数据挖掘考试习题 2有答案

合集下载

数据挖掘考试题及答案

数据挖掘考试题及答案

数据挖掘考试题及答案### 数据挖掘考试题及答案#### 一、选择题(每题2分,共20分)1. 数据挖掘的目的是发现数据中的:- A. 错误- B. 模式- C. 异常- D. 趋势答案:B2. 以下哪项不是数据挖掘的常用算法:- A. 决策树- B. 聚类分析- C. 线性回归- D. 神经网络答案:C3. 关联规则挖掘中,Apriori算法用于发现:- A. 频繁项集- B. 异常值- C. 趋势- D. 聚类答案:A4. K-means算法是一种:- A. 分类算法- B. 聚类算法- C. 预测算法- D. 关联规则挖掘算法答案:B5. 以下哪个指标用于评估分类模型的性能:- A. 准确率- B. 召回率- C. F1分数- D. 所有以上答案:D#### 二、简答题(每题10分,共30分)1. 描述数据挖掘中的“过拟合”现象,并给出避免过拟合的策略。

答案:过拟合是指模型对训练数据拟合得过于完美,以至于失去了泛化能力。

避免过拟合的策略包括:使用交叉验证、正则化技术、减少模型复杂度、获取更多的训练数据等。

2. 解释什么是“数据清洗”以及它在数据挖掘中的重要性。

答案:数据清洗是指从原始数据中识别并纠正(或删除)错误、重复或不完整的数据的过程。

它在数据挖掘中至关重要,因为脏数据会导致分析结果不准确,影响最终的决策。

3. 描述“特征选择”在数据挖掘中的作用。

答案:特征选择是数据挖掘中用来降低数据维度、提高模型性能和减少计算成本的过程。

通过选择最有信息量的特征,可以去除冗余或无关的特征,从而提高模型的准确性和效率。

#### 三、应用题(每题25分,共50分)1. 假设你正在分析一个电子商务网站的用户购买行为,描述你将如何使用数据挖掘技术来识别潜在的营销机会。

答案:首先,我会使用聚类分析来识别不同的用户群体。

然后,通过关联规则挖掘来发现不同用户群体的购买模式。

接着,利用分类算法来预测用户可能感兴趣的产品。

数据挖掘考试习题2有答案

数据挖掘考试习题2有答案

1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖 掘的哪类问题? (A )A. 关联规则发现B. 聚类C. 分类D. 自然语言处理2. 以下两种描述分别对应哪两种对分类算法的评价标准?(A ) (a ) 警察抓小偷,描述警察抓的人中有多少个是小偷的标准。

(b ) 描述有多少比例的小偷给警察抓了的标准。

A. Precisio n. RecallB. Recall, Precisi onA. Precisio n, ROC D. Recall, ROC 3•将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C ) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘 可以使用哪种技术促使带同类标签的数据与带其他标签的数C. 关联分析D. 隐马尔可夫链B. 领域知识发现动态知识发现 6.使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务? ( A ) A. 探索性数据分析 B.建模描述C.预测建模D.寻找模式和规则7. 为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任 务?(B )A. 探索性数据分析B.建模描述C.预测建模D.寻找模式和规则8. 建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据 挖掘的哪一类任务? (C )A. 根据内容检索B.建模描述C.预测建模D.寻找模式和规则9. 用户有一种感兴趣的模式并且希望在数据集中找到相似的模式, 属于数据挖掘哪 一类任务? (A )A. 根据内容检索B.建模描述C.预测建模D.寻找模式和规则11.下面哪种不属于数据预处理的方法? (D )A 变量代换B 离散化C 聚集D 估计遗漏值12•假设12个销售价格记录组已经排序如下: 5, 10, 11, 13, 15,35, 50, 55, 72, 92, 204, 215使用如下每种方法将它们划分成四个箱。

数据挖掘第三版第二章课后习题答案

数据挖掘第三版第二章课后习题答案

1.1什么是数据‎挖掘?(a)它是一种广告‎宣传吗?(d)它是一种从数‎据库、统计学、机器学和模式‎识别发展而来‎的技术的简单‎转换或应用吗‎?(c)我们提出一种‎观点,说数据挖掘是‎数据库进化的‎结果,你认为数据挖‎掘也是机器学‎习研究进化的‎结果吗?你能结合该学‎科的发展历史‎提出这一观点‎吗?针对统计学和‎模式知识领域‎做相同的事(d)当把数据挖掘‎看做知识点发‎现过程时,描述数据挖掘‎所涉及的步骤‎答:数据挖掘比较‎简单的定义是‎:数据挖掘是从‎大量的、不完全的、有噪声的、模糊的、随机的实际数‎据中,提取隐含在其‎中的、人们所不知道‎的、但又是潜在有‎用信息和知识‎的过程。

数据挖掘不是‎一种广告宣传‎,而是由于大量‎数据的可用性‎以及把这些数‎据变为有用的‎信息的迫切需‎要,使得数据挖掘‎变得更加有必‎要。

因此,数据挖掘可以‎被看作是信息‎技术的自然演‎变的结果。

数据挖掘不是‎一种从数据库‎、统计学和机器‎学习发展的技‎术的简单转换‎,而是来自多学‎科,例如数据库技‎术、统计学,机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处‎理以及空间数‎据分析技术的‎集成。

数据库技术开‎始于数据收集‎和数据库创建‎机制的发展,导致了用于数‎据管理的有效‎机制,包括数据存储‎和检索,查询和事务处‎理的发展。

提供查询和事‎务处理的大量‎的数据库系统‎最终自然地导‎致了对数据分‎析和理解的需‎要。

因此,出于这种必要‎性,数据挖掘开始‎了其发展。

当把数据挖掘‎看作知识发现‎过程时,涉及步骤如下‎:数据清理,一个删除或消‎除噪声和不一‎致的数据的过‎程;数据集成,多种数据源可‎以组合在一起‎;数据选择,从数据库中提‎取与分析任务‎相关的数据;数据变换,数据变换或同‎意成适合挖掘‎的形式,如通过汇总或‎聚集操作;数据挖掘,基本步骤,使用智能方法‎提取数据模式‎;模式评估,根据某种兴趣‎度度量,识别表示知识‎的真正有趣的‎模式;知识表示,使用可视化和‎知识表示技术‎,向用户提供挖‎掘的知识1.3定义下列数‎据挖掘功能:特征化、区分、关联和相关性‎分析、分类、回归、聚类、离群点分析。

数据挖掘考试题库及答案

数据挖掘考试题库及答案

数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。

答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。

答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。

答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。

答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。

答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。

()答案:错误12. 数据挖掘是数据仓库的一部分。

()答案:正确13. 决策树算法适用于处理连续属性的分类问题。

()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。

()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。

()答案:错误四、简答题16. 简述数据挖掘的主要任务。

答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。

17. 简述决策树算法的基本原理。

答案:决策树算法是一种自顶向下的递归划分方法。

它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。

数据挖掘习题二

数据挖掘习题二

数据挖掘习题二简答:1.何谓数据挖掘?它有哪些方面的功能?2.何谓数据仓库?为什么要建立数据仓库?3.常见的分箱方法有哪些?数据平滑处理的方法有哪些?4.何谓数据规范化?规范化的方法有哪些?写出对应的变换公式。

数据挖掘讨论题1、(20分)讨论::下列每项活动是否是数据挖掘任务?简单陈述你的理由。

(a)根据性别划分公司的顾客。

(b)根据可赢利性划分公司的顾客。

(c)预测投一对骰子的结果。

(d)使用历史记录预测某公司未来的股票价格。

简答:5. 何谓数据挖掘?它有哪些方面的功能?从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程称为数据挖掘。

相关的名称有知识发现、数据分析、数据融合、决策支持等。

数据挖掘的功能包括:概念描述、关联分析、分类与预测、聚类分析、趋势分析、孤立点分析以及偏差分析等。

6. 何谓数据仓库?为什么要建立数据仓库?数据仓库是一种新的数据处理体系结构,是面向主题的、集成的、不可更新的(稳定性)、随时间不断变化(不同时间)的数据集合,为企业决策支持系统提供所需的集成信息。

建立数据仓库的目的有3个:一是为了解决企业决策分析中的系统响应问题,数据仓库能提供比传统事务数据库更快的大规模决策分析的响应速度。

二是解决决策分析对数据的特殊需求问题。

决策分析需要全面的、正确的集成数据,这是传统事务数据库不能直接提供的。

三是解决决策分析对数据的特殊操作要求。

决策分析是面向专业用户而非一般业务员,需要使用专业的分析工具,对分析结果还要以商业智能的方式进行表现,这是事务数据库不能提供的。

7. 常见的分箱方法有哪些?数据平滑处理的方法有哪些?分箱的方法主要有:① 统一权重法(又称等深分箱法)② 统一区间法(又称等宽分箱法)③ 最小熵法④ 自定义区间法数据平滑的方法主要有:平均值法、边界值法和中值法。

8. 何谓数据规范化?规范化的方法有哪些?写出对应的变换公式。

数据挖掘习题2

数据挖掘习题2

数据挖掘习题2数据挖掘习题1、数据库有5个事务。

设min_sup=60%,min_conf=80%。

TID 购买的商品T100 {M,O,N,K,E,Y}T200 {D,O,N,K,E,Y}T300 {M,A,K,E}T400 {M,U,C,K,Y}T500 {C,O,O,K,I,E} (a)分别使⽤Apriori和FP增长算法找出所有频繁项集。

⽐较两种挖掘过程的效率。

(b)列举所有与下⾯的元规则匹配的强关联规则(给出⽀持度s和置信度c),其中,X是代表顾客的变量,是2、下表由雇员数据库的训练数据组成。

数据已泛化。

例如,age“31…35”表⽰年龄在31~35之间。

对于给定的⾏,count表⽰department,status,age和salary在该⾏具有给定值的元组数。

department status age salary count46K...50K 30 sales senior 31 (35)26K...30K 40 sales junior 26 (30)31K...35K 40 sales junior 31 (35)systems junior 21…25 46K…50K 20systems senior 31…35 66K…70K 5systems junior 26…30 46K…50K 3systems senior 41…45 66K…70K 3marketing senior 36…40 46K…50K 10marketing junior 31…35 41K…45K 4secretary senior 46…50 36K…40K 4secretary junior 26…30 26K…30K 6 设status是类标号属性。

(a)如何修改基本决策树算法,以便考虑每个⼴义数据元组(即每⼀⾏)的count?(b)使⽤修改过的算法,构造给定数据的决策树。

3、假设数据挖掘的任务是将如下的⼋个点(⽤(x,y)代表位置)聚类为三个簇。

数据挖掘测试题及答案

数据挖掘测试题及答案

数据挖掘测试题及答案一、选择题1. 数据挖掘的目的是:A. 数据清洗B. 数据转换C. 模式发现D. 数据存储答案:C2. 以下哪项不是数据挖掘的常用算法?A. 决策树B. 聚类分析C. 线性回归D. 关联规则答案:C二、填空题1. 数据挖掘中的_________是指在大量数据中发现的有意义的模式。

答案:知识2. 一种常用的数据挖掘技术是_________,它用于发现数据中隐藏的分组。

答案:聚类三、简答题1. 简述数据挖掘与数据分析的区别。

答案:数据挖掘是一种自动或半自动的过程,旨在从大量数据中发现模式和知识。

数据分析通常涉及更具体的查询和问题,使用统计方法来理解数据。

2. 描述什么是关联规则挖掘,并给出一个例子。

答案:关联规则挖掘是一种用于发现变量之间有趣关系的技术,特别是变量之间的频繁模式、关联或相关性。

例如,在市场篮子分析中,关联规则挖掘可以用来发现顾客购买行为中的模式,如“购买面包的顾客中有80%也购买了牛奶”。

四、计算题1. 给定以下数据集,计算支持度和置信度:| 事务ID | 购买的商品 |||-|| 1 | A, B || 2 | A, C || 3 | B, C || 4 | A, B, C || 5 | B, D |(1) 计算项集{A}的支持度。

(2) 计算规则A => B的置信度。

答案:(1) 项集{A}的支持度为4/5,因为A出现在4个事务中。

(2) 规则A => B的置信度为3/4,因为A和B同时出现在3个事务中,而A出现在4个事务中。

五、论述题1. 论述数据挖掘在电子商务中的应用,并给出至少两个具体的例子。

答案:数据挖掘在电子商务中的应用非常广泛,包括:- 客户细分:通过数据挖掘技术,商家可以识别不同的客户群体,为每个群体提供定制化的服务或产品。

- 推荐系统:利用关联规则挖掘,电商平台可以推荐用户可能感兴趣的商品,提高用户满意度和购买率。

- 欺诈检测:通过分析交易模式,数据挖掘可以帮助识别异常行为,预防信用卡欺诈等风险。

数据挖掘考试题

数据挖掘考试题

数据挖掘考试题一.选择题1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?( )A.分类B.聚类C.关联分析D.主成分分析2. ( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。

A.MIN(单链)B.MAX(全链)C.组平均D.Ward方法3.数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了( )数据挖掘方法。

A 分类B 预测 C关联规则分析 D聚类4.关于K均值和DBSCAN的比较,以下说法不正确的是( )A.K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象。

B.K均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。

C.K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D.K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇5.下列关于Ward’s Method说法错误的是:( )A.对噪声点和离群点敏感度比较小B.擅长处理球状的簇C.对于Ward方法,两个簇的邻近度定义为两个簇合并时导致的平方误差D.当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似6.下列关于层次聚类存在的问题说法正确的是:( )A.具有全局优化目标函数B.Group Average擅长处理球状的簇C.可以处理不同大小簇的能力D.Max对噪声点和离群点很敏感7.下列关于凝聚层次聚类的说法中,说法错误的事:( )A.一旦两个簇合并,该操作就不能撤销B.算法的终止条件是仅剩下一个簇C.空间复杂度为()2m O D.具有全局优化目标函数8.规则{牛奶,尿布}→{啤酒}的支持度和置信度分别为:( ) TID项 集 12345{面包,牛奶} {面包,尿布,啤酒,鸡蛋} {牛奶,尿布,啤酒,可乐} {面包,牛奶,尿布,啤酒} {面包,牛奶,尿布,可乐}A.0.4,0.4B.0.67,0.67C.0.4,0.67D.0.67,0.49.下列( )是属于分裂层次聚类的方法。

数据挖掘测试题及答案

数据挖掘测试题及答案

数据挖掘测试题及答案一、单项选择题(每题2分,共10题,共20分)1. 数据挖掘中,用于发现数据集中的关联规则的算法是:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:B2. 以下哪个选项不是数据挖掘的步骤之一:A. 数据预处理B. 数据探索C. 数据收集D. 数据分析答案:C3. 在分类问题中,以下哪个算法属于监督学习:A. 聚类B. 决策树C. 关联规则D. 异常检测答案:B4. 数据挖掘中,用于发现数据集中的频繁项集的算法是:A. K-meansB. AprioriC. Naive BayesD. Decision Tree5. 在数据挖掘中,以下哪个选项不是数据预处理的步骤:A. 数据清洗B. 数据集成C. 数据变换D. 数据分类答案:D6. 以下哪个算法主要用于聚类问题:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:A7. 在数据挖掘中,以下哪个选项不是数据挖掘的应用领域:A. 市场分析B. 医疗诊断C. 社交网络分析D. 视频游戏开发答案:D8. 以下哪个算法主要用于异常检测:A. K-meansB. AprioriC. Naive BayesD. One-Class SVM答案:D9. 在数据挖掘中,以下哪个选项不是数据挖掘的输出结果:B. 规则C. 趋势D. 软件答案:D10. 以下哪个算法主要用于分类问题:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:D二、多项选择题(每题3分,共5题,共15分)1. 数据挖掘中,以下哪些算法可以用于分类问题:A. K-meansB. Decision TreeC. Naive BayesD. Logistic Regression答案:BCD2. 在数据挖掘中,以下哪些步骤属于数据预处理:A. 数据清洗B. 数据集成C. 数据变换D. 数据分类答案:ABC3. 以下哪些算法可以用于聚类问题:A. K-meansB. AprioriC. Hierarchical ClusteringD. DBSCAN答案:ACD4. 在数据挖掘中,以下哪些步骤属于数据探索:A. 数据可视化B. 数据摘要C. 数据分类D. 数据变换答案:AB5. 以下哪些算法可以用于异常检测:A. K-meansB. One-Class SVMC. Isolation ForestD. Apriori答案:BC三、简答题(每题5分,共3题,共15分)1. 简述数据挖掘中关联规则挖掘的主要步骤。

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案第一部分:选择题(每题4分,共40分)1.数据挖掘的定义是以下哪一个选项?A)从大数据中提取有用的信息B)从数据库中提取有用的信息C)从互联网中提取有用的信息D)从文件中提取有用的信息2.以下哪个是数据挖掘的一个主要任务?A)数据的存储和管理B)数据的可视化展示C)模型的建立和评估D)数据的备份和恢复3.下列哪个不是数据挖掘的一个常用技术?A)关联规则挖掘B)分类算法C)聚类分析D)数据编码技术4.以下哪个不属于数据预处理的步骤?A)数据清洗B)数据集成C)数据转换D)模型评估5.以下哪个是数据挖掘任务中的分类问题?A)预测数值B)聚类分析C)异常检测D)关联规则挖掘6.以下哪个不属于数据可视化的一种方法?A)散点图B)柱状图C)热力图D)关联规则图7.在使用决策树算法进行分类任务时,常用的不纯度度量指标是:A)基尼指数B)信息增益C)平方误差D)均方根误差8.以下哪个算法常用于处理文本数据挖掘任务?A)K-means算法B)Apriori算法C)朴素贝叶斯算法D)决策树算法9.以下哪种模型适用于处理离散型目标变量?A)线性回归模型B)逻辑回归模型C)支持向量机模型D)贝叶斯网络模型10.数据挖掘的应用领域包括以下哪些?A)金融风控B)医疗诊断C)社交网络分析D)所有选项都正确第二部分:填空题(每题4分,共20分)1.数据挖掘的基础是______和______。

答案:统计学、机器学习2.数据挖掘的任务包括分类、聚类、预测和______。

答案:关联规则挖掘3.常用的数据预处理方法包括数据清洗、数据集成和______。

答案:数据转换4.决策树算法的基本思想是通过选择最佳的______进行分类。

答案:划分属性5.支持向量机(SVM)算法适用于______问题。

答案:二分类问题第三部分:简答题(每题10分,共40分)1.请简述数据挖掘的流程及各个阶段的主要任务。

答:数据挖掘的流程一般包括问题定义、数据收集、数据预处理、模型选择与建立、模型评估与选择、知识应用等阶段。

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案一、选择题(每题2分,共20分)1. 以下哪项不属于数据挖掘的主要任务?A. 分类B. 聚类C. 关联规则挖掘D. 数据清洗答案:D2. 数据挖掘中,以下哪项技术不属于关联规则挖掘的方法?A. Apriori算法B. FP-growth算法C. ID3算法D. 决策树算法答案:C3. 以下哪个算法不属于聚类算法?A. K-means算法B. DBSCAN算法C. Apriori算法D. 层次聚类算法答案:C4. 数据挖掘中,以下哪个属性类型不适合进行关联规则挖掘?A. 连续型属性B. 离散型属性C. 二进制属性D. 有序属性答案:A5. 数据挖掘中,以下哪个评估指标用于衡量分类模型的性能?A. 准确率B. 精确度C. 召回率D. 所有以上选项答案:D二、填空题(每题3分,共30分)6. 数据挖掘的目的是从大量数据中挖掘出有价值的________和________。

答案:知识;模式7. 数据挖掘的主要任务包括分类、聚类、关联规则挖掘和________。

答案:预测分析8. Apriori算法中,最小支持度(min_support)和最小置信度(min_confidence)是两个重要的参数,它们分别用于控制________和________。

答案:频繁项集;强规则9. 在K-means聚类算法中,聚类结果的好坏取决于________和________。

答案:初始聚类中心;迭代次数10. 数据挖掘中,决策树算法的构建过程主要包括________、________和________三个步骤。

答案:选择最佳分割属性;生成子节点;剪枝三、判断题(每题2分,共20分)11. 数据挖掘是数据库技术的一个延伸,它的目的是从大量数据中提取有价值的信息。

()答案:√12. 数据挖掘过程中,数据清洗是必不可少的步骤,用于提高数据质量。

()答案:√13. 数据挖掘中,分类和聚类是两个不同的任务,分类需要训练集,而聚类不需要。

数据挖掘与分析考试题库(含答案)

数据挖掘与分析考试题库(含答案)

数据挖掘与分析考试题库(含答案)选择题1. 数据挖掘的主要功能是什么?A. 挖掘数据潜在的信息B. 对数据进行记录和处理C. 提高数据存储的效率D. 对数据进行分类和排序Answer: A2. 下列哪种算法不属于聚类算法?A. K-MeansB. BP神经网络C. DBSCAND. 层次聚类Answer: B3. 数据挖掘中使用最多的算法是什么?A. 决策树B. 关联规则C. 神经网络D. 贝叶斯Answer: A4. 数据挖掘的预处理不包括下列哪项?A. 数据压缩B. 数据清洗C. 数据变换D. 数据标准化Answer: A5. 下列哪项不是数据挖掘的步骤?A. 数据预处理B. 特征选择C. 模型评价D. 问题求解Answer: D填空题1. 数据挖掘的类型有分类、聚类和__________。

(回归)2. 决策树分类的根节点对应的是__________。

(最优属性)3. 聚类算法的优化目标是__________。

(最小化)4. 在SPSS Modeler中可以通过“数据变换”节点进行数据__________。

(离散化)5. 数据挖掘可以发现数据中的__________规律。

(潜在)论述题1. 请简要介绍数据挖掘的主要任务及其流程。

答:数据挖掘的主要任务是挖掘数据中潜在的信息,包括分类、聚类、关联规则等。

其流程通常包括数据预处理、特征选择、模型构建和模型评价等步骤。

其中,数据预处理是数据挖掘的重要步骤,包括数据清洗、数据变换、数据标准化等,主要是为了提高数据的质量和可用性。

特征选择是指选择最具有代表性的特征,以便于数据的分析和建模,主要是为了降低模型的复杂度和提高模型的精度。

模型构建是依据所选的算法来构建数据模型,包括决策树、神经网络、关联规则等。

模型评价则是通过对构建的模型进行测试和评价,以便于知道模型的优劣和改进方向。

2. 请论述聚类分析的常用算法及其优缺点。

答:聚类分析的常用算法包括K-Means、层次聚类和DBSCAN等。

数据挖掘习题参考答案

数据挖掘习题参考答案

数据挖掘习题参考答案数据挖掘习题参考答案数据挖掘作为一门热门的学科,已经在各个领域得到广泛应用。

它的目标是从大量的数据中发现有用的信息,并且用这些信息来解决实际问题。

为了帮助读者更好地理解数据挖掘的概念和技术,本文将提供一些数据挖掘习题的参考答案,希望能够对读者有所帮助。

习题一:什么是数据挖掘?它有哪些应用领域?答案:数据挖掘是指从大量的数据中发现有用的信息,并且用这些信息来解决实际问题的过程。

它可以帮助我们发现数据中的模式、规律和趋势,从而提供决策支持和预测能力。

数据挖掘的应用领域非常广泛,包括但不限于市场营销、金融风险管理、医疗诊断、社交网络分析等。

习题二:数据挖掘的主要任务有哪些?答案:数据挖掘的主要任务包括分类、聚类、关联规则挖掘和异常检测。

分类是指根据已有的数据样本来预测新的数据样本所属的类别。

聚类是指将数据样本分成几个不同的组,使得同一组内的数据样本相似度较高,而不同组之间的相似度较低。

关联规则挖掘是指发现数据中的关联关系,例如购物篮分析中的“如果购买了商品A,则更有可能购买商品B”。

异常检测是指发现与其他样本不同的数据点,可能是潜在的异常或异常行为。

习题三:数据挖掘的过程有哪些步骤?答案:数据挖掘的过程通常包括问题定义、数据收集、数据预处理、特征选择和转换、模型选择和建立、模型评估和模型应用等步骤。

首先,我们需要明确问题的定义,确定我们需要从数据中挖掘出什么样的信息。

然后,我们收集相关的数据,并对数据进行预处理,包括数据清洗、数据集成、数据变换和数据规约等。

接下来,我们选择合适的特征,并进行特征转换,以便于模型的建立和分析。

在模型选择和建立阶段,我们选择合适的数据挖掘算法,并进行模型的训练和优化。

最后,我们评估模型的性能,并将模型应用于实际问题中。

习题四:数据挖掘中常用的算法有哪些?答案:数据挖掘中常用的算法包括决策树、朴素贝叶斯、支持向量机、神经网络、聚类算法(如K-means算法和DBSCAN算法)、关联规则挖掘算法(如Apriori算法)等。

数据挖掘考试题及答案

数据挖掘考试题及答案

数据挖掘考试题及答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-meansD. 神经网络答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现以下哪种类型的模式?A. 序列模式B. 分类模式C. 频繁项集D. 聚类模式答案:C4. 以下哪个指标不是用于评估分类模型性能的?A. 准确率B. 召回率C. F1分数D. 马氏距离答案:D5. 在数据挖掘中,以下哪个算法是用于聚类的?A. K-meansB. 逻辑回归C. 随机森林D. 支持向量机答案:A6. 以下哪个选项不是数据挖掘过程中的步骤?A. 数据预处理B. 模式发现C. 结果评估D. 数据存储答案:D7. 在数据挖掘中,异常检测的主要目的是识别以下哪种类型的数据?A. 频繁出现的模式B. 罕见的模式C. 预测未来的数据D. 聚类的数据答案:B8. 以下哪个选项不是数据挖掘中常用的数据预处理技术?A. 数据清洗B. 数据集成C. 数据变换D. 数据压缩答案:D9. 在数据挖掘中,以下哪个算法是用于特征选择的?A. 主成分分析B. 线性判别分析C. 支持向量机D. 决策树答案:D10. 以下哪个选项不是数据挖掘中常用的数据表示方法?A. 决策树B. 向量空间模型C. 邻接矩阵D. 频率分布表答案:D二、多项选择题(每题3分,共15分)11. 数据挖掘中常用的聚类算法包括哪些?A. K-meansB. 层次聚类C. DBSCAND. 支持向量机答案:A、B、C12. 在数据挖掘中,以下哪些是关联规则挖掘的典型应用场景?A. 市场篮分析B. 异常检测C. 推荐系统D. 社交网络分析答案:A、C13. 数据挖掘中,以下哪些是分类模型评估的常用指标?A. 准确率B. 召回率C. ROC曲线D. 马氏距离答案:A、B、C14. 在数据挖掘中,以下哪些是特征工程的步骤?A. 特征选择B. 特征提取C. 特征变换D. 数据清洗答案:A、B、C15. 数据挖掘中,以下哪些是数据预处理的常见任务?A. 缺失值处理B. 异常值检测C. 数据规范化D. 数据压缩答案:A、B、C三、简答题(每题10分,共30分)16. 请简述数据挖掘中分类和聚类的主要区别。

数据挖掘与分析技术考试

数据挖掘与分析技术考试

数据挖掘与分析技术考试(答案见尾页)一、选择题1. 数据挖掘与分析技术主要涉及哪两个领域?A. 统计学B. 机器学习C. 数据库系统D. 数据可视化2. 在数据挖掘中,以下哪个步骤不是必须的?A. 数据清洗B. 特征工程C. 建立模型D. 预测3. 数据挖掘中,以下哪个术语描述的是将数据从一种形式转换为另一种形式的过程?A. 数据挖掘B. 数据转换C. 数据分析D. 数据预处理4. 在数据挖掘中,以下哪个技术可以用来识别数据中的模式?A. 关联规则学习B. 回归分析C. 聚类分析D. 决策树5. 数据挖掘与分析技术中,以下哪个是用于评估模型性能的指标?A. 准确率B. 召回率C. F1 分数D. 均方误差6. 在数据挖掘中,以下哪个技术可以用来预测未来的趋势?A. 时间序列分析B. 逻辑回归C. 支持向量机D. 神经网络7. 数据挖掘中,以下哪个步骤通常在模型的训练阶段进行?A. 数据收集B. 数据清洗C. 模型训练D. 模型评估8. 在数据挖掘中,以下哪个技术可以用来发现数据中的异常值?A. 聚类分析B. 神经网络C. 异常检测D. 自然语言处理9. 数据挖掘与分析技术中,以下哪个是用于描述数据集中各数值之间关系的方法?A. 统计描述B. 数据可视化C. 聚类分析D. 关联规则学习10. 在数据挖掘中,以下哪个技术可以用来评估数据集的密度和复杂度?A. 分形维数B. 熵C. 置换-扩散算法D. k-均值聚类11. 数据挖掘与分析技术主要涉及哪几个方面?B. 机器学习C. 深度学习D. 数据库管理12. 在数据挖掘中,以下哪个算法常用于分类和预测?A. K-均值算法B. 决策树算法C. 聚类算法D. 神经网络算法13. 数据挖掘中,用于发现数据项之间有趣关系的方法有哪几种?A. 关联规则挖掘B. 分类和预测C. 文本挖掘D. 回归分析14. 在数据挖掘中,以下哪个工具常用于数据清洗和预处理?A. ExcelB. SQLC. PythonD. R语言15. 数据挖掘与分析技术中,哪一项是用于评估模型性能的方法?A. 交叉验证B. K-折叠交叉验证C.留一法D. 自助法16. 在数据挖掘中,以下哪个技术常用于处理大规模数据集?A. 分布式计算B. 缓存技术C. 索引技术17. 数据挖掘与分析技术中,哪一项是用于描述数据集中模式和趋势的方法?A. 聚类分析B. 回归分析C. 时间序列分析D. 神经网络18. 在数据挖掘中,以下哪个步骤通常不是数据挖掘流程的第一步?A. 数据收集B. 数据清洗C. 数据转换D. 数据挖掘19. 数据挖掘与分析技术中,哪一项是用于预测未来事件的方法?A. 预测建模B. 分类C. 聚类D. 关联规则挖掘20. 在数据挖掘中,以下哪个技术常用于从大量数据中提取知识?A. 数据可视化B. 数据挖掘C. 数据分析D. 数据仓库21. 数据挖掘中常用的聚类算法有哪些?A. K-meansB. DBSCANC.层次聚类D. GMM(高斯混合模型)22. 以下哪个技术可以用来评估数据集的内在质量?B. 数据转换C. 数据验证D. 数据可视化23. 关联规则挖掘中,什么指标用于衡量规则的实用性?A. 置信度B. 支持度C. 强关联规则D. 假设检验24. 在数据挖掘中,什么是分类和预测?A. 分类是将数据划分为不同的组或类别B. 预测是根据历史数据进行趋势分析C. 分类是将数据划分为不同的组或类别D. 预测是根据历史数据进行趋势分析25. 数据挖掘中,什么技术可以用来发现数据中的异常值?A. 数据清理B. 数据转换C. 数据验证D. 数据可视化26. 以下哪个是决策树的构建方法?A. 连续属性分割B. 基于信息增益C. 基于最小描述长度D. 基于贝叶斯分类器27. 数据挖掘中,什么技术可以用来识别数据集中的模式?A. 数据清理B. 数据转换C. 数据验证28. 以下哪个技术可以用来评估模型的预测能力?A. 模型训练B. 模型评估C. 模型测试D. 模型优化29. 在关联规则挖掘中,什么指标用于衡量规则的普遍性?A. 置信度B. 支持度C. 强关联规则D. 假设检验30. 数据挖掘中,什么技术可以用来预测未来的趋势?A. 时间序列分析B. 回归分析C. 聚类分析D. 决策树31. 在数据挖掘中,以下哪个步骤不是必然发生的?A. 数据预处理B. 特征工程C. 建立模型D. 模型评估32. 以下哪个算法不是监督学习算法?A. 决策树B. 支持向量机C. 随机森林D. 神经网络33. 数据挖掘中,用于描述数据集的分布情况的统计量有哪些?A. 均值B. 中位数C. 标准差D. 四分位距34. 在数据挖掘中,以下哪个选项不是数据预处理的一部分?A. 数据清洗B. 数据转换C. 数据集成D. 数据压缩35. 在进行数据挖掘时,以下哪个因素可能影响挖掘效果?A. 数据质量B. 算法选择C. 业务理解D. 计算资源36. 数据挖掘中,以下哪个术语用来描述从大量数据中抽取出有意义的信息的过程?A. 数据挖掘B. 数据分析C. 数据可视化D. 数据建模37. 在数据挖掘中,以下哪个技术可以用来评估模型的性能?A. 交叉验证B. 超参数调整C. 误差计算D. 特征选择38. 在数据挖掘项目中,以下哪个角色通常负责监控项目的进度和资源?A. 项目经理B. 数据分析师C. 数据工程师D. 商业分析师39. 在数据挖掘中,以下哪个步骤属于数据挖掘的后续阶段?A. 数据收集B. 数据清洗C. 模型评估D. 结果解释40. 数据挖掘的目的是什么?A. 了解客户需求B. 预测未来趋势C. 提高决策效率D. 优化产品性能41. 数据挖掘中使用最频繁的算法是?A. 决策树B. 支持向量机(SVM)C. 神经网络D. 关联规则学习42. 数据挖掘中,以下哪个步骤不属于数据预处理阶段?A. 数据清洗B. 数据转换C. 数据集成D. 数据划分43. 在数据挖掘中,用于描述和评估模型预测能力的是?A. 精确率B. 召回率C. F1分数D. AUC-ROC曲线44. 以下哪个选项不属于数据挖掘中的特征工程?A. 特征选择B. 特征转换C. 特征规范化D. 特征降维45. 在数据挖掘中,以下哪个技术用于发现数据中的关联关系?A. 分类B. 聚类C. 关联规则学习D. 回归46. 数据挖掘中,用于评估模型对未知数据的预测能力的是?A. 置信区间B. 交叉验证C. 模型泛化能力D. AUC-ROC曲线47. 在数据挖掘中,以下哪个步骤属于数据挖掘的结果评估阶段?A. 数据清洗B. 模型训练C. 模型评估D. 模型部署48. 数据挖掘中,以下哪个技术可以用来评估数据集的内在质量?A. 数据可视化B. 数据质量指标计算C. 数据分布分析D. 数据相关性分析49. 在数据挖掘中,以下哪个技术可以用来预测未来的趋势和行为?A. 时间序列分析B. 回归分析C. 文本挖掘D. 机器学习二、问答题1. 什么是数据挖掘?请简要介绍数据挖掘的基本过程。

数据挖掘试题及答案

数据挖掘试题及答案

数据挖掘试题及答案### 数据挖掘试题及答案#### 一、选择题1. 数据挖掘的最终目标是什么?- A. 数据清洗- B. 数据集成- C. 数据分析- D. 发现知识答案:D2. 以下哪个算法不属于聚类算法?- A. K-means- B. DBSCAN- C. Apriori- D. Hierarchical Clustering答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现什么? - A. 异常值- B. 频繁项集- C. 趋势- D. 聚类答案:B4. 决策树算法中的剪枝操作是为了解决什么问题?- A. 过拟合- B. 欠拟合- C. 数据不平衡- D. 特征选择答案:A5. 以下哪个是时间序列分析的常用方法?- A. 逻辑回归- B. 线性回归- C. ARIMA模型- D. 支持向量机答案:C#### 二、简答题1. 简述数据挖掘中的分类和聚类的区别。

答案:分类是监督学习过程,它使用标记的训练数据来预测数据的类别。

聚类是无监督学习过程,它将数据分组,使得同一组内的数据点相似度较高,不同组之间的数据点相似度较低。

2. 解释什么是异常检测,并给出一个实际应用的例子。

答案:异常检测是一种识别数据集中异常或不寻常模式的方法。

它通常用于识别欺诈行为、网络安全问题或机械故障。

例如,在信用卡交易中,异常检测可以用来识别潜在的欺诈行为。

3. 描述决策树的工作原理。

答案:决策树通过一系列的问题(通常是二元问题)来对数据进行分类。

从根节点开始,数据被分割成不同的子集,然后每个子集继续被分割,直到达到叶节点,叶节点代表最终的分类结果。

#### 三、应用题1. 给定一组客户数据,包括年龄、收入和购买历史。

使用数据挖掘技术来识别哪些客户更有可能购买新产品。

答案:可以使用决策树或逻辑回归等分类算法来分析客户数据,识别影响购买行为的关键特征。

通过训练模型,可以预测哪些客户更有可能购买新产品。

2. 描述如何使用关联规则挖掘来发现超市中商品的购买模式。

数据挖掘期末试题及答案

数据挖掘期末试题及答案

数据挖掘期末试题及答案一、选择题(每题2分,共20分)1. 数据挖掘中,以下哪个算法是用于分类的?A. AprioriB. K-meansC. KNND. ID32. 以下哪个不是数据挖掘的步骤?A. 数据预处理B. 数据集成C. 数据可视化D. 数据存储3. 在关联规则挖掘中,支持度(Support)是指什么?A. 规则出现的频率B. 规则的可信度C. 规则的覆盖范围D. 规则的强度4. 以下哪个是聚类算法?A. Logistic RegressionB. Decision TreeC. Naive BayesD. Hierarchical Clustering5. 数据挖掘中,特征选择的目的是什么?A. 增加数据量B. 减少数据量C. 增加模型复杂度D. 减少模型复杂度二、简答题(每题10分,共30分)1. 请简述数据挖掘中过拟合的概念及其预防方法。

2. 解释什么是决策树,并说明其在数据挖掘中的应用。

3. 描述数据预处理的重要性及其主要步骤。

三、应用题(每题25分,共50分)1. 假设你有一个包含客户购买历史的数据集,描述如何使用数据挖掘技术来发现潜在的购买模式。

2. 给出一个实际例子,说明如何使用关联规则挖掘来提高零售业的销售效率。

四、案例分析(共30分)1. 阅读以下案例描述,并分析使用数据挖掘技术解决该问题的优势和可能遇到的挑战。

案例描述:一家电子商务公司想要通过分析用户浏览和购买行为来优化其推荐系统。

公司收集了大量用户数据,包括浏览历史、购买记录、用户评分和反馈。

答案:一、选择题1. D2. D3. A4. D5. D二、简答题1. 过拟合是指模型在训练数据上表现良好,但在新的、未见过的数据上表现差的现象。

预防过拟合的方法包括:使用交叉验证、正则化技术、减少模型复杂度等。

2. 决策树是一种监督学习算法,用于分类和回归任务。

它通过一系列的问题将数据分割成不同的子集,直到达到一个纯度的节点,即决策点。

数据挖掘期末考试试题(含答案)

数据挖掘期末考试试题(含答案)

数据挖掘期末考试试题(含答案)题目一:数据预处理题目描述:给定一个包含缺失值的数据集,采取合适的方法对缺失值进行处理,并解释你的方法选择的原因。

答案:缺失值在数据分析中是一个常见的问题。

我选择使用均值填充的方法来处理缺失值。

这种方法将缺失的值用该特征的均值进行代替。

我选择均值填充的原因是因为这种方法简单易用,并且可以保持数据的整体分布特征。

均值填充假设缺失值与观察到值的分布相似,因此使用均值填充可以避免引入过多的噪音。

题目二:关联规则挖掘题目描述:给定一个购物篮数据集,包含多个商品的组合,使用Apriori 算法挖掘频繁项集和关联规则,并给出相关的评估指标。

答案:Apriori算法是一种常用的关联规则挖掘算法。

它通过计算支持度和置信度来挖掘频繁项集和关联规则。

首先,通过扫描数据集,计算每个项集的支持度。

然后,根据设定的最小支持度阈值,选取频繁项集作为结果。

接着,根据频繁项集,计算每个规则的置信度。

利用最小置信度阈值,筛选出高置信度的关联规则。

评估指标包括支持度、置信度和提升度。

支持度衡量一个项集在数据集中出现的频率,置信度衡量规则的可信程度,提升度衡量规则对目标项集出现的增益。

题目三:聚类算法题目描述:给定一个数据集,包含多个样本和多个特征,使用K-means算法将样本划分为K个簇,并解释评估聚类性能的指标。

答案:K-means算法是一种常用的聚类算法。

它通过迭代的方式将样本划分为K个簇。

首先,随机选择K个初始聚类中心。

然后,对于每个样本,计算其与每个聚类中心的距离,并将其划分到距离最近的簇中。

接着,更新每个簇的聚类中心,计算新的聚类中心位置。

重复以上步骤,直到聚类中心不再发生变化或达到预定的迭代次数。

评估聚类性能的指标包括簇内平方和(SSE)和轮廓系数。

簇内平方和衡量样本与其所属簇的距离之和,SSE越小表示聚类效果越好。

轮廓系数衡量样本与其所属簇以及其他簇之间的距离,值介于-1到1之间,越接近1表示聚类效果越好。

数据挖掘期末考试题及答案

数据挖掘期末考试题及答案

数据挖掘期末考试题及答案一、选择题(每题2分,共20分)1. 数据挖掘中的关联规则挖掘主要用来发现数据项之间的什么关系?A. 因果关系B. 相关性C. 线性关系D. 依赖关系答案:B2. 决策树算法中,哪个指标用于选择分裂节点?A. 信息增益B. 支持度C. 置信度D. 精确度答案:A3. 聚类分析中,K-means算法的K值表示什么?A. 聚类中心的数量B. 聚类半径C. 聚类成员的最小数量D. 聚类成员的最大数量答案:A4. 在数据挖掘中,哪个算法常用于分类问题?A. Apriori算法B. K-means算法C. KNN算法D. ID3算法答案:C5. 数据挖掘中的异常检测通常用于哪些领域?A. 市场分析B. 客户细分C. 欺诈检测D. 趋势预测答案:C6. 朴素贝叶斯分类器属于哪种类型的学习算法?A. 监督学习B. 非监督学习C. 半监督学习D. 强化学习答案:A7. 在关联规则挖掘中,支持度是指什么?A. 规则出现的频率B. 规则的置信度C. 规则的覆盖度D. 规则的强度答案:A8. 神经网络在数据挖掘中通常用于解决什么问题?A. 聚类B. 分类C. 回归D. 所有上述问题答案:D9. 哪个算法是数据挖掘中用于特征选择的算法?A. 主成分分析(PCA)B. 线性判别分析(LDA)C. 独立成分分析(ICA)D. 随机森林答案:D10. 数据挖掘中的时间序列分析通常用于哪些领域?A. 股票市场预测B. 销售预测C. 天气预报D. 所有上述领域答案:D二、简答题(每题10分,共30分)1. 简述数据挖掘中的主要任务有哪些?答案:数据挖掘的主要任务包括分类、聚类、关联规则挖掘、异常检测、趋势预测等。

2. 描述决策树算法的基本原理。

答案:决策树算法是一种监督学习算法,它通过从数据特征中选择最优特征来构建决策树,从而实现对数据的分类或回归。

算法通过递归地选择最优分裂节点,构建树状结构,直到满足停止条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A. 关联规则发现B. 聚类C. 分类D. 自然语言处理2. 以下两种描述分别对应哪两种对分类算法的评价标准? (A)(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。

(b)描述有多少比例的小偷给警察抓了的标准。

A. Precision, RecallB. Recall, PrecisionA. Precision, ROC D. Recall, ROC3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A. 频繁模式挖掘B. 分类和预测C. 数据预处理D. 数据流挖掘4. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A. 分类B. 聚类C. 关联分析D. 隐马尔可夫链5. 什么是KDD? (A)A. 数据挖掘与知识发现B. 领域知识发现C. 文档知识发现D. 动态知识发现6. 使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则7. 为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则8. 建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则9. 用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则11.下面哪种不属于数据预处理的方法?(D)A变量代换 B离散化 C 聚集 D 估计遗漏值12. 假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15,35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。

等频(等深)划分时,15在第几个箱子内?(B)A 第一个B 第二个C 第三个D 第四个13.上题中,等宽划分时(宽度为50),15又在哪个箱子里?(A)A 第一个B 第二个C 第三个D 第四个14.下面哪个不属于数据的属性类型:(D)A 标称B 序数C 区间 D相异15. 在上题中,属于定量的属性类型是:(C)A 标称B 序数 C区间 D 相异16. 只有非零值才重要的二元属性被称作:( C )A 计数属性B 离散属性C非对称的二元属性 D 对称属性17. 以下哪种方法不属于特征选择的标准方法: (D)A嵌入 B 过滤 C 包装 D 抽样18.下面不属于创建新属性的相关方法的是:(B)A特征提取 B特征修改 C映射数据到新的空间 D特征构造19. 考虑值集{1、2、3、4、5、90},其截断均值(p=20%)是 (C)A 2B 3C 3.5D 520. 下面哪个属于映射数据到新的空间的方法?(A)A 傅立叶变换 B特征加权 C 渐进抽样 D维归约21. 熵是为消除不确定性所需要获得的信息量,投掷均匀正六面体骰子的熵是:(B)A 1比特B 2.6比特C 3.2比特D 3.8比特22. 假设属性income的最大最小值分别是12000元和98000元。

利用最大最小规范化的方法将属性的值映射到0至1的范围内。

对属性income的73600元将被转化为:(D)A 0.821B 1.224C 1.458D 0.71623.假定用于分析的数据包含属性age。

数据元组中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70, 问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。

第二个箱子值为:(A)A 18.3B 22.6C 26.8D 27.924. 考虑值集{12 24 332 4 55 68 26},其四分位数极差是:(A)A 31B 24C 55D 325. 一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130人,四年级110人。

则年级属性的众数是:(A)A 一年级 B二年级 C 三年级 D 四年级26. 下列哪个不是专门用于可视化时间空间数据的技术:(B)A 等高线图 B饼图 C 曲面图 D 矢量场图27. 在抽样方法中,当合适的样本容量很难确定时,可以使用的抽样方法是:(D)A 有放回的简单随机抽样 B无放回的简单随机抽样 C分层抽样D 渐进抽样28. 数据仓库是随着时间变化的,下面的描述不正确的是(C)A. 数据仓库随时间的变化不断增加新的数据内容;B. 捕捉到的新数据会覆盖原来的快照;C. 数据仓库随事件变化不断删去旧的数据内容;D. 数据仓库中包含大量的综合数据,这些综合数据会随着时间的变化不断地进行重新综合.29. 关于基本数据的元数据是指:(D)A. 基本元数据与数据源,数据仓库,数据集市和应用程序等结构相关的信息;B. 基本元数据包括与企业相关的管理方面的数据和信息;C. 基本元数据包括日志文件和简历执行处理的时序调度信息;D. 基本元数据包括关于装载和更新处理,分析处理以及管理方面的信息.30. 下面关于数据粒度的描述不正确的是: (C)A. 粒度是指数据仓库小数据单元的详细程度和级别;B. 数据越详细,粒度就越小,级别也就越高;C. 数据综合度越高,粒度也就越大,级别也就越高;D. 粒度的具体划分将直接影响数据仓库中的数据量以及查询质量.31. 有关数据仓库的开发特点,不正确的描述是: (A)A. 数据仓库开发要从数据出发;B. 数据仓库使用的需求在开发出去就要明确;C. 数据仓库的开发是一个不断循环的过程,是启发式的开发;D. 在数据仓库环境中,并不存在操作型环境中所固定的和较确切的处理流,数据仓库中数据分析和处理更灵活,且没有固定的模式32. 在有关数据仓库测试,下列说法不正确的是: (D)A. 在完成数据仓库的实施过程中,需要对数据仓库进行各种测试.测试工作中要包括单元测试和系统测试.B. 当数据仓库的每个单独组件完成后,就需要对他们进行单元测试.C. 系统的集成测试需要对数据仓库的所有组件进行大量的功能测试和回归测试.D. 在测试之前没必要制定详细的测试计划.33. OLAP技术的核心是: (D)A. 在线性;B. 对用户的快速响应;C. 互操作性.D. 多维分析;34. 关于OLAP的特性,下面正确的是: (D)(1)快速性(2)可分析性(3)多维性(4)信息性(5)共享性A. (1) (2) (3)B. (2) (3) (4)C. (1) (2) (3) (4)D. (1) (2) (3) (4) (5)35. 关于OLAP和OLTP的区别描述,不正确的是: (C)A. OLAP主要是关于如何理解聚集的大量不同的数据.它与OTAP应用程序不同.B. 与OLAP应用程序不同,OLTP应用程序包含大量相对简单的事务.C. OLAP的特点在于事务量大,但事务内容比较简单且重复率高.D. OLAP是以数据仓库为基础的,但其最终数据来源与OLTP一样均来自底层的数据库系统,两者面对的用户是相同的.36. OLAM技术一般简称为”数据联机分析挖掘”,下面说法正确的是: (D)A. OLAP和OLAM都基于客户机/服务器模式,只有后者有与用户的交互性;B. 由于OLAM的立方体和用于OLAP的立方体有本质的区别.C. 基于WEB的OLAM是WEB技术与OLAM技术的结合.D. OLAM服务器通过用户图形借口接收用户的分析指令,在元数据的知道下,对超级立方体作一定的操作.37. 关于OLAP和OLTP的说法,下列不正确的是: (A)A. OLAP事务量大,但事务内容比较简单且重复率高.B. OLAP的最终数据来源与OLTP不一样.C. OLTP面对的是决策人员和高层管理人员.D. OLTP以应用为核心,是应用驱动的.38. 设X={1,2,3}是频繁项集,则可由X产生__(C)__个关联规则。

A、4B、5C、6D、740. 概念分层图是__(B)__图。

A、无向无环B、有向无环C、有向有环D、无向有环41. 频繁项集、频繁闭项集、最大频繁项集之间的关系是:(C)A、频繁项集频繁闭项集=最大频繁项集B、频繁项集= 频繁闭项集最大频繁项集C、频繁项集频繁闭项集最大频繁项集D、频繁项集= 频繁闭项集= 最大频繁项集42. 考虑下面的频繁3-项集的集合:{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{2,3,4},{2,3,5},{3,4,5}假定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含(C)A、1,2,3,4B、1,2,3,5C、1,2,4,5D、1,3,4,543.下面选项中t不是s的子序列的是 ( C )A、s=<{2,4},{3,5,6},{8}>t=<{2},{3,6},{8}>B、s=<{2,4},{3,5,6},{8}>t=<{2},{8}>C、s=<{1,2},{3,4}>t=<{1},{2}>D、s=<{2,4},{2,4}>t=<{2},{4}>44. 在图集合中发现一组公共子结构,这样的任务称为( B )A、频繁子集挖掘B、频繁子图挖掘C、频繁数据项挖掘D、频繁模式挖掘45. 下列度量不具有反演性的是(D)A、系数B、几率C、Cohen度量D、兴趣因子46. 下列__(A)__不是将主观信息加入到模式发现任务中的方法。

A、与同一时期其他数据对比B、可视化C、基于模板的方法D、主观兴趣度量47. 下面购物篮能够提取的3-项集的最大数量是多少(C)ID 购买项1 牛奶,啤酒,尿布2 面包,黄油,牛奶3 牛奶,尿布,饼干4 面包,黄油,饼干5 啤酒,饼干,尿布6 牛奶,尿布,面包,黄油7 面包,黄油,尿布8 啤酒,尿布9 牛奶,尿布,面包,黄油10 啤酒,饼干A、1B、2C、3D、448. 以下哪些算法是分类算法,A,DBSCAN B,C4.5 C,K-Mean D,EM (B)49. 以下哪些分类方法可以较好地避免样本的不平衡问题,A,KNN B,SVM C,Bayes D,神经网络(A)50. 决策树中不包含一下哪种结点,A,根结点(root node) B,内部结点(internal node)C,外部结点(external node)D,叶结点(leaf node)(C)51. 不纯性度量中Gini计算公式为(其中c是类的个数)(A)A, B, C, D, (A)53. 以下哪项关于决策树的说法是错误的(C)A. 冗余属性不会对决策树的准确率造成不利的影响B. 子树可能在决策树中重复多次C. 决策树算法对于噪声的干扰非常敏感D. 寻找最佳决策树是NP完全问题54. 在基于规则分类器的中,依据规则质量的某种度量对规则排序,保证每一个测试记录都是由覆盖它的“最好的”规格来分类,这种方案称为(B)A. 基于类的排序方案B. 基于规则的排序方案C. 基于度量的排序方案D. 基于规格的排序方案。

相关文档
最新文档