红外线CO气体分析仪器的结构原理使用讲义59页PPT

合集下载

红外线气体分析仪(课件六)

红外线气体分析仪(课件六)
红外线气体分析仪
红外线气体分析仪的基本原理
其工作原理是基于某些气体对红外线的选择 性吸收。红外线分析仪常用的红外线波长为 2~12µm。简单说就是将待测气体连续不断 的通过一定长度和容积的容器,从容器可以 透光的两个端面的中的一个端面一侧入射一 束红外光,然后在另一个端面测定红外线的 辐射强度,然后依据红外线的吸收与吸光物 质的浓度成正比就可知道被测气体的浓度。
红外线气体分析仪的特点
1、能测量多种气体 除了单原子的惰性气体和具有对称结构无极性的双原子分子气
体外,CO、CO2、NO、NO2、NH3等无机物、CH4、C2H4 等烷烃、烯烃和其他烃类及有机物都可用红外分析器进行测量; 2、测量范围宽
可分析气体的上限达100%,下限达几个ppm的浓度。进 行精细化处理后,还可以进行痕量分析; 3、灵敏度高
红外分析仪基本结构及主要部件
红外线气体分析仪一般由气路和电路两部 分组成,它的气路和电路的联系部件也是核 心部分是发送器,发送器是红外分析仪的 “心脏”部分,它将被测组分浓度的变化转 为某种电参数的变化,并通过相应的电路转 换成电压或电流输出。发送器由光学系统和 检测器两部分组成,主要构成部件有如下一 些,红外辐射光源、气室和滤光元件、检测 器
切光片
切光片的作用是把辐射光源的红外光变成断续的光, 即对红外光进行调制。调制的目的是使检测器产生 的信号成为交流信号,便于放大器放大,同时改善 检测器的响应时间特性
气室
红外分析仪中的气室包括测量气室、参比气室、和 滤波气室,他们的结构基本相同,都是圆筒形,两 端都是用晶片密封。
滤光片
红外线气体分析仪调校的主要内容和要求
相位平衡调整 调整切光片轴心位置,使其处在两 束红外光的对称点上。要求切光片同时遮挡或同时 漏出两个光源,即所谓同步,使两个光路作用在检 测器室两侧窗口上的光面积相等。

红外分析仪的培训教程ppt课件

红外分析仪的培训教程ppt课件
检查电源和电缆
确保电源稳定,电缆连接良好 ,避免意外断电或信号干扰。
定期校准
按照厂家推荐的时间间隔进行 校准,确保测量结果的准确性 。
注意环境温度和湿度
保持仪器工作环境稳定,避免 极端温度和湿度对仪器造成损害。ຫໍສະໝຸດ 故障诊断与排除方法01
02
03
04
无法开机
检查电源插头是否插好,电源 线是否损坏,保险丝是否熔断
不同类型红外分析仪比较
01
色散型红外分析仪
利用棱镜或光栅将红外光分散成不同波长的单色光,然后分别进行检测
。具有较高的分辨率和灵敏度,但结构复杂且价格昂贵。
02 03
干涉型红外分析仪
利用干涉原理将红外光分为两束并使其发生干涉,通过测量干涉图样的 变化来分析样品的成分。具有快速、准确、无需分光元件等优点,但对 光源和检测器的要求较高。
启动数据采集程序,开始 扫描样品。
对采集的数据进行预处理 ,如基线校正、归一化等 。
监视数据采集过程,确保 数据采集完整、准确。
对处理后的数据进行谱图 分析,识别特征峰、计算 峰面积等。
CHAPTER 04
红外分析仪维护与保养知识
日常维护保养注意事项
保持仪器清洁
定期清洁仪器外壳和内部部件 ,避免灰尘和污垢影响性能。
原理
红外分析仪基于红外光谱技术, 通过测量物质在红外光谱区的吸 收、发射或反射光谱,获得物质 的成分、结构等信息。
发展历程及现状
发展历程
红外分析仪经历了从实验室研究到工业应用的漫长过程,随着计算机技术、光 学技术等的发展,红外分析仪的性能不断提高,应用领域也不断扩展。
现状
目前,红外分析仪已经广泛应用于化工、环保、食品、医药、农业等领域,成 为现代分析测试技术中不可或缺的一部分。

红外线气体分析仪篇PPT(完整版)

红外线气体分析仪篇PPT(完整版)
灵敏度迁移:≤1%测量值/周 二、红外分析仪基本原理
主要测量CO、CO2、NO、SO2、CH4、CmHn等气体。 红外线是靠近可见的红外光而波长较红色光大的一段光谱,肉眼看不见,属于不可见光范围。
分辨率:≤0.5% 量程 二、红外分析仪基本原理
二、红外分析仪基本原理
T90:与测量室长度和样气管线流量和电子响 应时间有关。
波段,所以不能用红外气体分析仪来测量。
红外线是靠近可见的红外光而波长较红色光大的一段光谱,肉眼看不见,属于不可见光范围。
重复性:≤0.5% 量程 红外线是靠近可见的红外光而波长较红色光大的一段光谱,肉眼看不见,属于不可见光范围。
二、红外分析仪基本原理
气体吸收了红外线光谱的辐射能后,一部分可转变成热能,使温度升高。
6.2
气体
CH4 C2H2 C2H4
吸收波长 λ/μm
3.3 , 7.7
3.7
10.5
二、红外分析仪基本原理
同一原子组成的双原子气体,如N2、 O2、Cl2、H2等,以及各种惰性气体,如Ne、Ar 等,由于在1~25µm的波长范围内没有特征吸 收波段,所以不能用红外气体分析仪来测量。
三、典型分析仪(ABB Uras 26)
红外线气体分析仪篇
一、红外线的基本知识
红外线是靠近可见的红外光而波长较红色光 大的一段光谱,肉眼看不见,属于不可见光范围。
波长为~420µm 之间。
二、红外分析仪基本原理
各种多原子气体(CO,CO2,CH4等)对红外线这一 段电磁波的辐射都能具有一定的吸收能力,而且这种 吸收能力对波长具有选择性,只有当红外光谱中某一 段光谱的频率与物质分子本身的频率一致时,该物质 分子才吸收这一段红外光谱的辐射能。我们把能吸收 的这一段红外线光谱称为该气体的特征吸收波段。气 体吸收了红外线光谱的辐射能后,一部分可转变成热 能,使温度升高。红外线光谱的辐射又特别显著,这 就能让我们利用各种元件,如热电堆、热敏电阻等去 测量红外线辐射能的大小。

红外气体分析仪原理

红外气体分析仪原理

红外气体分析仪原理
红外气体分析仪的工作原理是利用红外辐射与气体分子之间的相互作用来识别和测量气体的类型和浓度。

其主要原理包括红外光源、样品室、检测器和数据处理系统。

首先,红外光源产生特定频率的红外光束,并通过光学系统引导到样品室。

红外光会穿过样品室,射向内部的待测气体。

当红外光束通过气体时,气体分子会吸收特定频率的红外光能量。

吸收的光的强度与气体中特定分子的浓度相关。

接下来,检测器会测量并比较红外光源发出的光与通过样品室后的光的差异。

任何被气体分子吸收的红外光都会使检测器输出信号产生变化。

最后,数据处理系统会分析检测器输出信号,通过对比事先设定的气体吸收谱线和实际测量的谱线,来确定待测气体的种类和浓度。

红外气体分析仪具有快速、准确和灵敏的特点,并广泛应用于环境监测、工业过程控制以及安全防护等领域。

红外分析仪构成、原理

红外分析仪构成、原理

1红外分析仪构成1.1红外线气体分析仪红外线气体分析仪是基于红外检测原理,属于光学分析仪器中的一种。

它是利用不同气体对不同波长的红外线具有特殊的吸收能力来实现气体的组分检测的。

红外线式气体检测主要利用了气体对红外线的波长有选择的可吸收型和热效应两个特点。

红外线气体分析器是一种吸收式的、不分光型的气休分析器。

所谓吸收式即利用气体对电磁波的吸收特性。

不分光型也称为非色散型,即光源发射出连续光谱的射线,全部投射到被分析的气样上去。

利用气体的特征吸收波长及其积分特性进行定性和定量的分析,大部分的有机和无机气体在红外波段内都有其特征吸收峰。

有的气体还有两个或多个特证吸收峰。

具有对称结构的、无极性的双原子分子气体,如O2、H2等,以及单原子分子气体,例如Ar等,在红外线彼段内没有特征吸收峰。

因此红外线气体分析仪对这种双原子和单原子分子气体不能进行分析测量,每一台红外线气体分析器只能分析一种气体,例如一台CO2红外线气体分析器,它可以从一个多组分的混合气体中分析出CO2的体积百分比浓度,如果背景气体中的某一组分在红外线波段内有与CO2的特征吸收峰重迭的部分。

那么我们称这种背景气体为干扰组分,因此在气样进人红外线气体分析仪之前要把这种干拢组分去除掉。

水蒸汽在2.6-10µm这个很宽的波段范圈内有吸收的特性。

因此水蒸汽对红外线气体分析器来讲是一种重要的干扰组分,在分析之前都要对样气进行干燥处理,去除水分,这样才能保证测量的准确性。

红外线气体分析器的工作原理:用人工方法制造一个包括被测气体特征吸收峰波长在内的连续光谱的辐射源,让这个连续光谱通过固定厚度的含有被测气体的混合组分,在混合组分的气体层中,被测气体的浓度不同,吸收固定波长红外线的能量也不相同。

继而转换成的热量也不相同,在一个特制的红外检测器中再将热量转换成温度或压力,测量这个温度或压力就可以准确地测量出被分析气体的浓度,从朗伯特一比耳定律来看,I=I o e-kcl,就是要使红外线气体分析器辐射源的发射能量连续地通过一定厚度的被分析气样,也就是说使I o、K、L确定下来。

红外线CO气体分析仪器的结构原理使用讲义

红外线CO气体分析仪器的结构原理使用讲义

1 2 30
显示器
四、仪器的标定

绝对值标定法 差分值标定法
绝对值标定法

调零
参比室 0 分析室 0 1 2 0
显示器
绝对值标定法

调满刻度
参比室 0 分析室 330 1 2 330
显示器
差分值标定法

调零
参比室 300 分析室 300 1 2 0
显示器
差分值标定法

调满刻度
参比室 300 分析室 330 1 2 30
2、开机
电 源 开 关
3、程序自动启动
4、启动后的主菜单
新的测定
功能键 分别对 应上面 的小黑 框中的 英文
键盘与 计算机 相似
主 界 面
5、校正仪器
(1)流量校准
(2)零点校准
(3)红蓝光源校准
校准时H2O 和CO2的控制旋扭要放到Bypass 位置
6、数据测量
F4是最常用的, 测量按F4
2. 红外线CO2气体分析仪法的优点

迅速而准确 简单而方便 整体而连续 智能化
二、仪器的基本组成

主要由光源、气室和检测器组成
CO2 红 外 光 源
1 2
气 室
检 测 器
三、仪器的工作原理


红外线(infrared)是波长在0.75~ 400 µ m范围内的电磁波。红外线按其波 长长度划分:25~400 µ m为远红外线; 2.5~25 µ m为中红外线;0.75~2.5 µ m为近红外线。 不同气体对红外线的吸收不同。由同种 原子组成的气体分子如N2、H2、O2等均 不吸收红外线。只有由异种原子组成的 气体分子如CO、CO2、CH4、H2O等可 以吸收红外线。

8.4红外线气体分析仪

8.4红外线气体分析仪

(3)检测器
1-窗口的光学玻璃, 2-壳体, 3-薄膜,其下部带有 电容传感器的动片, 4-电容传感器的定片 5-绝缘体 6-支架 7和8 -两个气室 9-后盖 10-密封垫圈
检测器工作工程
检测器两气室所充的气体就是需要测量的气体,一般用中性 气体氮气(N2)或氩气(Ar)与被测气体制成一定浓度的 混合气体充入检测室中.
双光束直读式红外线气体分析仪
1. 双光束直读式红外线气体分析仪测量过程 2.双光束直读式红外线气体分析仪基本部件结构 (1)光源和调制器 (2)气室和滤光器 (3)检测器 3. 具有双层检测气室和光耦合器红外线气体分析仪 测量原理
1.气体分析仪测量过程
1-光源; 2-切光片; 3-同步电机; 4-测量气室; 5-参比气室; 6-滤光气室; 7-检测气室; 8-前置放大器; 9-主放大器; 10-记录器
I = I 0e
kcl
光强度为I0 的单色平行光通过均匀介质后,剩余光强度的大 小随着介质浓度c和光程l按指数规律衰减. 吸收系数k的大小取决于介质的特性,不同介质有不同的k 值,而一种介质的k值又会随着光的波长值而变化.因此, 对于不同的介质或不同波长的光,吸收的光强也是不同的.
红外线气体分析仪的工作原理
λ
各种原子或分子所具有的能级数目和能级间的能量差不同, 所以它们对光辐射的吸收情况也各不相同,从而形成不同 的特征吸收峰.大部分的有机和无机气体在红外波段内都 有其特征吸收峰,有的气体还有两个或多个特征吸收峰.
部分气体的红外线特征吸收峰图
朗伯特-比耳定律 光的吸收定律
单色平行光通过均匀介质时能量被介质吸收的规律
8.4 红外线气体分析仪
8.4.1 测量原理 8.4.2 红外线气体分析仪结构 8.4.3 红外线分析仪的应用

红外线气体分析仪的检测原理与构造

红外线气体分析仪的检测原理与构造

红外线气体分析仪的检测原理与构造(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--红外线气体分析仪的检测原理与构造红外线气体分析仪利用红外线进行气体分析。

它基于待分析组分的浓度不同,吸收的辐射能不同,剩下的辐射能使得检测器里的温度升高不同,动片薄膜两边所受的压力不同,从而产生一个电容检测器的电信号,从而间接测量出待分析组分的浓度。

气体分析仪由两个独立的光源分别产生两束红外线该射线束分别经过调制器,成为5Hz的射线。

根据实际需要,射线可通过一滤光镜减少背景气体中其它吸收红外线的气体组分的干扰。

红外线通过两个气室,一个是充以不断流过的被测气体的测量室,另一个是充以无吸收性质的背景气体的参比室。

工作时,当测量室内被测气体浓度变化时,吸收的红外线光量发生相应的变化,而基准光束(参比室光束)的光量不发生变化。

从二室出来的光量差通过检测器,使检测器产生压力差,并变成电容检测器的电信号。

此信号经信号调节电路放大处理后,送往显示器以及总控的CRT显示。

该输出信号的大小与被渊组分浓度成比例。

检测器是薄膜微音器。

接收室内充以样气中的待渊组分,两个接收室中间用一个薄的金属膜隔开,在两测压力不同时膜片可以变形产生位移,膜片的一侧放一个固定的圆盘型电极。

可动膜片与固定电极构成了一个电容变进器的两极。

整个结构保持严格的密封,两接收气室内的气体为动片薄膜隔开,但在结构上安置一个大小为百分之几毫米的小孔,以使两边的气体静态平衡。

辐射光束通过参比室、测量室后,进入检测器的接收室。

被接收室里的气体吸收,气体温度升高,气体分子的热运动加强,产生的热膨胀形成的压力增大。

当测量室内通入零点气(N2)时,来自两气室的光能平衡,两边的压力相等,动片薄膜维持在平衡位置,检测器输出为零。

当测量室内通入样气时,测量边进入接收室的光能低于参比边的,使测量边的压力减小,于是薄膜发生位移,故改变了两极板问的距离,也改变了电容量C。

红外分析仪培训教程ppt课件

红外分析仪培训教程ppt课件
持。
06
红外分析仪选购指南及注意事项
选购时考虑因素
01
02
03
04
分析需求
明确需要分析的气体成分、量 程、精度等要求。
应用场景
考虑红外分析仪的应用环境, 如温度、湿度、压力等条件。
仪器性能
关注仪器的分辨率、稳定性、 响应时间等关键性能指标。
价格与预算
在满足分析需求的前提下,选 择性价比高的产品。
数据采集、处理及存储操作
按照设定的参数进行数据采集
对采集的数据进行处理、分析 和解释
将处理后的数据存储在指定的 位置,并做好备份
04
红外分析仪维护保养知识
日常维护措施
01
02
03
保持仪器清洁
定期清理仪器表面灰尘和 污垢,避免影响测量精度 。
检查气路系统
定期检查气路系统是否漏 气、堵塞,确保气体流通 畅通。
02
红外分析仪结构与组成
红外光源及调制器
红外光源种类与特点
介绍常用的红外光源类型,如硅碳棒、钨丝灯等,以及它们 各自的优缺点。
调制器作用与原理
解释调制器在红外分析仪中的作用,以及调制器的工作原理 和常见类型。
样品室与光路系统
样品室设计要求
介绍样品室的设计原则,包括密 封性、光学性能等,以确保分析 结果的准确性。
准备好所需试剂、耗 材和工具
确保仪器各部件完好 无损,连接正常
样品制备与放置要求
根据分析需求选择合适的样品制备方法 样品应均匀、无气泡、无污染
放置样品时,注意样品的位置、方向和厚度
仪器参数设置与调整方法
根据分析需求设置合适的仪器参 数
调整光源、检测器、光路等部件 至最佳状态

红外线C02气体分析仪的结构与使用

红外线C02气体分析仪的结构与使用

红外线C02气体分析仪的结构与使用国内外的红外线CO2气体分析仪种类很多,以下介绍广东佛山分析仪器厂生产的FQ-W 型红外线CO2气体分析仪和北京分析仪器厂生产的QGD-07型红外线C02气体分析仪的结构与使用。

一、FQ型红外线气体分析仪FQ型红外线气体分析仪可分为分析和电子两部分。

1.分析部分分析部分装在主箱体内(图6),其工作原理如图7所示。

图6 红外线气体分析仪主箱体主要结构图1.薄膜微音器2.左检测室3.右检测室4.校正装置5.校正杆6.前置放大器7.调零装置8.调零旋钮9.参比气室 10.滤波室 11.工作气室 12.切光片 13.光源 14.参比电机 15.同步电机 16.光对称旋钮 17.相位旋钮图7 仪器的光原理1.光源2.平面反光镜 3、4.斜面反光镜 5.切光片 6.参比气室 7.工作气室 8.薄膜微音器由光源1发出的红外光经平面反射镜2、斜面反射镜3和4反射后分成两束能量相等的平行光束,分别通过参比气室6和工作气室7而到达检测器8的两个对称的接收室。

参比气室中充入不吸收红外光的气体(如N2)。

而工作气室中不断通过待测气样,气样中的被测成份吸收了对应波长的一部份红外光,这样到达检测电容器的两接收室的红外光能量就不相等了,其差值就是△E。

检测电容器8是由两个检测室和密封在壳体内的一个薄膜电容器构成。

薄膜电容器的一个电极是个圆形金属块,它与壳体高度绝缘,由绝缘子引出导线;另一个电极是一片金属薄膜(约5微米厚)它与壳体相连,并把两个检测室隔开。

检测电容器内充被测气体,并加以严格密封。

经过参比气室进入左检测室的红外光能量为E0,经过工作室进入右检测室的红外光能量为E,左右两个检测室内的气体分别吸收红外光E0和E,受热膨胀,由于E0大于E,故左检测室的温度稍高于右检测室的温度。

按气体方程PV=RT,左检测室的压力将稍高于右检测室的压力(其差为△P),这样薄膜将被迫凸起,薄膜电萜鞯娜萘勘湫。

红外碳硫分析原理ppt课件

红外碳硫分析原理ppt课件

CO2﹑SO2的物理性能和化学性能
室温时,CO2在水中的溶解度比SO2要小得多,大约 是SO2的六十五分之一,而在分析测试过程中,空气中的 水气不可避免地会吸附在试样表面﹑燃烧管表面﹑过滤网 表面等分析气通道中。当分析气通过时,SO2就与水分结 合生成亚硫酸;部分CO2与水分结合生成碳酸。这现象与 室内温度较高时,连续做同一种样品,结果硫的测试值越 来越高是一致的。因为炉头部分﹑过滤网部分等分析气通 道随着一次次高温的分析气通过,由于热量传递而温度升 高,明显地减少了吸附在上面的水分,从而也减少了碳酸 ﹑亚硫酸的生成。
碳硫在各种金属中化合物的稳定程度
4. 1摩尔C和Fe3C与O2化学反应后,生成热 后者要比前者大得多,然而在做高碳样品 测试时,称量又比中﹑低碳样品少得多, 因而出现高碳高硫﹑高碳低硫样品的硫很 难测准,其原因就是燃烧室热量不够。
CO2﹑SO2的物理性能和化学性能
CO2和SO2物理化学性能比较
沸点 健 角 偶极距 绝对粘度 汽化热 溶解度 键长
碳硫在各种金属中化合物的稳定程度
1.所有的碳化物比硫化物焓变△Hfo数值要大,说明硫化物比 碳化物热力学稳定性高,要使硫化物分解产生化学反应的 热量也必须高,当燃烧室热量不足时,(化学反应初期﹑ 温度不高时),碳﹑碳化物和铁﹑钨﹑锡开始化学反应, 放出热能,再促使硫化物反应。 2.MnS比FeS更稳定,熔点也高。在钢铁冶炼中往往用加
CO2﹑SO2的物理性能和化学性能
2.尽管CO2﹑SO2都属于极性分子,但由于CO2分子的键角 为180°完全对称,所以整个分子偶极距为零,它不容易被 吸附。而SO2分子的键角为119.536°,即分子呈三角形, 偶极距为1.63×10-18c.g.s,它就很容易被吸附。吸附是指当 分析气经过气路时,被统称为吸附剂的物质的表面吸收的现 象。分析气的吸附可以分成物理吸附和化学吸附。物理吸附 是指被吸附的物质和吸附剂之间不发生化学反应,这种吸附 是由于分子之间的相互引力所引起的,此力通常被称为范德 华力(取向力﹑诱导力﹑色散力的总和),可以用BET (Brunauer--Emmett--Teller)吸附等温式--公式(1), 计算它的吸附量。这种吸附没有选择性,除了表面形状之外 吸附剂和被吸附物质本身的化学性质不起作用,任何固体都 可以吸附任何气体。

红外线气体分析仪原理

红外线气体分析仪原理

红外线气体分析仪原理
红外线气体分析仪通过测量物质对特定波长的红外辐射的吸收特性来分析气体的成分。

其工作原理基于分子吸收红外辐射的量与分子的浓度成正比关系。

红外线气体分析仪由一个红外灯、一组滤光器和一个红外线探测器组成。

红外灯产生特定波长的红外辐射,经过滤光器过滤掉其他波长的光线后,红外辐射穿过待测气体。

当红外辐射与气体中特定分子发生相互作用时,分子会吸收红外辐射的一部分能量。

红外线探测器接收经过气体样品的红外辐射,并将其转化为电信号。

红外线探测器根据接收到的电信号强度来确定气体中特定分子的吸收量。

通过比较样品气体与基准气体的吸收量差异,可以准确测量待测气体中特定分子的浓度。

为了提高测量的准确性,红外线气体分析仪通常采用双光束设计。

它将红外辐射分为两束,一束作为参考光束,经过一个参比腔室,另一束作为待测光束,经过被测样品。

待测光束和参考光束分别通过两个红外线探测器,然后将两个信号进行比较,从而消除光源和红外探测器的非均匀性对测量结果的影响。

红外线气体分析仪广泛应用于环境监测、工业过程控制、燃气分析等领域。

它具有高灵敏度、快速响应、测量范围广、无污染等优点,并且对大多数气体都有良好的适应性。

红外线气体检测仪器原理

红外线气体检测仪器原理

红外线气体检测仪器原理一、引言红外线气体检测仪器是一种常见的气体检测设备,它利用红外线的特性来检测和分析气体成分。

本文将介绍红外线气体检测仪器的原理及其应用。

二、红外线的特性红外线是一种电磁辐射,其波长介于可见光和微波之间。

红外线辐射能量较低,不可见于人眼,但可以通过特定的光学系统进行捕捉和分析。

红外线的特性主要包括以下几点:1. 红外线能够穿透大气,不受大气中的尘埃、水汽等干扰;2. 不同气体分子对红外线的吸收特性不同,可以通过测量吸收光谱来确定气体成分;3. 红外线的能量与分子的振动和转动状态相关,可以通过测量红外线强度来确定气体浓度。

三、红外线气体检测仪器的原理红外线气体检测仪器的工作原理可以简单分为三个步骤:红外光源发射红外线,红外线经过气体吸收和传输后被红外探测器接收,探测器输出信号进行信号处理和分析。

1. 红外光源发射红外线红外光源通常采用红外发光二极管或红外激光器,它们能够发射特定波长的红外线。

红外光源的选择要根据待测气体的吸收特性来确定。

2. 红外线经过气体吸收和传输红外线经过待测气体后,会被其中的分子吸收,吸收的程度与气体成分相关。

不同气体分子对红外线的吸收特性是独特的,可以通过测量吸收光谱来确定气体成分。

3. 探测器接收红外线并输出信号红外探测器通常采用红外光电二极管或热电偶等器件,它们可以将接收到的红外光转化为电信号。

探测器的选择要根据红外光源的波长来确定。

四、红外线气体检测仪器的应用红外线气体检测仪器广泛应用于工业生产、环境监测、安全防护等领域,主要用于以下几个方面:1. 气体浓度监测红外线气体检测仪器可以准确测量气体的浓度,常用于监测工业生产过程中有害气体的浓度,如二氧化碳、甲烷等。

2. 燃气泄漏检测红外线气体检测仪器可以检测燃气泄漏,及时发现潜在的安全隐患。

在家庭和工业场所广泛应用,如天然气、液化石油气等。

3. 环境空气监测红外线气体检测仪器可以监测环境空气中的有害气体浓度,如臭氧、二氧化硫等,帮助评估环境质量并采取相应的措施。

CO分析仪

CO分析仪

一、红外线气体分析仪的基本原理其工作原理是基于某些气体对红外线的选择性吸收。

红外线分析仪常用的红外线波长为2~12µm。

简单说就是将待测气体连续不断的通过一定长度和容积的容器,从容器可以透光的两个端面的中的一个端面一侧入射一束红外光,然后在另一个端面测定红外线的辐射强度,然后依据红外线的吸收与吸光物质的浓度成正比就可知道被测气体的浓度。

朗伯—比尔定律——其物理意义是当一束平行单色光垂直通过某一均匀非散射的吸光物质时,其吸光度与吸光物质的浓度及吸收层厚度成正比。

这就是红外线气体分析仪的测量依据。

二、我们用的这套一氧化碳分析仪1.结构及工作原理系统是由从德国进口的一台SIDOR微型化红外气体分析仪和一整套取样预处理系统组成,并安装在一个标准机柜内。

SIDOR型红外线气体仪式分析系统的核心部分。

如下图,取样探头应该安装在需要检测装置点的管道上。

系统是由一套PLC控制系统来完成过程控制,当取样气泵工作时样品气体从取样探头中经过过滤器后,通过取样管线到达现场仪器分析间内的分析柜上从“样气入口”处,经过取样阀Y0、压缩机冷凝器YL-4冷凝罐2#、分水过滤器GL-1(将冷凝水和粉尘过滤掉)、取样泵P、压缩机冷凝器YL-4冷凝罐1#(除去样气中冷凝水)、湿度报警器、校准阀Y4、样气流量计FL-1、流量报警器LZZW、精密过滤器GLM后进入SIDOR红外气体分析仪,红外线气体分析仪能将样品气体中的CO浓度含量明确显示出来,并以4-20mA的电流形式输出。

防空流量计是为了缩短响应时间而设置的。

Y1、Y2电磁阀是用于吹扫取样探头中过滤器芯而设置的。

Y3电磁阀和蠕动泵PR1、PR2是为排水而设置的。

Y4、Y5、Y6电磁阀是为校准分析仪器而设置的。

2.测量范围0-3%;仪器对环境的影响5-40℃变化;样气流量:0.5L/min。

3.组成:1) 主机柜一套2) SIDOR微机化红外线气体分析仪一台3) 压缩机冷凝器一台4) 取样探头一套5) 校准分析仪表用气瓶6) 伴热带4.校准1) 打开零点气瓶和标气瓶上的开关2) 调整零点气瓶和标气瓶上的减压开关,使气瓶的出口压力为0.02MPa-0.04MPa.3) 关闭PLC启动开关4) 断开F7空开。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档