(完整版)数列与解析几何综合—点列问题

合集下载

数列专题复习之典型例题(含答案)

数列专题复习之典型例题(含答案)

数列知识点-——-求通项一、由数列的前几项求数列的通项:观察法和分拆与类比法-—-—-猜测———-证明(略)二、由a n 与S n 的关系求通项a n例1已知数列{a n }的前n 项和为S n =3n -1,则它的通项公式为a n =________。

答案2·3n -1练1 已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 答案a n =错误!三、由数列的递推公式求通项例3、(1)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .设3n n n b S =-,求数列{}n b 的通项公式;答案: 13(3)2n n n n b S a -=-=-,*n ∈N .(2)(4)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠).(Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩(3)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ;答案:(1)2nnn a n λ=-+21212(1)22(1)(1)n n n n n n S λλλλλ+++--+=+-≠- 1(1)22(1)2n n n n S +-=+-λ=(4)已知数列{}n a 满足:()213,22n n a a a n n N *+=+=+∈(1)求数列{}n a 的通项公式; (2)设1234212111n n nT a a a a a a -=+++,求lim n n T →∞答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩注意:由数列的递推式求通项常见类型(请同学们查看高一笔记)1.)(1n f a a n n +=+ 2 . n n a n f a )(1=+.3 q pa a n n +=+1(其中p,q 均为常数,)0)1((≠-p pq )。

(整理)高考数学考点21数列的综合应用.

(整理)高考数学考点21数列的综合应用.

考点21 数列的综合应用【高考再现】热点一、等差数列与等比数列的综合应用1.(2012年高考(陕西理))设{}n a 的公比不为1的等比数列,其前n 项和为n S ,且534,,a a a 成等差数列.(1)求数列{}n a 的公比; (2)证明:对任意k N +∈,21,,k k k S S S ++成等差数列.2.(2012年高考(福建文))在等差数列{}n a 和等比数列{}n b 中,{}1141,8,n a b b a ===的前10项和1055S =. (Ⅰ)求n a 和n b ;(Ⅱ)现分别从{}n a 和{}n b 的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.3.(2012年高考(天津文))(本题满分13分)已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且114444,27,=10a b a b S b =+=-. (I)求数列{}n a 与{}n b 的通项公式; (II)记1122=+++n n n T a b a b a b (*n N ∈)证明:*118(,2)n n n T a b n N n ---=∈>.4.(2012年高考(湖北文))已知等差数列{}n a 前三项的和为3-,前三项的积为8.(1) 求等差数列{}n a 的通项公式;(2)若231,,a a a 成等比数列,求数列{}n a 的前n 项和.5..(2012年高考(天津理))已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -.(Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1121=+++n n n n T a b a b a b -,+n N ∈,证明+12=2+10n n n T a b -+()n N ∈.【方法总结】对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n 项和;分析等差、等比数列项之间的关系.往往用到转化与化归的思想方法.热点二、数列与其他章节知识的综合应用 1.(2012年高考(四川文))设函数3()(3)1f x x x =-+-,{}n a 是公差不为0的等差数列,127()()()14f a f a f a ++⋅⋅⋅+=,则=++721a a a ( )A .0B .7C .14D .21.2.(2012年高考(上海文))若)(sin sin sin 7727*∈+++=N n S n n πππ ,则在10021,,,S S S 中,正数的个数是 ( ) A .16.B .72.C .86.D .100.3.(2012年高考(湖北文))定义在(,0)(0,)-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}{},()n n a f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在(,0)(0,)-∞⋃+∞上的如下函数:①2()f x x =;②()2xf x =;③()||f x x =;④()ln ||f x x =. 则其中是“保等比数列函数”的()f x 的序号为( ) A .①② B .③④ C .①③ D .②④.【答案】C【解析】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,11||()()||n n n n a f a f a a ++=1n n a q a +==,是常数,故③符合条件;对于④, 11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C.4.(2012年高考(福建文))数列{}n a 的通项公式cos2n n a n π=,其前n 项和为n S ,则2012S 等于( ) A .1006B .2012C .503D .05.(2012年高考(北京文))某棵果树前n 年得总产量n S 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为 ( )A .5B .7C .9D .11【答案】C【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入, 因此选C.6.(2012年高考(上海文))已知xx f +=11)(.各项均为正数的数列}{n a 满足11=a ,)(2n n a f a =+.若20122010a a =,则1120a a +的值是_________.7.(2012年高考(四川文))已知a 为正实数,n 为自然数,抛物线22na y x =-+与x 轴正半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距. (Ⅰ)用a 和n 表示()f n ; (Ⅱ)求对所有n 都有()1()11f n nf n n -≥++成立的a 的最小值; (Ⅲ)当01a <<时,比较111(1)(2)(2)(4)()(2)f f f f f n f n ++⋅⋅⋅+---与 )1()0()1()1(6f f n f f -+-⋅的大小,并说明理由.8.(2012年高考(湖南文))某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元. (Ⅰ)用d 表示a 1,a 2,并写出1n a 与a n 的关系式;(Ⅱ)若公司希望经过m (m ≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示).9.(2012年高考(四川理))已知a 为正实数,n 为自然数,抛物线22na y x =-+与x 轴正半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距. (Ⅰ)用a 和n 表示()f n ;(Ⅱ)求对所有n 都有33()1()11f n n f n n -≥++成立的a 的最小值;(Ⅲ)当01a <<时,比较11()(2)nk f k f k =-∑与27(1)()4(0)(1)f f n f f --的大小,并说明理由.10.(2012年高考(上海理))对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X具有性质P. 例如}2,1,1{-=X 具有性质P. (1)若x >2,且},2,1,1{x -,求x 的值;(2)若X 具有性质P,求证:1∈X ,且当x n >1时,x 1=1;(3)若X 具有性质P,且x 1=1, x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通项公式.11.(2012年高考(大纲理))函数2()23f x x x =--.定义数列{}n x 如下:112,n x x +=是过两点(4,5),(,())n n n P Q x f x 的直线n PQ 与x 轴交点的横坐标.(1)证明:123n n x x +≤<<; (2)求数列{}n x 的通项公式.【方法总结】1.解决此类问题要抓住一个中心——函数,两个密切联系:一是数列和函数之间的密切联系,数列的通项公式是数列问题的核心,函数的解析式是研究函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行灵活的处理.2.从近几年新课标高考试题可以看出,不同省市的高考对该内容要求的不尽相同,考生复习时注意把握.数列与解析几何交汇问题主要是解析几何中的点列问题,关键是充分利用解析几何的有关性质、公式,建立数列的递推关系式,然后借助数列的知识加以解决.【考点剖析】一.明确要求1.熟练把握等差数列与等比数列的基本运算.2.掌握隐藏在数列概念和解题方法中的数学思想,如“函数与方程”、“数形结合”、“分类讨论”、“等价转化”等.3.注意总结相关的数列模型以及建立模型的方法.二.命题方向1.考查数列的函数性及与方程、不等式、解析几何相结合的数列综合题.2.考查运用数列知识解决数列综合题及实际应用题的能力.三.规律总结基础梳理1.等比数列与等差数列比较表不同点相同点等差数列(1)强调从第二项起每一项与前项的差;(2)a1和d可以为零;(3)等差中项唯一(1)都强调从第二项起每一项与前项的关系;(2)结果都必须是同一个常数;(3)数列都可由a1,d或a1,q确定等比数列(1)强调从第二项起每一项与前项的比;(2)a1与q均不为零;(3)等比中项有两个值2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中.3.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n与a n+1的递推关系,还是S n与S n+1之间的递推关系.一条主线数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解.两个提醒(1)对等差、等比数列的概念、性质要有深刻的理解,有些数列题目条件已指明是等差(或等比)数列,但有的数列并没有指明,可以通过分析,转化为等差数列或等比数列,然后应用等差、等比数列的相关知识解决问题.(2)数列是一种特殊的函数,故数列有着许多函数的性质.等差数列和等比数列是两种最基本、最常见的数列,它们是研究数列性质的基础,它们与函数、方程、不等式、三角等内容有着广泛的联系,等差数列和等比数列在实际生活中也有着广泛的应用,随着高考对能力要求的进一步增加,这一部分内容也将受到越来越多的关注.三种思想(1)数列与函数方程相结合时主要考查函数的思想及函数的性质(多为单调性).(2)数列与不等式结合时需注意放缩.(3)数列与解析几何结合时要注意递推思想.【基础练习】1.(经典习题)某学校高一、高二、高三共计2 460名学生,三个年级的学生人数刚好成等差数列,则该校高二年级的人数是( )A.800 B.820 C.840 D.8602.(教材习题改编)有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒(假设病毒不繁殖),问细菌将病毒全部杀死至少需要 ( ) A .6秒钟 B .7秒钟 C .8秒钟D .9秒钟3.(经典习题)若a ,b ,c 成等比数列,则函数y =ax 2+bx +c 的图象 与x 轴的交点的个数为( ) A .0 B .1 C .2D .不能确定【解析】:由题意b 2=ac (ac >0),∴Δ=b 2-4ac =-3b 2<0. 【答案】: A4.(经典习题)5·12汶川大地震后,山东天成书业公司于2008年8月向 北川中学捐赠《三维设计》系列丛书三万册,计划以后每年比上一年多捐5 000册,则截至到2012年,这5年共捐________万册.【解析】:由题意知a 1=3,d =0.5 S 5=3×5+5×42×0.5=20. 【答案】205.(经典习题)一个凸多边形的内角成等差数列,其中最小的内角为2π3,公差为π36,则这个多边形的边数为________.6.(人教A版教材习题改编)已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2的值为().A.-4 B.-6 C.-8 D.-10【解析】由题意知:a23=a1a4.则(a2+2)2=(a2-2)(a2+4),解得:a2=-6.【答案】 B7.(经典习题)已知数列{a n}是各项均为正数的等比数列,数列{b n}是等差数列,且a6=b7,则有().A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10的大小关系不确定8.(经典习题)若互不相等的实数a,b,c成等差数列,c,a,b成等比数列,且a+3b+c=10,则a=().A.4 B.2 C.-2 D.-4【名校模拟】一.基础扎实1.(2012云南省第一次高中毕业生统一检测复习文)已知n S 是等比数列{}n a 的前n 项和,1a 与3a 的等差中项等于15. 如果4120S =,那么2012200920093S S -= (A )18 (B )25 (C )32 (D )392.(2012年云南省第一次统一检测理)在等比数列{}n a 中,6a 与7a 的等差中项等于48,610987654128=a a a a a a a . 如果设{}n a 的前n 项和为n S ,那么=n S(A )45-n(B )34-n(C )23-n(D )12-n【解析】:设等比数列{}n a 的公比为q ,由已知得⎩⎨⎧=+=96)1(1285164271q q a q a ,化简得 ⎩⎨⎧=+=96)1(251661q q a q a ,解得⎩⎨⎧==211q a . ∴12-=n n S .选(D ).3.(湖北武汉2012毕业生五月供题训练(三)文)一个样本容量为10的样本数据,它们组成一个公差不为O 的等差数列{n a },若a 3 =8,且a 1,a 3,a 7成等比数列,则此样本的平均数和中位数分别是A .13 ,12B .13 ,13C .12 ,13D .13 ,14.4.(仙桃市2012年五月高考仿真模拟试题文)已知x x f 2sin )(=,若等差数列}{n a 的第5项的值为)6('πf ,则=+++18899221a a a a a a a a 。

解析几何和数列综合练习

解析几何和数列综合练习

解析几何和数列综合练习1.在平面直角坐标系xOy 中,点()(),0P a b a b >>为动点,1F 、2F 分别为椭圆22221x y a b+=的左、右焦点.已知11PF F ∆为等腰三角形.(1)求椭圆的离心率e ;(2)设直线2PF 与椭圆相交于A 、B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-,求点M 的轨迹方程.【答案】(1)12e =;(2)218150x --=. 【解析】试题分析:(1)先利用平面向量的数量积确定12F PF ∠为钝角,从而得到当12PF F ∆时,必有212F F F P =,根据两点间的距离公式列有关a 、b 、c 的方程,求出a 与c 之间的等量关系,从而求出离心率的值;(2)先求出直线2PF 的方程,与椭圆方程联立求出交点A 、B 的坐标,利用2AM BM ⋅=-以及P 、M 、2F 三点共线列方程组消去c ,从而得出点M 的轨迹方程.试题解析:(1)设椭圆22221x y a b+=的焦距为2c ,则c =()1,0F c -,()2,0F c ,()()()21,0,02,0F F c c c =--=- ,()()()2,,0,F P a b c a c b =-=-, ()21220F F F P c a c ∴⋅=-⋅-<,所以12F F P ∠为钝角,由于12PF F ∆为等腰三角形,212F F F P ∴=,2c ∴=,即()2224a c b c -+=,即()()22224a c a c c -+-=,整理得2220c ac a +-=,即()()20c a c a -+=,由于0a c >>,故有122c c a e a =⇒==,即椭圆的离心率为12; (2)易知点P的坐标为()2c ,则直线2PF的斜率为k ==故直线2PF的方程为)y x c =-,由于2a c =,b ==,故椭圆的方程为2222143x y c c+=,即22243x y c +=, 将直线2PF 的方程代入椭圆方程并化简得2580x cx -=,解得85cx =或0x =,于是得到点85c A ⎛⎝⎭,()0,B , (2)设点M 的坐标为(),x y ,由于点M 在直线2PF 上,所以)3y x c c x y =-⇒=-, ()88,,,5555c c AM x y x y ⎛⎫⎛⎫=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,()()()(),0,,BM x y x y x =-=+=,8255c AM BM x x y ⎛⎫⎛⎫⋅=-⋅+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭ ,即825x x y x y x y ⎡⎤⎡⎤⎛⎫⎛⎫-⋅+=-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,整理得218150x --=,即点M的轨迹方程为218150x --=. 考点:1.椭圆的方程;2.两点间的距离;3.平面向量的数量积;4.动点的轨迹方程2.如图,F 1,F 2C :22221x y a b +=(a >b >0)的左、右焦点,直线l :x =-12将线段F 1F 2分成两段,其长度之比为1:3.设A ,B 是C 上的两个动点,线段AB的中垂线与C 交于P ,Q 两点,线段AB 的中点M 在直线l 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)求22F P F Q ⋅的取值范围.【答案】(Ⅰ)2212x y +=; (Ⅱ)[1-,125232). 【解析】试题分析:(Ⅰ)由题意比例关系先求c ,再由离心率求a ,从而可求椭圆的方程;(Ⅱ)分直线AB 斜率是否存在两种情况讨论:(1)当直线AB 垂直于x 轴时,易求;(2)当直线AB 不垂直于x 轴时,先设直线AB 的斜率,点M 、A 、B 的坐标,把点A 、B 坐标代入椭圆方程求k 、m 之间的关系,再求PQ 直线方程,然后与椭圆方程联立方程组,由韦达定理求22F P F Q ⋅的表达式,最后求其范围.试题解析:(Ⅰ) 设F 2(c ,0),则1212c c -+=13,所以c =1. 因为离心率e2,所以a所以椭圆C 的方程为2212x y +=. 6分(Ⅱ)当直线AB 垂直于x 轴时,直线AB 方程为x =-12,此时P(2-,0)、Q(2,0)221F P F Q ⋅=-.当直线AB 不垂直于x 轴时,设直线AB 的斜率为k ,M(-12,m) (m ≠0),A(x 1,y 1),B(x 2,y 2).由 221122221,21,2x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 得(x 1+x 2)+2(y 1+y 2)1212y y x x -⋅-=0,则-1+4mk =0,故k =14m .此时,直线PQ 斜率为m k 41-=,PQ 的直线方程为)21(4+-=-x m m y .即m mx y --=4.联立⎪⎩⎪⎨⎧=+--=12422y x m mx y 消去y ,整理得2222(321)16220m x m x m +++-=. 所以212216321m x x m +=-+,212222321m x x m -=+. 于是=⋅F F 22(x 1-1)(x 2-1)+y 1y 2)4)(4(1)(212121m mx m mx x x x x +++++-=22122121))(14()161(m x x m x x m +++-++=2222222(116)(22)(41)(16)1321321m m m m m m m +---=+++++22191321m m -=+. 令t =1+32m 2,1<t <29,则tF F 3251321922-=⋅. 又1<t <29,所以221251232F P F Q -<⋅< .综上,F F 22⋅的取值范围为[1-,125232). 15分考点:1、椭圆的方程及性质;2、直线与椭圆相交的性质;3、向量的坐标运算.3.P 为椭圆2212516x y +=上任意一点,1F 、2F 为左右焦点.如图所示:(1)若1PF 的中点为M ,求证1152MO PF =-;(2)若1260F PF ︒∠=,求12PF PF 的值. 【答案】(1))证明:在12F PF ∆ 中,MO 为中位线21112152222PF a PF PF MO a PF -∴===-=- (2)643【解析】试题分析:(1)由椭圆定义知12210PF PF a +==,则2110PF PF =-,由条件知点O 、M 分别是1PF 、12F F 的中点,所以MO 为12F PF ∆的中位线,则22PF MO =,从而命题得证;(2)根据椭圆定义,在12F PF ∆中有1210PF PF +=,126F F =,又由条件1260F PF ︒∠=,从这些信息中可得到提示,应从余弦定理入手,考虑到22212121212cos 2PF PF F F F PF PF PF +-∠=⋅,所以需将1210PF PF +=两边平方,得2212121002PF PF PF PF +=-,将其代入余弦定理,得到关于12PF PF 的方程,从而可得解.试题解析:(1)证明:在12F PF ∆ 中,MO 为中位线21112152222PF a PF PF MO a PF -∴===-=- 5分 (2)2212121210,1002PF PF PF PF PF PF +=∴+=- ,126F F =在12PF F ∆中,222121212cos 602PF PF F F PF PF ︒+-=⋅,1212100236PF PF PF PF ∴⋅=-⋅-12643PF PF ∴=12分 考点:1.椭圆定义;2.余弦定理.4.如图,已知椭圆C 的方程为()222210x y a b a b +=>>,双曲线12222=-by a x 的两条渐近线为1l 、2l .过椭圆C 的右焦点F 作直线l ,使1l l ⊥,又l 与2l 交于点P ,设l 与椭圆C 的两个交点由上至下依次为A 、B .(1)若1l 与2l 的夹角为60,且双曲线的焦距为4,求椭圆C 的方程; (2)求||||AP FA 的最大值.【答案】(1)2213x y +=;(21. 【解析】试题分析:(1)先确定双曲线的渐近线方程,根据条件两条渐近线的夹角为60,确定a 与b 的等量关系,再结合c 的值,确定a 与b 的值,最终确定椭圆C 的方程;(2)设点A 的坐标为()00,x y ,并设||||FA AP λ=得到FA AP λ= ,利用向量的坐标运算得到()2201c a x c λλ+=+,()01ab y c λλ=+,再由点A 在椭圆C 上这一条件将点A 的坐标代入椭圆方程,通过化简得到λ与离心率e 之间的关系式2222232e e λ⎛⎫=--++ ⎪-⎝⎭,结合基本不等式得到λ的最大值.试题解析:(1)因为双曲线方程为12222=-by a x ,所以双曲线的渐近线方程为x aby ±=. 因为两渐近线的夹角为60且1<ab,所以30POF ∠= .所以a b tan 303== ,所以b a 3=.因为2c =,所以2222=+b a ,所以a =1b =.所以椭圆C 的方程为2213x y +=; (2)因为1l l ⊥,所以直线l 与的方程为()ay x c b=-,其中c = 因为直线2l 的方程为by x a=, 联立直线l 与2l 的方程解得点2,a ab P c c ⎛⎫⎪⎝⎭.设||||FA AP λ=,则FA AP λ= . 因为点(),0F c ,设点()00,A x y ,则有()20000,,a abx c y x y c c λ⎛⎫-=-- ⎪⎝⎭.解得()2201c a x c λλ+=+,()01ab y c λλ=+.因为点()00,A x y 在椭圆22221x y a b+=上,所以()()()()2222222222111c a ab a c b c λλλλ++=++. 即()()222224221c aa a c λλλ++=+.等式两边同除以4a 得()()222221e e λλλ++=+,()0,1e ∈,所以24222222322e e e e e λ-⎛⎫==--++ ⎪--⎝⎭,)2331≤-=-=所以当22222e e-=-,即e =λ1. 故FA AP1.考点:1.双曲线的渐近线方程;2.椭圆的方程;3.三点共线的转化5.如图,直线AB 经过⊙O 上的点C ,并且OA=OB ,CA=CB ,⊙O 交直线OB 于E 、D ,连结EC 、CD.(Ⅰ)求证:直线AB 是⊙O 的切线;(Ⅱ)若tan ∠CED=21,⊙O 的半径为3,求OA 的长. 【答案】(1)详见解析;(2)5OA =【解析】 试题分析:(1)连接OC ,要证明AB 是圆O 的切线,根据切线的判定定理,只需证明OC AB ⊥,因为,OA OB CA CB ==,所以OC AB ⊥;(2)由已知OA OB =,所以求OB 即可,因为圆O 的半径已知,所以求BD 即可,这时需要 寻求线段BD 长的等量关系,或者考虑全等或者考虑相似,由(1)知AB 是圆O 的切线,有弦切角定理可知,BCD E ∠=∠还有公共角B B ∠=∠,所以可判定BCD ∆∽BEC ∆,从而列出关于线段BD 的比例式,从中计算即可.试题解析:(1)连接OC ,因为,OA OB CA CB ==,所以OC AB ⊥,所以AB 是圆O 的切线;(2)因为AB 是圆O 的切线,所以,BCD E ∠=∠又B B ∠=∠,所以BCD ∆∽BEC ∆,BC CE BE BD CD BC ==,所以2()CE BECD BD=,因为DE 是圆O 的直径,所以EC CD ⊥,在ECD ∆中,1tan 2CED ∠=,所以4BE BD =,64BD BD +=,∴2BD =,5OA =. 考点:1、圆的切线的判定;2、三角形的相似;3、弦切角定理.6.如图,设F(-c,0)是椭圆)0(12222>>=+b a by a x 的左焦点,直线l :x =-c a 2与x轴交于P 点,MN 为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|。

高考数学数列题型之点列综合题

高考数学数列题型之点列综合题

点列综合题例1设曲线)0(:2>=x x y c 上的点为),,(000y x P 过P 0作曲线c 的切线与x 轴交于Q 1,过Q 1作平行于y 轴的直线与曲线c 交于),(111y x P ,然后再过P 1作曲线c 的切线交x 轴于Q 2,过Q 2作平行于y 轴的直线与曲线c 交于),(222y x P ,依此类推,作出以下各点:P 0,Q 1,P 1,Q 2,P 2,Q 3,…P n ,Q n+1…,已知20=x ,设))(,(N n y x P n n n ∈ (1)求出过点P 0的切线方程; (2)设),(n f x n =求)(n f 的表达式; (3)设,10n n x x x S +++= 求n S解:(1) 4200==x k ∴过点P 0的切线段为)2(44-=-x y 即044=--y x(2)n n x k 2= ∴过点P n 的切线方程为)(22n n n x x x x y -=-将)0,(11++n n x Q 的坐标代入方程得:)(212n n n n x x x x -=-+21211=⇒=∴++n n n n x x x x故数列}{n x 是首项为21,20公比为=x 的等比数列 1)21()()21(2)(-=⋅==∴n n n n f n f x 即(3))211(421)211(211++-=⇒--=n nn n S S例2已知点()Pa b n n n ,满足:a a b b b a nN n n n n nn+++==-∈11121·,,,且已知P 01323,⎛⎝ ⎫⎭⎪ (1)求过点P P 01,的直线l 的方程;(2)判断点()P n n ≥2与直线l 的位置关系,并证明你的结论; (3)求点P n 的极限位置。

解:(1)由a b 001323==,,得:b a 1212311334133414=-⎛⎝ ⎫⎭⎪==⨯=, 显然直线l 的方程为x y +=1 (2)由a b 111434==,,得:b a 2223411445144515=-⎛⎝ ⎫⎭⎪==⨯=, ∴点P l 2∈,猜想点()P n n ≥2在直线l 上,以下用数学归纳法证明: 当n =2时,点P l 2∈假设当n kk =≥()2时,点P l k ∈,即a b k k +=1 当n k =+1时, a b ab b k k k k k +++++=+1111· ()()=+=+-=-=+1111112a b a b a b a k k k k kkk ∴点P l k +∈1 综上,点()P l n n∈≥2 (3)由a ab b b a ab n n n n n nn n +++==-+=111211·,,,得: ()a a b a a a a a a a a a n n n n n n nnn n n n++=-=--=+≠∴=+122111110111··∴数列1a n ⎧⎨⎩⎫⎬⎭是以130a =为首项,公差为1的等差数列∴=+=+=-=-+=++=+==++=++=→∞→∞→∞→∞→∞13131113231302312131a n a n b a n n n a n b n n n nn n n n n nn n n n n , lim lim lim lim lim()∴−→−P P n01, 即点P n 的极限位置为点P (0,1) 例3、已知曲线1:=xy C ,过C 上一点),(111y x A 作斜率1k 的直线,交曲线C 于另一点),(222y x A ,再过),(222y x A 作斜率为2k 的直线,交曲线C 于另一点),(333y x A ,…,过),(n n n y x A 作斜率为n k 的直线,交曲线C 于另一点),(111+++n n n y x A …,其中11=x ,)(41*2N x x x x k nn n n ∈++-= (1)求1+n x 与n x 的关系式;(2)判断n x 与2的大小关系,并证明你的结论; (3)求证:2|2|...|2||2|21<-++-+-n x x x . 解:(1)由已知过),(n n n y x A 斜率为nn n x x x 412++-的直线为=-n y y nn n x x x 412++-)(n x x -,直线交曲线C 于另一点),(111+++n n n y x A所以n n y y -+1=nn n x x x 412++-)(1n n x x -+即=-+n n x x 111nn nx x x 412++-)(1n n x x -+,n n x x -+1≠0,所以)(14*1N n x x x n n n ∈++=+(2)解:当n 为奇数时,2<n x ;当n 为偶数时,2>n x因为1221421111+-=-++=-----n n n n n x x x x x ,注意到0>n x ,所以2-n x 与21--n x 异号 由于211<=x ,所以22>x ,以此类推, 当)(12*N k k n ∈-=时,2<n x ;当)(2*N k k n ∈=时,2>n x(3)由于0>n x ,131141++=++=+n n n n x x x x , 所以n x ≥1(3,2,1=n ,…)所以1|2||12||2|1+-=+-=-+n n n n n x x x x x ≤|2|21-n x所以|2|-n x ≤|2|211--n x ≤|2|2122--n x ≤…≤11121|2|21--=-n n x所以|2|...|2||2|21-++++-n x x x ≤12)21(...)21(211-++++n2)21(21<-=-n例4、如图,11122212(,),(,),,(,),(0)n n n n P x y P x y P x y y y y <<<< 是曲线2:3(0)C y x y =≥上的n 个点,点(,0)(1,2,3,,)i i A a i n = 在x 轴的正半轴上,1i i i A A P -∆是正三角形(0A 是坐标原点) .(Ⅰ) 写出123,,a a a ;(Ⅱ)求出点n A (,0)(*)n a n N ∈的横坐标n a 关于n 的表达式; (Ⅲ)设12321111n n n n nb a a a a +++=++++ ,若对任意正整数n ,当[]1,1m ∈-时,不等式2126n t mt b -+>恒成立,求实数t 的取值范围. . 解:(Ⅰ) 1232,6,12a a a ===. (Ⅱ)依题意11(,0),(,0)n n n n A a A a --,则12n n n a a x -+=,n y = 3分 在正三角形1n n n P A A -中,有11||)n n n n n y A A a a --==-. 1)2n n a a -=-. 1n n a a -∴-=2211122()(2,*)n n n n n n a a a a a a n n N ---∴-+=+≥∈ , ①同理可得2211122()(*)n n n n n n a a a a a a n N +++-+=+∈ . ②①-②并变形得1111()(22)0(2,*)n n n n n a a a a a n n N +-+--+--=≥∈11n n a a +-> ,11220n n n a a a +-∴+--= ,11()()2(2,*)n n n n a a a a n n N +-∴---=≥∈ .∴数列{}1n n a a +-是以214a a -=为首项,公差为2的等差数列.12(1),(*)n n a a n n N +∴-=+∈ , …………………………………… 7分n a ∴12132431()()()()n n a a a a a a a a a -=+-+-+-++- , 2(123)n =++++ 2n n =+.(1)(*)n a n n n N ∴=+∈.(Ⅲ)解法1 :∵12321111(*)n n n n nb n N a a a a +++=++++∈ ,∴1234221111(*)n n n n n b n N a a a a +++++=++++∈ .121221111n n n n n b b a a a ++++∴-=+-111(21)(22)(22)(23)(1)(2)n n n n n n =+-++++++ 22(221)(21)(22)(23)(2)n n n n n n -+-=++++. ∴当*n N ∈时,上式恒为负值, ∴当*n N ∈时,1n n b b +<, ∴数列{}n b 是递减数列.n b ∴的最大值为12116b a ==. 若对任意正整数n ,当[]1,1m ∈-时,不等式2126n t mt b -+>恒成立,则不等式211266t mt -+>在[]1,1m ∈-时恒成立,即不等式220t mt ->在[]1,1m ∈-时恒成立. 设2()2f m t mt =-,则(1)0f >且(1)0f ->,∴222020t t t t ⎧->⎪⎨+>⎪⎩解之,得 2t <-或2t >,即t 的取值范围是(,2)(2,)-∞-⋃+∞. 例5、△ABC 中,|AB|=|AC|=1,A B A C →→=·12,P 1为AB 边上的一点,B P A B 123≠,从P 1向BC 作垂线,垂足是Q 1;从Q 1向CA 作垂线,垂足是R 1;从R 1向AB 作垂线,垂足是P 2,再由P 2开始重复上述作法,依次得Q 2,R 2,P 3;Q 3,R 3,P 4……(1)令BP n 为x n ,寻求BP n 与BP n +1(即x x n n 与+1)之间的关系。

数列训练(5) 数列与解析几何

数列训练(5) 数列与解析几何

数列训练(5) 数列与解析几何数列与解析几何1.数列{}n a 中,11=a ,且点),(1+n n a a 在直线012=+-y x 上 (1) 设1+=n n a b ,求证:数列{}n b 是等比数列; (2) 设)23(+=n n a n c ,求数列{}n c 的通项公式; (3) 求数列{}n c 的前n 项和n S(1)证明:由已知得121+=+n n a a ,)1(211+=+∴+n n a a即n n b b 21=+,所以数列{}n b 是等比数列(2)解:nn b 2=,12-=∴n n a ,)123(-⋅=∴nn n c(3)解:)321()2232221(3321n n S nn ++++-⋅++⋅+⋅+⋅=设nn n T 2222121⋅++⋅+⋅=132222212+⋅++⋅+⋅=n n n T所以22)1(1+⋅-=+n n n T所以2)1(]22)1[(31+-+⋅-=+n n n S n n 2、已知直线:2n y x n =- 与圆22:22()n n C x y a n n N ++=++∈交于不同点A n 、B n ,其中数列{}n a 满足:21111,4n n n a a A B +==. (1)求数列{}n a 的通项公式;(2)设(2),3n n nb a =+求数列{}n b 的前n 项和n S .(1)圆心到直线的距离d n =,21111()22,22(2)2322n n n n n n n n a A B a a a a ++-∴==++=+∴=⨯-则易得 (2)10121123(2)2,3122232*********n n n n n nn nb a n S n S n --=+=⋅=⨯+⨯+⨯+⋅⋅⋅+⨯=⨯+⨯+⨯+⋅⋅⋅+⨯相减得(1)21nn S n =-+3.已知数列}{n a 是公差为()0≠d d 的等差数列,n S 为其前n 项和. (Ⅰ)若2a ,3a ,6a 依次成等比数列,求其公比q ; (Ⅱ)若),(nS n OP nn =)(*∈N n ,求证:对任意的m ,*∈N n ,向量n m P P 与向量()d b ,2=共线;(Ⅲ)若11=a ,21=d ,),(2n S n a OQ n n n =)(*∈N n ,问是否存在一个以坐标原点为圆心,半径最小的圆,使得对任意的*∈N n ,点n Q 都在这个圆内或圆周上. 解:(Ⅰ)因为2a ,3a ,6a 成等比数列,所以6223a a a ⋅=,)5)(()2(1121d a d a d a ++=+. 所以12a d -=,323==a a q . (Ⅱ)因为),(),(),(mSn S m n m S m n S n OP OP P P m n m n m n n m --=-=-=. 而d mn d m a d n a m S n S m n 2]2)1([]2)1([11-=-+--+=-. 所以()b mn d m n d m n m n P P n m ⋅-=⋅-=--=2,22)2,( 所以,向量n m P P 与向量()d b ,2=共线.(Ⅲ)因为21,11==d a ,所以212121)1(1+=⋅-+=n n a n ,n n S n 4342+=. 所以42222nSn a OQ n n n+=42222)3(161)]1(21[nn n n n +++= )51413(161161314524234++=++=n n n n n n .=131137116132+⎪⎭⎫ ⎝⎛+n . 因为1≥n ,所以110≤<n,2131137116132≤+⎪⎭⎫ ⎝⎛+∴n ,当1=n 时取等号. 所以22≤nOQ ,即2≤n OQ 所以存在半径最小的圆,最小半径为2,使得对任意的*∈N n ,点n Q 都在这个圆内或圆周上.4、设函数,103)(223-++-=a ax x x x f 若它是R 上的单调函数,且1是它的零点。

(完整版)解析几何练习题及答案

(完整版)解析几何练习题及答案

解析几何一、选择题1.已知两点A (-3,),B (,-1),则直线AB 的斜率是( )33A. B .-33C. D .-3333解析:斜率k ==-,故选D.-1-33-(-3)33答案:D 2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =,a +2a 则=a +2,得a =1或a =-2.故选D.a +2a 答案:D 3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( )A .4B .21313C. D .5132671020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d ==.|1-(-6)|62+2271020故选D.答案:D4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0 B .2x +y -1=0C .2x +y -5=0 D .x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角3的取值范围是( )A. B .[π6,π3)(π6,π2)C. D .(π3,π2)[π3,π2]解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-),由题知直线l 与线段AB 相交(交点不含3端点),从图中可以看出,直线l 的倾斜角的取值范围为.故选B.(π6,π2)答案:B 6.(2014泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( )A .x -2y +4=0 B .2x +y -7=0C .x -2y +3=0 D .x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=,12∴方程为y -3=(x -2),即x -2y +4=0.12答案:A二、填空题7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为+=1,x a yb 由Error!解得Error!或Error!.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014湘潭质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB ==-2,解得m =-8.4-mm +2答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即<0,化简得<0,∴-2<a <1.2a -(1+a )3-(1-a )a -1a +2答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.解方程组Error!得Error!所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sinα-1=0和l 2:2x sinα+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一 当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-,k 2=-2sin α.1sin α要使l 1∥l 2,需-=-2sin α,1sin α即sin α=±,∴α=k π±,k ∈Z .22π4故当α=k π±,k ∈Z 时,l 1∥l 2.π4法二 由l 1∥l 2,得Error!∴sin α=±,22∴α=k π±,k ∈Z .π4故当α=k π±,k ∈Z 时,l 1∥l 2.π4(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k +2=0,这与21k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一 由方程组Error!解得交点P 的坐标为,(2k 2-k 1,k 2+k 1k 2-k 1)而2x 2+y 2=22+2(2k 2-k 1)(k 2+k 1k 2-k 1)=8+k 2+k 21+2k 1k 2k 2+k 21-2k 1k 2=k 21+k 2+4k 21+k 2+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二 交点P 的坐标(x ,y )满足Error!故知x ≠0.从而Error!代入k 1k 2+2=0,得·+2=0,y -1x y +1x 整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇 第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x 2+(y -2)2=1 B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则=1,得t =2,12+(t -2)2所以圆的方程为x 2+(y -2)2=1,故选A.答案:A 2.(2014郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2=,(x -2)2+y 2(x -8)2+y 2化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考陕西卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d ==1<2,(3-2)2+(0-0)2点P (3,0)恒在圆内,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考辽宁卷)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0 B .x +y +3=0C .x -y +1=0 D .x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C 5.(2013年高考广东卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -=0B .x +y +1=02C .x +y -1=0D .x +y +=02解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得=1,故b =±.因为直线与圆相切于第一象限,故结合图形|b |12+122分析知b =-,则直线方程为x +y -=0.故选A.22答案:A 6.(2012年高考福建卷)直线x +y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦3AB 的长度等于( )A .2B .253C. D .13解析:因为圆心到直线x +y -2=0的距离d ==1,半径r =2,3|0+3×0-2|12+(3)2所以弦长|AB |=2=2.22-123故选B.答案:B二、填空题7.(2013年高考浙江卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d ==,|2×3-4+3|4+15∴弦长为2×=2=4.25-5205答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d ==2,|1-1+4|12+(-1)22又圆半径r =.2所以圆C 上各点到直线l 的距离的最小值为d -r =.2答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴=1,|4m -9m |5∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一 直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二 直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5内部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=,2mm 2+1∴x =.mm 2+1当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =,y -1x 代入x =,得x=,mm 2+1[(y -1x )2+1]y -1x 化简得x 2+2=.(y -32)14经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2+2=.(y -32)1412.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=2时,求直线l 的方程.2解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有=2.解得a =-.|4+2a |a 2+134(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得Error!解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇 第3节一、选择题1.设P 是椭圆+=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )x 225y 216A .4 B .5C .8D .10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D 2.(2014唐山二模)P 为椭圆+=1上一点,F 1,F 2为该椭圆的两个焦点,若x 24y 23∠F 1PF 2=60°,则·等于( )PF1→ PF 2→ A .3 B .3C .2 D .23解析:由椭圆方程知a =2,b =,c =1,3∴Error!∴|PF 1||PF 2|=4.∴·=||||cos 60°=4×=2.PF 1→ PF 2→ PF 1→ PF 2→ 12答案:D3.(2012年高考江西卷)椭圆+=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦x 2a 2y 2b 2点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A. B .1455C. D .-2125解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e ==.故应选B.ca 55答案:B4.(2013年高考辽宁卷)已知椭圆C :+=1(a >b >0)的左焦点为F ,C 与过原点的x 2a 2y 2b 2直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =,则C 的离心率45为( )A. B .3557C. D .4567解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos ∠ABF =100+64-2×10×8×=36,45则|AF |=6,∠AFB =90°,半焦距c =|FO |=|AB |12=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e ==.c a 57故选B.答案:B5.已知椭圆E :+=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与x 2m y 24l :y =kx +1被椭圆E 截得的弦长不可能相等的是( )A .kx +y +k =0B .kx -y -1=0C .kx +y -k =0D .kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A 、B 、C ,故选D.答案:D6.(2014山东省实验中学第二次诊断)已知椭圆+=1(a >b >0)的左、右焦点分别为x 2a 2y 2b 2F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使=,则该椭圆的离心率的asin ∠PF 1F 2csin ∠PF 2F 1取值范围为( )A .(0,-1) B .2(22,1)C.D .(-1,1)(0,22)2解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得=,|PF 2|sin ∠PF 1F 2|PF 1|sin ∠PF 2F 1所以由=a sin ∠PF 1F 2c sin ∠PF 2F 1可得=,a|PF 2|c|PF 1|即==e ,|PF 1||PF 2|ca 所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=.2ae +1由于a -c <|PF 2|<a +c ,所以有a -c <<a +c ,2ae +1即1-e <<1+e ,2e +1也就是Error!解得-1<e .2又0<e <1,∴-1<e <1.故选D.2答案:D 二、填空题7.设F 1、F 2分别是椭圆+=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中x 225y 216点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆+=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线x 2a 2y 2b 2与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=,2a =|MF 1|+|MF 2|=2+,332c =|F 1F 2|=1.∴e ==2-.ca 3答案:2-39.(2014西安模拟)过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方35y 225x 29程为________________.解析:由题意可设椭圆方程为+=1(m <9),y 225-m x 29-m 代入点(,-),35得+=1,525-m 39-m 解得m =5或m =21(舍去),∴椭圆的标准方程为+=1.y 220x 24答案:+=1y 220x 2410.已知F 1,F 2是椭圆C :+=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且x 2a 2y 2b 2⊥.若△PF 1F 2的面积为9,则b =________.PF1→ PF 2→ 解析:由题意得Error!∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=|PF 1||PF 2|=b 2=9,12∴b =3.答案:3三、解答题11.(2012年高考广东卷)在平面直角坐标系xOy 中,已知椭圆C 1:+=1(a >b >0)x 2a 2y 2b 2的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 1上,可得Error!∴Error!故椭圆C 1的方程为+y 2=1.x 22(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2相切得Error!消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1相切得Error!消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②①②联立得Error!解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =时,k =,b =-时,k =-.222222即直线l 的方程为y =x +或y =-x -.22222212.(2014海淀三模)已知椭圆C :+=1(a >b >0)的四个顶点恰好是一边长为2,一x 2a 2y 2b 2内角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :+=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60°的x 2a 2y 2b 2菱形的四个顶点.所以a =,b =1,3椭圆C 的方程为+y 2=1.x 23(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=2,|PO |=3,3所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,所以Error!化简得(3k 2+1)x 2=3,所以|x 1|=,33k 2+1则|AO |==.1+k 233k 2+13k 2+33k 2+1设AB 的垂直平分线为y =-x ,1k 它与直线l :x +y -3=0的交点记为P (x 0,y 0),所以Error!解得Error!则|PO |=,9k 2+9(k -1)2因为△PAB 为等边三角形,所以应有|PO |=|AO |,3代入得=,9k 2+9(k -1)233k 2+33k 2+1解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇 第4节一、选择题1.设P 是双曲线-=1上一点,F 1,F 2分别是双曲线左右两个焦点,若x 216y 220|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17 D .以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考湖北卷)已知0<θ<,则双曲线C 1:-=1与C 2:-π4x 2sin2θy 2cos2θy 2cos2θ=1的( )x 2sin2θA .实轴长相等 B .虚轴长相等C .离心率相等 D .焦距相等解析:双曲线C 1的半焦距c 1==1,双曲线C 2的半焦距c 2=sin2θ+cos2θ=1,故选D.cos2θ+sin2θ答案:D3.(2012年高考湖南卷)已知双曲线C :-=1的焦距为10,点P (2,1)在C 的渐近x 2a 2y 2b 2线上,则C 的方程为( )A.-=1 B .-=1x 220y 25x 25y 220C.-=1 D .-=1x 280y 220x 220y 280解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =x 得a =2b .ba a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为-=1.故选A.x 220y 25答案:A 4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A. B .1435C. D .3445解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =2,2|PF 1|=2|PF 2|,∴|PF 2|=2,|PF 1|=4,22由余弦定理可知cos ∠F 1PF 2==.故选C.(42)2+(22)2-422×42×2234答案:C5.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆513C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.-=1 B .-=1x 242y 232x 2132y 252C.-=1 D .-=1x 232y 242x 2132y 2122解析:在椭圆C 1中,因为e =,2a =26,513即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为-=1.故选A.x 242y 232答案:A6.(2014福州八中模拟)若双曲线-=1渐近线上的一个动点P 总在平面区域x 29y 216(x -m )2+y 2≥16内,则实数m 的取值范围是( )A .[-3,3]B .(-∞,-3]∪[3,+∞)C .[-5,5] D .(-∞,-5]∪[5,+∞)解析:因为双曲线-=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )x 29y 2162+y 2≥16内,即直线与圆相离或相切,所以d =≥4,解得m ≥5或m ≤-5,故实数|4m |5m 的取值范围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考辽宁卷)已知F 为双曲线C :-=1的左焦点,P ,Q 为C 上的x 29y 216点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :-=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点x 2a 2y 2b 2的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e ==2,两式联立得a =1,c =2,ca ∴b 2=c 2-a 2=4-1=3,∴方程为x 2-=1.y 23答案:x 2-=1y 239.(2014合肥市第三次质检)已知点P 是双曲线-=1(a >0,b >0)和圆x 2a 2y 2b 2x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=m ,3该双曲线的离心率等于==+1.|F 1F 2|||PF 1|-|PF 2||2m3m -m 3答案:+1310.(2013年高考湖南卷)设F 1,F 2是双曲线C :-=1(a >0,b >0)的两个焦点.若x 2a 2y 2b 2在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt △F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=c ,3根据双曲线的定义:|PF 1|-|PF 2|=2a ,(-1)c =2a ,3e ===+1.c a 23-13答案:+13三、解答题11.已知双曲线x 2-=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,y 22且点P 是线段AB 的中点?解:法一 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .由Error!得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0==.x 1+x 22k (1-k )2-k 2由题意,得=1,k (1-k )2-k 2解得k =2.当k =2时,方程①成为2x 2-4x +3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.法二 设A (x 1,y 1),B (x 2,y 2),若直线l 的斜率不存在,即x 1=x 2不符合题意,所以由题得x -=1,x -=1,21y 2122y 22两式相减得(x 1+x 2)(x 1-x 2)-=0,(y 1+y 2)(y 1-y 2)2即2-=0,y 1-y 2x 1-x 2即直线l 斜率k =2,得直线l 方程y -1=2(x -1),即y =2x -1,联立Error!得2x 2-4x +3=0,Δ=16-24=-8<0,即直线y =2x -1与双曲线无交点,即所求直线不合题意,所以过点P (1,1)的直线l 不存在.12.(2014南京质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=2,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.13(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解:(1)由已知c =,13设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,则Error!解得a =7,m =3.∴b =6,n =2.∴椭圆方程为+=1,x 249y 236双曲线方程为-=1.x 29y 24(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=2,13∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|==.102+42-(213)22×10×445第八篇 第5节一、选择题1.(2014银川模拟)抛物线y =2x 2的焦点坐标为( )A. B .(1,0)(12,0)C. D .(0,18)(0,14)解析:抛物线y =2x 2,即其标准方程为x 2=y ,它的焦点坐标是.故选C.12(0,18)答案:C2.抛物线的焦点为椭圆+=1的下焦点,顶点在椭圆中心,则抛物线方程为( )x 24y 29A .x 2=-4y B .y 2=-4x55C .x 2=-4yD .y 2=-4x1313解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c ==,a 2-b 25∴抛物线焦点坐标为(0,-),5∴抛物线方程为x 2=-4y .故选A.5答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )A .相离 B .相交C .相切 D .不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =(|AA 1|+|BB 1|)12=(|AF |+|BF |)=|AB |,故圆与抛物线准线相切.故选C.1212答案:C4.(2014洛阳高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为( )A. B .5383C. D .10103解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,则由Error!解得x 1=3,x 2=,13故线段AB 的中点到该抛物线的准线x =-1的距离等于+1=.故选B.x 1+x 2283答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A. B .134C. D .5474解析:∵|AF |+|BF |=x A +x B +=3,12∴x A +x B =.52∴线段AB 的中点到y 轴的距离为=.xA +xB 254故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞) D .[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =x +b ,3联立Error!消去y ,得x 2=2p (x +b ),3即x 2-2px -2pb =0,3∴x 1+x 2=2p =3,3∴p =,则抛物线的方程为x 2=y .323答案:x 2=y38.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考北京卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为,3∴直线方程为y =(x -1).3联立方程Error!解得Error!或Error!由已知得A 的坐标为(3,2),3∴S △OAF =|OF |·|y A |=×1×2=.121233答案:310.已知点P 是抛物线y 2=2x上的动点,点P 在y 轴上的射影是M ,点A ,则(72,4)|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-,焦点F 坐标为.12(12,0)求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+,12所以|PA |+|PM |≥5-=.1292答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-,求实数m 的值.12解:法一 如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,由Error!得2x 2+x -n =0,∴x 1+x 2=-,x 1x 2=-.12n2由x 1x 2=-,得n =1.12又x 0==-,x 1+x 2214y 0=-x 0+n =+1=,1454即点M 为,(-14,54)由点M 在直线l 上,得=-+m ,5414∴m =.32法二 ∵A 、B 两点在抛物线y =2x 2上.∴Error!∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB ==4x 0.y 1-y 2x 1-x 2又AB ⊥l ,∴k AB =-1,从而x 0=-.14又点M 在l 上,∴y 0=x 0+m =m -,14即M ,(-14,m -14)∴AB 的方程是y -=-,(m -14)(x +14)即y =-x +m -,代入y =2x 2,12得2x 2+x -=0,∴x 1x 2=-=-,∴m =.(m -12)m -122123212.已知过抛物线y 2=2px (p >0)的焦点,斜率为2的直线交抛物线于A (x 1,y 1),2B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若=+λ,求λ的值.OC → OA → OB→ 解:(1)直线AB 的方程是y =2,与y 2=2px 联立,2(x -p2)从而有4x 2-5px +p 2=0,所以x 1+x 2=.由抛物线定义得|AB |=x 1+x 2+p =9,5p4所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-2,y 2=4,22从而A (1,-2),B (4,4).22设=(x 3,y 3)=(1,-2)+λ(4,4)OC→ 22=(4λ+1,4λ-2),22即C (4λ+1,4λ-2),22所以[2(2λ-1)]2=8(4λ+1),2即(2λ-1)2=4λ+1,解得λ=0或λ=2.。

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n -B .12n -C .21n -D .32n -例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( )A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法”例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32 B .33 C .34 D .35例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258B .264C .642D .636例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解. 题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( ) A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.题型六:数列与传统文化例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( ) A .10B .14C .23D .26例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金n T几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏【总结提升】理解题意,构造数列,应用数列模型解题.专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n - B .12n -C .21n -D .32n -【答案】C 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a . 【详解】()()()()()()4411cos 221cos221n n n n f x x a x a x a x a f x ++-=-+--+=+-+=,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C. 【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列. 例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 【答案】2n n 1-+ 【解析】 【分析】由题设11()()4n f f n n-+=,讨论n 的奇偶性求{}n a 的通项公式,再求n S . 【详解】由题设,111()()4ln(1)ln 41n f f n n n n -+=+-+=-, 所以()()**14121,2,N 221421,21,N 2n n f n n k k a n n n k k ⎧⎛⎫⎛⎫⨯-+=-=∈ ⎪ ⎪⎪⎪⎝⎭⎝⎭=⎨-⎪⨯=-=+∈⎪⎩,即2(1)n a n =-且n ≥ 2, 当1n =时,11S =,当2n ≥时,21242(1)1n S n n n =+++⋅⋅⋅+-=+-,所以21n S n n =-+,n *∈N故答案为:2n n 1-+.例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】 【详解】试题分析:(1)计算{}n a 和{}n b 的前4项和的差即可得出答案;(2)令n n a b ≥得出42n ≤,再计算第42个月底的保有量和容纳量即可得出结论. 试题分析:(1)()()1234123496530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大()()()()12341234420503864742965878222a a a ab b b b ⎡⎤+⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=⎢⎥⎣⎦()2424424688008736S =--+=,∴此时保有量超过了容纳量.【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n nn n T --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n nn n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( ) A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法” 【答案】BD 【解析】 【分析】因为小郭每年还款钱数相等,所以小郭选择为“等额本息还款法”,所以利用等比数列前n 项和公式求出X ,再设小郭第3年还款的现值为y ,根据复利规则求出y . 【详解】解:小郭与银行约定,每年还一次欠款,并且每年还款的钱数都相等,∴小郭靖选择的还款方式为“等额本息还款法”,故D 正确,C 错误, 设每年应还X 元,还款10次,则该人10年还款的现金与利息和为29[1(1)(1)(1)]X r r r +++++⋯++, 银行贷款A 元10年后的本利和为10(1)A r +.2910[1(1)(1)(1)](1)X r r r A r ∴+++++⋯++=+, ∴10101[1(1)](1)1(1)r X A r r ⨯-+⋅=+-+, 即1010(1)(1)1Ar r X r +=+-,故A 错误.设小郭第三年还款的现值为y ,则3(1)y r X ⋅+=,所以()31Xy r =+,故B 正确;例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【解析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误;第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确;因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+,所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误;【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦【答案】A 【解析】 【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,分类讨论n 可求出结果. 【详解】 由1112222n n n n A a a a n -+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n --+++=-⋅,∴1122(1)2-+⋅=⋅--⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n *∈N 恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n -+-⨯++-⨯⨯+≤, 即22225335(5)(5)022p p n n n n -+-⨯+-+-≤,即5(5)(53)0222pn p p n n -+++++≤, 即(6)(5)(8)02p n n n +-++≤, 即216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,当14n ≤≤时,2164266+-≤=+++n p n n 对任意的n *∈N 恒成立, 因为4412226465n +≥+=++,∴125-≤p ,所以125p ≥-,当5n =时,216(5)06n n p n +⎛⎫-+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+-≥=+++n p n n 对任意的n *∈N 恒成立, 因为447226663n +≤+=++,∴73-≥p ,所以73p ≤-,综上可得:实数p 的取值范围为127,53⎡⎤--⎢⎥⎣⎦.故选:A .例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32B .33C .34D .35【答案】B 【解析】 【分析】根据分裂数的定义,求出从32到()31m -、从32到3m 分裂数个数,再根据所有分裂数成等差数列求出1111对应的位置,进而根据不等式求m 值. 【详解】由题意,对于332,...,m ,它们依次对应2、3、…、m 个分裂数,则从32到()31m -各分裂数个数的和为(2)(1)2m m -+,从32到3m 各分裂数个数和为(1)(2)2m m -+,又332,...,m 的分裂数{}n a ,构成首项为3,公差为2的等差数列,所以21n a n =+,令211111n +=,可得555n =,所以(2)(1)(1)(2)55522m m m m -+-+<≤,当32m =时,(1)(2)5275552m m -+=<不符合; 当33m =时,(1)(2)5605552m m -+=>,(2)(1)5275552m m -+=<符合; 当34m =时,(2)(1)5605552m m -+=>不符合; 综上,33m =. 故选:B例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258 B .264 C .642 D .636【答案】A 【解析】 【分析】分析可知对任意的N k *∈,当)12,2k k m +⎡∈⎣,满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,进而可求得63S 的值.【详解】因为562632<<,由题中定义,对任意的N k *∈,当)12,2k k m +⎡∈⎣, 满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,当1m =时,0m b =,当)122,2m ⎡∈⎣时,1m b =,此时满足条件的m 的个数为12,当)232,2m ⎡∈⎣时,2m b =,此时满足条件的m 的个数为22,当)562,2m ⎡∈⎣时,5m b =,此时满足条件的m 的个数为52, 因此,01234563021222324252258S =⨯+⨯+⨯+⨯+⨯+⨯=.故选:A.例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-. 【答案】(1)21263=+⨯S ,()12312633=+⨯+S ,133n n S +=+ (2)1122=-+n T n ,证明见解析 【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S =++=,217611512181263S =++++=+=+⨯,()2123187136171116512185412636312633S =++++++++=++=+⨯+⨯=+⨯+,41981572013196231728112716215S =++++++++++++++++121854162=+++2312636363=+⨯+⨯+⨯()123126333=+⨯++, …()12311263333(1)n n S n -=+⨯++++≥,由等比数列的前n 项和公式可得,()113131263313n n n S -+-=+⨯=+-, 所以{}n S 的通项公式133n n S +=+.(2)由于133n n S +=+,所以()()33111111log 3log 31221n n n c S S n n n n +⎛⎫=-=--=- ⎪-⋅-++++⎝⎭, 则1111111132432122n T n n n =-+-++-=-+++, 因为n *∈N ,所以102n >+,所以111222n ->-+, 又n T 随n 的增大而减小,所以当1n =时,n T 取得最大值16-,故1126n T -<≤-. 【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解.题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦, 对其进行整理变形:()()()22222222asat ast b as at ast b as b +-++++=+, ()()222222(2)0as at b ast as b++--+=, ()2222222240as at b at a s t ++-=, 222242220a s t a t abt -++=,所以22220as at b -++=或0=t ,其中2212s t b b a a-=为双曲线,0=t 为直线.故选:C.例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )(II )过……向轴作垂线,垂足分别为……, 由(I)得记梯形的面积为.由题意, 所以 ……+n T 12.n n x -=(21)21.2n n n T -⨯+=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b=……+ ①又……+ ②①-②得= 所以题型六:数列与传统文化 例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )A .10B .14C .23D .26【答案】D【解析】【分析】设大夫、不更、簪裹、上造、公士所出的钱数依次构成等差数列{}n a ,根据217a =,前5项和为100求解.【详解】解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列{}n a .由题意可知,等差数列{}n a 中217a =,前5项和为100,设公差为(0)d d >,前n 项和为n S ,则535100S a ==,解得320a =,所以323d a a , 所以公士出的钱数为532202326a a d =+=+⨯=,故选:D .例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯121132(22......2)(21)2n n n T n ----=⨯++++-+⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( ) A .5-B .7C .13D .26【答案】C 【解析】【分析】 根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =, 又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B【解析】【详解】。

2007年高考第二轮复习11--数列与解析几何的综合问题.

2007年高考第二轮复习11--数列与解析几何的综合问题.
|FC1|+|FC2| +…+|FCn|=2n-2-n+1+1(n≥1).
第二轮专题
要点热点探究
证明:(1)对任意固定的n≥1,因为焦点F(0, 1),所以可
设直线AnBn的方程为y-1=knx,将它与抛物线方程x2=4y 联立得
x2-4knx-4=0, 由一元二次方程根与系数的关系得xnsn=-4. (2)对任意固定的n>1,利用导数知识易得抛物线 x2=4y在An处的切线的斜率x2nkAn= ,故x2=4y在An处的切线 方程为
第二轮专题
要点热点探究
y-yn=
xn 2
(x-xn).

类似地sn,可求得x2=4y在Bn处的切线方程为 y-tn= 2 (x-sn).

由②减去①得
yn
tn
xn
sn
x
x2 n
s2 n
,
2
2
从而 xn2 sn2 xn sn x xn2 sn2 .
44
2
2
第二轮专题
要点热点探究
xn sn
项和的公式是
.

y2
x2
(2)如图2-11-1,把椭圆25
+16
=1的长轴AB分成8等分,过每
}的前n
个分点作x轴的垂线交椭圆的上
半部分于P1、P2、…、P7七个点, F是椭圆的一个焦点,则
|P1F|+|P2F|+…+|P7F|=
.
第二轮专题
要点热点探究
(1)∵y=xn (1-x),
∴y′=(xn)′(1-x)+(1-x)′·xn
第二轮专题
要点热点探究
设点An(xn,0),Pn(xn,2n-1)和抛物线Cn:y=

数列与解析几何 专题

数列与解析几何  专题

数列与解析几何 专题例1.在直角坐标平面上有一点列,对一切正整数,点位于函数的图象上,且的横坐标构成以为首项,为公差的等差数列。

⑴求点的坐标;⑵设抛物线列中的每一条的对称轴都垂直于轴,第条抛物线的顶点为,且过点,记与抛物线相切于的直线的斜率为,求:。

⑶设,等差数列的任一项,其中是中的最大数,,求的通项公式。

解:(1) (2)的对称轴垂直于轴,且顶点为.设的方程为: 把代入上式,得,的方程为:。

),(,),(),,(222111n n n y x P y x P y x P n nP 4133+=x y n P 25-1-{}n x nP ,,,,,321ncc c c x n nc nP )1,0(2+n Dnnc nD nk nn k k k k k k 13221111-+++ {}{}1,4|,1,,2|≥==≥∈==n y y y T n N n x x x S n n{}n a TS a n ⋂∈1a TS ⋂12526510-<<-a {}na 23)1()1(25--=-⨯-+-=n n x n 1353533,(,3)4424n n n y x n P n n ∴=⋅+=--∴----nc x nP ∴nc ,4512)232(2+-++=n n x a y )1,0(2+n D n 1=a nc ∴1)32(22++++=n x n x y,=(3),T中最大数.设公差为,则,由此得例2.已知曲线.从点向曲线引斜率为的切线,切点为.(1)求数列的通项公式; (2)证明:.解:(1)设直线:,联立得,则,∴(舍去),即,∴32|0'+===n y k x n )321121(21)32)(12(111+-+=++=∴-n n n n k k nn n n k k k k k k 13221111-+++∴)]321121()9171()7151[(21+-+++-+-=n n 641101)32151(21+-=+-n n }1,),32(|{≥∈+-==n N n n x x S }1,),512(|{≥∈+-==n N n n y y T }1,,3)16(2|{≥∈-+-==n N n n y y ,ST T ∴=171-=a}{na d )125,265(91710--∈+-=d a).(247,24),(12,129248**N n n a d N m m d T a d n n ∈-=∴-=∴∈-=∴∈-<<-又22:20(1,2,)nCx nx y n -+==(1,0)P -n C (0)n n k k >nl (,)nnnP x y {}{}nnx y 与13521nn nxx x x x y -⋅⋅⋅⋅<<nl )1(+=x ky n222=+-y nx x0)22()1(2222=+-++n n n k x n k x k 0)1(4)22(2222=+--=∆n n n k k n k 12+=n n k n 12+-n n 22222)1(1+=+=n n k k x n n n1+=n n x n 112)1(++=+=n n n x k y nn n(2)证明:∵∴由于,可令函数,则,令,得,给定区间,则有,则函数在上单调递减, ∴,即在恒成立,又,则有,即.121111111+=+++-=+-n n n n nx x nn 12112125331212432112531+=+-⨯⋅⋅⋅⨯⨯<-⨯⋅⋅⋅⨯⨯=⋅⋅⋅⋅⋅⋅⋅-n n n n n x x x x n nn n x x x x x x +-<⋅⋅⋅⋅⋅⋅⋅-1112531nn nnx x n y x +-=+=11121xx x f sin 2)(-=x x f cos 21)('-=0)('=x f 22cos =x )4,0(π0)('<x f )(x f )4,0(π0)0()(=<f x f x x sin 2<)4,0(π4311210π<≤+<n 121sin2121+<+n n n n nn y x x x sin 211<+-。

人教版数学高二-备课资料数列与解析几何的综合问题

人教版数学高二-备课资料数列与解析几何的综合问题

数列与解析几何的综合问题 一、知识预备 1.数列与解析几何的综合问题内容涉及解析几何、数列多个方面,因此,我们首先需要仔细阅读题目,并根据题设理清思路,从繁杂的条件中选取有用的信息,把握问题的实质. 2.数列与解析几何的综合性和探索性强,要求学生有较强的理性思维能力,能有效地考查深层次数学品质和数学综合素质,因而这类综合题往往作为压轴题形式出现,是近年来高考出现频率较高的综合题.3.数列与解析几何的综合问题解决的策略往往是把综合问题分解成几部分,先利用解析几何的知识以及数形结合得到数列的通项公式,然后再利用数列知识和方法求解.二、典例选析例1.已知i ,j 分别是x 轴,y 轴方向上的单位向量,OA 1→=j ,OA 2→=10j ,且A n -1A n =3A n A n+1(n=2,3,4,…),在射线y=x (x≥0)上从下到上依次有点Bi (i=1,2,3,…),OB 1→=3i+3j 且Bn Bn 1-=22.(n=2,3,4,…).(1)求A 4 A 5→;(2)求OA n → , OB n →;(3)求四边形A n A n+1B n+1B n 面积的最大值.分析:第(2)小题利用向量知识将OA n → , OB n→分别转化为等比数列、等差数列求和.第(3)小题主要是利用解析几何中点到直线的距离计算四边形面积.解:(1)由已知1An -An =1An -An ,得A n-1A n →=131An -An ,A 4 A 5→=13A 3 A 4→=(13)2A 2 A 3→=(13)3A 1 A 2→=127 (OA 2→-OA 1→)=13j . (2)由(1)知A n-1A n →=13n-1 A 1 A 2→=13n-3 j , OA n →=OA 1→+A 1 A 2→+…+A n-1A n →=j+A 1 A 2→+…+A n-1A n →=j+9j+3j+…+13n-3 j =j+j n 311])31(1[91---=j n 2)31(294-- ∵|B n-1B n →|=22且B n -1,B n 均在射线上y=x (x≥0)上,B n-1B n →=2i+2j .∴OB n →=OB 1→+B 1 B 2→+B 2 B 3→+…+B n-1B n →=3i+3j+(n -1)(2i+2j )=(2n+1)i+(2n+1)j(3)四边形A n A n+1B n+1B n 的面积为S n =S ΔA n A n+1B n+1+S ΔB n+1B n A n又|A n A n+1→|=13n-3 , △A n A n+1B n+1的底边A n A n+1上的高为h 1=2n+3.又|B n B n+1→|=22,A n (0, 2)31(294--n )到直线y=x 的距离为h 2=22)31(294--n ∴S n =3322922)31(29222131)32(2143-+=-⋅⋅+⋅+⋅--n n n n n 而S n -S n -1=343332313---+-=--n n n n n n < 0,∴S 1>S 2>…>S n >… ∴S max =S 1=2479229312292=+=+- 点评:本题将向量、解析几何与等差、等比数列有机的结合,体现了在知识交汇点设置试题的命题原则.其中割补法是解决四边形面积的常用方法.例2.已知函数f (x )与函数y=a(x-1)(a>0)的图象关于直线y=x 对称(1)试用含a 的代数式表示函数f (x )的解析式,并指出它的定义域;(2)数列中{a n }中,a 1=1,当n≥2时,a n >a 1.数列{b n }中,b 1=2,S n =b 1+b 2+…+b n .点P n ( a n ,)nS n (n=1,2,3,…)在函数f (x )的图象上,求a 的值; (3)在(2)的条件下,过点P n 作倾斜角为4π的直线l n ,则l n 在y轴上的截距为31(b n +1)(n=1,2,3,…),求数列{a n }的通项公式.分析:本题条件繁多,内容涉及解析几何、函数、数列多个方面,因此,我们首先需要仔细阅读题目,并根据题设理清思路,从繁杂的条件中选取有用的信息,把握问题的实质.实际上,本题的实质仍然是数列问题,解析几何和函数只是起到一种伪装的作用.解:(1)由题可知:f (x )与函数y=a(x-1)(a>0)互为反函数,所以,f (x )= a x 2+1,(x≥0)(2)因为点P n ( a n ,)nS n (n=1,2,3,…)在函数f (x )的图象上, 所以,n S n =aa n 2+1(n=1,2,3,…) (*)在上式中令n=1可得:S 1=a a n 2+1, 又因为:a 1=1,S 1=b 1=2,代入可解得:a=1.所以,f (x )=x 2+1,(*)式可化为:n S n =a 2n +1 (n=1,2,3,…)① (3)直线l n 的方程为:y -nS n =x -a n (n=1,2,3,…), 在其中令x=0,得y=n S n -a n ,又因为l n 在y轴上的截距为31(b n +1),所以,nS n -a n =31(b n +1) 结合①式可得:b n =3a 2n -3a n +2 ②由①可知:当自然数n≥2时,S n =na 2n +n ,S n -1=(n -1)a 2n-1+n -1,两式作差得:b n =na 2n -(n -1)a 2n-1+1.结合②式得:(n -3)a 2n +3a n =(n -1)a 2n-1+1 (n≥2,n ∈N ) ③在③中,令n=2,结合a 1=1,可解得:a 2=1或2,又因为:当n≥2时,a n >a 1,所以,舍去a 2=1,得a 2=2.同上,在③中,依次令n=3,n=4,可解得:a 3=3,a 4=4.猜想:a n =n (n ∈N *).下用数学归纳法证明.(1)n=1,2,3时,由已知条件及上述求解过程知显然成立.(2)假设n=k 时命题成立,即a k =k (k ∈N ,且k≥3),则当n=k+1时,由③式可得:(k -2)a 2k+1+3a k+1=ka 2k +1 把a k =k 代入上式并解方程得:a k+1=-212-+-k k k 或k+1 由于k≥3,所以,-212-+-k k k =kk k -+-21)1(<0,所以,a k+1=-212-+-k k k 不符合题意,应舍去,故只有a k+1=k+1.所以,n=k+1时命题也成立.综上可知:数列{a n }的通项公式为a n =n (n ∈N *)点评:演绎和归纳是解决数列问题的常用方法;解决综合题的策略往往是把综合问题分解成几部分,然后各个击破.例3.设点A n (x n ,0),P n (x n ,2n -1)和抛物线C n :y=x 2+a n x +b n (n ∈N *),其中a n =-2-4n -121-n ,x n 由以下方法得到: x 1=1,点P 2(x 2,2)在抛物线C 1:y =x 2+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1上点的最短距离,…,点P n+1(x n+1,2n )在抛物线C n :y =x 2+a n x +b n 上,点A n (x n ,0)到P n+1的距离是A n 到C n 上点的最短距离.(1)求x 2及C 1的方程;(2)证明{x n }是等差数列.解:(1)由题意,得A 1(1,0),C 1:y=x 2-7x+b 1.设点P (x ,y )是C 1上任意一点,则|A 1P|=22)1(y x +- =2122)b 7x -(x )1(¨++-x 令f (x )=(x -1)2+(x 2-7x+b 1)2,则f′(x )=2(x -1)+2(x 2-7x+b 1)(2x -7).由题意,得f′(x 2)=0,即2(x 2-1)+2(x 22-7x 2+b 1)(2x 2-7)=0.又P 2(x 2,2)在C 1上,∴2=x 22-7x 2+b 1,解得x 2=3,b 1=14.故C 1方程为y=x 2-7x+14.(2)设点P (x ,y )是C n 上任意一点,则|A n P|=(x-x n )2+(x 2+a n x+b n )2令g (x )=(x -x n )2+(x 2+a n +x+b n )2,则g′(x )=2(x -x n )+2(x 2+a n x+b n )(2x+a n )由题意得g′(x n+1)=0,即2(x n+1-x n )+2(x 2n+1+a n x n+1+b n )(2x n+1+a n )=0又∵2n =x 2n+1+a n x n+1+b n ,∴(x n+1-x n )+2n (2x n+1+a n )=0(n≥1).即(1+2n+1 )x n+1-x n +2n a n =0(*)由(1)知x 1=1,x 2=3,x 3=5,猜想:x n =2n -1下面用数学归纳法证明x n =2n -1①当n=1时,x 1=1,等式成立.②假设当n=k 时,等式成立,即x k =2k -1则当n=k+1时,由(*)知(1+2k+1)x k+1-x k +2ka k =0 又a k =-2-4k -121-k ,∴x k+1=1212++-k k k k a x =2k+1. 即当n=k+1时,等式成立.由①②知,等式对n ∈N *成立. ∴{x n }是等差数列.。

数列与解析几何的综合-高中数学知识点讲解

数列与解析几何的综合-高中数学知识点讲解

数列与解析几何的综合
1.数列与解析几何的综合
【知识点的知识】
函数、数列、解析几何作为高中数学的主要躯干,蕴含着诸多的数学思想和方法(数形结合、函数与方程、转化和归纳等),因而一直是高考的重点.尤其是它们互相之间及和其他数学知识(如复数、向量等)之间的互相渗透、互相联系,更为高考命题带来广阔的空间.而传统的章节复习法使学生分散地学习知识,对各个章节的联系和渗透考虑较少,从而造成对一些综合题心存胆怯.近几年高考中常见的函数﹣数列﹣解析几何综合题就是其中的典型.
【解题方法点拨】
事实上,无论是函数、数列还是解析几何中的曲线(包括复数、向量),都表现出数和形两种状态,数列是一个特殊的函数;函数的图象(解析式)则可看作解析几何中一种特殊的形(方程);而复数、向量的坐标顺理成章地使它们与函数、数列及解析几何发生联系.解函数﹣数列﹣解析几何综合题首先是建立在对数学基本概念理解的基础上,然后抓住概念间内在的联系,将问题转化为较熟悉的数学问题予以解决,当然这也离不开对各章节内部的扎实基本功.
1/ 1。

数列综合题的常见类型 与方法解析

数列综合题的常见类型 与方法解析

数列综合题的常见类型 与方法解析湖南省 黄爱民 高明生数列与其它数学知识的综合性问题一直是高考的热点,数列综合题一般是以数列与函数、数列与不等式,数列与解析几何为主,全面考查函数与方程、转化与化归、分类讨论等重要思想以及分析和解决问题的能力和思维的灵活性、深刻性、技巧性。

下举例谈谈数列综合题的常见类型及方法解析。

一、 等差、等比数列的综合问题例1、已知数列{}n a 中,651=a ,且对任意正整数n 都有112131++⎪⎭⎫⎝⎛+=n n n a a .数列{}n b 对任意自然数n 都有n n n a a b 211-=+.(Ⅰ)求证数列{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)设数列{}n a 的前n 项的和为n S ,求n n S ∞→lim 的值.分析: 已知条件中,数列{}n a 的通项公式是通过相邻两项之间的关系给出的,而数列{}n b 的通项公式则是通过数列{}n a 给出.因此,解答本题自然有两种思路:一是从数列{}n b 入手,这就应该通过代数变形,致力于证明nn b b 1+为定值;二是从数列{}n a 的通项公式入手.如何求出数列{}n a 的通项公式呢?由于已知条件112131++⎪⎭⎫ ⎝⎛+=n n n a a 与等比数列很相似,结合上下文,则可以考虑设法构造出一个与n a 及n⎪⎭⎫⎝⎛21有关的新的等比数列.解法1:(1)∵ 112131++⎪⎭⎫⎝⎛+=n n n a a ,∴ 11112133213++++⎪⎭⎫ ⎝⎛⋅-=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=n n n n n a a a .∴ 一方面,n n n a a b 211-=+n n n a a 2121311-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=+n n a 61211-⎪⎭⎫⎝⎛=+,另一方面,n b ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛⋅--⎪⎭⎫⎝⎛=-⎪⎭⎫ ⎝⎛=++++++12111161213213361216121n n n n n n n a a a ,∴3161213612112121=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛=+++++n n n n nn a a b b . 又916561416121121=⋅-=-⎪⎭⎫ ⎝⎛=a b ,∴ 数列{}n b 是以911=b 为首项,以31为公比的等比数列.(2)由(1)可知:11313191+-⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⋅=n n n b ,又n b n n a 61211-⎪⎭⎫⎝⎛=+,∴ ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=+++11131216216n n n n n b a ,N n ∈.(3)231131211216lim 22=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=∞→n n S .解法2:设数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛-n n r a 21为等比数列,则⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-++nn n n r a s r a 212111,对照112131++⎪⎭⎫⎝⎛+=n n n a a ,不难解得:3=r ,31=s .∴ 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛⋅-n n a 213是以322131-=⋅-a 为首项,以31为公比的等比数列.∴n n n n a ⎪⎭⎫ ⎝⎛⋅-=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛⋅--31231322131.∴ nn n a ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=312213.∴n n n a a b 211-=+=1113131221321312213+++⎪⎭⎫⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛n n n n n .∴ n S ∑∑∑∑====⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==n k k n k k nk k k n k k a 1111312213312213.∴ 23113221123lim =---=∞→n n S . 评析:解法1是按照题目设问由易到难的顺序,思路自然顺畅;解法2虽不失为巧思妙解,但其思路的获得一方面源于对112131++⎪⎭⎫⎝⎛+=n n n a a 的认识,另一方面,题目的设问也给了我们一定的提示.二、 数列与函数综合问题例2、函数f x ()是定义在[0,1]上的增函数,满足f x f x()()=22且f ()11=,在每个区间(,]12121i i -(i =1,2……)上,y f x =()的图象都是斜率为同一常数k 的直线的一部分。

数列与解析几何综合—点列问题

数列与解析几何综合—点列问题

专题:数列与解析几何综合——点列问1.如图,直线)21,0(1:1±≠≠-+=k k k kx y l 与:2l 2121+=x y 相交于点P.直线l 1与x 轴交于点P 1,过点P 1作x 轴的垂线交直线l 2于点Q 1,过点Q 1作y 轴的垂线交直线l 1于点P 2,过点P 2作x 轴的垂线交直线l 2于点Q 2,…,这样一直作下去,可得到一系列点P 1、Q 1、P 2、Q 2,…,点P n (n=1,2,…)的横坐标构成数列{}.n x(Ⅰ)证明*),1(2111N n x kx n n ∈-=-+; (Ⅱ)求数列{}n x 的通项公式; (Ⅲ)比较5||4||22122+PP k PP n 与的大小.【解析】(Ⅰ)证明:设点P n 的坐标是),(n n y x , 由已知条件得点Q n 、P n+1的坐标分别是:).2121,(),2121,(1+++n n n n x x x x 由P n+1在直线l 1上,得.121211k kx x n n -+=++ 所以 ),1()1(211-=-+n n x k x 即 .*),1(2111N n x kx n n ∈-=-+(Ⅱ)解:由题设知 ,011,1111≠-=--=k x k x 又由(Ⅰ)知 )1(2111-=-+n n x kx ,所以数列 }1{-n x 是首项为,11-x 公比为k21的等比数列.从而 .*,)21(21,)21(111N n k x k k x nn n n ∈⨯-=⨯-=--即(Ⅲ)解:由⎪⎩⎪⎨⎧+=-+=,2121,1x y k kx y 得点P 的坐标为(1,1).所以,)21(2)21(8)11(2)1(2||2222222-+⨯=--++-=n n nn n kk k kx x PP .945])10()111[(45||42222212+=+-+--=+k kk PP k (i )当2121,21||>-<>k k k 或即时,5||4212+PP k >1+9=10.而此时 .5||4||2.10218||2,1|21|021222+<=+⨯<<<PP k PP PP k n n 故所以 (ii )当1110||,(,0)(0,)222k k <<∈-即时,5||4212+PP k <1+9=10.而此时 .5||4||2.10218||2,1|21|21222+>=+⨯>>PP k PP PP kn n 故所以EX :已知点()n n n b a P ,都在直线22:+=x y l 上,1P 为直线l 与x 轴的交点,数列{}n a 成等差数列,公差为1. (+∈N n )(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n b -12的前n 项和n T . (3)求证:+2211P P+2311P P …… +52121<nP P (n ≥2, +∈N n ) 【解析】(1)()22,2,0,11-=-=-n b n a P n n 4分(2)令n c =nb -12=14n 2-则它的前n 项的和ns =132n n -,7=cn T =()⎪⎩⎪⎨⎧≥+-≤-78413)7(1322n n n n n n 4分(3) ())0,1(,22,21---P n n P n )1(51-=∴n P P n )2(≥n 2分()⎥⎦⎤⎢⎣⎡-++++=+++∴22221231221113121151111n P P P P P P n()()⎥⎦⎤⎢⎣⎡--+=⎥⎦⎤⎢⎣⎡--++⨯+⨯+<)1(11151121321211151n n n 52)1(1251<⎪⎪⎭⎫ ⎝⎛--=n 4分2、如图,曲线2(0)y x y =≥上的点i P 与x 轴的正半轴上的点i Q 及原点O 构成一系列正三角形111221,,,,.n n n OPQ Q P Q Q P Q -设正三角形1n n n Q P Q -的边长为n a ,n ∈N ﹡(记0Q 为O ),(),0n n Q S .(1) 求1a 的值;(2) 求数列{n a }的通项公式n a ;(3) 求证:当2≥n 时,2222122111132nn nna a a a ++++++<. 【解析】(1)由条件可得1111,22P a a ⎛⎫ ⎪ ⎪⎝⎭,代入曲线2(0)y x y =≥得21111312,0,423a a a a =>∴=; (2)12n n S a a a =+++ ∴点1111(,)22n n n n P S a a ++++代入曲线2(0)y x y =≥并整理得 PP 2PQ 1 Q 2O2113142n n n S a a ++=-,于是当*2,n n N ≥∈时,221113131()()4242n n n n n n n a S S a a a a -++=-=--- 即11113()()()24n n n n n n a a a a a a ++++=+⋅- *1120,(2,)3n n n n a a a a n n N ++>>∴-=≥∈又当2122231421,,(4233n S a a a ==-∴=-时舍去)2123a a ∴-=,故*12()3n n a a n N +-=∈ 所以数列{n a }是首项为23、公差为23的等差数列, 23n a n =; (3) 由(2)得23n a n =,当2n ≥时,22221221111n n n na a a a ++++++22299944(1)44n n n =+++⋅22291114(1)4n n n ⎡⎤=++⎢⎥+⎣⎦91114(1)(1)2(21)n n n n n n ⎡⎤<++⎢⎥-+-⎣⎦9111111()()()411212n nn n n n ⎡⎤=-+-++-⎢⎥-+-⎣⎦9119(1)()4128(1)n n n n n +=-=--, 欲证9(1)38(1)2n n n +<-,只需证23344n n n +<-,即证24730n n -->,设2()473f n n n =--, 当78n ≥时,f (n )递增.而当3n ≥时,有()0f n >成立.所以只需验证n=2时不等式成立.------ 13分 事实上,919529613164646464642++=+=<. 综上,原不等式成立. ------------------------------------------14分3、已知曲线C :x y 1=, n C :n x y -+=21 (*∈N n )。

人教版高考总复习一轮数学精品课件 主题三 几何与代数 第九章解析几何中的综合问题-第1课时 定点问题

人教版高考总复习一轮数学精品课件 主题三 几何与代数 第九章解析几何中的综合问题-第1课时 定点问题
= + ,
由ቐ 2 2
消去并化简得 32 − 4 2 + 6 + 32 − 12 = 0,
− =1
4
3
2
3 − 4 ≠ 0,1 + 2 =
6
− 2 ,1
3 −4
⋅ 2 =
32 −12
.
32 −4
因为双曲线的右顶点为1 2,0 ,且1 + 2 = 1,
2
− 2
> 0,则
3
,
2
.
因为椭圆过点 −2,0 ,所以 = 2,
2
将点的坐标代入椭圆的方程,可得 2

2
因此,椭圆的方程为
4
+
2
3
= 1.
+
9
4
2
=
4−2
1,即
4
+
9
4
2
= 1,解得 = 3.
(2)设过且与轴垂直的直线为,纵坐标不为0的点为上一动点,过作直线的
+2
2
−4
,
1+2 2 1 2
2 +−2
+
2
1
2
故直线的方程为 = + − 2,即 = +
1
2
− 2,
1
2
所以直线过定点 − , −2 .
若直线的斜率不存在,设其方程为 = 0 , 0 , 0 , 0 , −0 .
0 −2
由题意得
1
2
所以
+
1 −2
2 −2
1
2
=
+
1 + − 2 2 + − 2

高中数学“数列的综合问题” .doc

高中数学“数列的综合问题” .doc

专题讲座高中数学“数列的综合问题”一、对本专题数学知识的深层次理解(一)数列综合问题的几个重点内容数列的综合问题课标中并没有明确的陈述,但往往是高考考查涉及到的问题,如:数列求和问题;数列与不等式综合问题;关于递推数列的问题等。

这些问题往往涉及数列知识的综合和高考的考查重点,教学中教师要给予关注并较好的把握。

(二)教学内容的重点、难点重点:在解决数列问题中要关注数列的属性、项数,用函数的观点研究数列;掌握数列求和的基本方法及基本的递推数列问题。

难点:数列与不等式综合问题中的放缩问题;解决递推数列问题的策略。

二、“数列综合问题”的教与学的策略(一)解决数列问题的基本思路判断所要求研究的数列是否为特殊数列:等差数列或等比数列,如果是,用公式和性质解决 . 如果不是等差、等比数列,要么转化为等差数列或等比数列,要么寻找其它方法 .因此我们拿到一个数列的问题时,要注意关注数列的属性。

1.关注数列的属性本题的关键是定性,即关注数列的属性。

2.关注数列的项数此题涉及等差、等比数列的综合问题,考查了等比中项,等差数列的通项公式等基本知识,考查了方程思想,关键是利用已知条件找到 K n与 n的关系。

3.用函数的观点认识数列本题的关键是用函数的观点去看待数列问题,此题也涉及到不等式的知识 .以上几个例题从不同角度反映了数列是特殊的函数这一问题,因此解决数列问题,往往可以利用解决函数问题的思考方式。

(二)关注数列求和问题的教学数列求和的问题需要根据数列特点选择解决方法,必须掌握常用的数列求和方法,但数列求和往往和其他知识综合在一起,综合性较强 . 若为等差(比)数列,则直接用公式求和;若非等差(比)数列,则需寻找间接求和的方法 . 常见的有:“倒序相加法”“错位相减法”“裂项相消法”等 .1.用公式求和分析 : 课本上推导等差数列的前项和公式的方法为倒序相加法 , 故设数列求和的问题需要根据数列特点选择解决方法这一点在教学中应该始终坚持。

高中数学数列综合知识点+题库(K12教育文档)

高中数学数列综合知识点+题库(K12教育文档)

高中数学数列综合知识点+题库(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学数列综合知识点+题库(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学数列综合知识点+题库(word版可编辑修改)的全部内容。

要求层次 重难点数列的概念 数列的概念和表示法A根据一些数列的前几项抽象、归纳数列的通项公式根据数列的递推公式写出数列的前几项等差数列等差数列的概念B等差数列的定义、通项公式、性质的理解与应用灵活应用求和公式解决问题等差数列的通项公式与前n 项和公式C等比数列等比数列的概念B等差数列的定义、通项公式、性质的理解与应用灵活应用求和公式解决问题等比数列的通项公式与前n 项和公式C典例分析:【例1】 设等比数列{}n a 的公比为q ,前n 项和为n S ,若1n S +,n S ,2n S +成等差数列,则q 的值为 .【例2】 已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈⑴证明:数列{}1n n a a +-是等比数列; ⑵求数列{}n a 的通项公式;高考要例题精板块一:等差等比综合数列综合问题⑶若数列{}n b 满足12111*44...4(1)(),nnb b b b n a n N ---=+∈证明{}n b 是等差数列.【点评】 若数列{}n a 的递推公式的一般形式为11n n n a pa qa +-=+当1p q +=时,有11()n n n n a a q a a +--=--.于是{}1n n a a +-是以21a a -为首项,q -为公比的等比数列,接下去就可以按照例题2的方法继续了.当1p q +≠时,存在α,β满足11()n n n n a a a a αβα+--=-,与11n n n a pa qa +-=+比较系数得p αβ+=,q αβ=-.可见α,β是二次方程20t pt q --=的两个根,通过解此方程求α,β的值,再进一步推导n a 的表达式.由于高考中不涉及连续三项递推公式,因此在此不再举例.【例3】 已知数列{}n a 的首项为13a =,通项n a 与前n 项和n S 之间满足12(2)≥n n n a S S n -=⋅.⑴求证:1nS⎧⎫⎨⎬⎩⎭是等差数列,并求公差;⑵求数列{}n a 的通项公式.【例4】 已知数列{}n a 的前n 项和为n S ,且22(1,2,3)n n S a n =-=,数列{}n b 中,11b =,点1()n n P b b +,在直线2y x =+上.⑴求数列{}{}n n a b ,的通项公式n a 和n b ; ⑵设n n n c a b =⋅,求数列{}n c 的前n 项和n T , 并求满足167n T <的最大正整数n .【例5】 已知等比数列{}n a 满足1611a a +=,且34329a a =. ⑴求数列{}n a 的通项n a ;⑵如果至少存在一个自然数m ,恰使123m a -,2()m a ,149m a ++这三个数依次成等差数列,问这样的等比数列{}n a 是否存在?若存在,求出通项公式;若不存在,请说明理由.【例6】 已知等差数列{}n a ,公差为d ,求3521123n n n S a x a x a x a x -=+++(1)x ≠【例7】 已知数列{}n a 是等差数列,且12a =,12312a a a ++=.(2003北京-文—16)⑴求数列{}n a 的通项公式;⑵令3n n n b a =⋅,求数列{}n b 前n 项和的公式.【例8】 在等差数列{}n a 中,11a =,前n 项和n S 满足条件242,1,2,1n n S n n S n +==+,⑴求数列{}n a 的通项公式;⑵记(0)na n nb a p p =>,求数列{}n b 的前n 项和n T 。

9】第九讲 数列与解析几何、点列问题

9】第九讲 数列与解析几何、点列问题



b 1 2 n , 且已知 P , nN 0 , 2 3 3 1 a n
(2)判断点 Pn n 2 与直线 l 的位置关系,并证明你的结论; (3)求点 Pn 的极限位置. 【解法导析】 :二问用数学归纳法解决相对来说比较合适,从题目中意思就可以感受出现猜 测后通过数学归纳法证明.
第九讲 数列与解析几何、点列问题 一、考点演绎 点列问题是数列问题与解析几何问题的综合, 一个点的横, 纵坐标分别是某两个不同数 列的项, 而这两个数列又由点所在的曲线建立了联系, 从而数列的代数特征与曲线的几何性 质紧密相关,就可以根据已知条件从数列和曲线两个角度利用所学过的知识进行演绎推理, 得到所需要的结果.这类问题在近几年高考中经常出现,就是因为它的综合性较强,可以从 数与形的两个角度考查理性思维能力,数学联结能力以及分析问题与解决问题的能力. 二、例题精讲 例 1.设曲线 c : y x ( x 0) 上的点为 P0 ( x 0 , y 0 ), 过 P0 作曲线 c 的切线与 x 轴交于 Q1,
xn1 4 x 2 , 注意到 x n 0 ,所以 x n 2 与 x n 1 2 异号 2 n1 xn1 1 xn1 1
由于 x1 1 2 ,所以 x2 2 ,以此类推, 当 n 2k 1(k N ) 时, x n 2 ;
*
当 n 2k (k N ) 时, x n 2 .
1 2 【详解】 : (1)由 a b 0 , 0 ,得: 3 3
2 1 3 1 3 3, b a 1 1 2 4 3 4 4 1 1 3
显然直线 l 的方程为 xy . 1
3 1 3 1 4 1 4 4, (2)由 a a b 1 , 1 ,得: b 2 2 . 2 4 4 5 4 5 5 1 1 4

数列与解析几何的交融——点列问题

数列与解析几何的交融——点列问题

数列与解析几何的交融——点列问题
陈斌
【期刊名称】《数理化解题研究:高中版》
【年(卷),期】2006(000)002
【摘要】近几年高考题中出现了一种以点的坐标为项的点列问题,它是以解析几何为背景,用数列的有关知识来解决的一类综合性试题,解决点列问题的关键是把几何中的点列问题化归为代数中的数列问题,下面举例说明几种常用的转化方法。

【总页数】2页(P21-22)
【作者】陈斌
【作者单位】浙江省宁波镇海中兴中学,315201
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.例析数列问题在解析几何中的处理技巧 [J], 薛宏伟
2.利用点列共线证明等差数列的性质 [J], 邹玲;傅金梅
3.例谈解析几何中的点列问题 [J], 李太新
4.例谈解析几何中的点列问题 [J], 李太新
5.解析几何中以"数列"为命题背景的问题求解策略 [J], 李波
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:数列与解析几何综合——点列问1.如图,直线)21,0(1:1±≠≠-+=k k k kx y l 与:2l 2121+=x y 相交于点P.直线l 1与x 轴交于点P 1,过点P 1作x 轴的垂线交直线l 2于点Q 1,过点Q 1作y 轴的垂线交直线l 1于点P 2,过点P 2作x 轴的垂线交直线l 2于点Q 2,…,这样一直作下去,可得到一系列点P 1、Q 1、P 2、Q 2,…,点P n (n=1,2,…)的横坐标构成数列{}.n x(Ⅰ)证明*),1(2111N n x kx n n ∈-=-+; (Ⅱ)求数列{}n x 的通项公式;(Ⅲ)比较5||4||22122+PP k PP n 与的大小.【解析】(Ⅰ)证明:设点P n 的坐标是),(n n y x , 由已知条件得点Q n 、P n+1的坐标分别是:).2121,(),2121,(1+++n n n n x x x x 由P n+1在直线l 1上,得.121211k kx x n n -+=++ 所以 ),1()1(211-=-+n n x k x 即 .*),1(2111N n x kx n n ∈-=-+(Ⅱ)解:由题设知 ,011,1111≠-=--=k x k x 又由(Ⅰ)知 )1(2111-=-+n n x kx ,所以数列 }1{-n x 是首项为,11-x 公比为k21的等比数列.从而 .*,)21(21,)21(111N n k x k k x nn n n ∈⨯-=⨯-=--即(Ⅲ)解:由⎪⎩⎪⎨⎧+=-+=,2121,1x y k kx y 得点P 的坐标为(1,1).所以,)21(2)21(8)11(2)1(2||2222222-+⨯=--++-=n n nn n kk k kx x PP .945])10()111[(45||42222212+=+-+--=+k kk PP k (i )当2121,21||>-<>k k k 或即时,5||4212+PP k >1+9=10.而此时 .5||4||2.10218||2,1|21|021222+<=+⨯<<<PP k PP PP kn n 故所以 (ii )当1110||,(,0)(0,)222k k <<∈-U 即时,5||4212+PP k <1+9=10.而此时 .5||4||2.10218||2,1|21|21222+>=+⨯>>PP k PP PP kn n 故所以EX :已知点()n n n b a P ,都在直线22:+=x y l 上,1P 为直线l 与x 轴的交点,数列{}n a 成等差数列,公差为1. (+∈N n )(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n b -12的前n 项和n T . (3)求证:+2211P P+2311P P …… +52121<nP P (n ≥2, +∈N n ) 【解析】(1)()22,2,0,11-=-=-n b n a P n n 4分(2)令n c =nb -12=14n 2-则它的前n 项的和ns =132n n -,7=cn T =()⎪⎩⎪⎨⎧≥+-≤-78413)7(1322n n n n n n 4分(3) ())0,1(,22,21---P n n P n Θ )1(51-=∴n P P n )2(≥n 2分()⎥⎦⎤⎢⎣⎡-++++=+++∴22221231221113121151111n P P P P P P nΛΛ ()()⎥⎦⎤⎢⎣⎡--+=⎥⎦⎤⎢⎣⎡--++⨯+⨯+<)1(11151121321211151n n n Λ 52)1(1251<⎪⎪⎭⎫ ⎝⎛--=n 4分2、如图,曲线2(0)y x y =≥上的点i P 与x 轴的正半轴上的点i Q 及原点O 构成一系列正三角形111221,,,,.n n n OPQ Q P Q Q P Q -L L 设正三角形1n n n Q P Q -的边长为n a ,n ∈N ﹡(记0Q 为O ),(),0n n Q S .(1) 求1a 的值;(2) 求数列{n a }的通项公式n a ;(3) 求证:当2≥n 时,2222122111132nn n na a a a ++++++<L.【解析】(1)由条件可得11112P a ⎛⎫⎪ ⎪⎝⎭,代入曲线2(0)y x y =≥得21111312,0,423a a a a =>∴=Q ; (2) 12n n S a a a =+++Q L ∴点1111()2n n n n P S a ++++代入曲线2(0)y x y =≥并整理得 2113142n n n S a a ++=-,于是当*2,n n N ≥∈时,221113131()()4242n n n n n n n a S S a a a a -++=-=--- 即11113()()()24n n n n n n a a a a a a ++++=+⋅- PP 2PQ 1 Q 2O*1120,(2,)3n n n n a a a a n n N ++>>∴-=≥∈Q又当2122231421,,(4233n S a a a ==-∴=-时舍去)2123a a ∴-=,故*12()3n n a a n N +-=∈ 所以数列{n a }是首项为23、公差为23的等差数列, 23n a n =; (3) 由(2)得23n a n =,当2n ≥时,22221221111n n n na a a a ++++++L22299944(1)44n n n =+++⋅L 22291114(1)4n n n ⎡⎤=++⎢⎥+⎣⎦L 91114(1)(1)2(21)n n n n n n ⎡⎤<++⎢⎥-+-⎣⎦L 9111111()()()411212n nn n n n ⎡⎤=-+-++-⎢⎥-+-⎣⎦L 9119(1)()4128(1)n n n n n +=-=--, 欲证9(1)38(1)2n n n +<-,只需证23344n n n +<-,即证24730n n -->,设2()473f n n n =--, 当78n ≥时,f (n )递增.而当3n ≥时,有()0f n >成立.所以只需验证n=2时不等式成立.------ 13分 事实上,919529613164646464642++=+=<. 综上,原不等式成立. ------------------------------------------14分3、已知曲线C :x y 1=, n C :nx y -+=21 (*∈N n )。

从C 上的点),(n n n y x Q 作x 轴的垂线,交n C 于点n P ,再从点n P 作y 轴的垂线,交C 于点),(111+++n n n y x Q ,设111,,1++-=-==n n n n n n y y b x x a x 。

(I )求21,Q Q 的坐标; (II )求数列{}n a 的通项公式;(III )记数列{}n n b a ⋅的前n 项和为n S ,求证:31<n S 【解析】(1)由题意得知)1,1(1Q ,)32,1(1P ,)32,23(2Q(2)),(n n n y x Q Θ,),(111+++n n n y x Q ,点n P 的坐标为),(1+n n y x1,+n n Q Q Θ在曲线C 上,n n x y 1=∴,111++=n n x y 又n P 在曲线n C 上,nn n x y -++=211 nn n x x -++=∴21 n n a -=∴2(III )+-+-=---)()(211n n n n n x x x x x ……+112)(x x x +- ……7分=12221)2()1(++++-----ΛΛn n =n n--=--⋅122211)21(11 )11(2)()(111+-++-=-⋅-=⋅∴n n nn n n n n n x x y y x x b a )221221(21nn n ------= )122()222(1-⋅⋅-⋅=nn ……………………………………11分 Θn n 2222≥-⋅,3122≥-⋅nnn n b a 231⋅≤⋅∴ nn n n b a b a b a S 23123123122211⋅++⋅+⋅≤+++=ΛΛΛΛ 31)211(31211)21(161<-=--⋅=n n6.(本小题满分15分,其中第一小问4分,第二小问6分,第三小问5分)过曲线3:x y C =上的点),(111y x P 作曲线C 的切线l 1与曲线C 交于),(222y x P ,过点P 2作曲线C 的切线l 2与曲线C交于点),(333y x P ,依此类推,可得到点列:),(111y x P ,2223331(,),(,),,(,),,1n n n P x y P x y P x y x =L L 已知(1)求点P 2、P 3的坐标.(2)求数列}{n x 的通项公式.(3)记点n P 到直线)(211+++n n n P P l 即直线的距离为n d , 求证:9411121>+++n d d d Λ.【解析】(1))64,4(),8,2(32P P -- …………………………………………4分(2)曲线C 上点),(n n n y x P 处的切线n l 的斜率为23n x x n x y k n ='==, 故得到的方程为)(32n n n x x x y y -⋅=- ……………………………………6分联立方程3233()n n n nn y x y y x x x y x ⎧=⎪-=⋅-⎨⎪=⎩消去y 得:023323=+⋅-n n x x x x化简得:0)2()(2=+⋅-n n x x x x 所以:n n x x x x 2-==或………………8分由n x x =得到点P n 的坐标),,(n n y x 由n x x 2-=就得到点1+n P 的坐标))2(,2(3n n x x --所以:n n x x 21-=+ 故数列}{n x 为首项为1,公比为-2的等比数 列所以:1)2(--=n n x …………………………………………10分(3)由(2)知:),)8(,)2((),)8(,)2((1121++++----n n n n n n P P所以直线n l 的方程为:))2(()2()2()8()8()8(11nn n n n nx y --------=--++ 化简得:0)8(243=-⋅--⋅nn y x …………………………………………12分321122112.923827149827)1()43(|)8(2)8()2(43|-----=⋅⋅<+⋅⋅=-+⋅-⋅----⋅⋅=n n n n n n n n n n n d 所以3)21(911-⋅>n n d ∴)211(9811121n n d d d ->+++Λ≥814(1)929-= …………………15分7. 已知曲线C:y=x 2(x >0),过C 上的点A 1(1,1)作曲线C 的切线l 1交x 轴于点B 1,再过点B 1作y轴的平行线交曲线C 于点A 2,再过点A 2作曲线C 的切线l 2交x 轴于点B 2,再过点B 2作y 轴的平行线交曲线C 于交A 3,…,依次作下去,记点A n 的横坐标为a n (n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{an}的前n 项和为Sn ,求证:anSn ≤1;(3)求证:1ni =∑1i i a S ≤41.3n - 【解析】(1)∵曲线C 在点A n (a n ,a 2)n n n 处的切线l 的斜率是2a , ∴切线l n 的方程是y-a 22().n n n a x a =-由于点B n 的横坐标等于点A n+1的横坐标a n+1,所以,令y=0,得a n+1=12a n 。

相关文档
最新文档