什么是数学模型与数学建模

合集下载

数学建模与全国大学生数学建模竞赛

数学建模与全国大学生数学建模竞赛
可谓一次参赛终生受益,受到了大学生的积极相 应。
2011 年,来自全国33个省/市/自治区(包括香港和澳门
特区)及新加坡、美国、伊朗的1251所院校、19490个队 (其中本16008队、专3482队)、58000多名大学生报 名参加本项竞赛。
以学校为单位报名参赛,不能以个人或其他机构 的名义报名。可多次参加。

/undergraduate/contest s/mcm/ 美国官方网站
A题 城市表层土壤重金属污染分析
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质 量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得 的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的 演变模式,日益成为人们关注的焦点。 按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公 园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类 活动影响的程度不同。

最终正式报名参赛。
三、参赛的作用和意义
现实工作的需要 我们的教育从小学到大学,一直是以应试教育为 主,禁锢了学生创新能力的发挥,忽视了学生创 新能力的培养。 数学建模竞赛不同于传统的竞赛,它所提倡的是 创新思维。在其解题的过程中,学生能够充分发 挥自己的创新能力,你的答案不一定是最优的, 但建模方法要有特色、有创新,就能够得到肯定 和奖励。答案、方法都不一定唯一。
数学结构可以是数学公式,算法、表格、图示等。
数学建模就是建立数学模型,建立数学模型的全 过程就是数学建模的过程。
数学建模是一种数学的思考方法,是运用数学的 语言和方法,通过抽象、简化建立能近似刻划并" 解决"实际问题的一种强有力的数学手段。

什么是数学模型与数学建模3篇

什么是数学模型与数学建模3篇

什么是数学模型与数学建模第一篇:数学模型与其应用数学模型是通过数学方法和工具构建的一种抽象描述,用来揭示自然界和社会现象背后的规律性和定量关系。

数学模型可以帮助我们理解和预测自然界和社会现象,并在工程、生物医学、物理、化学、金融等领域中得到广泛应用。

它是数学的重要应用领域之一,也是人类认知世界的一种方式。

在数学模型的构建过程中,需要定义模型的目标和问题,并选择合适的数学工具和建模方法。

常用的建模方法包括微积分、偏微分方程、线性代数、随机过程、优化理论等。

通过分析和运用模型,可以预测系统的行为并制定相应的决策和策略。

数学模型在现实问题中的应用涉及到广泛的领域和范围。

例如,在生物医学领域中,数学模型可以用于研究人体生理过程、疾病传播以及药物研发等;在物理领域中,数学模型可以用于建立对物质运动和电磁场传播的数学描述;在工程领域中,数学模型可以用于建立强度分析、流体动力学分析以及结构优化等;在金融领域中,数学模型可以用于分析股票价格变动、交易策略制定以及资产组合管理等。

总之,数学模型是现代科学研究不可或缺的一部分,它帮助我们理解和预测自然界和社会现象,并为实际问题提供了有力的解决方法。

随着计算技术的不断发展和数学应用领域的扩大,在数学模型的研究和应用领域中,我们将会看到更多的创新和发展。

第二篇:数学建模的流程和方法数学建模是将现实世界的实际问题抽象为数学模型,然后运用各种方法进行求解的过程。

它不仅是数学研究的一种方法,也是现实问题求解的有效工具。

下面我们来了解一下数学建模的流程和方法。

第一步,确定问题和目标。

数学建模的第一步是明确问题和目标,也就是需要解决的实际问题和期望得到的解决方案或结果。

具体而言,需要了解问题的背景、范围和限制条件,明确问题所在的领域和关注的指标。

在确定问题和目标的过程中,需要与领域专家、技术人员和决策者进行合作,并积极了解实际问题的细节和特点。

第二步,建立数学模型。

在确定问题和目标之后,需要建立数学模型来描述实际问题。

什么是数学建模?

什么是数学建模?

1. 什么是数学建模?
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
2. 什么是数学模型?
数学模型是指用数学语言描述了的实际事物或现象。它一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
3. 为什么要建立数学模型?
在科学领域中,数学因为其众所周知的准确而成为研究者们最广泛用于交流的语言--因为他们普遍相信,自然是严格地演化着的,尽管控制演化的规律可以很复杂甚至是混沌的。因此,人们常对实际事物建立种种数学模型以期通过对该模型的考察来描述,解释,预计或分析出与实际事物相关的规律。

数学建模培训讲义-建模概论与初等模型

数学建模培训讲义-建模概论与初等模型

模型建立 建立t与n的函数关系有多种方法:
1. 右轮盘转过第 i 圈的半径为r+wi, m圈的总长度 等于录象带在时间t内移动的长度vt, 所以
m kn
模型建立
2. 考察右轮盘面积的 变化,等于录象带厚度 3. 考察t到t+dt录象带在 乘以转过的长度,即 右轮盘缠绕的长度,有
[(r wkn)2 r 2 ] wvt (r wkn)2kdn vdt
• 亲自动手,认真作几个实际题目
数学建模的论文结构
1、摘要——问题、模型、方法、结果
2、问题重述
3、模型假设
4、分析与建立模型
5、模型求解
6、模型检验
7、模型推广
8、参考文献
9、附录
谢 谢!
二、初等模型
例1 哥尼斯堡七桥问题
符号表示“一笔画问题”(抽象分析法) 游戏问题图论(创始人欧拉) 完美的回答连通图中至多两结点的度数为奇
3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,
使椅子的任何位置至少有三只脚同时着地。
A
y A
椅脚连线为正方形ABCD(如右图).
模 型
t ——椅子绕中心点O旋转角度
构 f(t)——A,C两脚与地面距离之和 D
B
t
x
成 g(t)——B,D两脚与地面距离之和
O
B
f(t), g(t) 0
D
C
模型构成 由假设1,f和g都是连续函数 A
实际上, 由于测试有误差, 最好用足够多的数据作拟合。
若现有一批测试数据:
t 0 20 40 60 n 0000 1153 2045 2800 t 100 120 140 160 n 4068 4621 5135 5619

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模数学模型数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。

它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。

一、建立数学模型的要求:1、真实完整。

1)真实的、系统的、完整的,形象的映客观现象;2)必须具有代表性;3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。

2、简明实用。

在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。

3、适应变化。

随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。

根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。

数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。

数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。

在体育实践中常常提到优秀运动员的数学模型。

如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。

数学建模

数学建模
材料均匀,热传导系数为常数 Q ~单位时间单位面积传导的热量 T~温差, d~材料厚度, k~热传导系数 记双层玻璃窗传导的热量Q1 记单层玻璃窗传导的热量Q2 热量传播只有传导,没有对流
室 内 T1
d
l
d
室 外 T2
Q1

室 内 T1
2d
室 外 T2
Q2

Ta~内层玻璃的外侧温度 Tb~外层玻璃的内侧温度 k1~玻璃的热传导系数 k2~空气的热传导系数
乙安全线
y0 0 x
y1 y0 0
y=f ( x)
y0 y f ( x) y0 x
x0
P(xm,ym)甲 安 x=g(y) 全 区 x1 x
P~平衡点(双方最少导弹数)
精细 模型
x<y x=y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。 甲方以 x攻击乙方 y个基地中的 x个, sx个基地未摧毁,y–x个基地未攻击。 y0=sx+y–x y0=sy y= y0+(1-s)x y=y0 / s
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。 • (5)模型分析:对所得结果进行数学的分析。 • (6)模型检验:将模型分析结果与实际情形 进行比较,以此来验证模型的准确性、合 理性和适用性。如果模型与实际较吻合, 则要对计算结果给出其实际含义,并进行 解释。如果模型与实际吻合较差,则应该 修改假设,再次重复建模过程。 • (7)模型应用:应用方式因问题的性质和建 模的目的而异
0
x0
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架 乙安全线y=f(x)不变

数学建模最简明易懂的介绍

数学建模最简明易懂的介绍

数学建模最简明易懂的介绍黑龙江农业经济职业学院基础部 邢进喜 157041一.什么是数学模型与数学建模简单地说,数学模型就是对实际问题的一种数学表述,可以是数学公式、函数、方程、不等式、算法、表格、图示等。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程。

二.数学建模的一般步骤(1)模型准备:了解问题的实际背景,明确题目的要求,查阅相关资料,收集各种必要的信息。

(2)模型假设:为了利用数学方法,通常要对问题做出必要的、合理的假设,使问题的主要方面凸现出来,忽略问题的非本质的、不影响问题解决的次要方面。

(3)模型构成:根据所做的假设及所研究对象的内在规律,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。

构造各种量之间的关系,把问题化为数学问题。

(4)模型求解:运用适当的数学方法求解上一步所得到的数学问题,有时还要借助数学软件。

(5)模型分析:对所得的结果进行数学上的分析,特别要注意当数据变化时所得结果是否稳定。

(6)模型检验:分析所得结果的实际意义,与实际现象、数据等情况进行比较,检验模型的准确性、合理性和适用性。

如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。

如果不够理想,应该修改、补充假设,或重新建模,不断完善。

(7)模型应用:所建立的模型必须能在实际中应用,能产生实际效益,能在应用中不断改进和完善。

应用方式与问题性质、建模目的及最终结果有关。

三.简单实例示意――观看塑像的最佳位置[注:这仅是一个要点式的数学建模方法示例]问题提出大型的塑像通常都有一个比人还高的底座,看起来雄伟壮观。

但当观看者与塑像的水平距离不同时,观看像身的视角就不一样。

那么,在离塑像的水平距离为多远时, 观看像身的视角最大?模型假设与符号说明a OS MT ==-------人眼高;b AB =-------塑像身高;c AT =-------底座高, c a >;d AM c a ==-;x ST OM ==-------人与塑像水平距离;;MOA MOB αβ=∠=∠;AOB θβα=∠=-------观看像身的视角.模型建立、求解与分析∵tan α=/AM OM =/d x , tan β=/BM OM =()/b a x +()arctanarctan b d d x x x θ+∴=-, 2222()d d b d dx x d x b d θ+=-+++ 令0d dxθ=,解出唯一驻点 ,此数恰是AM 与BM 的几何平均 根据经验,此问题θ必有最大值,且x =模型检验、应用与推广举例例1.上海外滩海关大钟直径为5.5米, 钟底到地面高为56.75米.设某观看者眼高为1.55米,则b=5.5,d=56.75-1.55=55.2,最佳位置是x=57.88米, 0min 243'θ=例2.设有甲乙两观看者,甲高乙矮,则两者的最佳位置不同,谁前谁后? 谁的最佳视角更大?四.详细资料可查阅下列书籍及网站《数学模型》姜启源,谢金星,叶俊编 全国大学生数学建模竞赛网站 中国数学建模网站/undergraduate/contests 美国大学生数学建模竞赛网站 美国建模论坛网站。

对数学建模的认识

对数学建模的认识

对数学建模的认识数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。

关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。

数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。

一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济…,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进.应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1)比例分析法--建立变量之间函数关系的最基本最常用的方法.(2)代数方法--求解离散问题(离散的数据,符号,图形)的主要方法.(3)逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用.(4)常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式.(5)偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.(1)回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2)时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3)回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4)时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法,在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1)计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.①离散系统仿真--有一组状态变量.②连续系统仿真--有解析表达式或系统结构图.(2)因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3)人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型取决于是否考虑时间因素引起的变化.线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系,利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.。

什么是数学模型与数学建模

什么是数学模型与数学建模

什么是数学模型与数学建模数学模型是对真实事物或问题的抽象描述,采用数学语言来表达,通常可以包含变量、常量、方程、不等式等数学符号和逻辑结构。

而数学建模是指利用数学模型来解决具体问题的过程,在实践中运用数学的知识和方法,将问题转化为数学形式,并通过数学模型分析和求解问题的过程。

数学模型和数学建模在实际应用中具有重要的作用,可以应用于各个领域的科学和工程实践,例如物理、生物、经济、管理、医学等领域。

数学模型和数学建模可以为实际问题提供科学、系统和高效的解决方案,可以预测事物的走向和变化趋势,提高人类社会的生产和生活效率。

数学模型的本质是对真实问题的抽象描述,就是利用数学语言或者符号把一些具体的事物和概念转化为数学的形式,用数学方法和技术解决问题。

数学模型中包含的是一个或多个变量,这些变量代表实际问题中的某些数量或状态,它们的取值是在整个模型中可变的。

同时,数学模型还包括变量之间的关系,这些关系通常以方程或不等式的形式表示,描述了变量之间的相互影响和作用。

数学建模是利用数学模型解决实际问题的过程,它是一种探索和研究未知事物的方法,具有一定的科学性、系统性和操作性。

数学建模首先需要确定问题的范围和要求,然后通过调查、统计、数据分析等方法获取相关信息,构建数学模型,进而进行数学分析和求解,最终获得问题的解答和预测。

这个过程还需要考虑模型的精度和可靠性,进一步调整和优化模型,得到更好的解答和方法。

数学模型和数学建模的应用非常广泛,可以应用于各个领域的科学和工程实践。

在物理领域,数学模型可以用于描述力学、电磁学、热力学等现象和规律,找出物质的运动和相互作用方式。

在生物领域,数学模型可以用于分析生物系统中的代谢、细胞分裂和生长等过程,以及研究遗传基因的传递和变异。

在经济管理领域,数学模型可以用于分析企业的生产和运营模式,利润和风险的管理方式,市场和消费者的需求预测等。

在医学领域,数学模型可以用于研究放射治疗和化学治疗的剂量和效果,以及预判病情的发展和治疗方案的优化。

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模数学模型是运用数学方法描述现实或抽象问题的一种工具或方法。

数学模型又可分为解析模型和仿真模型两种。

解析模型是指基于已知公式和数据进行分析求解,得到数学表达式或数值解的模型。

仿真模型是指利用计算机建立的模拟系统模型,根据模型建立的规则模拟输入变量所产生的输出结果。

数学建模是指通过数学知识把实际问题抽象为数学问题,并基于其建立数学模型。

数学建模技术可应用于各个领域,如自然科学、工程技术、社会科学、医学等。

下面就对数学模型和数学建模的一些概念和应用进行详细介绍。

一、数学模型的分类数学模型主要包括解析模型和仿真模型。

下面分别介绍:1、解析模型解析模型是指通过已知数据和公式,进行分析推导求解数学表达式或数值解的模型。

它是基于数学理论和分析方法的,其主要步骤为:建立问题的数学模型、求解模型、验证模型和应用模型。

解析模型主要包括以下几种类型:(1)几何模型几何模型是指通过几何图形描述实际问题的模型。

如,根据实际问题的条件,建立几何图形,求解图形的面积、周长、体积等数学问题,就是利用几何模型进行的建模。

几何模型常用于计算机图形学、工程地质学、建筑工程学等领域。

(2)微积分模型微积分模型是指通过微积分的方法求解实际问题的模型。

微积分是数学分析的基础,微积分模型广泛应用于科学工程领域。

如在热力学、流体力学、电磁学、生物学等领域,常用微积分模型来研究问题。

(3)代数模型代数模型是指通过代数方程和不等式描述实际问题的模型。

如根据实际问题建立代数模型求解方程组、解析几何等问题。

代数模型广泛应用于物理、经济、金融等领域。

(4)概率统计模型概率统计模型是指通过概率统计理论描述实际问题的模型。

如,许多保险公司的经营决策是基于概率统计模型的建立和分析的。

又如,酒店的房价决定也取决于概率统计模型。

2、仿真模型仿真模型是指利用计算机模拟系统建立的模型。

计算机可以模拟出一些人工难以模拟或难以观测的复杂系统,并通过模拟结果对系统进行推理分析或进行决策。

数学模型与数学建模3篇

数学模型与数学建模3篇

数学模型与数学建模第一篇:数学模型的基本概念在现代科学研究中,数学模型是一种非常重要的工具,通过建立描述物理或社会现象的数学模型,我们可以更好地理解和控制这些现象。

在本文中,我们将介绍数学模型的基本概念及其在现实中的应用。

一、数学模型的定义和分类数学模型是用数学符号、方程和图表等数学表达方式来描述现实世界的一个抽象表示。

它可以用于解释和预测各种现象及其规律,从而帮助我们做出决策和解决问题。

根据研究领域和目标,数学模型可以分为物理模型、经济模型、生物模型、社会模型等。

二、数学模型的建立过程数学模型的建立通常包括以下步骤:1.问题分析:确定研究对象、研究目的和相关因素。

2.假设建立:对研究对象进行适当的简化和假设,确定研究范围和基本假设。

3.数学表示:用数学符号和方程来表示研究对象和变量之间的关系。

4.参数设定:指明各个变量的具体数值和范围,以及与现实世界的对应关系。

5.模型验证:通过模拟或实验验证模型的正确性和可行性。

三、数学模型的应用领域数学模型被广泛应用于各个领域,如天文学、物理学、化学、生物学、经济学、社会学等。

以下是一些典型的例子:1.天文学中的数学模型可以用来描述星体和行星的运动轨迹,预测彗星和陨石的轨迹和时间,以及预测备选行星的轨迹和特性。

2.经济学中的数学模型可以用来预测市场供求关系、利率、汇率等,并进行政策规划和决策。

3.生物学中的数学模型可以用来描述生物进化、种群动态、生态系统和生物物种间的关系,以及预测疾病传播和药物研发。

四、数学模型的发展趋势随着科技、数据采集和计算能力不断发展,数学模型也不断更新和进化。

未来数学模型的发展趋势主要包括:1.数据驱动模型:基于大数据的机器学习和人工智能等技术,依靠数据直接训练和生成模型。

2.多学科交叉模型:跨学科合作,利用多层次、多角度的学科与方法,进一步提升模型的准确性和实用性。

3.可解释性模型:提高模型的可解释性,利用统计学方法和可视化技术,使模型结果更易读懂和理解。

什么叫数学建模:

什么叫数学建模:

什么叫数学建模:数学建模指的是,利用数学方法和理论对现实问题进行描述、分析和解决的过程。

这种过程需要数学、自然科学、工程技术等学科的知识和技能,同时需要对现实问题的深入理解和实地调查。

数学建模在解决现实问题方面起着非常重要的作用,尤其是涉及到科学、工程、经济和社会等各个领域。

数学建模可以帮助人们更好地理解问题的本质和特征,从而提供更精确和有效的解决方案。

数学建模的过程可以分为以下几个步骤:1.问题描述。

将现实问题转化为数学问题,确定问题的目标、限制条件、变量等。

2.建立模型。

通过分析问题的本质和特征,选择合适的数学方法和理论,建立数学模型。

3.求解模型。

采用数学计算方法和技术,对模型进行求解和优化,得出问题的解决方案。

4.模型验证。

将建立的模型与实际情况进行比较和验证,检验模型的有效性和可行性。

5.预测和应用。

根据问题的特点,应用建立好的模型进行预测和实际应用。

数学建模在现代科学技术和社会发展中扮演着至关重要的角色。

它可以帮助人们更好地理解复杂的现实问题,并提供科学有效的解决方案。

同时,数学建模也推动了数学学科的发展和应用。

在应用领域,数学建模被广泛应用于车辆运输、环境保护、金融投资、医疗卫生、城市规划等多个方面。

例如,在车辆运输领域,数学建模可以在路面拥堵、车辆行驶路径、节能减排等方面提供解决方案;在环境保护领域,数学建模可以针对大气污染、水质污染等问题提供有效的控制策略。

总之,数学建模是一种非常有价值的方法,它能够帮助人们更好地理解问题、提供科学有效的解决方案,是现代科学技术和社会发展中不可或缺的重要工具。

数学中的数学模型

数学中的数学模型

数学中的数学模型数学是一门精确而抽象的学科,它通过建立数学模型,来描述和解决各种实际问题。

数学模型是数学思维在实际应用中的体现,它可以帮助我们理解和预测客观世界的现象。

本文将探讨数学中的数学模型及其在现实生活中的应用。

一、数学模型的概念及分类数学模型是对实际问题的抽象描述,它由数学符号、方程、不等式等组成。

数学模型可以分为确定性模型和随机性模型两类。

确定性模型是指在一定条件下,能够准确预测事物发展趋势或结果的模型。

比如,线性规划模型可以用来求解一组线性约束条件下的最优解,常微分方程模型可以描述物理系统中的变化规律等。

随机性模型是指含有随机因素的模型,无法准确预测事物发展趋势或结果,只能给出概率性的结果。

概率论和统计学是随机性模型的基础,通过对大量数据的分析与推理,能够得出一定的结论和预测。

二、数学模型在实际中的应用1. 自然科学中的应用数学模型在自然科学中有广泛的应用。

比如,在物理学中,质点运动的数学模型可以用微积分方程来描述;在天文学中,行星运动和天体力学的数学模型可以帮助天文学家预测行星轨道和彗星轨道的运动;在生物学中,生物种群的增长和传染病的传播可以用差分方程和微分方程来模拟。

2. 社会科学中的应用数学模型在社会科学中也有很多应用。

比如,在经济学中,经济增长模型和供需模型可以帮助经济学家研究宏观经济现象和预测市场行情;在社会学中,网络模型和社会网络分析可以研究社会系统的结构和相互关系;在心理学中,数理心理学模型可以研究人类思维和行为的规律等。

3. 工程技术中的应用数学模型在工程技术中有着广泛的应用。

比如,在电力系统中,电力负荷的预测模型可以帮助电力公司合理调配电力资源;在交通规划中,交通流量分析模型可以帮助交通规划师科学规划交通路网;在通信系统中,信道编码和调制解调技术的数学模型可以提高信息传输的稳定性和可靠性等。

三、数学模型的建立和求解建立数学模型的重要步骤包括:问题的分析与理解、模型的假设与建立、模型参数的确定等。

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

2、国际数学建模竞赛(MCM)
创办于1985年,由美国运筹与管理学会,美国工业与应 用数学学会和美国数学会联合举办,开始主要是美国的大学 参赛,90年代以来有来自中国、加拿大、欧洲、亚洲等许多 国家的大学参加,逐渐成为一项全球性的学科竞赛。上一年 11月份报名,每个大学限报4队,每个系限报2队,2月上旬 比赛,4月份评奖。9篇优秀论文刊登在 “The Journal of Undergraduate Mathematics and Its Applications(UMAP)” 专刊上。详见 /
用实际问题的实测数据等 来检验该数学模型
不符合实际 符合实际
交付使用,从而可产生 经济、社会效益
建模过程示意图
七、怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解 6、模型检验 7、模型改进、评价、推广等 8、参考文献 9、附录
数学模型与实验
十一、 资料查询
校内:校图书馆提供电子资源,搜索软件查询 校外:, ,
数学模型与实验
十二 数学建模示例
椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
1、中国大学生数学建模竞赛(CUMCM)
创办于1990年,由教育部高教司和中国工业与应用数学 学会共同举办,全国几乎所有大专院校都有参加,每年6月份 报名,9月下旬比赛,11月份评奖。优秀论文刊登在《数学 的实践与认识》或?工程数学?每年第一期上。详见

数学模型与数学建模

数学模型与数学建模
下一页 返回
1. 1数学模型与数学建模
• 从而解释或描述某一系统或过程.数学模型对我们其实并不陌生.如牛 顿第二定律F=ma就是一个典型的数学模型;欧姆电路定律I=U/R也是 一个数学模型;历史上著名的七桥问题的答案更是一个巧妙的数学模 型。
• 七桥问题18世纪东普鲁士哥尼斯误被普列格尔河分为四块.它们通 过七座桥相互连接(图1. 2).当时.城里的市民热衷于这样一个游 戏:“一个散步者怎样才能从某块陆地出发.经每座桥一次且仅一次到 出发点?实时控制,其控制过程原理方框图 如图8-1所示。由A/D转换器把由传感器采集来的模拟信号转 换成为数字信号,送计算机处理,当计算机处理完数据后, 把结果或控制信号输出,由D/A转换器转换成模拟信号,送 执行元件,对控制对象进行控制。可见,ADC和DAC是数字 系统和模拟系统相互联系的桥梁,是数字系统的重要组成部 分。
科的专门知识外.还常常需要较广阔的应用数学方面的知识.以开拓思 路.
• N模型求解本环节对建立的模型可以采用解方程、问图形、证明定
理、逻辑运算、数值计算等各种传统的和近代的数学方法.特别是计
算机技术进行求解.确定模型所涉及关键参量的结果.
• V模型分析对模型结果及算法进行理论上的分析.
上一页 下一页 返回
上一页 下一页 返回
1. 1数学模型与数学建模
• 初始状态:x(0)=0,y(0)=h.x‘(0)=vcos0,y'(0)=vsin0.但如果考虑空气 阻力.问题的理解似乎并不那么简单.比如:空气阻力和什么因索有关? 关系如何?阻力对投掷距离的影响怎样?如果考虑这些附加问题会对建 立模型
• 那么.为什么还要再根据实际问题不断去修正、完善数学模型呢?实 际中.建立问题的模型不一定一次就能成功.不成功时自然需要根据实 际问题对模型加以改进、调整.最终让模型接近现实原形.否则.建立不 能反映实际状况的模型又有什么用呢?然而·模型只能近似描述实际问 题.不能苛求与真实事物完全吻合.

对数学建模的认识与理解

对数学建模的认识与理解

对数学建模的认识与理解数学建模是一种应用数学的方法,通过建立数学模型来描述和解决实际问题。

它不仅可以为科学研究提供有力的工具,也可以为工程技术、经济管理等领域提供决策支持。

在此,我将分享一下对数学建模的认识与理解。

一、数学建模的基本概念数学建模是指将实际问题通过数学模型转化为数学问题,然后利用数学方法进行求解的过程。

数学建模的目的是为了更好地理解和掌握实际问题,提高问题的解决效率和质量。

它通常包含以下几个步骤:1. 问题描述:明确问题的背景、目标和限制条件等。

2. 建立模型:将实际问题转化为数学问题,并建立相应的数学模型。

3. 求解模型:利用数学方法对模型进行求解,得到问题的解决方案。

4. 模型验证:将解决方案应用于实际问题中,验证其有效性和可行性。

二、数学建模的重要性数学建模在许多领域都具有重要的应用价值。

例如,在工程技术领域,数学建模可以帮助设计师更好地理解和优化产品的性能和效率;在经济管理领域,数学建模可以帮助企业制定更科学合理的经营策略和决策;在科学研究领域,数学建模可以帮助科学家更好地理解自然现象,并提出相应的假说和验证方法。

三、数学建模的应用举例1. 疫情预测在新冠疫情肆虐的时期,数学建模在疫情预测和防控方面发挥了巨大作用。

通过建立数学模型,可以预测疫情的传播趋势和规律,并制定相应的防控策略,从而有效地遏制疫情的蔓延。

2. 物流优化在物流领域,数学建模可以帮助企业优化运输路线、降低运输成本、提高物流效率等。

通过建立数学模型,可以分析不同运输方案的优缺点,选取最优方案,并实现物流过程的智能化管理。

3. 股票预测在金融投资领域,数学建模可以帮助投资者预测股票价格的变化趋势,并制定相应的投资策略。

通过建立数学模型,可以对股票市场进行分析和预测,减少投资风险,提高投资收益。

四、数学建模的发展趋势随着科学技术的不断发展,数学建模也在不断地发展和完善。

未来,数学建模将更加注重实际应用,将更多地融合各种学科和技术,进一步提高数学建模的效率和精度。

数学建模入门篇

数学建模入门篇

数学建模入门篇(新手必看)一、什么是数学建模1、什么是数学模型数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻画出来的某种系统的纯关系结构。

从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。

(MBA智库)2、数学建模数学建模课看作是把问题定义转化为数学模型的过程。

简单的来说,对于我们学过的所有数学知识,要去解决生活中遇到的各种各样的问题,就需要我们建立相关的模型,使用数学这个工具来解决各种实际的问题,这就是建模的核心。

3、数学建模的思想对于数学建模的思想可以分为下列方法:(知乎张浩驰)对于数学建模的思想知乎上有各种解释,下面一篇解释的非常好,大家感兴趣的可以去知乎浏览什么是数学建模(讲的比较好)?二、数学建模比赛数学建模的相关比赛有很多,不同的比赛的影响力不同,在各个高校的认可度也不一样。

下面列举一些影响力和认可度较大的比赛。

1、"高教社杯"全国大学生数学建模竞赛参赛对象:本科生参赛时间:每年9月份(2020年为9月10日-9月13日)竞赛简介:“高教社杯”是目前影响力以及认可度最高的数学建模比赛,俗称“国赛”。

2020年共有来自全国及美国、英国、马来西亚的1470所院校/校区、45680队(本科41826队、专科3854队)、13万多人报名参赛。

在一些高校中对于国赛的认可度较高,国家级奖更是有极高的含金量。

竞赛官网:"高教社杯"全国大学生数学建模竞赛2、美国大学生数学建模竞赛参赛对象:本科生参赛时间:每年2月份左右竞赛简介:美国大学生数学建模竞赛(MCM/ICM)由美国数学及其应用联合会主办,是唯一的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛。

赛题内容涉及经济、管理、环境、资源、生态、医学、安全、等众多领域。

竞赛官网:[美国大学生数学建模竞赛]添加链接描述(https:///undergraduate/contests/mcm/login.php)3、中国研究生数学建模竞赛(华为杯)参赛对象:研究生参赛时间:每年9月份左右竞赛简介:该赛事起源于2003年东南大学发起并成功主办的“南京及周边地区高校研究生数学建模竞赛”,2013年被纳入教育部学位中心“全国研究生创新实践系列活动”。

数学模型简介

数学模型简介
所以f(0) = g(0) = 0.
评注和思考:
建模的关键 : 和 f(), g()的确定 考察四脚呈长方形的椅子,是否还有相同的结论
2、商人安全过河问题
问题(智力游戏) 随从们秘密约定, 在河的任一岸, 一旦随从 的人数比商人多, 就杀人越货。但是乘船渡河的 方案由商人决定。商人们怎样才能安全过河?
用数学语言把椅子位臵和四只脚着地的关系表示出来
椅子位臵: 利用正方形(椅脚连线)的对称性 B B´ 用表示对角线与x轴的夹角
两个距离: A,C 两脚与地面距离之和为f() B,D 两脚与地面距离之和为g()


C
O


A
x
D
正方形ABCD 绕O点旋转
地面为连续曲面 椅子在任意位臵 至少三只脚着地
1、尽量使用实数优化模型,减少整数约束和整 数变量的个数。因为求解离散优化问题比连续优 化问题难得多 2、尽量使用光滑优化,避免使用非光滑函数( 是指存在不可微点的函数)。如绝对值函数、符 号函数、多个变量求最大(小)值、四舍五入、 取整函数等,通常采用连续、可微问题处理起来 比较简单。
3、尽量使用线性模型,减少非线性约束和线性 x 变量的个数。如: 5 改为 x 5 y 。
3、席位公平的数学建模问题
三个系的学生共有200名(甲系100,乙系60, 丙系40),代表会议共20席,按比例分配,三个 系分别为10,6,4席。 1、由于学生转系,三个系的学生人数分别为 103、 63、 34, 问20席又该如何分配? 2、若代表增加为21席,又如何分配?
(1)问题提出
系别 学生 比例
p1/n1– p2/n2=5 p1/n1– p2/n2=5
p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100

对数学建模的认识与理解

对数学建模的认识与理解

对数学建模的认识与理解
x
一、对数学建模的认识
数学建模是指从实际问题中抽象出的数学模型,用数学技术解决实际问题的一种方法。

它是利用数学的观念、公式、算法等,对特定的现实问题,进行数学抽象、概括、表达和模拟,从而得到问题的解决方案的过程。

数学建模是一种技术,它是把实际问题变成可计算的形式,以供计算的有用工具,引入了数学技术来解决实际问题,把实际问题抽象成可计算的数学模型,通过模型建立问题的理论基础,以解决实际问题。

二、对数学建模的理解
数学建模是一种问题解决方法,它可以有效的描述复杂问题和模型,针对问题进行模拟,分析,预测,从而解决问题,是一种具有良好科学性和理论性的问题解决方法,能够有效的揭示实际问题的本质,从而帮助科学家更好的了解实际问题,提出合理的解决方案,发现未知现象的规律。

通过数学建模,可以精确描述复杂的实际问题,从而更好地了解复杂问题的本质,并为解决实际问题提供有效的工具,比如说,经济学中的投资问题,社会学中的社会变迁问题,等等,它都是采用数学建模的技术来探索的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 什么是数学模型与数学建模
简单地说:数学模型就是对实际问题的一种数学表述。

具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。

更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。

数学结构可以是数学公式,算法、表格、图示等。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。

2.美国大学生数学建模竞赛的由来:
1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。

这并不是偶然的。

在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。

在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。

该竞赛每年2月或3月进行。

我国自1989年首次参加这一竞赛,历届均取得优异成绩。

经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。

为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学模型竞赛与通常的数学竞赛不同,它来自实际问题或有明确的实际背景。

它的宗旨是培养大学生用数学方法解决实际问题的意识和能力,整个赛事是完成一篇包括问题的阐述分析,模型的假设和建立,计算结果及讨论的论文。

通过训练和比赛,同学们不仅用数学方法解决实际问题的意识和能力有很大提高,而且在团结合作发挥集体力量攻关,以及撰写科技论文等方面将都会得到十分有益的锻炼。

3.数学建模方法
一、机理分析法从基本物理定律以及系统的结构数据来推导出模型。

1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。

2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。

3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。

5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。

二、数据分析法从大量的观测数据利用统计方法建立数学模型。

1. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。

三、仿真和其他方法
1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。

①离散系统仿真--有一组状态变量。

②连续系统仿真--有解析表达式或系统结构图。

2. 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模
型结构。

3. 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。

(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)
四、数学建模的十大算法
(1)、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
(2)、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
(3)、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)
(4)、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
(5)、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
(6)、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
(7)、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
(8)、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)(9)、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法
(10)、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB进行处理)。

4.题型:
三个基本组成部分:
一、实际问题背景
二、若干假设条件
三、要求回答的问题
5.竞赛答卷:
提交一篇论文,基本内容和格式大致分三大部分:
一、标题、摘要部分:
1.题目--写出较确切的题目(不能只写A题、B题)。

2.摘要--200-300字,包括模型的主要特点、建模方法和主要结果。

3.内容较多时最好有个目录。

二、中心部分:
1.问题提出,问题分析。

2.模型建立:
①补充假设条件,明确概念,引进参数;
②模型形式(可有多个形式的模型);
③模型求解;
④模型性质;
3.计算方法设计和计算机实现。

4.结果分析与检验。

5.讨论--模型的优缺点,改进方向,推广新思想。

6.参考文献--注意格式。

三、附录部分:
1.计算程序,框图。

2.各种求解演算过程,计算中间结果。

3.各种图形、表格。

相关文档
最新文档