,两个“+”号是连在一起的。
(3)没大电池时,刀口座上的第一片和中间片不会短路,即中间片是没电的,当接上电池后中间片有电压,应用这个功能来判断是否有大电池接入。
(4)在小电池供电上增加一个开关线路,用刀口座中间片来控制。
尽量用最少元件的前提下,如下图新增一个PMOS管Q4,G极串一个电阻R86到刀片座中间片,当大电池接入时Q4的G极为高电平,此时Q4不导通,所以小电池不供电;当大电池拔掉时Q4的G极由R87拉为低电平,这时Q4导通,所以小电池可以正常给系统供电,由于大电池的存在,小电池没怎么耗电,所以可以正常工作一段时间。
另外在充电中VBAT在给大电池充电的同时也可以通过Q4上的二极管导通过去给小电池充电,值得注意的是由于二极管有压降,所以小电池是充不满电的,但还是可以符合没大电池时可以工作一段时间。
上面的描述看起来还可以,但实际验证中,该电路行不通,那为什么呢?原因一,在两个电池都为4.0V以上时,拔插大电池确实可以正常控制Q4的开断,但随着大电池的耗电,电压在逐渐变低,而小电池的电压还没变化,直到G极的电压小于小电池电压很多时,这时Q4就失去了关断作用,所以小电池也同时放电。
pcb设计开发方案
pcb设计开发方案一、背景介绍PCB(Printed Circuit Board,印刷电路板)设计开发是电子产品制造中不可或缺的环节,它决定了电路连接的可靠性和性能稳定性。
本文将围绕PCB设计开发的目标、流程和注意事项展开,以期为相关人员提供一份全面的设计方案。
二、目标PCB设计开发的目标是实现电路连接的高性能和可靠性,同时在功能、成本和时间方面达到最佳平衡。
具体目标如下:1. 实现电路连接的精确性:确保电路中各个组件之间精准的连接,避免信号干扰和漏电等问题。
2. 保证电路的高稳定性:通过合理的布局和优化的线路走向,减少电流的干扰,提高电路的稳定性。
3. 提高电路的耐久性:选择合适的材料和工艺,增加电路板的耐高温、耐振动和抗氧化能力。
4. 降低开发成本:通过合理规划元件布局和减少线路长度,降低材料损耗和制造成本。
5. 缩短开发时间:优化设计流程,提高设计效率,尽快完成产品的开发和上市。
三、流程PCB设计开发的流程包括需求分析、电路设计、布局布线、制板加工和测试验证等环节。
下面将对每个环节进行详细说明:1. 需求分析:在这个阶段,要对设备的功能需求和技术要求进行分析和定义。
同时,还要对工作环境、电路连接和电磁兼容等因素进行评估,为后续设计提供基本依据。
2. 电路设计:根据需求分析的结果,进行电路原理图设计。
在设计过程中,需要考虑电路的稳定性、可靠性和可维护性。
合理选择电路的拓扑结构和元件,确保电路的性能和可靠性。
3. 布局布线:在这个环节中,需要将电路原理图转化为实际的PCB板设计。
首先,进行合理的元件布局,包括确定元件的摆放位置和大小。
其次,在进行线路布线时,需要注意信号和电源线的分离、走线的最短路径和信号噪声的抑制等。
4. 制板加工:完成布局布线后,需要将设计好的PCB板进行制造。
这一环节包括PCB板的风格、厚度和工艺的选择等。
制造完成后,还需进行表面处理和质量检测,确保制板质量符合要求。
5. 测试验证:制造完成的PCB板需要进行测试验证,包括电气性能测试、电磁兼容性测试和可靠性测试等。
Altium Designer课程设计:用ASM117-5V电源供电L298N驱动系统
宁德师范学院Altium Designer课程设计题目名称:用AMS117-5V电源供电L298N驱动系统系别:物理与电气工程系专业:电气工程及其自动化学号:姓名:指导老师:日期: 2014年6月6日Altium Designer课程设计任务书主要内容:根据设计要求,运用Altium Designer软件,在工程项目里建立并自行画出用AMS117-5V电源供电L298N驱动系统的电路原理图和PCB布线图以及做出实物。
并有相关的画图及制板过程。
基本要求:1.在Altium Designer软件的操作系统下,绘制并完成“用AMS117-5V电源供电L298N驱动系统”的电路;2.对PCB图进行实际的腐蚀、钻孔和元器件的焊接等,做出实现功能的实物。
主要参考资料:[1] 杜洋.入门PCB设计视频[2] 郭天祥.新概念51单片机C语言教程.电子工业出版社,2009.1[3] 谢龙汉.鲁力.张桂东.Altium Designer原理图与PCB设计及仿真.电子工业出版社,2012.1[4] 谷树忠.Altium Designer教程:原理图、PCB设计与仿真.北京:电子工业出版社,2010.1[5] 谢自美.电子线路设计-实验-测试.武汉华中科技大学出版社,2000[6] 阎石.数字电子技术基础-5版.北京:高等教育出版社,2006[7] 周润景.张丽敏.Altium Designer原理图和PCB 设计.电子工业出版社,2009[8] 余波.protel99从入门到精通.西安电子科技大学出版社,2000目录1 任务和要求 (1)1.1课程设计目的 (1)1.2任务和要求 (1)2 用AMS117-5V电源供电L298N驱动系统主要电路功能分析 (1)2.1 主板电路 (1)2.2 晶振电路 (2)2.3 复位电路 (2)2.4 AMS117-5V电源电路 (2)2.5 L298N驱动电路 (3)2.6 按键电路 (3)2.7 蜂鸣器电路 (3)3 电路原理图和PCB图的绘制过程 (4)3.1 建立工程文件 (4)3.2 制作原理图库 (4)3.3 制作封装库 (5)3.4 添加封装 (6)3.5 绘制原理图 (7)3.6 生成PCB并手工布线 (7)3.6.1 生成PCB (7)3.6.2 手工布线 (8)4 PCB板制作过程 (11)4.1 电路检查 (11)4.2 对PCB板进行热转印 (11)4.3 制成实物 (12)5 生成报表 (13)6 总结 (14)参考文献 (15)1 任务和要求1.1课程设计目的1)熟悉Altium Designer软件的界面;2)掌握并能熟练运用Altium Designer软件制作元件库;3)掌握并熟练运用Altium Designer软件设计电路原理图及PCB板布线。
电源PCB-CHECKLIST(布局)
所有器件满足禁布要求
需封装库人员和客户确认,新器件的封装库建库正确,元器件选用封装对应无误
确认PCB上器件安装的加工路线,并采取相应的布局方案,板边是否需要5mm 禁布区(最少3mm),或者加工艺边
压接器件是否满足安装间距要求
拨码开关、复位器件,指示灯、测试点等,不与其它器件冲突(如拉手条、 散热片、扣板、斜插或平插的器件(如DIMM条和CF卡等)等),且放在元件面
免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ]
备注
是[ ] 否[ 是[ ] 否[ 是[ ] 否[ 是[ ] 否[ 是[ ] 否[ 是[ ] 否[ 是[ ] 否[ 是[ ] 否[ 是[ ] 否[ 是[ ] 否[ 是[ ] 否[
免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ] 免[ ]
不耐热的元器件和热敏器件(如铝电解电容、晶体等)不靠近高热器件 开关电源MOS管的散热是否满足要求 高速与低速,数字与模拟按模块分开布局 始端匹配靠近发端器件,终端匹配靠近接收端器件 退耦电容靠近相关器件放置 晶体、晶振及时钟驱动芯片等靠近相关器件放置 根据分析仿真结果或已有经验确定总线的拓扑结构,确保满足系统要求 现有布局能否满足绝对长度要求,相对长度是否容易实现 对同步时钟总线系统的布局满足时序要求 电感、继电器和变压器等易发生磁场耦合的感性器件不相互靠近放置 为避免单板焊接面器件与相邻单板间发生电磁干扰,单板焊接面不放置敏感 器件和强辐射器件 接口器件靠近板边放置,已采取适当的 EMC 防护措施(如带屏蔽壳、电源地 挖空等措施),提高设计的EMC能力 保护电路放在接口电路附近,遵循先防护后滤波原则 发射功率很大或特别敏感的器件(例如晶振、晶体等)远离屏蔽体、屏蔽罩外壳 复位器件、复位信号远离其他强干扰器件、信号 元件面下面的平面层为地 主电源层尽可能与其对应地层相邻,电源层与对应的地满足20H规则 每个布线层尽量满足有一个完整的参考平面,关键信号至少要有一个完整的参考平面 多层板层叠、芯材(CORE)对称 过孔的厚径比大于10:1时,需要得到PCB厂家确认 光模块的电源、地与其它电源、地分开,以减少干扰 有阻抗控制要求时,层设置参数满足要求
开关电源PCBLAY原则
开关电源PCBLAY原则在当代电子产品的制造中,开关电源无疑是一种非常重要且广泛应用的电源。
无论是消费电子、通讯设备还是计算机硬件,几乎所有设备都需要使用开关电源。
而电源的核心部分就是PCB电路板,它在开关电源中占据着至关重要的地位。
本文将系统介绍开关电源PCB层的设计原则。
PCB电路板设计中的原则在进行PCB层设计之前,我们需要掌握一些基本原则。
首先是排布原则,这个原则主要是指将电子元件合理地排布在电路板上。
在排布电子元件时,我们需要注意不同元件之间的距离,以及元件之间的连线。
其次原则是连线原则,它包括连线路径和连线宽度等内容。
由于开关电源中需要传输的电流比较大,因此连线的宽度应该足够宽,从而保证电源传输的效率。
在开关电源的PCB层设计过程中,还需要注意一些特殊的原则。
首先是地面和电源面的布置。
由于开关电源中含有高达数十甚至上百个晶体管,因此在布置地面和电源面时需要非常小心,以确保整个电源系统地位的稳定性。
其次是电源芯片的布置,电源芯片通常被布置在电源板的中心位置,这样可以对热量进行比较均匀的散热处理。
实际操作中,我们可以通过采用一些专业软件(比如EAGLE、PADS等)来完成开关电源PCB层的设计。
这些软件都拥有丰富的PCB电路板设计工具,以及检测和优化机制,可以帮助设计师快速地完成电路板设计。
关于开关电源PCB层的设计思路在进行开关电源PCB层设计时,我们需要明确不同电子元件之间的布局和互相之间的传输关系。
开关电源通常由输入滤波器、电感、电源芯片、输出滤波器、电容和二极管等几个主要元件组成。
这些元件之间的关系必须清晰明了,以便保证电源能够稳定供电。
在完成最初的PCB层设计后,我们还需要进行各种实验和测试,以确保电源工作正常。
实验和测试过程中需要注意以下几个方面:1)实测电源的纹波情况2)测试电源的温度变化3)通过示波器等仪器观察输出波形情况通过这些实验和测试,可以更加全面地了解开关电源的工作情况,从而了解到电源PCB层的设计存在哪些问题,并进行相应的优化处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB电源供电系统设计方案当今,在没有透彻掌握芯片、封装结构及PCB的电源供电系统特性时,高速电子系统的设计是很难成功的。
事实上,为了满足更低的供电电压、更快的信号翻转速度、更高的集成度和许多越来越具有挑战性的要求,很多走在电子设计前沿的公司在产品设计过程中为了确保电源和信号的完整性,对电源供电系统的分析投入了大量的资金,人力和物力。
电源供电系统(PDS)的分析与设计在高速电路设计领域,特别是在计算机、半导体、通信、网络和消费电子产业中正变得越来越重要。
随着超大规模集成电路技术不可避免的进一步等比缩小,集成电路的供电电压将会持续降低。
随着越来越多的生产厂家从130nm技术转向90nm技术,可以预见供电电压会降到1.2V,甚至更低,而同时电流也会显著地增加。
从直流IR压降到交流动态电压波动控制来看,由于允许的噪声范围越来越小,这种发展趋势给电源供电系统的设计带来了巨大的挑战。
PCB电源供电系统设计概览通常在交流分析中,电源地之间的输入阻抗是用来衡量电源供电系统特性的一个重要的观测量。
对这个观测量的确定在直流分析中则演变成为IR压降的计算。
无论在直流或交流的分析中,影响电源供电系统特性的因素有:PCB的分层、电源板层平面的形状、元器件的布局、过孔和管脚的分布等等。
图1:PCB上一些常见的会增加电流路径阻性的物理结构设计。
电源地之间的输入阻抗概念就可以应用在对上述因素的仿真和分析中。
比如,电源地输入阻抗的一个非常广泛的应用是用来评估板上去耦电容的放置问题。
随着一定数量的去耦电容被放置在板上,电路板本身特有的谐振可以被抑制掉,从而减少噪声的产生,还可以降低电路板边缘辐射以缓解电磁兼容问题。
为了提高电源供电系统的可靠性和降级系统的制造成本,系统设计工程师必须经常考虑如何经济有效地选择去耦电容的系统布局。
高速电路系统中的电源供电系统通常可以分成芯片、集成电路封装结构和PCB三个物理子系统。
芯片上的电源栅格由交替放置的几层金属层构成,每层金属由X或Y方向的金属细条构成电源或地栅格,过孔则将不同层的金属细条连接起来。
对于一些高性能的芯片,无论内核或是IO的电源供电都集成了很多去耦单元。
集成电路封装结构,如同一个缩小了的PCB,有几层形状复杂的电源或地平板。
在封装结构的上表面,通常留有去耦电容的安装位置。
PCB则通常含有连续的面积较大的电源和地平板,以及一些大大小小的分立去耦电容元件,及电源整流模块(VRM)。
邦定线、C4凸点、焊球则把芯片、封装和PCB连接在了一起。
整个电源供电系统要保证给各个集成电路器件提供在正常范围内稳定的电压。
然而,开关电流和那些电源供电系统中寄生的高频效应总是会引入电压噪声。
其电压变化可以由下式计算得到:这里ΔV是在器件处观测到的电压波动,ΔI是开关电流。
Z是在器件处观测到的整个电源供电系统电源与地之间的输入阻抗。
为了减小电压波动,电源与地之间要保持低阻。
在直流情况下,由于Z变成了纯电阻,低阻就对应了低的电源供电IR压降。
在交流情况下,低阻能使开关电流产生的瞬态噪声也变小。
当然,这就需要Z在很宽的频带上都要保持很小。
Sigrity PowerDC计算得到电源板层上的电流分布。
注意到电源和地通常用来作为信号回路和参考平面,因此电源供电系统与信号分布系统之间有着很紧密的关系。
然而,由于篇幅的限制,同步开关噪声(IO SSO)引入的电源供电系统的噪声现象和电流回路控制问题将不在这里讨论。
以下几节将忽略信号系统,而单纯注重电源供电系统的分析。
直流IR压降由于芯片的电源栅格(Power Grid)的特征尺寸很小(几微米甚至更小),芯片内的电阻损耗严重,因此芯片内的IR压降已经被广泛地研究。
而在下面几种情况下,PCB上的IR压降(在几十到几百毫伏的范围内)对高速系统设计同样会有较大的影响。
电源板层上有Swiss-Chess结构、Neck-Down结构和动态布线造成的板平面被分割等情况(图1);电源板层上电流通过的器件管脚、过孔、焊球、C4凸点的数量不够,电源平板厚度不足,电流通路不均衡等;系统设计需要低电压、大电流,又有较紧的电压浮动的范围。
PCB电源供电系统设计方案图3:包括和不包括电源整流模块的平板对输入阻抗。
例如,一个高密度和高管脚数的器件由于有大量的过孔和反焊盘,在芯片封装结构及PCB的电源分配层上往往会形成所谓的Swiss-Chess结构效应。
Swiss-Chess结构会产生很多高阻性的微小金属区域。
根据由于电源供电系统中有这样的高阻电流通路,送到PCB上元器件的电压或电流有可能会低于设计要求。
因此一个好的直流IR压降仿真模拟是估计电源供电系统允许压降范围的关键。
通过各种各样可能性的分析为布局布线前后提供设计方案或规则。
布线工程师、系统工程师、信号完整性工程师和电源设计工程师还可以将IR压降分析结合在约束管理器(constraint manager)中,作为对PCB上每一个电源和地网表进行设计规则核查的最终检验工具(DRC)。
这种通过自动化软件分析的设计流程可以避免靠目测,甚至经验所不能发现的复杂电源供电系统结构上的布局布线问题。
图2展示了IR压降分析可以准确地指出一高性能PCB上电源供电系统中关键电压电流的分布。
交流电源地阻抗分析很多人知道一对金属板构成一个平板电容器,于是认为电源板层的特性就是提供平板电容以确保供电电压的稳定。
在频率较低,信号波长远远大于平板尺寸时,电源板层与地板的确构成了一个电容。
然而,当频率升高时,电源板层的特性开始变得复杂了。
更确切地说,一对平板构成了一个平板传输线系统。
电源与地之间的噪声,或与之对应的电磁场遵循传输线原理在板之间传播。
当噪声信号传播到平板的边缘时,一部分高频能量会辐射出去,但更大一部分能量会反射回去。
来自平板不同边界的多重反射构成了PCB中的谐振现象。
图4:三种设置情况下 PowerSI计算得到的PCB输入阻抗曲线。
(a)不包含电源整流模块;(b)包含电源整流模块;(c)包含电源整流模块和一些去耦电容。
在交流分析中,PCB的电源地阻抗谐振是个特有的现象。
图3展示了一对电源板层的输入阻抗。
为了比较,图中还画了一个纯电容和一个纯电感的阻抗特性。
板的尺寸是30cm×20cm,板间间距是100um,填充介质是FR4材料。
板上的电源整流模块用一个3nH的电感来代替。
显示纯电容阻抗特性的是一个20nF的电容。
从图上可以看出,在板上没有电源整流模块时,在几十兆的频率范围内,平板的阻抗特性(红线)和电容(蓝线)一样。
在100MHz以上,平板的阻抗特性呈感性(沿着绿线)。
到了几百兆的频率范围后,几个谐振峰的出现显示了平板的谐振特性,这时平板就不再是纯感性的了。
至此,很明显,一个低阻的电源供电系统(从直流到交流)是获得低电压波动的关键:减少电感作用,增加电容作用,消除或降低那些谐振峰是设计目标。
为了降低电源供电系统的阻抗,应遵循以下一些设计准则:1. 降低电源和地板层之间的间距;2. 增大平板的尺寸;3. 提高填充介质的介电常数;4. 采用多对电源和地板层。
然而,由于制造或一些其他的设计考虑,设计工程师还需要用一些较为灵活的有效的方法来改变电源供电系统的阻抗。
为了减小阻抗并且消除那些谐振峰,在PCB上放置分立的去耦电容便成为常用的方法。
图4显示了在三种不同设置下,用Sigrity PowerSI计算得到的电源供电系统的输入阻抗:a. 没有电源整流模块,没有去耦电容放置在板上。
b. 电源整流模块用短路来模拟,没有去耦电容放置在板上。
c. 电源整流模块用短路来模拟,去耦电容放置在板上。
从图中可见,例子a蓝线,在集成电路芯片的位置处观测到的电源供电系统的输入阻抗在低频时呈现出容性。
随着频率的增加,第一个自然谐振峰出现在800MHz的频率处。
此频率的波长正对应了电源地平板的尺寸。
例子b的绿线,输入阻抗在低频时呈现出感性。
这正好对应了从集成电路芯片的位置到电源整流模块处的环路电感。
这个环路电感和平板电容一起引入了在200MHz的谐振峰。
例子c的红线,在板上放置了一些去耦电容后,那个200MHz的谐振峰被移到了很低的频率处(《20MHz),并且谐振峰的峰值也降低了很多。
第一个较强的谐振峰则出现在大约1GHz处。
由此可见,通过在PCB上放置分立的去耦电容,电源供电系统在主要的工作频率范围内可以实现较低的并且是平滑的交流阻抗响应。
因此,电源供电系统的噪声也会很低。
图5:针对不同结构仿真计算得到的输入阻抗。
不考虑芯片和封装结构(红线);考虑封装结构(蓝线);考虑芯片、封装和电路板(绿线)。
在板上放置分立的去耦电容使得设计师可以灵活地调整电源供电系统的阻抗,实现较低的电源地噪声。
然而,如何选择放置位置、选用多少以及选用什么样的去耦电容仍旧是一系列的设计问题。
因此,对一个特定的设计寻求最佳的去耦解决方案,并使用合适的设计软件以及进行大量的电源供电系统的仿真模拟往往是必须的。
协同设计概念图4实际上还揭示了另一个非常重要的事实,即PCB上放置分立的去耦电容的作用频率范围仅仅能达到几百兆赫兹。
频率再高,每个分立去耦电容的寄生电感以及板层和过孔的环路电感(电容至芯片)将会极大地降低去耦效果,仅仅通过PCB上放置分立的去耦电容是无法进一步降低电源供电系统的输入阻抗的。
从几百兆赫兹到更高的频率范围,封装结构的电源供电系统的板间电容,以及封装结构上放置的分立去耦电容将会开始起作用。
到了GHz频率范围,芯片内电源栅格之间的电容以及芯片内的去耦电容是唯一的去耦解决方案。
图5显示了一个例子,红线是一个PCB上放置一些分立的去耦电容后得到的输入阻抗。
第一个谐振峰出现在600MHz到700MHz。
在考虑了封装结构后,附加的封装结构的电感将谐振峰移到了大约450MHz处,见蓝线。
在包括了芯片电源供电系统后,芯片内的去耦电容将那些高频的谐振峰都去掉了,但同时却引入了一个很弱的30MHz谐振峰,见绿线。
这个30MHz的谐振在时域中会体现为高频翻转信号的中频包络上的一个电压波谷。
芯片内的去耦是很有效的,但代价却是要用去芯片内宝贵的空间和消耗更多的漏电流。
将芯片内的去耦电容挪到封装结构上也许是一个很好的折衷方案,但要求设计师拥有从芯片、封装结构到PCB的整个系统的知识。
但通常,PCB的设计师无法获得芯片和封装结构的设计数据以及相应的仿真软件包。
对于集成电路设计师,他们通常不关心下端的封装和电路板的设计。
但显然采用协同设计概念对整个系统、芯片-封装-电路板的电源供电系统进行优化分析设计是将来发展的趋势。
一些走在电子设计前沿的公司事实上已经这样做了。