化工原理(上)主要知识点

合集下载

化工原理(上)主要知识点

化工原理(上)主要知识点

化工原理〔上〕各章主要知识点三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算第一节 流体静止的根本方程一、密度1. 气体密度:RTpM V m ==ρ2. 液体均相混合物密度:nma a a ρρρρn22111+++=〔m ρ—混合液体的密度,a —各组分质量分数,n ρ—各组分密度〕3. 气体混合物密度:n n mρϕρϕρϕρ+++= 2211〔m ρ—混合气体的密度,ϕ—各组分体积分数〕4. 压力或温度改变时,密度随之改变很小的流体成为不可压缩流体〔液体〕;假设有显著的改变那么称为可压缩流体〔气体〕。

二、.压力表示方法1、常见压力单位及其换算关系:mmHg O mH MPa kPa Pa atm 76033.101013.03.10110130012=====2、压力的两种基准表示:绝压〔以绝对真空为基准〕、表压〔真空度〕〔以当地大气压为基准,由压力表或真空表测出〕 表压 = 绝压—当地大气压 真空度 = 当地大气压—绝压三、流体静力学方程1、静止流体内部任一点的压力,称为该点的经压力,其特点为: 〔1〕从各方向作用于某点上的静压力相等;〔2〕静压力的方向垂直于任一通过该点的作用平面;〔3〕在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的上下而变化。

2、流体静力学方程〔适用于重力场中静止的、连续的不可压缩流体〕)(2112z z g p p -+=ρ)(2121z z g pg p -+=ρρ p z gp=ρ〔容器内盛液体,上部与大气相通,g p ρ/—静压头,“头〞—液位高度,p z —位压头 或位头〕上式说明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低那么压力愈大。

四、流体静力学方程的应用 1、U 形管压差计指示液要与被测流体不互溶,且其密度比被测流体的大。

测量液体:)()(12021z z g gR p p -+-=-ρρρ测量气体:gR p p 021ρ=-2、双液体U 形管压差计 gR p p )(1221ρρ-=-第二节 流体流动的根本方程一、根本概念1、体积流量〔流量s V 〕:流体单位时间内流过管路任意流量截面〔管路横截面〕的体积。

化工原理 知识点

化工原理 知识点

化工原理知识点
化工原理的知识点包括:
1. 热力学:热力学原理、热力学态函数、热力学过程、热力学平衡、热力学循环等。

2. 流体力学:流体性质、流体静力学、流体动力学、流体流动等。

3. 传热学:传热基本过程、传热方程、传热导数、传热换热设备、传热工艺等。

4. 反应工程学:反应平衡、反应动力学、反应器设计、催化剂、反应工艺控制等。

5. 分离工程学:物质平衡、质量传递、分离技术、萃取、吸收、蒸馏、晶体分离等。

6. 化学工程原理:流程图、物料平衡、能量平衡、动力学、热力学、传质、传热、流体力学等。

7. 设备与工艺:乙炔化工艺、氧化过程、氢化工艺、脱硫过程、脱氧过程、催化裂化等。

8. 安全与环保:化工安全、环境保护法规、废弃物处理、环境影响评估等。

9. 经济与管理:成本估算、投资分析、工艺优化、工艺设计、流程控制等。

10. 化工原理应用:化学工业应用、石油炼制、化学品生产、
材料制备、环境治理等。

以上知识点是化工原理的一些基本内容,涵盖了热力学、流体力学、传热学、反应工程学、分离工程学等方面的内容,并且包括了安全与环保、经济与管理等应用领域。

在学习化工原理
时,需要系统地掌握这些知识点,并能够将其应用于实际问题的解决。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。

化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。

2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。

(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。

在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。

(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。

化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。

(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。

(4)流体力学流体力学是研究流体运动规律和流体性质的科学。

在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。

这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。

二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。

因此,分析化学平衡是化工过程设计和运行中的重要内容。

2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。

热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。

3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。

热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。

三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。

化工原理上 知识点总结

化工原理上 知识点总结

化工原理上知识点总结一、化工原理的基本概念1. 化工原理的概念化工原理是研究化工生产过程中的物理、化学、工程等基本原理与规律的学科,是化工工程技术的理论基础。

化工原理的研究对象是化工生产中的物质和能量转化过程,包括化工流程、反应过程、传质过程、能量转换过程等。

化工原理的研究目的是为了揭示化工过程中的相互作用规律,为化工工程技术的设计、控制和优化提供理论支持。

2. 化工原理的基本内容化工原理主要包括物质平衡、能量平衡、动量平衡、传质与反应动力学、流体力学、热力学等内容。

其中,物质平衡研究物质在化工过程中的流动分布和转化规律,能量平衡研究热量在化工过程中的转移和转化规律,动量平衡研究流动介质在化工过程中的运动规律,传质与反应动力学研究物质传输和化学反应的速率规律,流体力学研究流体运动的基本规律,热力学研究能量转换的基本规律。

3. 化工原理的应用领域化工原理是化工技术的理论基础,广泛应用于化工工程技术的设计、计算、控制、优化和改进等方面。

在化工生产中,化工原理被应用于化工过程的优化设计、生产参数的确定、生产过程的控制和调整、产品质量的改进等方面,对化工生产的安全、经济、高效具有重要意义。

二、化工过程中的物质平衡1. 物质平衡的基本概念物质平衡是研究物质在化工过程中的流动分布和转化规律的基本原理。

物质平衡的基本概念包括输入、输出、积累和转化等概念。

输入是物质进入系统的过程,输出是物质离开系统的过程,积累是系统中物质的变化过程,转化是物质在系统内发生变化的过程。

2. 物质平衡的计算方法物质平衡的计算方法包括物质平衡方程的建立和求解。

物质平衡方程是通过对系统内各环节进行物质平衡计算,建立系统物质平衡方程,求解得到系统内各环节的物质平衡量。

物质平衡的求解方法包括代数求解、图解法、矩阵法、数值积分法等。

3. 物质平衡的应用案例物质平衡在化工生产中有着广泛的应用。

例如,化工生产过程中的原料投入和产品产出量的计算、化工设备的负荷计算、化工废水、废气治理的效果评估等都需要进行物质平衡计算,以确保化工生产过程的稳定和经济效益。

化工原理知识点总结高中

化工原理知识点总结高中

化工原理知识点总结高中一、化工原理概述化工原理是指将原料经过一定的工艺、工序和条件,经过化学或物理变化,转变为有用的化工产品的理论和技术知识的总称。

化工原理是化学工程技术理论的基础和核心部分,是指导化学工程技术实践的理论方法和原则,它主要研究物质的结构、性质、组成、变化规律与化工产品的生产过程。

二、化工原理的基本概念1.化工原理的定义:指将原料经过一定的工艺、工序和条件,经过化学或物理变化,转变为有用的化工产品的理论和技术知识的总称。

2.反应工程:是利用化学变化来制造产品的过程。

反应器是进行反应工程的装置。

3.传热传质:为了促进和加快反应,通常需要在反应器内进行传热和传质过程。

4.质量平衡:是指在化学工艺反应过程中,原料、副产品和产品在重量上的平衡。

5.能量平衡:是指在反应工程中,热量在不同介质和各个反应阶段之间的平衡。

6.物料平衡:是指物料在工艺流程中的平衡问题,包括物料的投入、物料的输出和物料的转化系数。

7.反应工程的主要工艺过程有:加工、分离、纯化、反应、稀释、搅拌、传递等。

8.质量传递:物质在不同相之间的传递。

9.反应速率:反应速率是化学反应中的物质质量改变与时间改变的比例关系。

三、物质结构和性质1.物质的结构:物质的结构主要指化合物和元素的分子结构和晶体结构。

2.物质的性质:物质的性质是指物质的物理性质和化学性质。

3.常用的物质的性质有:密度、粘度、比热、导热系数、溶解度、流变性。

四、化学平衡及反应热1.化学反应平衡:在化学反应中,生成物的浓度与反应物的浓度之间的关系的平衡。

2.平衡常数:平衡常数是反应速率常数与逆反应速率常数之比。

3.反应热:反应热是指在化学反应过程中释放或吸收的热量。

五、化学工程热力学1.热力学基本概念:热力学是研究物质的能量及其转化形式、热运动规律和物质之间的相互转化规律的科学。

2.热力学基本定律:热力学的基本定律有:热力学第一定律、热力学第二定律和热力学第三定律。

化工原理知识点总结详细

化工原理知识点总结详细

化工原理知识点总结详细第一章:化工原理基础知识1.1 化工原理的定义和基本概念化工原理是研究化学工程过程的基本原理、基本规律和数学模型的学科。

化工原理包括物理化学、热力学、传质与分离、反应工程等方面的知识,其中热力学和传质与分离是化工原理的两个重要组成部分。

1.2 化工原理的基本原理和基本规律化工原理涉及到许多基本原理和基本规律,其中包括质量守恒、能量守恒、热力学第一、第二定律、传热、传质、反应动力学等。

这些基本原理和基本规律是化工过程描述、分析和设计的基础。

1.3 化工原理的应用领域化工原理的应用领域非常广泛,包括化学工程、环境工程、生物工程、材料工程等方面。

化工原理在工业生产、环境保护、能源开发、新材料研发等领域都有重要的应用价值。

第二章:热力学2.1 热力学基本概念热力学是研究能量转化和能量传递规律的科学。

热力学基本概念包括系统、热平衡、热力学过程、熵等。

热力学基本原理包括能量守恒、熵增原理等。

2.2 理想气体状态方程理想气体状态方程描述了理想气体的压力、温度、体积之间的关系,可以表示为PV=nRT。

理想气体状态方程是描述气体性质的重要方程之一。

2.3 热力学循环热力学循环是指气体、水蒸汽等工质在一定压力和温度条件下发生各种物理或化学变化,最后又回到原来状态的过程。

常见的热力学循环包括卡诺循环、斯特林循环、布雷顿循环等。

2.4 热力学第一、第二定律热力学第一定律:能量守恒,能量既不能被创造也不能被毁灭,只能从一种形式转化为另一种形式。

热力学第二定律:熵增原理,自然界熵不减少的倾向。

第三章:传质与分离3.1 传质基本概念传质是指物质在不同相间传递的过程,包括扩散、对流、传热等。

传质的重要概念包括浓度、摩尔通量、传质系数等。

3.2 传质方程和传质过程传质方程描述了物质在不同相间传递的规律,传质过程包括扩散传质、对流传质等,传质方程是描述传质过程的基本数学模型。

3.3 分离技术化工生产中,常需要对混合物进行分离和纯化,分离技术包括蒸馏、结晶、游离、萃取等,这些技术都是基于传质原理。

化工原理各章知识点汇总

化工原理各章知识点汇总
颗粒沉降速度:
斯托克斯区:
牛顿区:
降尘室生产能力;传热Fra bibliotek概念载热体;传热速率;热流量;温度梯度;强制对流;自然对流;定性温度;汽化核心;膜状冷凝;滴状冷凝;黑体;灰体;镜体;黑度;总传热系数;壳程;管程;逆流传热;并流传热;
基本理论
(或知识点)
传热分类;傅里叶导热定律;导热系数;对流给热系数及其方程;总传热速率方程;热阻分析;黑体辐射热流量;
重要理论
负荷性能图(组成、操作弹性、调节);气液两相非理想流动;
液液
萃取
概念
萃取相;萃余相;选择性;和点;差点;萃取液;萃余液;选择性系数;
基本理论
(或知识点)
萃取剂的特点:萃取操作的适应性;液液相平衡;溶解度曲线;共轭相;杠杆定律;互溶度对萃取影响;
重要理论
单级萃取计算;
固体
干燥
概念
露点;湿度;相对湿度;湿球温度;干球温度;绝热饱和温度;湿空气的焓;湿空气的比体积;绝热增湿过程;结合水;非结合水;自由水分;干燥速率;恒速干燥;减速干燥;临界含水量;平衡含水量;干燥过程的热效率;
重要理论
相平衡方程:
连续精馏过程计算(物料衡算、热量衡算、操作线方程、q线方程、最小回流比):
逐板计算法;
气液
传质
设备
概念
液沫夹带;气泡夹带;漏液;夹带液泛;溢流液泛;板效率;返混;湿板效率;正系统;负系统;填料的特性(比表面积、空隙率、几何形状)
基本理论
(或知识点)
传质设备分类;板式塔构件;填料塔构件;筛板塔气液接触状态分类;筛板塔阻力(组成、各自特点);气液两相非理想流动;负荷性能图(组成、操作弹性、调节);液体成膜的条件;填料塔的持液量;填料塔液泛;填料塔实际气速与液泛气速的关系;填料塔的附属机构;

化工原理各章知识点汇总

化工原理各章知识点汇总

化工原理各章知识点汇总(各专业根据已学章节对应复习)章次内容汇总(上册)概念定态流动;边界层;理想流体;层流;湍流;雷诺准数;粘度的物理意义(及其影响因素);剪应力;静压力;绝压;表压;当量直径;孔流系数;基本理论牛顿粘性定律;连续性方程(依据);伯努利方程(依据);静止流体平衡方程(或知识点)及其意义;直管阻力及其与流型关系;局部阻力的计算及其实质;阻力系数;孔板流量计和转子流量计测量原理;流量校正重要理论连续性方程(依据):d u d u;对不可压缩流体,有:111222d u d u 1122流体流动伯努利方程(依据):22p u p u1122gz gz h(无输送机械管路)1222f直管阻力:hf2l ud2;阻力系数:f Re,d局部阻力:22l u ueh;hf fd22概念气缚;汽蚀;最大允许安装高度;管路水锤;压缩比;动风压;静风压;极限真空;抽气残率;离心泵工作点基本理论管路特征方程;离心泵主要构件;离心泵性能曲线;叶轮类型;泵效率主要影(或知识点)响因素;离心泵流量调节;离心泵组合特性曲线;最大允许安装高度;输送机械分类;往复泵流量特点、计算及其调节;重要理论管路特征方程:流体输送22p p u p u21122H z Kq;z H z HV12fg g2g g2g机械离心泵性能曲线:H q;P q;q;(V a V V2H A Bq);VP e P a 100%;P gHqe V最大允许安装高度:p p0VH H(01)NPSH0.5g f rg g概念比表面积;球形度(形状系数);床层孔隙率;当量直径;滤饼的压缩性;间歇流体通过颗粒床层流动基本理论(或知识点)重要理论式过滤机的生产能力;动态过滤;洗涤速率;康采尼方程;欧根方程;恒压过滤;恒速过滤;过滤常数;数学模型法;床层密度与空隙率关系:'1p恒压过滤:22;222q qq K V VV KAe e恒速过滤:K K 2;22 q qq V VV Ae e22概念曳力;表面曳力;形体曳力;离心分离因素;流化床;固定床;散式流化;聚式流化;沟流;腾涌;起始流化速度;固气比;基本理论曳力系数;颗粒沉降速度;降尘室生产能力;分级器特点;旋风分离器分离效(或知识点)率;空隙率计算;流化床主要特性(及最大特性);起始流化速度;颗粒重要理论颗粒沉降速度:ut4gd d up p p t;3沉降与流态化斯托克斯区:2d gp p24u;;R2t ep18Repd gp p牛顿区:u 1.74;0.44;Re500t p降尘室生产能力;q AuV t概念载热体;传热速率;热流量;温度梯度;强制对流;自然对流;定性温度;汽化核心;膜状冷凝;滴状冷凝;黑体;灰体;镜体;黑度;总传热系数;壳程;管程;逆流传热;并流传热;基本理论传热分类;傅里叶导热定律;导热系数;对流给热系数及其方程;总传热速率(或知识点)方程;热阻分析;黑体辐射热流量;重要理论dt Q dt傅里叶导热定律:;Q A qdn A dn对流给热系数及其方程(无相变管内对流给热):a0.023传热d du0.8cpb总传热速率方程:Q q c T T q c t t KA tm1p112m2p221m 热阻分析:11d1d1d d1d11121=lnK a d a d a2d a d 内内内m外外212;A d l内111d d11d d d122222=lnK a d d a a d2d a 外内1外内11外m ;A d l外2蒸发概念温差损失;生产强度;蒸发操作的经济性;基本理论蒸发操作的特点;蒸发器类型;蒸发辅助设备及其功能;单效蒸发计算;(或知识点)重要理论单效蒸发计算(不计浓缩热):Fw0(F W)w 物料衡算:热量衡算:Q Dr0Fc0(t t0)Wr Q损Q Dr0KA(T t)章次内容汇总(下册)气体概念平衡溶解度;分子扩散;对流传质;主体流动;等分子反向扩散;单向扩散;漂流因吸收子;最小液气比;基本理论亨利定律;亨利系数;相平衡与吸收过程的关系;费克定律;扩散系数(及影响因素);(或知识对流传质速率;对流传质准数关联式(各准数的物理意义、影响因素等);对流传质点)理论(有效膜理论、溶质渗透理论、表面更新理论);相际传质速率;传质总系数;传质阻力的控制(液膜控制、气膜控制);传质单元数;传质单元高度;吸收因素法;高含量气体吸收的特点;化学吸收的优点;重要理论亨利定律:p Ex;p Hc;y mxe e e对流传质速率(单向扩散):气相:D pN p pA A1A2RT pBm液相:D cMN c cA A1A2cBm传质系数:0.90.33 kd du0.23D D相际传质速率:N K(y y);N K(x x)A y e A x e传质总系数:11m111;K k k K k mk y y x x x y吸收过程计算:物料衡算:G y y L x x1221;1y2y1相平衡方程:y f x;y mxe e最小液气比与实际液气比:L y y L L12;(1.12)G x x G Gmin1e2min填料塔高度计算:G y dy L x dy11H H N H H NOG OG;OL OL;K a y y y K a x x x22y e x e传质单元数捷算法:NOG111y mx12ln11A y mx22A11mG;1A A L液体概念轻组分;重组分;理想体系;挥发度;相对挥发度;回流比;精馏段;提馏段;理论精馏板;板效率;加料板;全回流;最少理论板数;灵敏板;基本理论蒸馏分离的依据;蒸馏操作的分类;拉乌尔定律;压强对相平衡的影响;相平衡方程;(或知识平衡蒸馏与简单蒸馏的计算;连续精馏过程计算(物料衡算、热量衡算、操作线方程、点)q线方程);逐板计算法;图解计算法;理论板数捷算法;回流比对精馏过程影响;原料热状态对精馏过程影响;最小回流比;直接蒸汽加热精馏;多股加料精馏;侧线出料精馏;回收塔;特殊精馏;重要理论相平衡方程:yax1a1x连续精馏过程计算(物料衡算、热量衡算、操作线方程、q线方程、最小回流比):物料衡算:Dx D x xD F W F D W;F x Dx Wx;;F D WFx F x xF D W热量衡算:Q Vr;Q Vrc c B b操作线方程:R x x yD D ey x;R;R 1.22R n1n min min R1R1y xe eRD qF F Dy x xn1n WR1D1q F R1D1q FI i L L q xF Fq q q y x值及方程:;q qI i F q1q1逐板计算法;气液概念液沫夹带;气泡夹带;漏液;夹带液泛;溢流液泛;板效率;返混;湿板效率;正系传质统;负系统;填料的特性(比表面积、空隙率、几何形状)设备基本理论传质设备分类;板式塔构件;填料塔构件;筛板塔气液接触状态分类;筛板塔阻力(组(或知识成、各自特点);气液两相非理想流动;负荷性能图(组成、操作弹性、调节);液体点)成膜的条件;填料塔的持液量;填料塔液泛;填料塔实际气速与液泛气速的关系;填料塔的附属机构;重要理论负荷性能图(组成、操作弹性、调节);气液两相非理想流动;液液概念萃取相;萃余相;选择性;和点;差点;萃取液;萃余液;选择性系数;萃取基本理论萃取剂的特点:萃取操作的适应性;液液相平衡;溶解度曲线;共轭相;杠杆定律;(或知识互溶度对萃取影响;点)重要理论单级萃取计算;固体概念露点;湿度;相对湿度;湿球温度;干球温度;绝热饱和温度;湿空气的焓;湿空气干燥的比体积;绝热增湿过程;结合水;非结合水;自由水分;干燥速率;恒速干燥;减速干燥;临界含水量;平衡含水量;干燥过程的热效率;基本理论固体去湿方法;对流干燥特点;间歇干燥过程计算;连续干燥的一般特性;理想干燥(或知识及其计算;点)重要理论p p水汽水汽干燥参数计算:I 1.01 1.88H t2500H;H0.622=;p p p水汽s间歇干燥过程计算:G G X Xc c c cX X;ln11c2A N A N XA A2恒恒干燥及其计算:物料衡算:W G(X X)V H H;H Hc122110预热器热量衡算:Q V(I I)Vc(t t)10pH110实际干燥过程热量衡算:V I G c Q VI G c Q1c pm11补2c pm22损理想干燥过程特点:I I;Q0;Q=021补损。

化工原理各章节知识点总结

化工原理各章节知识点总结

第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多.连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质.拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数如位移、速度等与时间的关系.欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化.定态流动流场中各点流体的速度u、压强p不随时间而变化.轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果.流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果.系统与控制体系统是采用拉格朗日法考察流体的.控制体是采用欧拉法考察流体的.理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零. 粘性的物理本质分子间的引力和分子的热运动.通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主.气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主.总势能流体的压强能与位能之和.可压缩流体与不可压缩流体的区别流体的密度是否与压强有关.有关的称为可压缩流体,无关的称为不可压缩流体.伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变. 平均流速流体的平均流速是以体积流量相同为原则的.动能校正因子实际动能之平均值与平均速度之动能的比值.均匀分布同一横截面上流体速度相同.均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,故沿该截面势能分布应服从静力学原理.层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性.稳定性与定态性稳定性是指系统对外界扰动的反应.定态性是指有关运动参数随时间的变化情况.边界层流动流体受固体壁面阻滞而造成速度梯度的区域.边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象.雷诺数的物理意义雷诺数是惯性力与粘性力之比.量纲分析实验研究方法的主要步骤:①经初步实验列出影响过程的主要因素;②无量纲化减少变量数并规划实验;③通过实验数据回归确定参数及变量适用范围,确定函数形式.摩擦系数层流区,λ与Re成反比,λ与相对粗糙度无关;一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大;充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大.完全湍流粗糙管当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管.Re很大,λ与Re无关的区域,称为完全湍流粗糙管.同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管.局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度.毕托管特点毕托管测量的是流速,通过换算才能获得流量.驻点压强在驻点处,动能转化成压强称为动压强,所以驻点压强是静压强与动压强之和.孔板流量计的特点恒截面,变压差.结构简单,使用方便,阻力损失较大.转子流量计的特点恒流速,恒压差,变截面.非牛顿流体的特性塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动.假塑性与涨塑性:随剪切率增高,表观粘度下降的为假塑性.随剪切率增高,表观粘度上升的为涨塑性.触变性与震凝性:随剪应力t作用时间的延续,流体表观粘度变小,当一定的剪应力t所作用的时间足够长后,粘度达到定态的平衡值,这一行为称为触变性.反之,粘度随剪切力作用时间延长而增大的行为则称为震凝性.粘弹性:不但有粘性,而且表现出明显的弹性.具体表现如:爬杆效应、挤出胀大、无管虹吸.第二章流体输送机械管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加.输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量J/N. 离心泵主要构件叶轮和蜗壳.离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关.叶片后弯原因使泵的效率高.气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象.离心泵特性曲线离心泵的特性曲线指He~qV,η~qV, Pa~qV.离心泵工作点管路特性方程和泵的特性方程的交点.离心泵的调节手段调节出口阀,改变泵的转速.汽蚀现象液体在泵的最低压强处叶轮入口汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象.必需汽蚀余量NPSHr泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少离心泵的选型类型、型号①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号.正位移特性流量由泵决定,与管路特性无关.往复泵的调节手段旁路阀、改变泵的转速、冲程.离心泵与往复泵的比较流量、压头前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变.前者不易达到高压头,后者可达高压头.前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门.通风机的全压、动风压通风机给每立方米气体加入的能量为全压Pa=J/m3,其中动能部分为动风压.真空泵的主要性能参数①极限真空;②抽气速率.第三章液体的搅拌搅拌目的均相液体的混合,多相物体液液,气液,液固的分散和接触,强化传热.搅拌器按工作原理分类搅拌器按工作原理可分为旋桨式,涡轮式两大类.旋桨式大流量,低压头;涡轮式小流量,高压头.混合效果搅拌器的混合效果可以用调匀度、分隔尺度来度量.宏观混合总体流动是大尺度的宏观混合;强烈的湍动或强剪切力场是小尺度的宏观混合.微观混合只有分子扩散才能达到微观混合.总体流动和强剪切力场虽然本身不是微观混合,但是可以促进微观混合,缩短分子扩散的时间.搅拌器的两个功能产生总体流动;同时形成湍动或强剪切力场.改善搅拌效果的工程措施改善搅拌效果可采取增加搅拌转速、加挡板、偏心安装搅拌器、装导流筒等措施.第四章流体通过颗粒层的流动非球形颗粒的当量直径球形颗粒与实际非球形颗粒在某一方面相等,该球形的直径为非球形颗粒的当量直径,如体积当量直径、面积当量直径、比表面积当量直径等.形状系数等体积球形的表面积与非球形颗粒的表面积之比.分布函数小于某一直径的颗粒占总量的分率.频率函数某一粒径范围内的颗粒占总量的分率与粒径范围之比.颗粒群平均直径的基准颗粒群的平均直径以比表面积相等为基准.因为颗粒层内流体为爬流流动,流动阻力主要与颗粒表面积的大小有关.床层比表面单位床层体积内的颗粒表面积.床层空隙率单位床层体积内的空隙体积.数学模型法的主要步骤数学模型法的主要步骤有①简化物理模型②建立数学模型③模型检验,实验确定模型参数.架桥现象尽管颗粒比网孔小,因相互拥挤而通不过网孔的现象.过滤常数及影响因素过滤常数是指 K、qe.K与压差、悬浮液浓度、滤饼比阻、滤液粘度有关;qe与过滤介质阻力有关.它们在恒压下才为常数.过滤机的生产能力滤液量与总时间过滤时间和辅助时间之比.最优过滤时间使生产能力达到最大的过滤时间.加快过滤速率的途径①改变滤饼结构;②改变颗粒聚集状态;③动态过滤.第五章颗粒的沉降和流态化曳力表面曳力、形体曳力曳力是流体对固体的作用力,而阻力是固体壁对流体的力,两者为作用力与反作用力的关系.表面曳力由作用在颗粒表面上的剪切力引起,形体曳力由作用在颗粒表面上的压强力扣除浮力的部分引起.自由沉降速度颗粒自由沉降过程中,曳力、重力、浮力三者达到平衡时的相对运动速度.离心分离因数离心力与重力之比.旋风分离器主要评价指标分离效率、压降.总效率进入分离器后,除去的颗粒所占比例.粒级效率某一直径的颗粒的去除效率.分割直径粒级效率为50%的颗粒直径.流化床的特点混合均匀、传热传质快;压降恒定、与气速无关.两种流化现象散式流化和聚式流化.聚式流化的两种极端情况腾涌和沟流.起始流化速度随着操作气速逐渐增大,颗粒床层从固定床向流化床转变的空床速度.带出速度随着操作气速逐渐增大,流化床内颗粒全被带出的空床速度.气力输送利用气体在管内的流动来输送粉粒状固体的方法.第六章传热传热过程的三种基本方式直接接触式、间壁式、蓄热式.载热体为将冷工艺物料加热或热工艺物料冷却,必须用另一种流体供给或取走热量,此流体称为载热体.用于加热的称为加热剂;用于冷却的称为冷却剂.三种传热机理的物理本质传导的物理本质是分子热运动、分子碰撞及自由电子迁移;对流的物理本质是流动流体载热;热辐射的物理本质是电磁波. 间壁换热传热过程的三个步骤热量从热流体对流至壁面,经壁内热传导至另一侧,由壁面对流至冷流体.导热系数物质的导热系数与物质的种类、物态、温度、压力有关.热阻将传热速率表达成温差推动力除以阻力的形式,该阻力即为热阻.推动力高温物体向低温传热,两者的温度差就是推动力.流动对传热的贡献流动流体载热.强制对流传热在人为造成强制流动条件下的对流传热.自然对流传热因温差引起密度差,造成宏观流动条件下的对流传热.自然对流传热时,加热、冷却面的位置应该是加热面在下,制冷面在上,这样有利于形成充分的对流流动.努塞尔数、普朗特数的物理意义努塞尔数的物理意义是对流传热速率与导热传热速率之比.普朗特数的物理意义是动量扩散系数与热量扩散系数之比,在α关联式中表示了物性对传热的贡献.α关联式的定性尺寸、定性温度用于确定关联式中的雷诺数等准数的长度变量、物性数据的温度.比如,圆管内的强制对流传热,定性尺寸为管径d、定性温度为进出口平均温度.大容积自然对流的自动模化区自然对流α与高度h无关的区域.液体沸腾的两个必要条件过热度tw-ts、汽化核心.核状沸腾汽泡依次产生和脱离加热面,对液体剧烈搅动,使α随Δt急剧上升.第七章蒸发蒸发操作及其目的蒸发过程的特点二次蒸汽溶液沸点升高疏水器气液两相流的环状流动区域加热蒸汽的经济性蒸发器的生产强度提高生产强度的途径提高液体循环速度的意义节能措施杜林法则多效蒸发的效数在技术经济上的限制第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同.主要操作费溶剂再生费用,溶剂损失费用.解吸方法升温、减压、吹气.选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小.相平衡常数及影响因素m、E、H均随温度上升而增大,E、H与总压无关,m 反比于总压.漂流因子P/PBm表示了主体流动对传质的贡献.气、液扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关.传质机理分子扩散、对流传质.气液相际物质传递步骤气相对流,相界面溶解,液相对流.有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结为k∝D,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k∝.传质速率方程式传质速率为浓度差推动力与传质系数的乘积.因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应.传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力.当mky<<kx 时,为气相阻力控制;当mky>>kx时,为液相阻力控制.低浓度气体吸收特点①G、L为常量,②等温过程,③传质系数沿塔高不变. 建立操作线方程的依据塔段的物料衡算.返混少量流体自身由下游返回至上游的现象.最小液气比完成指定分离任务所需塔高为无穷大时的液气比.NOG的计算方法对数平均推动力法,吸收因数法,数值积分法.HOG的含义塔段为一个传质单元高,气体流经一个传质单元的浓度变化等于该单元内的平均推动力.常用设备的HOG值~m.吸收剂三要素及对吸收结果的影响吸收剂三要素是指t、x2、L.t↓,x2↓,L↑均有利于吸收.化学吸收与物理吸收的区别溶质是否与液相组分发生化学反应.增强因子化学吸收速率与物理吸收速率之比.容积过程慢反应使吸收成容积过程.表面过程快反应使吸收成表面过程.第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据原理是液体中各组分挥发度的不同.主要操作费用塔釜的加热和塔顶的冷却.双组份汽液平衡自由度自由度为2P一定,t~x或y;t一定,P~x或y;P 一定后,自由度为1.泡点泡点指液相混合物加热至出现第一个汽泡时的温度.露点露点指气相混合物冷却至出现第一个液滴时的温度.非理想物系汽液相平衡关系偏离拉乌尔定律的成为非理想物系.总压对相对挥发度的影响压力降低,相对挥发度增加.平衡蒸馏连续过程且一级平衡.简单蒸馏间歇过程且瞬时一级平衡.连续精馏连续过程且多级平衡.间歇精馏时变过程且多级平衡.特殊精馏恒沸精馏、萃取精馏等加第三组分改变α.实现精馏的必要条件回流液的逐板下降和蒸汽逐板上升,实现汽液传质、高度分离.理论板离开该板的汽液两相达到相平衡的理想化塔板.板效率经过一块塔板之后的实际增浓与理想增浓之比.恒摩尔流假设及主要条件在没有加料、出料的情况下,塔段内的汽相或液相摩尔流率各自不变.组分摩尔汽化热相近,热损失不计,显热差不计.加料热状态参数q值的含义及取值范围一摩尔加料加热至饱和汽体所需热量与摩尔汽化潜热之比,表明加料热状态.取值范围:q<0过热蒸汽,q=0饱和蒸汽,0<q<1汽液混和物,q=1饱和液体,q>1冷液.建立操作线的依据塔段物料衡算.操作线为直线的条件液汽比为常数恒摩尔流.最优加料位置在该位置加料,使每一块理论板的提浓度达到最大.挟点恒浓区的特征汽液两相浓度在恒浓区几乎不变.芬斯克方程求取全回流条件下,塔顶塔低浓度达到要求时的最少理论板数.最小回流比达到指定分离要求所需理论板数为无穷多时的回流比,是设计型计算特有的问题.最适宜回流比使设备费、操作费之和最小的回流比.灵敏板塔板温度对外界干扰反映最灵敏的塔板,用于预示塔顶产品浓度变化.间歇精馏的特点操作灵活、适用于小批量物料分离.恒沸精馏与萃取精馏的主要异同点相同点:都加入第三组份改变相对挥发度;区别:①前者生成新的最低恒沸物,加入组分从塔顶出;后者不形成新恒沸物,加入组分从塔底出.②操作方式前者可间歇,较方便.③前者消耗热量在汽化潜热,后者在显热.多组分精馏流程方案选择选择多组分精馏的流程方案需考虑①经济上优化;②物性;③产品纯度.关键组分对分离起控制作用的两个组分为关键组分,挥发度大的为轻关键组分;挥发度小的为重关键组分.清晰分割法清晰分割法假定轻组分在塔底的浓度为零,重组分在塔顶的浓度为零.全回流近似法全回流近似法假定塔顶、塔底的浓度分布与全回流时相近第十章气液传质设备板式塔的设计意图①气液两相在塔板上充分接触,②总体上气液逆流,提供最大推动力.对传质过程最有利的理想流动条件总体两相逆流,每块板上均匀错流.三种气液接触状态鼓泡状态:气量低,气泡数量少,液层清晰.泡沫状态:气量较大,液体大部分以液膜形式存在于气泡之间,但仍为连续相.喷射状态:气量很大,液体以液滴形式存在,气相为连续相.转相点由泡沫状态转为喷射状态的临界点.板式塔内主要的非理想流动液沫夹带、气泡夹带、气体的不均匀流动、液体的不均匀流动.板式塔的不正常操作现象夹带液泛、溢流液泛、漏液.筛板塔负荷性能图将筛板塔的可操作范围在汽、液流量图上表示出来. 湿板效率考虑了液沫夹带影响的塔板效率.全塔效率全塔的理论板数与实际板数之比.操作弹性上、下操作极限的气体流量之比.常用塔板类型筛孔塔板、泡罩塔板、浮阀塔板、舌形塔板、网孔塔板等. 填料的主要特性参数①比表面积a,②空隙率ε,③填料的几何形状.常用填料类型拉西环,鲍尔环,弧鞍形填料,矩鞍形填料,阶梯形填料,网体填料等.载点填料塔内随着气速逐渐由小到大,气液两相流动的交互影响开始变得比较显着时的操作状态为载点.泛点气速增大至出现每米填料压降陡增的转折点即为泛点.最小喷淋密度保证填料表面润湿、保持一定的传质效果所需的液体速度. 等板高度HETP分离效果相当于一块理论板的填料层高度.填料塔与板式塔的比较填料塔操作范围小,宜处理不易聚合的清洁物料,不易中间换热,处理量较小,造价便宜,较宜处理易起泡、腐蚀性、热敏性物料,能适应真空操作.板式塔适合于要求操作范围大,易聚合或含固体悬浮物,处理量较大,设计要求比较准确的场合.第十一章液液萃取萃取的目的及原理目的是分离液液混合物.原理是混合物各组分溶解度的不同.溶剂的必要条件①与物料中的B组份不完全互溶,②对A组份具有选择性的溶解度.临界混溶点相平衡的两相无限趋近变成一相时的组成所对应的点.和点两股流量的平均浓度在相图所对应的点.差点和点的流量减去一股流量后剩余的浓度在相图所对应的点.分配曲线相平衡的yA ~ xA曲线.最小溶剂比当萃取相达到指定浓度所需理论级为无穷多时,相应的S/F为最小溶剂比.选择性系数β=yA/yB/xA/xB.操作温度对萃取的影响温度低,B、S互溶度小,相平衡有利些,但粘度大等对操作不利,所以要适当选择.第十二章其他传质分离方法溶液结晶操作的基本原理溶液的过饱和.造成过饱和度方法冷却,蒸发浓缩.晶习各晶面速率生长不同,形成不同晶体外形的习性.溶解度曲线结晶体与溶液达到相平衡时,溶液浓度随温度的变化曲线. 超溶解度曲线溶液开始析出结晶的浓度大于溶解度,溶液浓度随温度的变化曲线为超溶解度曲线,超溶解度曲线在溶解度曲线之上.溶液结晶的两个阶段晶核生成,晶体成长.晶核的生成方式初级均相成核,初级非均相成核,二次成核.再结晶现象小晶体溶解与大晶体成长同时发生的现象.过饱和度对结晶速率的影响过饱和度ΔC大,有利于成核;过饱和度ΔC 小,有利于晶体成长.吸附现象流体中的吸附质借助于范德华力而富集于吸附剂固体表面的现象.物理吸附与化学吸附的区别物理吸附靠吸附剂与吸附质之间的范德华力,吸附热较小;化学吸附靠吸附剂与吸附质之间的化学键合,吸附热较大. 吸附分离的基本原理吸附剂对流体中各组分选择性的吸附.常用的吸附解吸循环变温吸附,变压吸附,变浓度吸附,置换吸附.常用吸附剂活性炭,硅胶,活性氧化铝,活性土,沸石分子筛,吸附树脂等. 吸附等温线在一定的温度下,吸附相平衡浓度随流体相浓度变化的曲线. 传质内扩散的四种类型分子扩散,努森扩散,表面扩散,固体晶体扩散. 负荷曲线固定床吸附器中,固体相浓度随距离的变化曲线称为负荷曲线. 浓度波固定床吸附器中,流体相浓度随距离的变化曲线称为浓度波.透过曲线吸附器出口流体相浓度随时间的变化称为透过曲线.透过点透过曲线中,出口浓度达到5%进口浓度时,对应的点称为透过点.饱和点透过曲线中,出口浓度达到95%进口浓度时,对应的点称为饱和点. 膜分离基本原理利用固体膜对流体混合物各组分的选择性渗透,实现分离.分离过程对膜的基本要求截留率,透过速率,截留分子量.膜分离推动力压力差,电位差.浓差极化溶质在膜表面被截留,形成高浓度区的现象.阴膜阴膜电离后固定基团带正电,只让阴离子通过.阳膜阳膜电离后固定基团带负电,只让阳离子通过.气体混合物膜分离机理努森流的分离作用;均质膜的溶解、扩散、解吸.第十四章固体干燥物料去湿的常用方法机械去湿、吸附或抽真空去湿、供热干燥等.对流干燥过程的特点热质同时传递.主要操作费用空气预热、中间加热. tas与tW在物理含义上的差别 tas由热量衡算导出,属于静力学问题;tW 是传热传质速率均衡的结果,属于动力学问题.改变湿空气温度、湿度的工程措施加热、冷却可以改变湿空气温度;喷水可以增加湿空气的湿度,也可以降低湿空气的湿度,比如喷的是冷水,使湿空气中的水分析出.平衡蒸汽压曲线物料平衡含水量与空气相对湿度的关系曲线.结合水与非结合水平衡水蒸汽压开始小于饱和蒸汽压的含水量为结合水,超出部分为非结合水.。

化工原理各章节知识点总结

化工原理各章节知识点总结

化工原理各章节知识点总结化工原理是化学工程与技术的基础课程之一,主要涉及物质的物理性质、能量转化、传质现象、化学反应等方面的知识。

下面是化工原理各章节知识点的总结。

第一章:化工基本概念与物质的物理性质1.1化学工程与化学技术的发展历史与现状1.2化工过程及其特点1.3物质的物理性质-物质的密度、比重、相对密度-物质的表观密度、气体密度-物质的粘度、表面张力、折射率-物质的热容、导热系数、热膨胀系数-物质的流变性质第二章:能量转化与传递2.1能量的基本概念2.2热力学第一定律2.3热力学第二定律2.4热力学第三定律2.5热力学循环第三章:物质的传递过程3.1传质的基本概念与分类3.2质量传递平衡方程3.3传质速率和传质通量3.4界面传质-液-气界面传质-液-液界面传质-固-液界面传质-固-气界面传质3.5传质过程中的最速传质与弛豫时间第四章:化工流体的流动4.1流体的基本性质4.2流体的流动类别4.3流体的流动方程-流体的质量守恒方程-流体的动量守恒方程-流体的能量守恒方程4.4流体内运动的基本规律-斯托克斯定律-流体的相对运动-流体的运动粘度4.5流体的管道流动-管道内的雷诺数-管道的流动阻力第五章:多元物系中物质的平衡与分离5.1多元物系基本概念5.2雾滴定律5.3吸附平衡5.4蒸汽液平衡5.5溶液中的平衡情况5.6气相-液相-固相三相平衡第六章:化学反应与反应工程6.1化学反应动力学6.2化学平衡6.3化学反应速率6.4反应器的基本类型-批次反应器-连续流动反应器-均质反应器-非均质反应器6.5反应器的设计与操作以上是化工原理各章节的知识点总结,涵盖了物理性质、能量转化、传质现象、化学反应等方面的内容。

这些知识点是化学工程与技术的基础,对于理解和应用化工原理具有重要意义。

化工原理第一章流体流动知识点总结

化工原理第一章流体流动知识点总结

第一章流体流动一、流体静力学:压强,密度,静力学方程二、流体基本方程:流速流量,连续性方程,伯努利方程三、流体流动现象:牛顿粘性定律,雷诺数,速度分布四、摩擦阻力损失:直管,局部,总阻力,当量直径五、流量的测定:测速管,孔板流量计,文丘里流量计六、离心泵:概述,特性曲线,气蚀现象和安装高度8■绝对压力:以绝对真空为基准测得的压力。

■表压/真空度 :以大气压为基准测得的压力。

表 压 = 绝对压力 - 大气压力真空度 = 大气压力 - 绝对压力1.1流体静力学1.流体压力/压强表示方法绝对压力绝对压力绝对真空表压真空度1p 2p 大气压标准大气压:1atm = 1.013×105Pa =760mmHg =10.33m H 2O112.流体的密度Vm =ρ①单组分密度),(T p f =ρ■液体:密度仅随温度变化(极高压力除外),其变化关系可从手册中查得。

■气体:当压力不太高、温度不太低时,可按理想气体状态方程计算注意:手册中查得的气体密度均为一定压力与温度下之值,若条件不同,则需进行换算。

②混合物的密度■ 混合气体:各组分在混合前后质量不变,则有nn 2111m φρφρφρρ+++= RTpM m m=ρnn 2211m y M y M y M M +++= ■混合液体:假设各组分在混合前后体积不变,则有nmn12121w w w ρρρρ=+++①表达式—重力场中对液柱进行受力分析:液柱处于静止时,上述三力的合力为零:■下端面所受总压力 A p P 22=方向向上■上端面所受总压力 A p P 11=方向向下■液柱的重力)(21z z gA G -=ρ方向向下p 0p 2p 1z 1z 2G3.流体静力学基本方程式g z p g z p 2211+=+ρρ能量形式)(2112z z g p p -+=ρ压力形式②讨论:■适用范围:适用于重力场中静止、连续的同种不可压缩性流体;■物理意义:在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但二者可以转换,其总和保持不变。

化工原理上册

化工原理上册

3. 管路由直径为Φ57×3.5mm的细管,逐渐扩大到 Φ108×4mm的粗管,若流体在细管内的流速为4m/s。 则在粗管内的流速为( B ) (A) 2m/s (B)1m/s (C) 0.5m/s (D) 0.25m/s
4.湍流与滞流的本质区别是( C ) (A)湍流的流速大于滞流的 (B) 湍流的Re值大于滞流的 (C) 滞流无径向脉动,湍流有径向脉动 (D) 湍流时边界层较薄 5. 在阻力平方区内,摩擦系数λ( C ) (A)为常数,与Re,ε/d 均无关 (B)随Re值加大而减小 (C)与Re值无关,是ε/d的函数 (D)是Re值和ε/d的函数
1. 工作原理:依靠惯性离心力而连续吸液和排液
无自吸能力 措施:灌泵、吸入管单向阀
2. 基本结构:着眼于提高液体的静压能(结构分析)
叶轮——供能装置(分类:开式、闭式、半闭式) 蜗壳——集液及转能装置 后弯叶片 蜗壳 导向轮——目的是提高能量的利用效率 轴封——填料及端面密封
二、泵的性能参数与影响因素 1. 离心泵的性能参数与特性曲线 流量、扬程、效率、有效功率、轴功率 2. 泵的特性曲线 扬程与流量,效率与流量,轴功率与流量 测定条件:一定转速下常温清水为工质在常压下测得
分析: 高位槽、管道出口两截面 解: 取高位槽液面为截面1-1’,连接管出口内侧为截面2-2’, 并以截面2-2’ 的中心线为基准水平面,在两截面间列柏努 利方程式: u、p已知
求△Z
柏努利方程
u12 p1 u2 2 p2 gZ1 he gZ 2 hf 2 2
入口管段:
VS / 2 104 / 3600 /1073 u 0.66 m/s 2 2 0.785d 0.785 (0.10) du 0.1 0.66 1073 5 Re 1.12 10 3 0.63 10 0.3 0.003 λ=0.027 d 100 90o标准弯头1个: 0.75 进口损失: 0.5

化工原理各章知识点

化工原理各章知识点

化工原理各章知识点化工原理是化工专业的基础课程之一,它主要涉及到化工过程中的一些原理、原理和理论。

下面是化工原理各章节的一些重点知识点的介绍。

第一章:化学工程概述化学工程概述主要介绍了化学工程的定义、发展历程、相关行业和化学工程的各种应用。

通过这一章节的学习,可以了解化学工程的基本概念、发展历史和现状,为后续章节的学习奠定基础。

第二章:物料平衡与能量平衡物料平衡和能量平衡是化工过程设计的基本工具。

学习这一章节,主要掌握物料平衡和能量平衡的基本原理和计算方法,能够进行物料和能量平衡的计算和分析。

第三章:化工流程与流体力学化工流程与流体力学主要介绍了流体在化工过程中的流动原理和流动性能的参数。

掌握这一章节的知识,可以了解流体在管道、泵以及其他设备中的流动特性,同时了解液体和气体的物理性质和计算方法。

第四章:传递过程与传递操作基础传递过程与传递操作基础主要涉及质量传递和能量传递的基本原理和方法。

通过学习这一章节,可以了解质量传递和能量传递的基本概念、原理和计算方法,为后续章节的学习打下基础。

第五章:多相反应与反应器多相反应与反应器是化学工程中的核心内容之一、这一章节主要介绍液相反应和气相反应的基本原理、机理和反应器的种类、结构和设计方法。

掌握这一章节的知识,可以理解多相反应的基本原理和反应器的工作原理,能够进行反应器的设计和优化。

第六章:分离工程基础分离工程基础主要介绍化工过程中的物质分离原理和技术。

学习这一章节,可以了解物质分离的基本原理和方法,能够进行分离工艺的设计和操作。

第七章:化工热力学化工热力学主要涉及化学反应的热力学原理和计算方法。

通过学习这一章节,可以了解化学反应的热力学基本原理和计算方法,能够进行热力学计算和分析。

第八章:化工流程动力学化工流程动力学主要涉及化学反应过程的动力学原理和方法。

学习这一章节,可以了解化学反应动力学的基本原理和计算方法,能够进行反应过程的动力学分析和优化。

第九章:计算机在化学工程中的应用计算机在化学工程中的应用主要介绍了计算机在化学工程中的应用方法和工具。

2019化工原理(上)主要知识点

2019化工原理(上)主要知识点

化工原理(上)各章主要知识点一、密度1. 气体密度:RTpMV m ==ρ2. 液体均相混合物密度:nm aa a ρρρρn 22111+++= (m ρ—混合液体的密度,a —各组分质量分数,n ρ—各组分密度) 3. 气体混合物密度:n n m ρϕρϕρϕρ+++= 2211(m ρ—混合气体的密度,ϕ—各组分体积分数)4. 压力或温度改变时,密度随之改变很小的流体成为不可压缩流体(液体);若有显着的改变则称为可压缩流体(气体)。

二、.压力表示方法1、常见压力单位及其换算关系:2、压力的两种基准表示:绝压(以绝对真空为基准)、表压(真空度)(以当地大气压为基准,由压力表或真空表测出) 表压 = 绝压—当地大气压 真空度 = 当地大气压—绝压 三、流体静力学方程1、静止流体内部任一点的压力,称为该点的经压力,其特点为: (1)从各方向作用于某点上的静压力相等;(2)静压力的方向垂直于任一通过该点的作用平面;(3)在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的高低而变化。

2、流体静力学方程(适用于重力场中静止的、连续的不可压缩流体)p z gp=ρ(容器内盛液体,上部与大气相通,g p ρ/—静压头,“头”—液位高度,p z —位压头 或位头)上式表明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低则压力愈大。

四、流体静力学方程的应用 1、U 形管压差计指示液要与被测流体不互溶,且其密度比被测流体的大。

测量液体:)()(12021z z g gR p p -+-=-ρρρ 测量气体:gR p p 021ρ=-2、双液体U 形管压差计 gR p p )(1221ρρ-=-第二节 流体流动的基本方程一、基本概念1、体积流量(流量s V ):流体单位时间内流过管路任意流量截面(管路横截面)的体积。

单位为13-⋅s m2、质量流量(s m ):单位时间内流过任意流通截面积的质量。

化工原理(上册)复习知识点

化工原理(上册)复习知识点

第1章 流体流动常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压静压强的计算柏努利方程应用层流区(Laminar Flow ):Re < 2000;湍流区(Turbulent Flow ):Re > 4000;2000 <Re < 4000时,有时出现层流,有时出现湍流,或者是二者交替出现,为外界条件决定,称为过渡区。

流型只有两种:层流和湍流。

当流体层流时,其平均速度是最大流速的1/2。

边界层:u<0.99u 0阻力损失:直管阻力损失和局部阻力损失当量直径d e管路总阻力损失的计算突然缩小局部阻力系数ζ= 0.5,突然扩大局部阻力系数ζ= 1。

流体输送管路的计算:通常,管路中水的流速为1~3m/s 。

并联管路, 各支管的阻力损失相等。

毕托管测量流速测量流量: 孔板流量计, 文丘里流量计, 转子流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

第2 章 流体流动机械压头和流量是流体输送机械主要技术指标离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

半闭式和开式效率较低,常用于输送浆料或悬浮液。

气缚现象:贮槽内的液体没有吸入泵内。

启动与停泵灌液完毕,关闭出口阀,启动泵,这时所需的泵的轴功率最小,启动电流较小,以保护电机。

启动后渐渐开启出口阀。

f e h u p gz h u p gz +++=+++222221112121ρρf e Hg u z g p H g u z g p +++=+++2222222111ρρμρdu =Re 222'2e 2e 2u d l l u d l l u d l h h h f f f ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+=∑∑∑∑∑∑ζλλζλ▪ 停泵前,要先关闭出口阀后再停机,这样可避免排出管内的水柱倒冲泵壳内叶轮,叶片,以延长泵的使用寿命。

化工原理主要知识点

化工原理主要知识点

化工原理主要知识点化工原理是指化学宏观过程的基本规律和基础知识,它是化学工程和化学工艺技术的理论基础。

化工原理的主要知识点涉及物质的性质、物质的变化过程以及化工过程的控制等方面,下面将以以下几个方面作为主要知识点进行详细介绍。

一、物质的性质物质的性质是化工原理的基础,包括物质的物理性质和化学性质。

物理性质主要包括颜色、密度、熔点、沸点、溶解度等;化学性质主要指物质在特定条件下参与化学反应产生新物质的能力,如燃烧、氧化、还原等。

二、物质的变化过程1.物质的相变:包括固体的溶解、液体的蒸发、汽化等过程;2.化学反应:包括酸碱中和反应、氧化还原反应、络合反应等;3.物质的分解、合成和转化:包括催化、燃烧等;4.物质的传递:包括质量传递、热传递和动量传递等。

三、化工过程的控制1.常用的化工过程:例如氧化、还原、酯化、酰胺化、脱水、脱氧等;2.化工过程的控制策略:例如物料平衡、能量平衡、动量平衡等;3.化工过程的参数设计:例如反应器的体积和温度、反应时间、物料输入量等;4.传递过程的控制:例如质量传递的速率和效率、热传递的方式和效率、动量传递的速率和效率等。

四、化工设备和装置1.常见的化工设备:例如反应器、蒸馏塔、吸收塔、萃取塔、结晶器等;2.化工设备的选择和设计:包括根据反应类型和产物要求选择设备以及设备的参数和结构设计等;3.化工装置的布局和流程设计:包括化工反应系统的选址和布置、设备之间的管道连接等。

五、安全与环保1.化工过程的安全:包括对危险物质的处理、事故预防和应急处理等;2.化工过程的环保:例如废物的处理与回收、能源的利用效率等。

六、化工原理在工程实践中的应用化工原理的基本知识是进行化学工程设计和流程改进的基础,在化学工程实践中起到指导作用。

它的应用范围包括化学工程、化学制药、石油化工、冶金工程、环境工程等领域。

在化工原理的学习中,除了掌握基本的理论知识外,还需要通过实验和实践来进一步理解和应用。

化工原理第一章知识点小结

化工原理第一章知识点小结

湍流
-Δp m l u2 hf = =λ ρ d 2
64 hf u Re 0.3164 1.75 h u λ = f 光滑管 Re0.25 (布拉修斯公式) λ=
粗造管
为常数
当量直径 非圆形
l u2 h f =λ de 2

A d e =4rH =4 S
处在变化区
2 h u f
3、流动阻力 ①流动类型 层流 只有轴向运动 湍流 轴向运动 径向脉动
流型判断 Re
区别
Re<2000 层流 2000<Re<4000 Re>4000 湍流
层流区 过渡区 湍流区
②牛顿黏性定律 1) 抛物线型
(层流)
(湍流)
----------------------------------------------------------------------------c ------------------------------------------------------------------------------------------------------------------------------------------------------运动 流体的 内摩擦力 只有轴向速度
求 h f ,We 直接求解
1)已知d,l,V
2)已知d,l, hf
3)已知l,V, hf
求V(u) …….试差法
求d ……. ……. 试差法
2、流量测量
点速度 2(Pm,B -Pm,A ) 2gR(ρi -ρ) 特 σ = = 点: ①毕托管(测速管) A ρ ρ 变 压 2gR(ρi -ρ) 2 差、 ②孔板流量计 V=u 0 A 0 = d 0 C0 定 4 ρ 截 面 2gR(ρi -ρ) 2 ③文丘里量计 V=u 2 A 2 = d 2 CV

化工原理上册复习知识点.

化工原理上册复习知识点.

f e h u p gz h u p gz +++=+++222221112121ρρ第1章流体流淌常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m3 1atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg (1)被测流体的压力 > 大气压表压 = 绝压-大气压(2)被测流体的压力 < 大气压真空度 = 大气压-绝压= -表压 静压强的计算 柏努利方程应用层流区(Laminar Flow ):Re < 2000;湍流区(Turbulent Flow ):Re > 4000;2000 <Re < 4000时,有时出现层流,有时出现湍流,或者是二者交替出现,为外界条件确定,称为过渡区。

流型只有两种:层流和湍流。

当流体层流时,其平均速度是最大流速的1/2。

边界层:u<0.99u 0阻力损失:直管阻力损失和局部阻力损失 当量直径d e管路总阻力损失的计算fe H g u z g p H g u z gp +++=+++2222222111ρρ222'2e 2e 2u d l l u d l l u d lh h h f f f ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+=∑∑∑∑∑∑ζλλζλ突然缩小局部阻力系数ζ= 0.5,突然扩大局部阻力系数ζ= 1。

流体输送管路的计算:定性分析(1.6ppt),定量计算通常,管路中水的流速为1~3m/s。

并联管路,各支管的阻力损失相等。

毕托管测量流速测量流量:孔板流量计,文丘里流量计,转子流量计。

孔板流量计的特点;结构简单,制造简单,安装便利,得到广泛的运用。

其不足之处在于局部阻力较大,孔口边缘简单被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差, 变截面。

第2章流体流淌机械压头和流量是流体输送机械主要技术指标离心泵的构件: 叶轮, 泵壳(蜗壳形)和轴封装置离心泵的叶轮闭式效率最高,适用于输送干净的液体。

化工原理(上)主要知识点

化工原理(上)主要知识点

三个传递:动量传递、热量传递和质量传递三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算第一节 流体静止的基本方程一、密度1. 气体密度:RTpM V m ==ρ2. 液体均相混合物密度:nma a a ρρρρn22111+++=(m ρ—混合液体的密度,a —各组分质量分数,n ρ—各组分密度)3. 气体混合物密度:n n mρϕρϕρϕρ+++= 2211(m ρ—混合气体的密度,ϕ—各组分体积分数)4. 压力或温度改变时,密度随之改变很小的流体成为不可压缩流体(液体);若有显著的改变则称为可压缩流体(气体)。

二、.压力表示方法1、常见压力单位及其换算关系:mmHgO mH MPa kPa Pa atm 76033.101013.03.10110130012=====2、压力的两种基准表示:绝压(以绝对真空为基准)、表压(真空度)(以当地大气压为基准,由压力表或真空表测出) 表压 = 绝压—当地大气压 真空度 = 当地大气压—绝压三、流体静力学方程1、静止流体内部任一点的压力,称为该点的经压力,其特点为: (1)从各方向作用于某点上的静压力相等; (2)静压力的方向垂直于任一通过该点的作用平面;(3)在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的高低而变化。

2、流体静力学方程(适用于重力场中静止的、连续的不可压缩流体))(2112z z g p p -+=ρ)(2121z z g pg p -+=ρρ p z gp=ρ(容器内盛液体,上部与大气相通,g p ρ/—静压头,“头”—液位高度,p z —位压头 或位头)上式表明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低则压力愈大。

1、U 形管压差计指示液要与被测流体不互溶,且其密度比被测流体的大。

测量液体:)()(12021z z g gR p p -+-=-ρρρ 测量气体:gR p p 021ρ=-2、双液体U 形管压差计 gR p p )(1221ρρ-=-第二节 流体流动的基本方程一、基本概念1、体积流量(流量s V ):流体单位时间内流过管路任意流量截面(管路横截面)的体积。

化工原理的知识点总结

化工原理的知识点总结

化工原理的知识点总结一、物质的转化1. 化学反应原理化学反应是化工生产中最基本的过程之一,其原理是指通过物质之间的相互作用,原有物质的化学成分和结构发生变化,产生新的物质。

在化学反应中,往往会 Begingroup 产生热量、释放或者吸收气体以及溶解或析出固体物质。

常见的反应类型包括酸碱反应、氧化还原反应、置换反应、水解反应等。

2. 反应热力学反应热力学研究的是化学反应在不同途径下产生的能量变化规律。

反应热力学的主要内容包括热力学系统、热力学函数、热力学平衡、化学平衡等。

通过反应热力学的研究,可以预测化学反应的进行方向和速率,为化工生产提供重要的理论指导。

3. 反应动力学反应动力学研究的是化学反应速率随时间变化规律。

反应动力学的主要内容包括反应速率和反应速率常数的确定、反应速率方程和速率常数的推导等。

通过反应动力学的研究,可以基于反应速率的规律来设计和优化化工反应器,提高反应效率,减少能耗,降低生产成本。

二、传热传质1. 传热原理传热是指热量从高温物体传递到低温物体的过程。

传热原理主要包括热传导、对流传热和辐射传热三种方式。

热传导是指热量在固体物质内部传递的过程,对流传热是指热量通过流体介质传递的过程,而辐射传热是指热量通过辐射的方式传递的过程。

2. 传质原理传质是物质在空间内由高浓度区向低浓度区扩散的过程。

传质原理主要包括扩散、对流传质和表面传质。

扩散是指物质在固体、液体或气体中沿浓度梯度传输的现象,对流传质是指物质通过流体介质进行传送的过程,表面传质是指物质在表面上通过吸附和蒸发进行传递的过程。

三、流体力学1. 流体性质流体是一种无固定形态的物质,其主要特点包括不能承受剪切应力、易于流动和易于变形。

在化工过程中,流体的性质对设备设计和流体流动有重要影响。

流体的主要性质包括黏度、密度、表观黏度、流变性等。

2. 流体流动流体流动是指流体在管道或设备内部的运动过程。

流体的流动过程包括定常流动和非定常流动,同时还会受到雷诺数、流态、雷诺方程等因素的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理(上)各章主要知识点三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算第一节 流体静止的基本方程一、密度1. 气体密度:RTpMV m ==ρ2. 液体均相混合物密度:nm a a a ρρρρn 22111+++= (m ρ—混合液体的密度,a —各组分质量分数,n ρ—各组分密度)3. 气体混合物密度:n n mρϕρϕρϕρ+++= 2211(m ρ—混合气体的密度,ϕ—各组分体积分数)4. 压力或温度改变时,密度随之改变很小的流体成为不可压缩流体(液体);若有显著的改变则称为可压缩流体(气体)。

二、.压力表示方法1、常见压力单位及其换算关系:mmHgO mH MPa kPa Pa atm 76033.101013.03.10110130012=====2、压力的两种基准表示:绝压(以绝对真空为基准)、表压(真空度)(以当地大气压为基准,由压力表或真空表测出) 表压 = 绝压—当地大气压 真空度 = 当地大气压—绝压三、流体静力学方程1、静止流体内部任一点的压力,称为该点的经压力,其特点为: (1)从各方向作用于某点上的静压力相等;(2)静压力的方向垂直于任一通过该点的作用平面;(3)在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的高低而变化。

2、流体静力学方程(适用于重力场中静止的、连续的不可压缩流体) )(2112z z g p p -+=ρ)(2121z z g pg p -+=ρρp z gp=ρ(容器内盛液体,上部与大气相通,g p ρ/—静压头,“头”—液位高度,p z —位压头 或位头)上式表明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低则压力愈大。

四、流体静力学方程的应用 1、U 形管压差计指示液要与被测流体不互溶,且其密度比被测流体的大。

测量液体:)()(12021z z g gR p p -+-=-ρρρ 测量气体:gR p p 021ρ=-2、双液体U 形管压差计 gR p p )(1221ρρ-=-第二节 流体流动的基本方程一、基本概念1、体积流量(流量s V ):流体单位时间内流过管路任意流量截面(管路横截面)的体积。

单位为13-⋅s m2、质量流量(s m ):单位时间内流过任意流通截面积的质量。

单位为1-⋅skg化工原理(上)17- 2 -s s V m ρ=流速A V u s = 质量流速Am G s=u G ρ=3、黏性:流体所具有的一种拽流体相对运动的性质。

(1)气体的黏性力或内摩擦力产生的原因是速度不等的流体层之间动量传递的结果。

(2)液体黏性力主要由分之间的吸引力所产生。

4、牛顿黏性定律:两相邻流体层之间单位面积上的内摩擦力τ(内摩擦应力或剪应力)与两流体层间的速度梯度dy d /υ成正比,即dyd υμτ±= (υτ,——方向相同时取正号,否则取负号)服从此定律的流体称为牛顿型流体。

4、黏度μ的单位为Pa·s 常见流体用mPa·s(1)流体的黏度随温度而变,温度升高,气体的黏度增大,液体的黏度减小。

原因:温度升高时,气体分子运动的平均速度增大,两相邻气体层间分子交换的速度加快,因而内摩擦力和黏度随之减小。

对于液体,温度升高时,液体体积膨胀,分之间距离增大,吸引力迅速减小,因而黏度随之下降。

(2)流体的黏度一般不随压力而变化。

二、质量衡算——连续性方程设流体在管路中做连续稳定流动,从截面1-1流入,从截面2-2流出,则21s s m m =222111A u A u ρρ=对于不可压缩流体,常数==21ρρ,则 2211A u A u =对于圆管,4/2d A π=,d 为直径,则 222211d u d u =如果管路有分支,则 21s s s m m m +=三、机械能衡算方程1、理想流体是指没有黏性的流体,即黏度0=μ的流体。

2、内能(U ),位能(gz ),动能(2/2u),压力能(ρ/p ),热量(e q ,吸热为正,放热为负),外功(e w ,外界提供给流体外功是为正,流体向外界做功时为负)3、可压缩理想流体机械能衡算关系:222221121122ρρpu gz w p u gz e ++=+++ (e w ——外功)4、 1kg 不可压缩理想流体稳定流动时的机械能衡算式:(伯努利方程)ρρ2222121122p u gz p u gz ++=++5、不可压缩实际流体的机械能衡算式:f e w p u gz w p u gz ++=+++ρρ2222121122 (f w ——阻力损失)第三节 流体流动现象一、雷诺数Reμρdu =Re 1、雷诺数的量纲为1,故其值不会因采用的单位制不同而改变,但数群中的各个物理量必须采用同一单位制。

2、流体在圆形直管中流动,Re ≤2000时属于层流;Re>4000时为湍流;Re 在2000~4000之间时流动处于一种过渡状态。

二、管内流动分析1、层流时的速度分布)(42221r R lp p --=μυ221max 4R lp p μυ-=)1(22max Rr -=υυ各章主要知识点 17- 3 -体积流量max 22υπR V s =故平均速度2maxυ=u 即层流时平均速度等于管中心处最大速度的一半。

2、层流时的阻力损失 哈根—伯谡叶公式: 232dlup f μ=∆ 3、湍流时的速度分布n Rr /1max )1(-=υυ (n 与Re 大小有关,Re 愈大,n 值也愈大。

) 平均速度 max 2)12)(1(2υ++=n n n u (当n=7时,u=0.817m ax υ)第四节 管内流动的阻力损失一、沿程损失的计算通式及其用于层流范宁公式:单位质量流体的沿程损失:)(212-⋅=kg J u d l w f λ 单位体积流体的沿程损失:)(232Pa m J u d l w p f f 或-⋅==∆ρλρ 单位重量流体的沿程损失:)(212m N J g u d l g w h f f 或-⋅==λ λ称为摩擦系数或摩擦因数 Re64=λ (层流时λ与Re 成反比)二、量纲分析法 (π定理)三、湍流时的摩擦系数23.0)Re68(100.0+=dελ (适用范围为Re ≥4000及d ε≤0.005)四、非圆形管内的沿程损失)(212-⋅=kg J u d l w e f λ润湿周边流通截面积水力半径⨯=⨯=44e d (润湿周边指流体与管壁面接触的周边长度)层流时的阻力损失 ReC=λ(C 为常数,量纲为1,对于正方形、正三角形或环形,C 分别为57、53、96)五、局部阻力损失1、阻力系数法:22u w f ζ=ζ——局部阻力系数,(1)突然扩大:当流体流过突然扩大的管道时,流速减小,压力相应增大。

此时10=ζ,称为管道出口阻力系数。

(2)突然缩小:当流体由大管流入小管时,流股突然减小,到缩脉时,流股截面缩到最小,之后开始逐渐扩大,直至重新充满整个管截面。

当流体从容器流进管道时,5.0=i ζ,称为管入口阻力系数。

2、当量计算法(当量长度e l )化工原理(上)17- 4 - 局部阻力损失:22u d l w e f λ=六、管内流动总阻力损失的计算在管路系统中,总阻力等于沿程损失与局部损失之和,对于等径管,有2)(2)(22u d l l u d l w e f ∑∑∑+=+=λζλ若管路系统中存在不同管径段,管路总阻力损失应将等径段的阻力损失相加。

第五节 管路计算uV d s π4=一、简单管路1、简单管路是没有分支或汇合的管路,其特点为:(1)通过各管段的质量流量不变,对于不可压缩流体的体积流量也不变(指稳定流动);(2)整个管路的阻力损失为各段阻力损失之和。

2、设计型问题(1)计算泵的有效功率 (例1-11) (2)计算管径 (例1-12) 3、操作型问题(1)操作性问题分析 (例1-13)管内流量变化: 将阀门开度减小后,管内流量应减小。

2)1(2211u d l p p gz ++=-+∑ζλρ简单管路中阻力系数的变大,如阀门关小等,将导致管内流量减小,阀门上游压力上升,下游压力减小。

此规律具有普遍性。

(2)计算流量 (例1-14)二、复杂管路1、复杂管路只指有分支的管路,包括并联管路、分支(或汇支)管路。

2、并联管路特点:①总流量等于个并联支管流量之和;②并联各支管的阻力损失相等。

3、并联支管中,细而长的支管通过的流量小,粗而短的支管通过的流量大。

4、分支(或汇合)管路的特点:①总流量等于各支管流量之和;②可在分支点(或汇合点)处将其分为若干个简单管路,对于每一段简单管路,仍然满足机械能衡算方程。

第六节 流量测量一、变压头的流量计(恒截面,变压头)1、测速管(皮托管) 被测流体为液体:ρρρ)(20-=gR v(0ρ——指示液密度,R ——U 形管压差计读数)被测流体为液体:ρρ02gR v =皮托管优点:阻力小,适于测量大直径气体管路内的流速。

缺点:不能直接测出平均速度,且压差读数小,常要放大才能读得准确。

2、孔板ρρρ)(2000-=gR C u (0C ——孔板系数)体积流量ρρρ)(200000-==gR A C A u V s孔板系数⎪⎪⎭⎫ ⎝⎛=1010,Re A A f C孔板安装位置:上下游要各有一段等径直管作为稳定段,上游至少110d ,下游至少15d 。

孔板优点:构造简单,制造与安装都比较方便;缺点:阻力损失大。

3、文丘里管优点:阻力损失小,相同压差读数下流量比孔板大,对测量含有固体颗粒的液体也较孔板适用;缺点:加工较难,精度要求高,因而造价高,安装时需占去一定管长位置。

二、变截面流量计(恒压头,变截面)转子流量计(简称为转子计) 第一节 离心泵一、离心泵的操作原理与构造1、操作原理 (主要靠高速旋转的叶轮所产生的离心力) (1)开动前泵内要先灌满所输送的液体。

离心泵开动是如果泵壳内和吸入管路内没有充满液体,它便没有抽吸液体的能力,这是因为空气的密度比液体小得多,随着叶轮旋转所产生的离心力不足以造成吸上液体所需的真空度。

像这种因泵壳内存在气体而导致吸不上液的现象,称为“气缚”。

(2)离心泵最基本的部件为叶轮与泵壳。

二、离心泵的理论压头与实际压头1、压头的意义泵向单位重量液体提供的机械能,称为泵的压头(或扬程),用符号H 表示,单位为m对于任一管路输送系统,所需压头e h 为∑+∆+∆+∆=fe h gu g p z h 22ρ(z ∆——升举高度,g p ρ/∆——液体静压头的增量,g u2/2∆——动压头的增量,与其他项相比,可忽略,∑fh——全管路的压头损失)2、理论压头(1) 叶轮进口与出口之间列伯努利方程:理论压头:gc c g p p H 2212212-+-=∞ρ (21,c c ——液体的绝对速度)(2)液体从点1运动到点2,静压头之所以增加g p p ρ/)(12-,其原因有二:①液体在叶轮内受到离心力作用,接受了外功;②相邻两叶片所构成的通道的截面积自内向外逐渐扩大,液体通过时的速度逐渐变小,使得部分动能转变为静压能。

相关文档
最新文档