二元一次方程应用题13种经典习题
二元一次方程组应用题经典题及答案
二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。
已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。
为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。
因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。
根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。
二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。
求甲、乙两人的速度。
解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。
根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。
因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。
将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。
二元一次方程组应用题经典题及答案
实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2。
5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2。
5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3。
6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x—y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5。
2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:类型三:列二元一次方程组解决—-商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩类型四:列二元一次方程组解决-—银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱。
第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2。
二元一次方程经典40题
二元一次方程经典40题1.甲、乙两人相距30千米,甲的速度是x千米/小时,乙的速度是y千米/小时,若两人同时相向而行,2小时后相遇,求x和y满足的方程。
2.A、B两城相距200千米,一辆汽车从A城开往B城的速度为x千米/小时,从B城返回A城速度为y千米/小时,已知往返共用5小时,写出关于x和y的方程。
3.甲、乙两人在周长为400米的环形跑道上跑步,甲的速度是x米/秒,乙的速度是y米/秒,若两人同时同地反向出发,20秒后相遇,求方程。
4.某人从甲地到乙地,如果步行速度是x米/分钟,骑车速度是y米/分钟,步行先走10分钟后,再骑车20分钟到达乙地,求关于x和y的方程。
5.一艘轮船顺流速度为x千米/小时,逆流速度为y千米/小时,已知水流速度为2千米/小时,求x和y满足的方程。
6.甲、乙两车分别从相距s千米的两地同时出发,甲车速度为x千米/小时,乙车速度为y千米/小时,经过3小时两车相遇,写出方程。
7.汽车从A地到B地,如果以x千米/小时的速度行驶,会迟到2小时,如果以y千米/小时的速度行驶,会早到1小时,A、B两地距离固定,求方程。
8.甲、乙两人分别从A、B两地同时出发相向而行,甲的速度为x千米/天,乙的速度为y千米/天,经过5天相遇,且A、B两地距离为120千米,求方程。
9.一项工程,甲队单独做x天完成,乙队单独做y天完成,两队合作10天完成,求x和y满足的方程。
10.甲、乙两个工程队修建一条公路,甲队每天修x米,乙队每天修y米,两队合作15天修完长为600米的公路,求方程。
11.一件工作,甲单独做x小时完成,乙单独做y小时完成,甲先做2小时后乙再做3小时完成这件工作的一半,求方程。
12.一项工程,甲、乙合作x天完成,乙、丙合作y天完成,甲、丙合作z天完成,设甲、乙、丙单独完成分别需要a、b、c天,求关于a和b的二元一次方程。
13.某工程甲单独做需x天,乙单独做需y天,甲先做3天,然后甲乙合作2天完成工程,求方程。
二元一次方程组解应用题专题分类常见十三类
逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程相遇问题:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
A车路程+B车路程=相距路程总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度.练习:学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇?相遇时二人各行了多少米?A甲、乙二人相距2. 甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。
根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围?3. 从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。
甲地到乙地全程是多少?4. 甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.5. 两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.6. 某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.7. 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。
二元一次方程应用题13种经典习题
考点一 -----二元一次方程概念 与解法 例1.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,则2m -n=例2.小明和小佳同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了m ,解得⎪⎩⎪⎨⎧-==227y x ,小华看错了n ,解得⎩⎨⎧-==73y x ,你能知道原方程组正确的解吗?总结分析:灵活学会“方程解”概念解题。
【巩固】已知方程组256a 4x y x by +=⎧⎨-=-⎩-和方程组35168x y bx ay -=⎧⎨+=-⎩的解相同,求2014(2)a b +的值。
考点二-----解决实际问题 列方程(组)解应用题的一般步骤1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;5、解:解方程(组).6、验:检验方程(组)的解是否符合实际题意.7、答:完整写出答案(包括单位).列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程----解决实际问题甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。
【变式】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
二、工程问题三个基本量的关系:工作总量=工作时间×工作效率;工作时间=工作总量÷工作效率;工作效率=工作总量÷工作时间甲的工作量+乙的工作量=甲乙合作的工作总量,注:当工作总量未给出具体数量时,常设总工作量为“1”。
(完整版)经典二元一次方程应用题(带答案)
北师大版八年级二元一次方程应用题1、一个校办工厂购进了5立方米的木材,厂长决定构成方桌销售,已知一张方桌由一个桌面和4个桌腿做成,经试验发现1立方米木材可以做成50张桌面或者桌腿300个,问工厂能做多少张方桌?2、某人用有机肥给玉米施肥,如果每亩施10千克,就缺200千克;如果每亩施8千克,又剩余300千克,问该人有多少亩玉米?又有多少千克有机肥?(1公顷=15亩)3、古题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空”。
问:有多少间房?多少客人?4、某工厂去年的总产值比总支出多500万元,而今年计划的总产值比总支出多950万元,已知今年计划的总产值去去年增加15%,而计划总支出比去年减少10%,求今年计划的总产值和总支出各为多少?5、某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定甲、乙两种商品分别打七折和九折销售,某顾客购买甲、乙两种商品,共付款399元,这两种商品原销售价之和为490元,问:这两种商品的进价分别是多少元?6、某同学的父母用甲、乙两种形式为其存储了一笔教育准备金10000元,甲种年利率为2.25%,乙种年利率为2.5%,一年后,这名同学得到本息和共10242.5元,问其父母为其存储的甲、乙两种形式的教育准备金各多少元?7、某间寺庙有大小和尚共100人,在一顿午餐中一个大和尚一人能吃掉三个馒头,三个小和尚一起才吃掉一个馒头。
现知道这顿午餐共计吃掉100个馒头,问这间寺庙大和尚多少人?小和尚多少人?8、由甲、乙两种铜与银的合金,甲种含银25%,乙种含银37.5%,现在要溶成含银30%的合金100千克,两种合金各取多少千克?9、在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分,已知这个队只负了2场,那么这个队胜了几场?平了几场?10、某体育场的一条环形跑道长400m,甲乙两人从跑道上同一地点出发,分别以不变的速度练习长跑和骑自行车,如果背向而行,每隔1/2分钟他们相遇一次;如果同向而行,每隔4/3乙就追上甲一次。
列二元一次方程解组应用题专项训练(1)
列二元一次方程组解应用题专项训练(1)1.甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?2.甲桶装水49升,乙桶装水56升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰好是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下1,求这两个水桶的容量。
的水恰好是甲桶容量的33.某商场以每件a元购进一种服装,如果规定以每件b元卖出,平均每天卖出15件,30天共获利22500元,为了尽快回收资金,商场决定每件降价20%卖出,结果平均每天比降价前多卖出10件,这样30天仍可获利22500元,求a、b的值。
4.A、B两地相距42千米,甲、乙两人从两地相向而行,甲比乙早1个半小时出发,结果乙走4小时后两人相遇;若他们同向而行,乙比甲早走8小时,结果乙再走5小时后又反超过甲3千米。
求甲、乙两人的速度。
5.a与b是两个两位数,它们的和为45,将a放在b的左边,组成一个4位数,则这个4位数恰好为a与b的差的504倍,求a与b?6.某信用社把若干人民币分成两部分,分别贷款给甲,乙两个经营者,年利率为10%和8%,一年后信用社可获得利息4400元,若把两份贷款的利率交换,则利息可增加200元,问甲、乙各贷款多少元?7.某商店将76件积压商品出售给33位顾客,每位顾客最少买1件,最多买3件,买1件照原价不打折,买2件九折优惠,买3件八折优惠,结果相当于76件商品全部按八五折优惠,问买3件和2件的顾客各有多少人?8.从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以每小时12公里的速度下山,以每小时9公里的速度通过平路,到学校共用了55分钟,回来时,通过平路速度不变,但以每小时6公里的速度上山,回到营地共花去了1小时10分钟,问夏令营到学校有多少公里?9.有4%的盐水若干克,蒸发掉一些水分后,浓度变为10%;然后再加进4%的盐水300克,混合后变为浓度是6.4%的盐水,问最初盐水多少克?10.某般的载重为260吨,容积为1000m3.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m3,乙种货物每吨体积为2m3,若要充分利用这艘船的载重与容积,甲、乙两种货物应各装多少吨?(设装运货物时无任何空隙)11.某市为更有效地利用水资源,制定了用水标准:如果一户三口之家每月用水量不超过M m3,按每m3水1.30元计算;如果超过M m3,超过部分按每m3水2.90元收费,其余仍按每m3水1.30元计算.小红一家三人,1月份共用水12m3,支付水费22元.问该市制定的用水标准M为多少?小红一家超标使用了多少m3的水?12.某乐园的门票价格规定如下表所列.某校初一(1)、(2)两个班共104人去游长风乐园其中(1)班人数较少,不到50人,(2)班人数较多,有50多人.经估算,如果两班都以班为单位分别购票,则一共应付1240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱.问两班各有多少名学生?13.一轮船从甲地顺流而下8小时到达乙地,原路返回要12小时才能到达甲地,已知流水速度是每小时3千米,求两地的距离?15.某工程车从仓库装上水泥电线杆运送到离仓库恰为1000米处的公路边栽立,要求沿公路的一边向前每隔100米栽立电线杆。
列二元一次方程组解应用题专项练习50题(有答案)ok
列二元一次方程组专项练习50题(有答案)1、已知某铁路桥长800m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度.2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,•一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1•个桶底正好配套做1个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.•已知过去两次租用这两种货车的情况如下表:现租用该公司3辆甲种货车及30元计算,则货主应付运费多少元?5、(长沙)某工厂第一季度生产甲、乙两种机器共480台,改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?7、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?8、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?9、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车。
二元一次方程组应用题33道及答案
第五章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
二元一次方程组应用题类型大全
根据题意, 得 x+y =22
2×1200x=2000y
解得 x=10
Y =12
所以为了使每天生产的产品刚好配套,应安排10人生产螺 钉,12人生产螺母
例2.某工地需雪派48人去挖土和运土,如果 每人每天平均挖土5方或运土3方,那么应该 怎样安排人员,正好能使挖的土能及时运走?
每天挖的土等于每天运的土
分析题意:1、有鲜奶9吨,
2.若在市场上直接销售鲜奶,每吨可获利润500元,
3.若制成酸奶销售,每吨可获利润1200元,
4.若制成奶片销售,每吨可获利润2000元.
5.每天可加工3吨酸奶或1吨奶片, 两种方式不能同时进行.
6.受季节的限制,这批牛奶必须在4天内加工并销售完毕.
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
例:某牛奶加工厂现有鲜奶9吨,若在市场上直接 销售鲜奶,每吨可获利润500元,若制成酸奶销售, 每吨可获利润1200元,若制成奶片销售,每吨可获 利润2000元.该厂生产能力如下:每天可加工3吨酸 奶或1吨奶片,受人员和季节的限制,两种方式不能 同时进行.受季节的限制,这批牛奶必须在4天内加 工并销售完毕,为此该厂制定了两套方案:
160千米 甲
汽车行驶1小时20分的路程
汽车行驶半小时的路程
乙 拖拉机行驶1小时 20分的路程
拖拉机行驶1个半小时 行驶的路程
1、同时同地相向而行第一次相遇(相当 于相遇问题):
甲的路程 + 乙的路程 = 跑道一圈长
2、同时同地同向而行第一次相遇(相当于 追击问题):
快者的路程 - 慢者的路程 = 跑道一圈长
解之得
X=77 Y=8
答:这批零件有77个,按计划需8 小时完成
二元一次方程组应用题(50题)精选全文
可编辑修改精选全文完整版二元一次方程组应用题1、用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?2、一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?3、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?4、某厂第二车间的人数比第一车间的人数的五分之四少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的四分之三.问这两个车间各有多少人?5、共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的115名学生积极参与,已知九一班有三分之一的学生捐了10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?6、某班同学去18千米的北山郊游。
只有一辆汽车,需分两组,甲组先乘车、乙组步行。
车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。
已知车速度是60千米/时,步行速度是4千米/时,求A点距北山的距离。
7、运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?8、现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?9、一船队运送一批货物,如果每艘船装50吨,还剩下25吨装不完;如果每艘船再多装5吨,还有35吨空位.求这个船队共有多少艘船,共有货物多少吨?10、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?11、有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?12、加工一批零件,甲先单独做8小时,然后又与乙一起加工5小时完成任务。
{实用}二元一次方程组应用题经典题及答案
实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题 【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米? 解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得: x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题 【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩? 解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表: A B进价(元/件)12001000售价(元/件)13801200(注:获利 = 售价 — 进价)求该商场购进A、B两种商品各多少件;解:设购进A的数量为x件、购进B的数量为y件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120答:略类型四:列二元一次方程组解决——银行储蓄问题 【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)解:设2000的存款利率是X,则1000的存款利率是3.24%-X,则有: 2000*X*(1-20%)+1000*(3.24%-X)*(1-20%)=43.92即:1600X+25.92-800X=43.92800X=18X=2.25%3.24%-2.25%=0.99%所以,2000的存款利率是2.25%,1000的存款的利息率是0.99%.法二:也可用二元一次方程组解。
二元一次方程组应用题训练题(含答案)
二元一次方程组应用题训练题(含答案)1.一家工厂需要进行两道工序来生产产品。
第一道工序每人每天可以完成900件,第二道工序每人每天可以完成1200件。
现在有7位工人参与这两道工序,应该如何分配人力,才能使每天第一道工序和第二道工序所完成的件数相等?2.垃圾对环境的影响越来越严重,因此垃圾分类回收成为了一个重要的话题。
一所中学准备购买两种型号的垃圾分类回收箱,共20个,放置在校园中各个合适的位置。
其中型号一有14个,型号二有6个,总共需要4240元。
如果购买型号一8个,型号二12个,需要4480元。
请问型号一和型号二的单价分别是多少?3.某农场去年生产了大豆和小麦共计300吨。
今年采用新技术后,总产量为350吨,其中大豆超产10%,小麦超产20%。
请问今年该农场实际生产了多少吨大豆和多少吨小麦?4.有两块试验田,原本每块田都可以产生470千克的花生。
改用良种后,两块试验田共产生了532千克的花生。
已知第一块田的产量比原来增加了16%,第二块田的产量比原来增加了10%。
请问这两块试验田改用良种后,各增产了多少千克的花生?5.一家书店有两个下属书店,共有某种图书5000册。
如果将甲书店的400册该种图书调出给乙书店,那么乙书店的该种图书数量仍然比甲书店的数量少400册的一半。
请问这两个书店原来各有多少册这种图书?6.甲种电影票每张20元,乙种电影票每张15元。
如果购买甲、乙两种电影票共40张,恰好用去720元,请问甲、乙两种电影票各买了多少张?7.XXX和XXX一起去超市购买矿泉水和面包。
XXX买了3瓶矿泉水和3个面包,共花费21元;XXX买了4瓶矿泉水和5个面包,共花费32.5元。
请问这种矿泉水和面包的单价分别是多少?8.一家旅馆有三人间和两人间两种客房,其中三人间每人每天需要支付25元,两人间每人每天需要支付35元。
一个50人的旅游团到该旅馆住宿,租住了若干个客房,每个客房都被住满,一天总共花费1510元。
人教版二元一次方程组应用题练习大全
8、学校的篮球比足球数的 倍少 个,篮球数 学校的篮球比足球数的2倍少 学校的篮球比足球数的 倍少3个 与足球数的比为3: , 与足球数的比为 :2,求这两种球队各是 多少个? 多少个?
9、某乡改种玉米为种优质杂粮后,今年农民 某乡改种玉米为种优质杂粮后, 某乡改种玉米为种优质杂粮后 人均收入比去年提高20%。今年人均收入 人均收入比去年提高 。 比去年的1.5倍少 倍少1200元。这个乡去年农民 比去年的 倍少 元 人均收入是多少元? 人均收入是多少元?
• 某服装厂生产一批某种款式的秋装,已知 某服装厂生产一批某种款式的秋装, 米的某种布料可做上衣的衣身3个或衣 每2米的某种布料可做上衣的衣身 个或衣 米的某种布料可做上衣的衣身 袖5只. 现计划用 只 现计划用132米这种布料生产这批秋 米这种布料生产这批秋 不考虑布料的损耗), 装(不考虑布料的损耗 ,应分别用多少布料 不考虑布料的损耗 才能使做的衣身和衣袖恰好配套? 才能使做的衣身和衣袖恰好配套
7、甲、乙两人分别从相距20千米的 、B两 甲 乙两人分别从相距 千米的 千米的A、 两 地相向而行,两小时后在途中相遇, 地相向而行,两小时后在途中相遇,相遇 甲立即以原速返回A地 后,甲立即以原速返回 地,乙仍以原速向 A地前进,甲返回 地时,乙离 地还有 千 地前进, 地时, 地还有2千 地前进 甲返回A地时 乙离A地还有 求甲、乙两人的速度。 米。求甲、乙两人的速度。
• 3、某厂共有 某厂共有120名生产工人,每个工人每 名生产工人, 某厂共有 名生产工人 天可生产螺栓25个或螺母 个或螺母20个 天可生产螺栓 个或螺母 个,如果一个 螺栓与两个螺母配成一套, 螺栓与两个螺母配成一套,那么每天安排 多名工人生产螺栓,多少名工人生产螺母, 多名工人生产螺栓,多少名工人生产螺母, 才能使每天生产出来的产品配成最多套? 才能使每天生产出来的产品配成最多套?
二元一次方程应用练习题含答案
二元一次方程组应用题40 道1. 丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5 分之3,家家用自己的钱的3 分之2 各买了一本,丽丽剩下的钱比家家剩下的钱多5 块。
两人原来各有多少钱?书多少钱?解:设丽丽有x 元钱家家有y 元钱得出:3/5x=2/3y2/5x=1/3y+5解得x=50 y=45 即丽丽50 元家家45 元书30 元一本2. 一辆汽车每行8 千米要耗油4/5 千克,平均每千克汽油可行多少千米.行1 千米路程要耗油多少千克?解:8 除4/5=10(km/)4/5 除8=0.1(kg)3. 一辆摩托车1/2 小时行30 千米,他每小时行多少千米?他行1 千米要多少小时?解:30÷1/2=60 千米1÷60=1/60 小时4. 阅览室看书的同学中,男同学占七分之四,从阅览室走出5 位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?解:原来有x 名同学,女生数不变,所以(1-4/7)x=(x-5)*12/23求出x=285. 红,黄,蓝气球共有62 只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24 只,红气球和黄气球各有多少只?解:62-24=38(只)3/5 红=2/3 黄9 红=10 黄红:黄=10:938/(10+9)=2红:2*10=20黄:20*9=186. 学校阅览室有36 名学生看书,其中4/9 是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?解:原有女生:36×4/9=16(人)原有男生:36-16=20(人)后有总人数:20÷(1-3/5)=50(人)后有女生:50×3/5=30(人)来女生人数:30-16=14(人)7. 水结成冰后,体积要比原来膨胀11 分之1,2.16 立方米的冰融化成水后,体积是多少?解:2.16/(1+1/11)=1.98(立方米)8. 甲乙的粮食560 吨,如果把甲的粮食运出2/9 给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?解:现在甲乙各有560÷2=280 吨原来甲有280÷(1-2/9)=360 吨原来乙有560-360=200 吨9. 电视机降价200 元.比原来便宜了2/11.现在这种电视机的价格是多少钱?解:原价是200÷2/11=2200 元现价是2200-200=2000 元10。
二元一次方程组应用题30道专项练习
二元一次方程组应用题30道专项练习1、一个两位数,它的个位数字与十位数字之和为11.将这个两位数的个位数字与十位数字互换,得到的新数比原数大63.求原来的两位数。
2、一批货物需要运往某地。
货主准备租用汽车运输公司的甲、乙两种货车。
已知过去两次租用这种货车的情况如下表:项目第一次第二次甲种货车辆数/辆25乙种货车辆数/辆36累计运货吨数/吨15.535现在租用该公司3辆甲种货车和5辆乙种货车,刚好可以运完这批货。
如果按每吨付运费30元计算,问:货车应付运费多少元?3、初一级学生去某处旅游。
如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么会多出1辆汽车。
问需要多少辆汽车和多少名学生?4、某校举办物理竞赛,共有120人报名参加。
竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分。
问这次物理竞赛中,及格的学生有多少人,不及格的学生有多少人?5、甲乙两地相距20千米。
A从甲地向乙地方向前进,同时B从乙地向甲地方向前进。
两小时后二人在途中相遇。
相遇后A就返回甲地,B仍向甲地前进。
A回到甲地时,B离甲地还有2千米。
求A、B二人的速度。
6、甲乙两地相距60千米。
A、B两人骑自行车分别从甲乙两地相向而行。
如果A比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。
求A、B两人骑自行车的速度。
7、某公司去年的总收入比总支出多50万元。
今年比去年的总收入增加10%,总支出节约20%,今年的总收入比总支出多100万元。
求去年的总收入与总支出。
8、XXX承包了25亩地。
今年春季改种茄子和西红柿两种大棚蔬菜,用去了元。
其中茄子每亩用了1700元,获得纯利2400元;种西红柿每亩用了1800元,获得纯利2600元。
问XXX一共获得多少纯利?9、XXX和XXX分别从相距20千米的甲、乙两地相向而行。
经过2小时两人相遇。
相遇后XXX即返回原地,XXX继续向甲地前进。
二元一次方程组应用题经典题及答案
二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳——行程问题问题1:甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果XXX比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解题思路:设甲、乙速度分别为x,y千米/时,依题意列方程组解得x=6,y=3.6,因此甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
问题2:两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解题思路:设这艘轮船在静水中的速度为x千米/小时,水流速度为y千米/小时,依题意列方程组解得x=17,y=3,因此这艘轮船在静水中的速度是17千米/小时,水流速度是3千米/小时。
类型二:列二元一次方程组解决——工程问题问题:XXX家打算装修一套新住宅,假设甲、乙两个装饰公司合作6周完成需工钱5.2万元;假设甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
假设只选一个公司单独完成,从节约开支的角度考虑,XXX家应选甲公司还是乙公司?请说明理由。
解题思路:设甲公司每周完成工作的工钱为x万元,乙公司每周完成工作的工钱为y万元,依题意列方程组解得x=0.8,y=0.6,因此XXX家应该选择乙公司单独完成装修工程,能够节约开支。
类型三:列二元一次方程组解决——商品销售利润问题问题1:XXX去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利202X元,乙种蔬菜每亩获利1500元,XXX去年甲、乙两种蔬菜各种植了多少亩?解题思路:设甲、乙两种蔬菜各种植了x、y亩,依题意列方程组解得x=6,y=4,因此XXX去年甲、乙两种蔬菜各种植了6亩、4亩。
问题2:某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:进价(元/件)售价(元/件)AxxxxxxxxBxxxxxxxx求该商场购进A、B两种商品各多少件。
二元一次方程组应用题及答案
二元一次方程组解应用题及答案1、明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元。
已知这两种储蓄的年利率的和为3.24%,问这两种储蓄的年利率各是多少?(注:公民应交利息所得税=利息金额 20%)2、某班学生参加义务劳动,男生全部挑土,女生全部抬土,这样安排恰需筐68个,扁担40根,问这个班男生、女生各有多少人?3、甲、乙两人做加法,甲将其中一个加数后面多写了一个0,所以得和是2342,乙将同一个加数后面少写了一个0,所得和是65,求原来的两个加数。
4、甲、乙2个工人同时接受一批任务,上午工作的4小时中,甲用了2.5小时改装机器以提高工效,因此,上午工作结束时,甲比乙少做40个零件;下午2人继续工作4小时后,全天总计甲反而比乙多做420个零件,问这一天甲、乙各做多少个零件?5、去年甲、乙两车间计划共完成税利150万元,由于技术革新,生产效率大幅度提高,结果甲车间超额完成税利110%,乙车间超额完成税利120%,两车间一共上缴税利323万元,问甲、乙车间实际上缴税利多少万元?6一列快车长168米,一列慢车长184米,如果两车相向而行,那么两车错车需4秒,如果同向而行,两车错车需16秒钟,求两车的速度。
7、甲、乙两人分别以均匀的速度在周长为600米的圆形轨道上运动,甲的速度较快,当两人反向运动时,每15秒钟相遇一次;当两人同向运动时,每1分钟相遇一次,求各人的速度。
8、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元。
该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行。
受气温条件限制,这批牛奶必须在4天全部销售或加工完毕。
为此,该厂设计了两种方案:方案一:尽可能多的制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点一 -----二元一次方程概念 与解法 例
1.已知⎩⎪⎨
⎪⎧
x =2,
y =1
是二元一次方程组⎩⎪⎨
⎪⎧
mx +ny =8,
nx -my =1
的解,则2m -n=
例
2.小明和小佳同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了
m ,解得
⎪⎩⎪⎨⎧
-==
227y x ,小华看错了n ,解得⎩⎨⎧-==73
y x ,你能知道原方程组正确的解吗?
总结分析:灵活学会“方程解”概念解题。
【巩固】已知方程组256a 4x y x by +=⎧⎨
-=-⎩-和方程组35168x y bx ay -=⎧⎨+=-⎩的解相同,求2014
(2)a b +的
值。
考点二-----解决实际问题 列方程(组)解应用题的一般步骤
1、审:有什么,求什么,干什么;
2、设:设未知数,并注意单位;
3、找:等量关系;
5、解:解方程(组).
6、验:检验方程(组)的解是否符合实际题意.
7、答:完整写出答案(包括单位).
列方程组思想:
找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;
(3)方程两边的数值要相等.
列二元一次方程----解决实际问题
甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?
总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。
【变式】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
二、工程问题
三个基本量的关系:
工作总量=工作时间×工作效率;
工作时间=工作总量÷工作效率;
工作效率=工作总量÷工作时间
甲的工作量+乙的工作量=甲乙合作的工作总量,
注:当工作总量未给出具体数量时,常设总工作量为“1”。
一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?
总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进行分析。
【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.
三:商品销售利润问题
利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100% 有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。
价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?
【变式】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:
求该商场购进A、B两种商品各多少件;
四、银行储蓄问题
银行利率问题:免税利息=本金×利率×时间,
税后利息=本金×利率×时间—本金×利率×时间×税率
4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)
【变式】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?
五、生产中的配套问题
产品配套问题:加工总量成比例
某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?
【变式】一方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条。
现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少方桌?
六、增长率问题
增长率问题:原量×(1+增长率)=增长后的量
原量×(1+减少率)=减少后的量
某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?
(1)若条件不变,求今年的总产值、总支出各是多少万元?
【变式2】某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。
七、和差倍分问题
和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量
“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周赶制出这批帐篷.为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?
【变式】游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。
如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?
八:数字问题
首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示
两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数。
【变式】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?
【变式】某三位数,中间数字为0,其余两个数位上数字之和是9,如果百位数字减1,个位数字加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数。
九:浓度问题
溶液×浓度=溶质
现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg,问甲、乙两种酒精溶液应各取多少?
【变式】一种35%的新农药,如稀释到1.75%时,治虫最有效。
用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药800千克?
十、几何问题
必须掌握几何图形的性质、周长、面积等计算公式
如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?
【变式】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉3厘米,补到较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?
十一、年龄问题
人与人的岁数是同时增长的
今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少?
【变式1】今年,小的年龄是他爷爷的五分之一.小发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小的年龄.
.. ..
二、优化方案问题:
某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨;如果进行细加工,每天可加工6吨. 但两种加工方式不能同时进行. 受季节条件的限制,公司必须在15天之将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成
你认为选择哪种方案获利最多?为什么?
【变式】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?
.. .. ..。