【经典】数学建模方法
数学建模方法-精品文档资料整理
数学建模方法一、机理分析法从基本物理定律以及系统的结构数据来推导出模型。
1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。
二、数据分析法从大量的观测数据利用统计方法建立数学模型。
1. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
3. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
4. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
①离散系统仿真--有一组状态变量。
②连续系统仿真--有解析表达式或系统结构图。
2. 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
3. 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)二、风扇的最优化布局设计为你上课的教室安装风扇,请你做风扇的最优化布局设计;建模提示:(1)在风扇数目一定的情况下,风扇的位置不同,效果也不同,是否一定存在一个最好的布局?(2)在风扇数目不定的情况下,就有一个安装多少台风扇为最佳方案的问题,自然也应该存在一个最佳数量结果。
数学建模各类方法归纳总结
数学建模各类方法归纳总结数学建模是一门应用数学领域的重要学科,它旨在通过数学模型对现实世界中的问题进行分析和解决。
随着科技的不断发展和应用需求的增加,数学建模的方法也日趋多样化和丰富化。
本文将对数学建模的各类方法进行归纳总结,以期帮助读者更好地了解和应用数学建模。
一、经典方法1. 贝叶斯统计模型贝叶斯统计模型是一种基于概率和统计的建模方法。
它通过利用先验知识和已知数据来确定未知数据的后验概率分布,从而进行推理和预测。
贝叶斯统计模型在金融、医药、环境等领域具有广泛应用。
2. 数理统计模型数理统计模型是基于概率统计理论和方法的建模方法。
它通过收集和分析样本数据,构建统计模型,并通过参数估计和假设检验等方法对数据进行推断和预测。
数理统计模型在市场预测、风险评估等领域有着重要的应用。
3. 线性规划模型线性规划模型是一种优化建模方法,它通过线性目标函数和线性约束条件来描述和解决问题。
线性规划模型在供应链管理、运输优化等领域被广泛应用,能够有效地提高资源利用效率和降低成本。
4. 非线性规划模型非线性规划模型是一种对目标函数或约束条件存在非线性关系的问题进行建模和求解的方法。
非线性规划模型在经济学、物理学等领域有着广泛的应用,它能够刻画更为复杂的现实问题。
二、进阶方法1. 神经网络模型神经网络模型是一种模拟人脑神经元系统进行信息处理的模型。
它通过构建多层神经元之间的连接关系,利用反向传播算法进行训练和学习,实现对复杂数据的建模和预测。
神经网络模型在图像识别、自然语言处理等领域取得了显著的成果。
2. 遗传算法模型遗传算法模型是一种模拟自然界生物进化过程的优化方法。
它通过模拟遗传、交叉和突变等过程,逐步搜索和优化问题的最优解。
遗传算法模型在组合优化、机器学习等领域具有广泛的应用。
3. 蒙特卡洛模拟模型蒙特卡洛模拟模型是一种基于随机模拟和概率统计的建模方法。
它通过生成大量的随机样本,通过对样本进行抽样和分析,模拟系统的运行和行为,从而对问题进行求解和评估。
数学建模十大经典算法
数学建模十大经典算法数学建模是将现实问题抽象化成数学问题,并通过数学模型和算法进行解决的过程。
在数学建模中,常用的算法能够帮助我们分析和求解复杂的实际问题。
以下是数学建模中的十大经典算法:1.线性规划算法线性规划是一种用于求解线性约束下的最优解的方法。
经典的线性规划算法包括单纯形法、内点法和对偶理论等。
这些算法能够在线性约束下找到目标函数的最大(小)值。
2.整数规划算法整数规划是在线性规划的基础上引入了整数变量的问题。
经典的整数规划算法包括分枝定界法、割平面法和混合整数线性规划法。
这些算法能够在整数约束下找到目标函数的最优解。
3.动态规划算法动态规划是一种将一个问题分解为更小子问题进行求解的方法。
经典的动态规划算法包括背包问题、最短路径问题和最长公共子序列问题等。
这些算法通过定义递推关系,将问题的解构造出来。
4.图论算法图论是研究图和图相关问题的数学分支。
经典的图论算法包括最小生成树算法、最短路径算法和最大流算法等。
这些算法能够解决网络优化、路径规划和流量分配等问题。
5.聚类算法聚类是将相似的数据点划分为不相交的群体的过程。
经典的聚类算法包括K均值算法、层次聚类算法和密度聚类算法等。
这些算法能够发现数据的内在结构和模式。
6.时间序列分析算法时间序列分析是对时间序列数据进行建模和预测的方法。
经典的时间序列分析算法包括平稳性检验、自回归移动平均模型和指数平滑法等。
这些算法能够分析数据中的趋势、周期和季节性。
7.傅里叶变换算法傅里叶变换是将一个函数分解成一系列基础波形的过程。
经典的傅里叶变换算法包括快速傅里叶变换和离散傅里叶变换等。
这些算法能够在频域上对信号进行分析和处理。
8.最优化算法最优化是研究如何找到一个使目标函数取得最大(小)值的方法。
经典的最优化算法包括梯度下降法、共轭梯度法和遗传算法等。
这些算法能够找到问题的最优解。
9.插值和拟合算法插值和拟合是通过已知数据点来推断未知数据点的方法。
经典的插值算法包括拉格朗日插值和牛顿插值等。
【经典】建模-数学建模中的数值方法
考虑三维区域 G ,假设其为均匀的且各向同性。
设点 (x, y, z) 处在时刻 t 的浓度为 u(x, y, z,t) 。
区域 G 内浓度升高增加的污染物质量为
Q1 u(x, y, z,t t) u(x, y, z,t)dV
G
G
t t t
u (x, t
重金属在土壤中的传播:
(1)由于是在土壤中扩散,由土壤传播的特性 (慢,相对于空气或液体中),因此,这个题更 多的要求我们分析物质的空间分布,而不侧重各 区域内重金属物质随机时间的变化规律。同时, 主要是数据中也没有给出我们关于时间的数据;
(2)物质污染扩散是源点浓度最大,然后向四 周空间区域扩散,梯次减小。
于是 Q1 Q2 Q3 Q4 ,则有
u t
a2
2u x2
b2
2u y 2
c2
2u z 2
ku
F (x,
y,
z,t)
由于数据没有关于时间,因为我们可以认为释放过程已经达到一个平
衡状态,即不随时间发生变化,则有
a2
2u x2
b2
2u y 2
c2
2u z 2
ku
F (x,
y,
z)
0
如果污染源是点源的话:
t t t
G
a
2
2u x2
b2
2u y2
c2
2u z 2
dxdydzdt
由 Q1 Q2 ,
tt
t
G
u t
(x,
y,
z, t )dxdydz
dt
t t t
G
a2
2u x2
b2
数学建模有哪些方法
数学建模有哪些方法
数学建模是指将实际问题用数学的方法进行描述和分析的过程。
常见的数学建模方法有以下几种:
1. 形式化建模:将实际问题抽象成数学模型,通过符号和公式的形式进行描述和求解。
2. 统计建模:利用统计学的方法对数据进行收集、整理和分析,从中提取规律和模式,对未知的情况进行预测和决策。
3. 数值模拟:利用计算机和数值方法对问题进行模拟和求解,通过近似计算得到结果。
4. 最优化建模:通过建立优化模型,寻找使目标函数达到最大或最小值的最优解。
5. 离散建模:将连续的问题离散化,转化为离散的数学模型进行分析和求解。
6. 动态建模:对问题进行时间序列的分析和建模,预测未来的变化和趋势。
7. 图论建模:将问题抽象成图的形式,利用图的相关理论和算法进行分析和求解。
8. 概率建模:利用概率论的方法对问题进行建模和分析,从中推断出一些未知的情况。
以上是一些常见的数学建模方法,具体的方法选择要根据实际问题的特点和要求进行判断和决策。
数学建模十大经典算法
数学建模十大经典算法数学建模是将现实问题转化为数学模型,并利用数学方法进行求解的过程。
下面是数学建模中常用的十大经典算法:1.线性规划(Linear Programming):通过确定一组线性约束条件,求解线性目标函数的最优解。
2.整数规划(Integer Programming):在线性规划的基础上,要求变量取整数值,求解整数目标函数的最优解。
3.非线性规划(Nonlinear Programming):目标函数或约束条件存在非线性关系,通过迭代方法求解最优解。
4.动态规划(Dynamic Programming):通过分阶段决策,将复杂问题分解为多个阶段,并存储中间结果,以求解最优解。
5.蒙特卡洛模拟(Monte Carlo Simulation):通过随机抽样和统计分析的方法,模拟系统的行为,得出概率分布或数值近似解。
6.遗传算法(Genetic Algorithm):模拟生物进化过程,通过选择、交叉和变异等操作,寻找最优解。
7.粒子群算法(Particle Swarm Optimization):模拟鸟群或鱼群的行为,通过个体间的信息交流和集体协作,寻找最优解。
8.模拟退火算法(Simulated Annealing):模拟金属退火的过程,通过控制温度和能量变化,寻找最优解。
9.人工神经网络(Artificial Neural Network):模拟生物神经网络的结构和功能,通过训练网络参数,实现问题的分类和预测。
10.遗传规划(Genetic Programming):通过定义适应性函数和基因编码,通过进化算子进行选择、交叉和变异等操作,求解最优模型或算法。
这些算法在不同的数学建模问题中具有广泛的应用,能够帮助解决复杂的实际问题。
数学建模十大算法
、此数学建模十大算法依据网上的一份榜单而写,本文对此十大算法作一一简单介绍。
这只是一份榜单而已,数学建模中还有很多的算法,未一一囊括。
欢迎读者提供更多的好的算法。
2、在具体阐述每一算法的应用时,除了列出常见的应用之外,同时,还会具体结合数学建模竞赛一一阐述。
毕竟,此十大算法,在数学建模竞赛中有着无比广泛而重要的应用。
且,凡是标着“某某年某国某题”,即是那一年某个国家的数学建模竞赛原题。
3、此十大算法,在一些经典的算法设计书籍上,无过多阐述。
若要具体细致的深入研究,还得请参考国内或国际上关于此十大算法的优秀论文。
谢谢。
一、蒙特卡罗算法1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam和Nick Metropolis共同发明了,蒙特卡罗方法。
此算法被评为20世纪最伟大的十大算法之一,详情,请参见我的博文:/v_JULY_v/archive/2011/01/10/6127953.aspx蒙特卡罗方法(Monte Carlo method),又称随机抽样或统计模拟方法,是一种以概率统计理论为指导的一类非常重要的数值计算方法。
此方法使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
由于传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
蒙特卡罗方法的基本原理及思想如下:当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。
有一个例子可以使你比较直观地了解蒙特卡洛方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。
蒙特卡洛方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。
数学建模中常用的十种算法
数学建模中常用的十种算法在数学建模中,常用的算法有很多种。
以下是数学建模常用的十种算法:1.线性回归算法:线性回归是一种用于建立变量之间线性关系的统计算法。
它通过最小化预测值与实际值之间的均方误差来确定最佳拟合直线。
2.非线性回归算法:非线性回归是一种用于建立变量之间非线性关系的统计算法。
它通过最小化预测值与实际值之间的均方误差来确定最佳拟合曲线。
3.最小二乘法算法:最小二乘法是一种用于估计模型参数的优化算法。
它通过最小化观测值与预测值之间的平方差来确定最佳参数值。
4.插值算法:插值是一种用于根据已知数据点推断未知数据点的技术。
其中常用的算法包括线性插值、拉格朗日插值和样条插值。
5.数值积分算法:数值积分是一种用于计算函数的定积分的技术。
其中常用的算法包括梯形法则、辛普森法则和龙贝格积分。
6.数值优化算法:数值优化是一种用于求解最优化问题的技术。
其中常用的算法包括梯度下降法、牛顿法和拟牛顿法。
7.图形算法:图形算法是一种用于处理图像和图形数据的技术。
其中常用的算法包括图像滤波、图像分割和图像识别。
8.聚类算法:聚类是一种用于将数据集分组为不同类别的技术。
其中常用的算法包括K均值聚类、层次聚类和DBSCAN。
9.分类算法:分类是一种用于将数据分为不同类别的技术。
其中常用的算法包括支持向量机、决策树和随机森林。
10.贝叶斯算法:贝叶斯算法是一种用于计算后验概率的统计推断方法。
其中常用的算法包括贝叶斯分类、朴素贝叶斯和马尔科夫链蒙特卡洛。
以上是数学建模中常用的十种算法,它们在不同的应用领域和问题中具有广泛的应用价值,并且常常可以相互结合以获得更好的建模结果。
数学建模常见方法
数学建模是将实际问题抽象成数学模型,并通过数学方法进行求解和分析的过程。
以下是一些常见的数学建模方法:
1.数理统计:利用概率论和统计学方法来分析数据,建立统计模型并进行参数估计、假设
检验等,从而对问题进行量化和预测。
2.最优化方法:使用最优化理论和方法,在给定约束条件下寻找最优解,如线性规划、非
线性规划、整数规划等。
3.微分方程模型:通过建立微分方程或偏微分方程描述系统的动态行为,包括常微分方程
和偏微分方程模型。
4.离散事件模拟:通过离散事件模拟方法模拟系统的运作过程,包括随机过程、排队论等。
5.图论与网络流模型:使用图论和网络流算法对复杂的关系和网络结构进行建模和分析,
如最短路径、最小生成树等。
6.时间序列分析:对时间序列数据进行建模和预测,涉及自相关函数、谱分析、回归分析
等方法。
7.近似方法:如插值、拟合、逼近等方法,通过寻找适当的函数形式来近似真实问题。
8.随机过程:通过建立随机过程来描述系统的不确定性和随机性,包括马尔可夫链、布朗
运动等。
9.图像处理与模式识别:利用数学方法和算法对图像和模式进行处理和识别,如图像滤波、
边缘检测、模式匹配等。
10.数据挖掘与机器学习:利用统计学和机器学习算法对大规模数据进行分析和挖掘,发现
隐藏的模式和关联规律。
这些方法只是数学建模中的一部分,实际应用还需根据具体问题进行选择和组合。
在数学建模过程中,常常需要结合领域知识和实际情况,并使用计算机软件和工具进行模型求解和结果分析。
数学建模的主要建模方法
数学建模的主要建模方法数学建模是一种用数学语言描述实际问题,并通过数学方法求解问题的过程。
它是数学与实际问题相结合的一种技术,具有广泛的应用领域,如物理、工程、经济、生物等。
数学建模的主要建模方法可以分为经典建模方法和现代建模方法。
经典建模方法是数学建模的基础,主要包括数理统计、微积分、线性代数等数学工具。
经典建模方法的特点是基于简化和线性的假设,并通过解析或数值方法来求解问题。
1.数理统计:统计学是数学建模的重要工具之一,它的主要任务是通过对样本数据的分析,推断出总体的特征。
数理统计中常用的方法有概率论、抽样理论、假设检验等。
2.微积分:微积分是数学建模中常用的工具,它研究变化率和积分问题。
微积分的应用范围广泛,常用于描述物体的运动,求解最优化问题等。
3.线性代数:线性代数是研究向量空间与线性变换的数学学科。
在数学建模中,线性代数经常出现在模型的描述和求解过程中,如矩阵运算、线性回归等。
现代建模方法是近年来发展起来的一种新的建模方法,主要基于现代数学工具和计算机技术。
现代建模方法的特点是模型更为复杂,计算更加精确,模拟和实验相结合。
1.数值模拟:数值模拟是一种基于计算机技术的建模方法,通过离散和近似的数学模型,利用数值计算方法求解模型。
数值模拟常用于模拟和预测实际问题的复杂现象,如天气预报、电路仿真等。
2.优化理论:优化理论是数学建模中的一种重要工具,它研究如何找到最优解或最优化方案。
优化问题常用于求解资源分配、生产排程等实际问题。
3.系统动力学:系统动力学是一种研究系统结构和行为的数学方法,它通过建立动态模型,分析系统的变化趋势和稳定性。
系统动力学常用于研究生态系统、经济系统等复杂系统。
4.随机过程:随机过程是描述随机事件随时间变化的数学模型。
它在数学建模中常用于分析随机现象的特征和规律,如金融市场变动、人口增长等。
总体而言,数学建模的方法多种多样,建模方法的选择取决于问题的性质、可用数据和计算资源等因素。
数学建模常用模型方法总结
数学建模常用模型方法总结数学建模是指用数学方法对实际问题进行抽象和描述,进而建立数学模型来解决实际问题的方法。
数学建模是现代科学技术的重要手段之一,它在实际应用中起着重要的作用。
下面将介绍一些常用的数学建模方法。
一、线性规划线性规划是在约束条件下求解线性目标函数的问题,广泛应用于经济、工程等领域。
它的数学模型可以表示为:$$\begin{align*}\text{maximize}\quad & \mathbf{C}^T\mathbf{X} \\\text{subject to}\quad & \mathbf{A}\mathbf{X} \leq \mathbf{b} \\& \mathbf{X} \geq \mathbf{0}\end{align*}$$其中,$\mathbf{C}$是一个列向量,$\mathbf{X}$是要优化的目标变量,$\mathbf{A}$是一个矩阵,$\mathbf{b}$是一个列向量。
二、非线性规划非线性规划是在约束条件下求解非线性目标函数的问题。
非线性规划模型往往在现实问题中具有更广泛的适用性。
非线性规划的数学模型可以表示为:$$\begin{align*}\text{maximize}\quad & f(\mathbf{X}) \\\text{subject to}\quad & \mathbf{g}(\mathbf{X}) \leq\mathbf{0} \\& \mathbf{h}(\mathbf{X}) = \mathbf{0}\end{align*}$$其中,$f(\mathbf{X})$是一个目标函数,$\mathbf{g}(\mathbf{X})$是不等式约束条件,$\mathbf{h}(\mathbf{X})$是等式约束条件。
三、动态规划动态规划是一种通过将问题分解成子问题的方式来求解复杂问题的方法。
它通常适用于具有最优子结构性质的问题。
数学建模方法详解三种最常用算法
数学建模方法详解三种最常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解和分析的过程。
在数学建模中,常用的算法有很多种,其中最常用的有三种,分别是线性规划、整数规划和动态规划。
一、线性规划线性规划是一种优化方法,用于在给定的约束条件下,寻找目标函数最大或最小值的一种方法。
它的数学形式是以线性约束条件为基础的最优化问题。
线性规划的基本假设是目标函数和约束条件均为线性的。
线性规划通常分为单目标线性规划和多目标线性规划,其中单目标线性规划是指在一个目标函数下找到最优解,而多目标线性规划则是在多个目标函数下找到一组最优解。
线性规划的求解方法主要有两种:单纯形法和内点法。
单纯形法是最常用的求解线性规划问题的方法,它的核心思想是通过不断迭代改进当前解来达到最优解。
内点法是一种相对较新的求解线性规划问题的方法,它的主要思想是通过从可行域的内部最优解。
二、整数规划整数规划是线性规划的一种扩展形式,它在线性规划的基础上增加了变量必须取整数的限制条件。
整数规划具有很强的实际应用性,它能够用于解决很多实际问题,如资源分配、生产优化等。
整数规划的求解方法通常有两种:分支定界法和割平面法。
分支定界法是一种常用的求解整数规划问题的方法,它的基本思想是通过将问题划分为若干个子问题,并通过求解子问题来逐步缩小解空间,最终找到最优解。
割平面法也是一种常用的求解整数规划问题的方法,它的主要思想是通过不断添加线性割平面来修剪解空间,从而找到最优解。
三、动态规划动态规划是一种用于求解多阶段决策问题的数学方法。
多阶段决策问题是指问题的求解过程可以分为若干个阶段,并且每个阶段的决策都受到之前决策的影响。
动态规划的核心思想是将问题划分为若干个相互关联的子问题,并通过求解子问题的最优解来求解原始问题的最优解。
动态规划通常分为两种形式:无后效性和最优子结构。
无后效性是指一个阶段的决策只与之前的状态有关,与之后的状态无关。
最优子结构是指问题的最优解能够由子问题的最优解推导而来。
数学建模常用算法
数学建模常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解的过程。
在数学建模中,常用的算法有很多种,下面将介绍一些常见的数学建模算法。
1.最优化算法:-线性规划算法:如单纯形法、内点法等,用于求解线性规划问题。
-非线性规划算法:如最速下降法、牛顿法等,用于求解非线性规划问题。
-整数规划算法:如分支定界法、割平面法等,用于求解整数规划问题。
2.概率统计算法:-蒙特卡洛模拟:通过模拟随机事件的方式,得出问题的概率分布。
-贝叶斯统计:利用先验概率和条件概率,通过数据更新后验概率。
-马尔可夫链蒙特卡洛:用马尔可夫链的方法求解复杂的概率问题。
3.图论算法:-最短路径算法:如迪杰斯特拉算法、弗洛伊德算法等,用于求解两点之间的最短路径。
-最小生成树算法:如普里姆算法、克鲁斯卡尔算法等,用于求解图中的最小生成树。
- 最大流最小割算法: 如Edmonds-Karp算法、Dinic算法等,用于求解网络流问题。
4.插值和拟合算法:-多项式插值:如拉格朗日插值、牛顿插值等,用于通过已知数据点拟合出多项式模型。
-最小二乘法拟合:通过最小化实际数据与拟合模型之间的差异来确定模型参数。
-样条插值:通过使用多段低次多项式逼近实际数据,构造连续的插值函数。
5.遗传算法和模拟退火算法:-遗传算法:通过模拟自然选择、遗传变异和交叉等过程,优化问题的解。
-模拟退火算法:模拟固体退火过程,通过随机策略进行,逐步靠近全局最优解。
6.数据挖掘算法:- 聚类算法: 如K-means算法、DBSCAN算法等,用于将数据分为不同的类别。
-分类算法:如朴素贝叶斯算法、决策树算法等,用于通过已知数据的类别预测新数据的类别。
- 关联分析算法: 如Apriori算法、FP-growth算法等,用于发现数据集中的关联规则。
以上只是数学建模中常用的一些算法,实际上还有很多其他算法也可以应用于数学建模中,具体使用哪种算法取决于问题的性质和要求。
数学建模方法详解--三种最常用算法
数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵()1,0,ij ij ji n nijA a a a a ⨯=>=表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ⋅= ,,1,2,,i j k n = (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作λ)的特征向量(归一化后)作为权向量w ,即w 满足:Aw w λ= (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91-尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根λ的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n λ≥,而当n λ=时A 是一致阵.所以λ比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n λ-数值的大小衡量A 的不一致程度.Saaty将1nCI n λ-=- (3)定义为一致性指标.0CI =时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除λ外其余1n -个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ',然后计算A '的一致性指标CI .n 1 2 3 4 5 6 7 8 9 10 11表1 随机一致性指标RI 的数值表中1,2n =时0RI =,是因为2,1阶的正互反阵总是一致阵.对于3n ≥的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI=< (4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:()()()1,3,4,k k k w W w k s -== (5)其中()kW 是以第k 层对第1k -层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()()()()()132s s s w W W W w -= (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为()()p n p CI CI ,,1 (n 是第1-p 层因素的数目),随机一致性指标为RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51()()1,,p p nRI RI ,定义 ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第p 层的组合一致性比率为:()()(),3,4,,p p p CI CRp s RI== (7) 第p 层通过组合一致性检验的条件为()0.1pCR <.定义最下层(第s 层)对第一层的组合一致性比率为:()2*sP p CR CR ==∑ (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91-比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根λ;2)λ对应正特征向量w (ω的所有分量为正数);3)w IA I I A k k k =T ∞→lim ,其中()T=1,1,1 I ,w 是对应λ的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n λ≥;当n λ=时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n λ=.2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量()0wb .计算()()1,0,1,2,k k w Aw k +==c .()1k w+ 归一化,即令()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度ε,当 ()()()1||1,2,,k k i i i n ωωε+-<= 时,()1k w +即为所求的特征向量;否则返回be. 计算最大特征根()()111k n i k i in ωλω+==∑这是求最大特征根对应特征向量的迭代法,()0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a aω==∑b .对ij ω按行求和得1ni ij j ωω==∑ c .将i ω归一化()*121,,,ni i n i w ωωωωωωT===∑ 即为近似特征向量. d. 计算()11n ii iAw n λω==∑,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij ω按行求积并开n 次方,即11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ .根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量()T=n w ωω,,1 的关系满iij ja ωω=,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ijωω相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: ()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i ω的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:()21,,11min ln ln i nn iij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (10) 则化为求解关于ln i ω的线性方程组.可以验证,如此解得的i ω恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵()ij A a =构造修正阵()ij Aa = 的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数, (11)θ表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵. (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价食品 维生素A/(IU/g) 维生素B/(mg/g) 热量/(kJ/g) 单价/(元/g ) 肉 面包 蔬菜0.3527 025 0.0021 0.00060.0020 11.93 11.511.04 0.02750.0060. 0.007该人体重为55kg ,每天对各类营养的最低需求为:维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵WD ED 13 E311max 2λ=,10CI =,100.1CR =<,主特征向量()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=每日需求W营养D 蔬菜支出E维生素B 肉 价格F面包 维生素A 热量R表4 比较判断矩阵D ABRA 1 1 2 B112R 5.05.01111max 1113,0,0,0.58CI CR RI λ==== ,主特征向量()0.4,0.4,0.2W T= 故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为()()2111211112120;0.435CI CI CI W RI RI RI W ====,212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化 食品维生素A维生素B热量R单价F肉 0.0139 0.44680.4872 0.1051 面包 0.0000 0.1277 0.4702 0.4819 蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:()3320.2376,0.2293,0.5331W P W T==,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k =,20.2293x k =,30.5331x k =,代入()1LP123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得k f 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得1418.1k =,故得最优解()*336.9350,325.1650,755.9767x T=;最优值 *16.4497f =,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量()12,,,m b b b b = ,其中, 01j b <<,m 为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb ≤≤===∑时,最大隶属原则最有效;而在()1max 01,jj nbc c ≤≤=<< 1nj j b nc ==∑时,最大隶属原则完全失效,且1max jj nb ≤≤越大(相对于1nj j b =∑而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb ≤≤在1njj b =∑中的比重有关,于是令:11max njjj nj b b β≤≤==∑ (12)显然,当11max 1,1njj j nj bb ≤≤===∑时,则1β=为β的最大值,当()1max 01jj nb c c ≤≤=<<,1njj bnc==∑时,有1n β=为β的最小值,即得到β的取值范围为:11n β≤≤.由于在最大隶属原则完全失效时,1n β=而不为0,所以不宜直接用β值来判断最大隶属原则的有效性.为此设:()()11111n n n n βββ--'==-- (13)则β'可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b ≤≤1sec (jnj b ≤≤1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b bγ≤≤==∑ (14)可见: 当()1,1,0,0,,0b = 时,γ取得最大值12.当()0,1,0,0,,0b = 时,γ取得最小值0.即γ的取值范围为012γ≤≤,设()02120γγγ-'==-.一般地,β'值越大最大隶属原则有效程度越高;而γ'值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:()112121n n n n βββαγγγ'--⎛⎫=== ⎪'--⎝⎭ (15) 使用α指标能更准确地表明实施最大隶属原则的有效性.2. α指标的使用从α指标的计算公式看出α与γ成反比,与β成正比.由β与γ的取值范围,可以讨论α的取值范围: 当γ取最大值,β取最小值时,α将取得最小值0;当γ取最小值,β取最大值时,α将取得最大值:因为 0lim γα→=+∞,所以可定义0γ=时,α=+∞.即:0α≤<+∞.由以上讨论,可得如下结论:当α=+∞ 时,可认定施行最大隶属原则完全有效;当1α≤<+∞时,可认为施行最大隶属原则非常有效;当0.51α≤<时,可认为施行最大隶属原则比较有效,其有效程度即为α值;当00.5α<<时可认为施行最大隶属原则是最低效的;而当0α=时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据β值的大小来直接判断使用最大隶属原则的有效性而不必计算α值.根据α与β之间的关系,当0.7β≥,且4n >时,一定存在1α>.通常评价等级数取4和9之间,所以4n >这一条件往往可以忽略,只要0.7β≥就可免算α值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对()12,,,m b b b b = 进行归一化处理而得到b ',则可直接根据b '进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设(),,,D V A c ω=是一个带出发点s v 和收点t v 的容量-费用网络,对于任意(),ijv v A ∈,ijc表示弧(),i j v v 上的容量,ij ω表示弧(),i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧(),i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:()()()()()()(){}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑ 把条件(3)中的“容量大” 看作A 上的一个模糊子集A ,定义其隶属函数μ:[]0,1A →为:()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中 ()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑ (平均容量)()()()()()()21,2211,,0,1lg ,1i j i j i j ij v v A ij ij v v A v v A A c c d A c c A c c -∈--∈∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎡⎤⎪⎢⎥⎢⎥-->⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩∑∑∑建立ij μ是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧(),i j v v ,人为地降低运价ij ω,形成“虚拟运价”ij ω,其中ij ω满足:ij c 越大,相应的ij ω的调整幅度也越大.选取ij ω为()1kij ij ij ωωμ=-,(),i j v v A ∈.其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij ω代替原模型M 中的ij ω,得到一个新的模型M '.用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列()k的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数 ()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数 01ρ<< 4. 求关联度()()11ni k i k k r n ξ==∑(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3)灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列(){}0k x ()1,2,,k n = 进行一次累加生成序列()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =(2)对0x 数列进行光滑性检验:00,k λ∀>∃,当0k k >时:()()()()0011101k k k k i i x x x x λ--==<∑文献[11]进一步指出只要()()0101k k i i x x -=∑为k 的递减函数即可.(3)对1x 作紧邻生成:()()()()1111*1*,2,3,,k k k Z x x k n αα-=+-=。
数学建模十大经典算法及其分析
1.数学建模十大经典算法数学建模, 十大算法, 经典1.蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。
4. 图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。
这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法。
两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法。
如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法。
赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。
2十类算法的详细说明以下将结合历年的竞赛题,对这十类算法进行详细地说明。
数学建模的建模方法
数学建模的建模方法
数学建模的建模方法有以下几种常用的方法:
1. 数学优化模型:通过建立一个目标函数和一系列约束条件来描述问题,并利用数学优化方法寻找使目标函数最优的解。
2. 方程模型:将问题转化为一组方程或不等式,利用数学方法求解得到结果。
3. 统计模型:基于一定的统计原理和假设,利用统计方法来分析和预测数据、进行参数估计和假设检验等。
4. 动态模型:将问题看作是一个动态的过程,并建立一套描述系统演化过程的方程组,以预测未来状态和行为。
5. 分段模型:将系统划分为多个不同的阶段或状态,并对每个阶段或状态建立适当的模型,再通过合并各个模型的结果来得到整体的解析。
6. 离散模型:将问题中的连续变量离散化为一组有限的状态或取值,并用状态转移矩阵或概率分布描述变量之间的关系和演化规律。
7. 系统动力学模型:基于对系统结构和行为的理解,建立一系列动态方程来描述系统各种因素之间的相互作用和演化过程。
8. 随机过程模型:用概率论和随机过程理论来描述系统的不确定性和随机性,并对系统的平均行为和波动性进行分析和预测。
以上仅是一些常用的数学建模方法,实际建模过程中可以根据具体问题的特点选择合适的建模方法,或者结合多种方法进行综合建模。
常用数学建模方法及实例
常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。
常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。
一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。
它常用于资源分配、生产计划、供应链管理等领域。
例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。
产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。
工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。
公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。
二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。
整数规划常用于离散决策问题。
例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。
公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。
它广泛应用于经济、金融和工程等领域。
例3:公司通过降低售价和增加广告费用来提高销售额。
已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。
已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。
四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。
例4:求解最短路径问题。
已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。
求从起始城市到目标城市的最短路径。
五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。
数学建模方法
数学建模方法
在数学建模中,有许多方法可供选择,这些方法在不同的问题情境下展现出了各自的优势与适用性。
以下是数学建模中常用的几种方法:
1. 数理统计:数理统计是一种通过对收集到的数据进行分析和解释,来推断总体特征和规律的方法。
它可以帮助研究人员利用已有的数据来预测未来的趋势和结果。
2. 优化方法:优化方法用于寻找最佳的解决方案,以最大化或最小化某个目标函数。
这种方法被广泛应用于资源分配、生产计划、交通路径规划等问题的求解。
3. 动态系统建模:动态系统建模用于描述和模拟由一组变量和它们之间的关系构成的系统。
通过建立动态方程,可以预测系统随时间变化的行为,并对其进行控制和优化。
4. 图论与网络分析:图论与网络分析研究图形和网络的性质及其在实际问题中的应用。
它可以用来分析交通网络、社交网络等复杂系统,并提供优化解决方案。
5. 差分方程与微分方程模型:差分方程和微分方程模型是描述连续或离散系统行为的数学工具。
它们广泛应用于物理、工程、生物学等领域,用于分析和预测系统的发展和变化。
6. 概率论与随机过程:概率论与随机过程研究随机现象的数学模型和规律。
它可以帮助研究人员分析风险、评估不确定性,
以及设计和优化随机策略。
除了上述几种方法外,数学建模还可以结合其他学科的方法和技巧,如线性代数、图像处理、机器学习等,来解决复杂的实际问题。
研究人员需要根据问题的特性和需求,选择合适的方法进行建模和求解。
数学建模30种经典模型matlab
一、概述数学建模是数学与实际问题相结合的产物,通过建立数学模型来解决现实生活中的复杂问题。
Matlab作为一个强大的数学计算工具,在数学建模中具有重要的应用价值。
本文将介绍30种经典的数学建模模型,以及如何利用Matlab对这些模型进行建模和求解。
二、线性规划模型1. 线性规划是数学建模中常用的一种模型,用于寻找最优化的解决方案。
在Matlab中,可以使用linprog函数对线性规划模型进行建模和求解。
2. 举例:假设有一家工厂生产两种产品,分别为A和B,要求最大化利润。
产品A的利润为$5,产品B的利润为$8,而生产每单位产品A 和B分别需要8个单位的原料X和10个单位的原料Y。
此时,可以建立线性规划模型,使用Matlab求解最大化利润。
三、非线性规划模型3. 非线性规划是一类更加复杂的规划问题,其中目标函数或约束条件存在非线性关系。
在Matlab中,可以使用fmincon函数对非线性规划模型进行建模和求解。
4. 举例:考虑一个有约束条件的目标函数,可以使用fmincon函数在Matlab中进行建模和求解。
四、整数规划模型5. 整数规划是一种特殊的线性规划问题,其中决策变量被限制为整数。
在Matlab中,可以使用intlinprog函数对整数规划模型进行建模和求解。
6. 举例:假设有一家工厂需要决定购物哪种机器设备,以最大化利润。
设备的成本、维护费用和每台设备能生产的产品数量均为已知条件。
可以使用Matlab的intlinprog函数对该整数规划模型进行建模和求解。
五、动态规划模型7. 动态规划是一种数学优化方法,常用于多阶段决策问题。
在Matlab 中,可以使用dynamic programming toolbox对动态规划模型进行建模和求解。
8. 举例:考虑一个多阶段生产问题,在每个阶段都需要做出决策以最大化总利润。
可以使用Matlab的dynamic programming toolbox对该动态规划模型进行建模和求解。
数学建模方法有哪些
数学建模方法有哪些模型假设:依据对象的特征和建模目的,对问题进行必要的、合理的简化,用准确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概合计,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和推断力,善于辨认主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
模型分析:对模型解答进行数学上的分析。
"横看成岭侧成峰,远近凹凸各不同',能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。
还要记住,不管那种状况都必须进行误差分析,数据稳定性分析。
模型构成:依据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当铭记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
模型求解:可以采纳解方程、画图形、证实定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。
一道实际问题的解决往往必须要纷繁的计算,许多时候还得将系统运行状况用计算机模拟出来,因此〔编程〕和熟悉数学软件包能力便举足轻重。
2数学建模方法一在教学中渗透数学建模思想:渗透数学建模思想的最大特点是联系实际.高职人才培养的是应用技术型人才,对其数学教学以应用为目的,体现"联系实际、深入概念、注重应用'的思想,不应过多强调灌输其的严密性,思维的严谨性.学数学主要是为了用来解决工作中出现的具体问题.而高职教材中的问题都是现实中存在又必须解决的问题,正是建模案例的最正确选择.因此,作为数学选材并不难,只要我们深入钻研教材,挖掘教材所蕴涵应用数学的,从中加以推广,结合不同专业选编合适的实际问题,创设实际问题的情境,让同学能体会到数学在解决问题时的实际应用价值,激发同学的求知欲,同时在实际问题解决的过程中能很好的掌握知识,培养同学灵活运用和解决问题、分析问题的能力.数学教学中所涉及到的一些重要概念要重视它们的引入,要〔制定〕它们的引入,其中以合适的案例来引入概念、演示方法是将数学建模思想融入数学教学的重要形式.这样在传授数学知识的同时,使同学学会数学的思想方法,领会数学的精神实质,知道数学的来龙去脉,使同学了解到他们现在所学的那些看来枯燥无味但又似乎天经地义的概念、定理和公式,并不是无本之木、无源之水,也不是人们头脑中所固有的, 而是有现实的来源与背景, 有其原型和表现的.在教学施行中, 我们依据现有成熟的专业教材,选出具有典型数学概念的应用案例,然后按照数学建模过程规律修改和加工之后作为课堂上的引例或者数学知识的实际应用例题.这样使同学既能亲切感受到数学应用的广泛,也能培养同学用数学解决问题的能力.总之,在高职数学教学中渗透数学建模思想,等于教给同学一种好的思想方法,更是给同学一把开启成功大门的钥匙,为同学架起了一座从数学知识到实际问题的桥梁,使同学能灵活地依据实际问题构建合理的数学模型,得心应手地解决问题.但这也对数学〔教师〕的要求就更高,教师要尽可能地了解高职专业课的内容,搜集现实问题与热点问题等等.3数学建模方法二教学方法:功在平常,培养兴趣:在平常的上课期间,老师应该融进一些数学建模的知识和内容,吸引同学对数学建模的兴趣.事实上,数学建模中的题目并不像很多人想象中的那么难,往往只不过在平常接触的问题基础上进行略微的延伸.目前,已经有一些数学建模方而的老师编写了一些简单易懂的通用教材,老师可以依据这些简单的内容在课堂讲课的中间插入这些,其一能够活跃一下课堂的气氛,让同学对数学建模有一个简单的熟悉,并且对数学的应用性进行认可.其二能够培养同学解决问题时的数学思维逻辑,对他们综合素养的提升有很大的帮助.通过平常老师耳濡目染地宣扬和教育,在而临数学建模比赛的时候,肯定会有更多的同学愿意报名参加,然后再进行集中培训,一切也就水到渠成了,即使有的同学没有能够取得好的成绩,在训练的过程中也能学到很多的东西,这就足够了.夯实基础,注重思路:数学建模的大厦是建立在一点一滴的基础知识上的,这一点十分重要.因此,在数学建模教学之前,对同学基础知识的培养和夯实是成功的第一个步骤.只有对学过的知识了如指掌,在见到问题时,心中才干形成比较合理的解决方案.有很多参赛者在参加完比赛后都为自己没有解题思路而后悔,其根本原因就是对知识点或者数学公式的内涵没有真正理解,不知道这个公式或者这个概念还可以变形成为解题的方案.数学建模高于基础知识,但是又源于基础知识,只不过是经过了变形,很多理解不彻底的同学就没看得出来而造成遗憾.扎实的基础知识首先是为解题思路的形成提供帮助,其次才是解题的过程.解题的过程中往往涉及一些必须要舍弃专业的问题,比如对不重要的因素进行舍弃,舍弃后误差的计算等,也是必须要强大的计算能力的,这些都是些在平常进行学习的基础上取得的技巧.4数学建模方法三建模思想的意义:提升线性代数课程的吸引力,增加同学的受益面:数学建模是培养同学运用数学工具解决实际问题的最好表现。