近五年上海高考分类汇编——立体几何(供参考)

合集下载

高考数学试题分类汇编立体几何

高考数学试题分类汇编立体几何

2009届高考数学试题分类汇编:立体几何一.选择题1.(08年上海市部分重点中学高三联考14)设a,b,c 表示三条直线,βα,表示两个平面,下列命题中不正确的是---------( )A. ⎭⎬⎫⊥βαα//a β⊥⇒a B. c b a c b a ⊥⇒⎪⎭⎪⎬⎫⊥内的射影在是内在ββbC. ααα////c c b cb ⇒⎪⎭⎪⎬⎫内不在内在 D. αα⊥⇒⎭⎬⎫⊥b a b a //答案:D 2(上海市长宁区2008学年高三年级第一次质量调研15)下列三个命题中错误的个数是( )①经过球上任意两点,可以作且只可以作球的一个大圆; ②球的面积是它的大圆面积的四倍;③球面上两点的球面距离,是这两点所在截面圆上以这两点为端点的劣弧的长. A.0 B. 1 C. 2 D.3 答案:C3.(上海市长宁区2008学年高三年级第一次质量调研13)如图,P 为正方体1111ABCD A B C D -的中心,△PAC 在该正方体各个面上的射影可能是( )ABC D A 1B 1C 1D 1P(1)(2)(3)(4)A. (1)、(2)、(3)、(4)B.(1)、(3)C.(1)、(4)D.(2)、(4) 答案:C4.(上海市2009届高三年级十四校联考数学理科卷14)已知m 、n 为两条不同的直线,α、β为两个不同的平面,下列四个命题中,正确的是( )A .若n m n m //,//,//则且ααB .若βαββα//,//,//,,则且上在n m n mC .若βαβα⊥⊥m m 则上在且,,D .若ααββα//,,,m m m 则外在⊥⊥答案:D5.(上海市黄浦区2008学年高三年级第一次质量调研14)给出下列命题:(1)三点确定一个平面;(2)在空间中,过直线外一点只能作一条直线与该直线平行;(3)若平面α上有不共线的三点到平面β的距离相等,则//αβ;(4)若直线a b c 、、满足,a b a c ⊥⊥、则//b c .其中正确命题的个数是 ( ) A .0个 B .1个 C .2个 D .3个 答案:B1(2008学年度第一学期上海市普陀区高三年级质量调研第14题) 设a 、b 为两条直线,α、β为两个平面. 下列四个命题中,正确的命题是 ( )A. 若a 、b 与α所成的角相等,则a b ∥;B. 若,,a b a b αα⊥⊥则Ü;C. 若a b a αββ∥苘,,,则αβ∥;D. 若a b αβ,∥∥,αβ∥,则a b ∥.答案:B2 (闸北区09届高三数学(理)第13题)如图,动点P 在正方体1111ABCD A BC D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图像大致是( )答案:B3 (上海市静安区2008学年高三年级第一次质量调研第15题)已知长方体的表面积是224cm ,过同一顶点的三条棱长之和是6cm ,则它的对角线长是( )B. 4cmC.D. 答案:D4静安区部分中学08-09学年度第一学期期中数学卷第15题)用一个平面去截正方体,所得截面不可能是 ( ).(A ) 平面六边形; (B )菱形; (C )梯形; (D )直角三角形 答案:DA BC D MNP A 1B 1C 1D 15 (南汇区2008学年度第一学期期末理科第15题)在底面为正方形的长方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体. 这些几何形体是( )A .①②④⑤B .①②③⑤C .①②③④D .①③④⑤ 答案:D二.填空题1(嘉定区2008~2009第一次质量调研第6题)已知圆锥的母线长为5cm ,侧面积为π15 2cm ,则此圆锥的体积为__________3cm .答案:π122 (嘉定区2008~2009第一次质量调研第7题)联结球面上任意两点的线段称为球的弦,已知半径为5的球上有两条长分别为6和8的弦,则此两弦中点距离的最大值是____________. 答案:73(上海徐汇等区第一学期期末质量抽查第8题) 如图,是一个无盖正方体盒子的表面展开图,A B C 、、为其上的三个点,则在正方体盒子中,ABC ∠=____________. 答案:3π 4 (上海市卢湾区2008学年高三年级第一次质量调研第3题)若圆锥的侧面积为20与底面所成的角为4arccos 5,则该圆锥的体积为___________.答案:16π5 (上海市卢湾区2008学年高三年级第一次质量调研第4题)在长方体1111ABCD A B C D -中,若12,1,3AB BC AA ===,则1BC 与平面11BB D D 所成的角θ可用反三角函数值表示为θ=____________.答案:arcsin56 (上海市卢湾区2008学年高三年级第一次质量调研第5题)若取地球的半径为6371米,球面上两点A 位于东经O 12127',北纬O318',B 位于东经O 12127',北纬O 255',则A B 、两点的球面距离为_____________千米(结果精确到1千米).答案:6737 (2008学年度第一学期上海市普陀区高三年级质量调研第7题) 在120︒的二面角内放一个半径为6的球,使球与两个半平面各只有一个公共点(其过球心且垂直于二面角的棱的直截面如图所示),则这两个公共点AB 之间的球面距离为 .OABP 第7题图答案:2π8 (2008学年度第一学期上海市普陀区高三年级质量调研第9题)一个圆柱形容器的轴截面尺寸如右图所示,容器内有一个实心的球,球的直径恰等于圆柱的高.现用水将该容器注满,然后取出该球(假设球的密度大于水且操作过程中水量损失不计),则球取出后,容器中水面的高度为cm. (精确到0.1cm ) 答案:8.39 (2008学年度第一学期上海市普陀区高三年级质量调研第11题) 下列有关平面向量分解定理的四个命题....中,所有正确命题的序号是 . (填写命题所对应的序号即可)① 一个平面内有且只有一对不平行的向量可作为表示该平面所有向量的基; ② 一个平面内有无数多对不平行向量可作为表示该平面内所有向量的基; ③ 平面向量的基向量可能互相垂直;④ 一个平面内任一非零向量都可唯一地表示成该平面内三个互不平行向量的线性组合. 答案:②、③10 (上海市静安区2008学年高三年级第一次质量调研第3题)已知某铅球的表面积是2484cm π,则该铅球的体积是___________2cm .答案:413313π⨯11 (上海市静安区2008学年高三年级第一次质量调研第4题)(理),点O 是圆柱的下底面圆心,底面半径为1,点A 是圆柱的上底面圆周上一点,则直线OA 与该圆柱的底面所成的角的大小是______(结果用反三角函数值表示).答案:12 (上海市静安区2008学年高三年级第一次质量调研第4题)(文)已知圆锥的母线长5l cm =,高4h cm =,则该圆锥的体积是____________3cm 答案:12π13 (静安区部分中学08-09学年度第一学期期中数学卷第3题)如图,正方体D C B A ABCD 111-的棱长为a ,则异面直线1AB 与1BC 所成的角的大小是 .答案:60︒14 (静安区部分中学08-09学年度第一学期期中数学卷第4题)如图,用铁皮制作一个无盖的圆锥形容器,已知该圆锥的母线与底面所在平面的夹角为45︒,容器的高为第9题10cm .制作该容器需要铁皮面积为 cm 2.(衔接部分忽略不计,结果保留整数)答案:444 cm 215 (闵行区2008学年第一学期高三质量监控理卷第7题)如图,圆锥的侧面展开图恰好是一个半圆,则该圆锥的母线与底面所成的角的大小是 . 答案:6016 (浦东新区2008学年度第一学期期末质量抽测卷数学理科第9题)如图,ABC ∆中, 90=∠C ,30=∠A ,1=BC .在三角形内挖去半圆(圆心O 在边AC 上,半圆与BC 、AB 相切于点C 、M ,与AC 交于N ),则图 中阴影部分绕直线AC 旋转一周所得旋转体的体积为 . 答案:π2735 17.1. (上海虹口区08学年高三数学第一学期期末试卷3)球的表面积为216cm π,则球的体积为___________3cm . 答案:323π2.(上海市黄浦区2008学年高三年级第一次质量调研10)若球的体积是392m π,则球的表面积是____________2m . 答案:9π3.(上海虹口区08学年高三数学第一学期期末试卷7)如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高。

上海市历年高考数学试题汇编:立体几何

上海市历年高考数学试题汇编:立体几何

上海市03-08年高考数学试题汇编崇明县教研室 龚为民 卢立臻立体几何(一 )填空题1、有两个相同的直三棱柱,高为a2,底面三角形的三边长分别为)0(5,4,3>a a a a 。

(05上海理)用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a 的取值范围是__________。

(05上海理) 2、已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图 如右图所示,则该凸多面体的体积V = . (08上海春)3、在下列关于直线l 、m 与平面α、β的命题中,真命题是( ) (04上海理) (A )若l ⊂β且α⊥β,则l ⊥α. (B ) 若l ⊥β且α∥β,则l ⊥α. (C ) 若l ⊥β且α⊥β,则l ∥α. (D ) 若α∩β=m 且l ∥m ,则l ∥α.4、正四棱锥底面边长为4,侧棱长为3,则其体积为 . (06上海春)5、若空间有两条直线,则 “这两条直线为异面直线”是“这两条直线没有公共点”的 (06上海文) ( ) (A)充分非必要条件 (B) 必要非充分条件 (C) 充分必要条件 (D) 既非充分又非必要条件6、下图表示一个正方体表面的一种展开图, 图中的四条线段AB 、CD 、EF 和GH 在原正方体中 相互异面的有 对. (03上海春季)7、如图,一扇形铁皮AOB ,半径OA=72c m ,圆心角∠AOB=60︒, 现剪下一个扇环ABCD 做圆台形容器的侧面,并从剩下的扇形OCD 内剪下一个最大的圆刚好做容器的下底(圆台的下底面大于上 底面)则OC 的长为 . (03上海春季)8、平面内两直线有三种位置关系:相交,平行与重合。

已知两个相交平面,αβ与两直线12,l l ,又知12,l l 在α内的射影为12,s s ,在β内的射影为12,t t 。

试写出12,s s 与12,t t 满足的条件,使之一定能成为12,l l 是异面直线的充分条件 12,s s 平行,12,t t 相交9、如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是.(06上海理)10、在正四棱锥P—ABCD中,若侧面与底面所成二面角的大小为60°,则异面直线PA与BC所成角的大小等于 .(结果用反三角函数值表示)(03上海理)11、如图,在底面边长为2的正三棱锥ABCV-中,E是BC的中点,若VAE∆的面积是41,则侧棱VA与底面所成角的大小为___________(结果用反三角函数值表示). (04上海春季)(二)选择题12、如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是(06上海文) ( )(A)48 (B) 18 (C)24 (D) 3613、在下列条件中,可判断平面α与β平行的是()(03上海理)A.α、β都垂直于平面r.B.α内存在不共线的三点到β的距离相等.C.l,m是α内两条直线,且l∥β,m∥β.D.l,m是两条异面直线,且l∥α,m∥α, l∥β,m∥β14、已知直线nml、、及平面α,下列命题中的假命题是( ) (05上海春)(A)若//l m,//m n,则//l n. (B)若lα⊥,//nα,则l n⊥.(C)若l m⊥,//m n,则l n⊥. (D)若//lα,//nα,则//l n.15、(08上海理)给定空间中的直线l及平面α.条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的[答]()(A)充要条件.(B)充分大必要条件.(C)必要非充分条件.(D)既非充分又非必要条件.16、一个封闭的立方体,它的6个表面各标出A、B、C、D、E这6个字母中的1个字母,现放成下面3个不同位置所看见的表面上的字母已标明,则字母A、B、C对面的字母分别是()(03上海春季)ABCVE(A)D 、E 、F (B)F 、D 、E (C)E 、F 、D (D)E 、D 、F17、若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 [答]( )(06上海理) (A )充分非必要条件;(B )必要非充分条件;(C )充要条件;(D )非充分非必要条件.(三)解答题18、体积为1的直三棱柱111ABC A B C -中,90ACB ∠=︒,1AC BC ==,求直线1AB 与平面11BCC B 所成角。

近五年上海高考分类汇编——立体几何(供参考)(新)

近五年上海高考分类汇编——立体几何(供参考)(新)

1近五年上海高考汇编——立体几何一、填空题1.(2009年高考5)如图,若正四棱柱1111-ABCD A B C D 的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是_____ ___.(结果用反三角函数值表示)答案:arctan 52.(2009年高考理科8)已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S 满足的等量关系是_____ ___. 答案:12323S S S +=3.(2009年高考文科6)若球12,O O 的面积之比124S S =,则它们的半径之比12RR =___ ____. 答案:24.(2009年高考文科8)若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是____ ____. 答案:83π5.(2010年高考理科12)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于点O ,剪去AOB ,将剩余部分沿,OC OD 折叠,使,OA OB 重合,则以(),A B ,,C D O 为顶点的四面体的体积是_____ ___.答案:826.(2010年高考文科6)已知四棱锥P ABCD -的底面是边长为6的正方体,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱锥的体积是_____ ___.2答案:967.(2011年高考理科7)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为_____ __. 答案:33π 8.(2011年高考文科7)若一个圆锥的主视图是边长为3,3,2的三角形,则该圆锥的侧面积为_____ ____. 答案:3π9.(2012年高考理科6)有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞+++=_____ ____.答案:8710.(2012年高考理科8)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为_____ ____. 答案:33π 11.(2012年高考理科14)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2BC =,若2AD c =,且2AB BD AC CD a +=+=,其中,a c 为常数,则四面体ABCD 的体积的最大值是_____ ____.答案:22213c a c -- 12.(2012年高考文科5)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为_____ ____. 答案:6π13.(2013年高考理科13)在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω.过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ-+.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为_____ ____.3答案:2216ππ+14.(2013年高考文科10)已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则l r =_____ ____.3二、选择题1.(2009年高考文科16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是 ( )Oxyz443(D)(C)(B)(A)54433444答案:B三、解答题1.(2009年高考理科19)如图,在直三棱柱ABC A B C '''-中,2AA BC AB '===,AB BC ⊥,求二面角B A C C '''--的大小4答案:如图,建立空间直角坐标系则 A ()2,0,0,C ()0,2,0,A 1()2,0,2,B 1()0,0,2,C 1()0,2,2, 设AC 的中点为M ,BM ⊥AC ,BM ⊥CC 1,∴ BM ⊥平面AC 1C ,即BM =()1,1,0是平面AC 1C 的一个法向量。

专题10 立体几何-五年(2017-2021)高考数学真题分项详解(新高考地区专用)(原卷版)

专题10 立体几何-五年(2017-2021)高考数学真题分项详解(新高考地区专用)(原卷版)

专题10 立体几何【2021年】一、【2021·浙江高考】某几何体的三视图如图所示,则该几何体的体积是( )A. 32B. 3C. 2D.【2021·浙江高考】 如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A. 直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB. 直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC. 直线1A D 与直线1D B 相交,直线//MN 平面ABCDD. 直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B【2021·浙江高考】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.二、【2021·江苏高考】已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A. 2B. 2√2C. 4D. 4√2【2021·江苏高考】在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=1,点P 满足BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗ ,其中λ∈[0,1],μ∈[0,1],则( )A. 当λ=1时,△AB 1P 的周长为定值B. 当μ=1时,三棱锥P −A 1BC 的体积为定值C. 当λ=12时,有且仅有一个点P ,使得A 1P ⊥BPD. 当μ=12时,有且仅有一个点P ,使得A 1B ⊥平面AB 1P【2021·江苏高考】如图,在三棱锥A−BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)证明:OA⊥CD;(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E−BC−D的大小为45°,求三棱锥A−BCD的体积.【2020年】一、【2020·北京高考】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A. 6+√3B. 6+2√3C. 12+√3D. 12+2√3【2020·北京高考】如图,在正方体ABCD−A1B1C1D1中,E为BB1的中点.(1)求证:BC1//平面AD1E;(2)求直线AA1与平面AD1E所成角的正弦值.二、【2020·浙江高考】某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A. 73B. 143C. 3D. 6【2020·浙江高考】已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是.【2020·浙江高考】如图,三棱台ABC−DEF中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC=2BC.(1)证明:EF⊥DB;(2)求DF与面DBC所成角的正弦值.三、【2020·天津高考】若棱长为2√3的正方体的顶点都在同一球面上,则该球的表面积为()A. 12πB. 24πC. 36πD. 144π【2020·天津高考】如图,在三棱柱ABC−A1B1C1中,CC1⊥平面ABC,AC⊥BC,AC=BC=2,CC1=3,点D,E分别在棱AA1和棱CC1上,且AD=1,CE=2,M为棱A1B1的中点.(Ⅰ)求证:C1M⊥B1D;(Ⅱ)求二面角B−B1E−D的正弦值;(Ⅲ)求直线AB与平面DB1E所成角的正弦值.四、【2020·上海高考】在棱长为10的正方体ABCD−A1B1C1D1中,P为左侧面ADD1A1上一点,已知点P到A1D1的距离为3,P到AA1的距离为2,则过点P且与A1C平行的直线交正方体于P,Q两点,则Q点所在的平面是()A. AA1B1BB. BB1C1CC. CC1D1DD. ABCD【2020·上海高考】已知ABCD是边长为1的正方形,正方形ABCD绕AB旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕AB逆时针旋转π至ABC1D1,求线段CD1与平面ABCD所成的角.2【2019年】一、【2019·北京高考(理)】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为______.【2019·北京高考(理)】已知l,m是平面α外的两条不同直线,给出下列三个论断:①l⊥m;②m//α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【2019·北京高考(理)】如图,在四棱锥P−ABCD中,PA⊥平面ABCD,AD⊥CD,AD//BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且PFPC =13.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F−AE−P的余弦值;(Ⅲ)设点G在PB上,且PGPB =23.判断直线AG是否在平面AEF内,说明理由.【2019·北京高考(文)】如图,在四棱锥P−ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF//平面PAE?说明理由.二、【2019·浙江高考】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sℎ,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A. 158B. 162C. 182D. 324【2019·浙江高考】设三棱锥V−ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点),记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P−AC−B的平面角为γ,则()A. β<γ,α<γB. β<α,β<γC. β<α,γ<αD. α<β,γ<β【2019·浙江高考】如图,已知三棱柱ABC−A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90∘,∠BAC= 30∘,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(Ⅰ)证明:EF⊥BC;(Ⅱ)求直线EF与平面A1BC所成角的余弦值.三、【2019·天津高考(理)】已知四棱锥的底面是边长为√2的正方形,侧棱长均为√5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.【2019·天津高考(理)】如图,AE⊥平面ABCD,CF//AE,AD//BC,AD⊥AB,AB=AD=1,AE=BC=2.(Ⅰ)求证:BF//平面ADE;(Ⅱ)求直线CE与平面BDE所成角的正弦值;(Ⅲ)若二面角E−BD−F的余弦值为1,求线段CF的长.3【2019·天津高考(文)】如图,在四棱锥P—ABCD,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD,CD=2,AD=3,(1)设G,H分别为PB,AC的中点,求证:GH//平面PAD;(2)求证:PA⊥平面PCD;(3)求直线AD与平面PAC所成角的正弦值.四、【2019·上海高考】已知平面α、β、γ两两垂直,直线a、b、c满足:a⊂α,b⊂β,c⊂γ,则直线a、b、c不可能满足以下哪种关系()A. 两两垂直B. 两两平行C. 两两相交D. 两两异面【2019·上海高考】如图,在正三棱锥P−ABC中,PA=PB=PC=2,AB=BC=AC=√3.(1)若PB的中点为M,BC的中点为N,求AC与MN的夹角;(2)求P−ABC的体积.【2018年】一、【2018·北京高考(理)】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A. 1B. 2C. 3D. 4【2018·北京高考(理)】如图,在三棱柱ABC−A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=√5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B−CD−C1的余弦值;(3)证明:直线FG与平面BCD相交.【2018·北京高考(文)】如图,在四棱锥P−ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF//平面PCD.二、【2018·浙江高考】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A. 2B. 4C. 6D. 8【2018·浙江高考】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则()A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【2018·浙江高考】如图,已知多面体ABC−A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.三、【2018·天津高考(理)】已知正方体ABCD−A1B1C1D1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M−EFGH的体积为.【2018·天津高考(理)】如图,AD//BC且AD=2BC,AD⊥CD,EG//AD且EG=AD,CD//FG且CD= 2FG,DG⊥平面ABCD,DA=DC=DG=2.(1)若M为CF的中点,N为EG的中点,求证:MN//平面CDE;(2)求二面角E−BC−F的正弦值;(3)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.【2018·天津高考(文)】如图,已知正方体ABCD−A1B1C1D1的棱长为1,则四棱锥A1−BB1D1D的体积为.【2018·天津高考(文)】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2√ 3,∠BAD=90∘.(1)求证:AD⊥BC;(2)求异面直线BC与MD所成角的余弦值;(3)求直线CD与平面ABD所成角的正弦值.四、【2018·上海高考】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A. 4B. 8C. 12D. 16【2018·上海高考】已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的余弦值.【2017年】一、【2017·北京高考(理)】如图,在四棱锥P−ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B−PD−A的大小;(3)求直线MC与平面BDP所成角的正弦值.【2017·北京高考(文)】某三棱锥的三视图如图所示,则该三棱锥的体积为()A. 60B. 30C. 20D. 10【2017·北京高考(文)】如图,在三棱锥P−ABC中,PA⊥AB,PA⊥BC,,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:;(2)求证:平面BDE⊥平面PAC;(3)当PA//平面BDE时,求三棱锥E−BCD的体积.二、【2017·浙江高考】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()+1A. π2+3B. π2+1C. 3π2+3D. 3π2【2017·浙江高考】如图,已知正四面体D−ABC(所有棱长均相等的三棱锥),P,Q,R分别为AB,BC,CA上的点,AP=PB,分别记二面角D−PR−Q,D−PQ−R,D−QR−P的平面角为α,β,γ,则()A. γ<α<βB. α<γ<βC. α<β<γD. β<γ<α【2017·浙江高考】如图,已知四棱锥P−ABCD,△PAD是以AD为斜边的等腰直角三角形,BC//AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE//平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.三、【2017·天津高考(理)】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【2017·天津高考(理)】如图,在三棱锥P−ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN//平面BDE;(Ⅱ)求二面角C−EM−N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为√7,求线段AH的长.7【2017·天津高考(文)】如图,在四棱锥P−ABCD中,AD⊥平面PDC,AD//BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.四、 【2017·上海高考】已知球的体积为36π,则该球主视图的面积等于______ .【2017·上海高考】如图,以长方体ABCD −A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标为(4,3,2),则AC 1⃗⃗⃗⃗⃗⃗⃗ 的坐标是【2017·上海高考】如图,直三棱柱ABC −A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5.(1)求三棱柱ABC −A 1B 1C 1的体积;(2)设M 是BC 中点,求直线A 1M 与平面ABC 所成角的正切值.。

2013-2018年上海高考试题汇编-立体几何(带参考答案)

2013-2018年上海高考试题汇编-立体几何(带参考答案)

近五年上海高考试卷汇编——立体几何(2015理19)如图,在长方体1111ABCD A B C D -中,11,2,AA AB AD E F ===、分别是AB BC 、的中点,证明11A C F E 、、、四点共面,并求直线1CD 与平面11AC FE 所成的角的大小.答案:arcsin(2018春14)如图,在直三棱柱111AB A B C C -的棱所在的直线中,与直线1BC 异面的直线条数为( )(A )1(B )2 (C )3(D )4答案 C(2012理19)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥ 底面ABCD ,E是PC 的中点,已知2AB =,AD =2PA =,求:(1)三角形PCD 的面积.(2)异面直线BC 与AE 所成的角的大小.答案:(1)(2)4π(2012文19)如图,在三棱锥P ABC -中,PA ⊥ 底面ABC ,D 是PC 的中点,已知2BAC π∠=,2AB =,AC=2PA =,求:(1)三棱锥P ABC -的体积.(2)异面直线BC 与AD 所成的角的大小.(结果用反三角函数值表示)答案:(1)(2)3arccos 4(2013文10)已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则lr= .(2016理19)将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。

(1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小。

4π (2018秋17)已知圆锥的顶点为P ,底面圆心为O ,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.答案:(1)V =;(2) 关键点:方法一:建立空间直角坐标系(首选); 方法二;平移法(2017秋考17)如图,直三棱柱111C B A ABC -中,2,4,5,901===︒=∠BC AB BB ABC ; (1)求三棱柱111C B A ABC V -的体积;(2)若M 是棱AC 中点,求M B 1与平面ABC 所成角的大小;O MPBA答案:(1)20=V ;(2)5arctan;(2015理19)如图,在长方体1111ABCD A B C D -中,11,2,AA AB AD E F ===、分别是AB BC 、的中点,证明11A C F E 、、、四点共面,并求直线1CD 与平面11AC FE 所成的角的大小.答案:arcsin知识点5:垂直问题(2012理19)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥ 底面ABCD ,E是PC 的中点,已知2AB =,AD =2PA =,求:(1)三角形PCD 的面积.(2)异面直线BC 与AE 所成的角的大小.答案:(1)(2)4π(2013理19)如图,在长方体''''ABCD A B C D -中,2AB =,1AD =,'1AA =. 证明直线'BC 平行于平面'D AC ,并求直线'BC 到平面'D AC 的距离.证明:略(2013理19)如图,在长方体''''ABCD A B C D -中,2AB =,1AD =,'1AA =. 证明直线'BC 平行于平面'D AC ,并求直线'BC 到平面'D AC 的距离.答案:建立空间直角坐标系,可得的有关点的坐标为(1,0,1)A 、(1,2,1)B 、(0,2,1)C 、'(0,2,0)C 、'(0,0,0)D .设平面'D AC 的法向量为(,,)n u v w =,则'n D A ⊥,'n D C ⊥. 因为'(1,0,1)D A =,'(0,2,1)D C =,'0n D A ⋅=,'0n D C ⋅=, 所以020u w v w +=⎧⎨+=⎩,解得2u v =,2w v =-.取1v =,得平面'D AC 的一个法向量(2,1,2)n =-.因为'(1,0,1)BC =--,所以'0n BC ⋅=,所以'n BC ⊥.又'BC 不在平面'D AC 内,所以直线'BC 与平面'D AC 平行.由(1,0,0)CB =, 得点B 到平面'D AC 的距离223n CB d n⋅⨯===, 所以直线'BC到平面'D AC 的距离为23(2015理4)若正三棱柱的所有棱长均为a,且其体积为a = . 答案:4(2010理12)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于点O ,剪去AOB ,将剩余部分沿,OC OD 折叠,使,OA OB 重合,则以(),A B ,,C D O 为顶点的四面体的体积是 .(2014理19文19)底面边长为2的正三棱锥P ABC -,其表面展开图是123PP P ∆,如图,求123PP P ∆的各边长及此三棱锥的体积V .答案:在123P P P ∆中,13P A P A =,23P C PC =,所以AC 是中位线,故1224PP AC ==. 同理,234P P =,314P P =.所以123P P P ∆是等边三角形,各边长均为4.设Q 是ABC ∆的中心,则PQ ⊥平面ABC ,所以AQ =PQ ==从而,13ABC V S PQ ∆=⋅=(2010春10)各棱长为1的正四棱锥的体积V = . 答案:62 (2018秋15)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA 为底面矩形的一边,则这样的阳马的个数是( )A. 4B. 8C. 12D. 16答案:D 关键点:底面矩形是下图的四种情形,每种情形都有四种垂直于底面的侧棱,故个数为16,(2018春7)如图,在长方形1111B ABC A C D D -中,13,4,5AB BC AA ===,O 是11A C 的中点,则三棱锥11A AOB -的体积为__________.答案:5(2012文5)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为 . 答案:6π(2013文10)已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则lr= .(2009文8)若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是 . 答案:83π(2015理6)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为______. 答案:3π(2014理6文7)若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为 (结果用反三角函数值表示). 答案: 1arccos3(2012理8)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 .(2011春20)某甜品店制作一种蛋筒冰激凌,其上部分是半球形,下半部分呈圆锥形(如图),现把半径为10cm 的圆形蛋皮等分成5个扇形,用一个蛋皮围成圆锥的侧面(蛋皮的厚度忽略不计),求该蛋筒冰激凌的表面积和体积.(精确到0.01)答案:设圆锥的底面半径为r ,高为h .由题意,圆锥的侧面扇形的周长为121045ππ⋅⋅=()cm ,圆锥底面周长为2r π()cm ,则24r ππ=,2r =()cm .=()cm ,圆锥的侧面扇形的面积为11410202S ππ=⨯⨯=()2cm ,半球的面积为 2214282S ππ=⨯⨯=.该蛋筒冰激凌的表面积122887.96S S S π=+=≈()2cm ;圆锥的体积为21123Vπ=⨯⨯()3cm , 半球的体积为3214162233V ππ=⨯⨯=()3cm ,所以该蛋筒冰激凌的体积为)1216157.803V V V π=+=≈()3cm .因此该蛋筒冰激凌的表面积约为287.96cm , 体积约为357.80cm .(2018秋17)已知圆锥的顶点为P ,底面圆心为O ,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.答案:(1)V =;(2)(2017秋4)已知球的体积为36π,则该球主视图的面积等于___ 答案:9π(2009理8)已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S 满足的等量关系是 .O MPBA=(2013理13)在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω.过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π+.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为 .答案: 2216ππ+(2017秋7)如图,以长方体1111D C B A ABCD -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为)2,3,4(,则1AC 的坐标为_____答案:()4,3,2-3,3,2的三角形,则该圆锥的侧面积为 . 答案:3π(2014文8)在长方体中割去两个小长方体后的几何体的三视图如右图,则切割掉的两个小45长方体的体积之和等于 答案:24(2009年高考文16)如图,已知三棱锥的底面是直角⊥,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是 ( ) ()A ()B ()C ()D答案:B知识点16:截面问题(2017春15)过正方体中心的截面截正方体所得的截面中,不可能的图形是( )A 、三角形B 、长方形C 、对角线不相等的菱形D 、六边形 答案:A知识点17:球面距离(2010春21)已知地球半径约为6371千米. 上海的位置约为东经121°、北纬31°,大连的位置约为东经121°、北纬39°,里斯本的位置约为西经10°、北纬39°.(1)若飞机以平均速度720千米/小时飞行,则从上海到大连的最短飞行时间约为多少小时?(飞机飞行高度忽略不计,结果精确到0.1小时) (2)求大连与里斯本之间的球面距离.(结果精确到1千米) 答案:(1)1.2小时; (2)约为10009千米43434知识点18:和数列相关(2012理6)有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...nV V V,则12lim(...)nnV V V→∞+++=.答案:87知识点19:补形法(2011春13)有一种多面体的饰品,其表面由6个正方形和8个正三角形组成(如图),AB 与CD所成角的大小是.答案:3π提示:补充图形为正方体(2010春13)在如图所示的斜截圆柱中,已知圆柱底面的直径为40cm,母线长最短50cm,最长80cm,则斜截圆柱的侧面面积S=2cm.答案:2600πO大连上海北南极赤里斯本40c50c80c(2014春24)如图,在底面半径和高均为1的圆锥中,AB CD 、是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点. 已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点与圆锥顶点P 的距离为( )A 、1B 、2 C 、2 D 4答案:D(2012理14)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2BC =,若2AD c =,且2AB BD AC CD a +=+=,其中,a c 为常数,则四面体ABCD 的体积的最大值是 .答案:23题型:三棱锥的体积计算与椭圆试一试:已知在半径为2的球面上有A B C D 、、、四点,若2AB CD ==,则四面体ABCD 的体积的最大值为___________答案:3选题理由:本题为四面体中,已知对棱的长为,a b ,对棱的夹角为θ,对棱的距离为h ,体积为1sin 6V abh θ=的典型题 (2018春19)利用“平行于圆锥曲线的母线截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影出的抛物线的平面图,图3是一个射灯的直观图,在图2与图3中,点O 、A 、B 在抛物线上,OC 是抛物线的对称轴,OC AB ⊥于C ,3AB =米, 4.5OC =米.(1)求抛物线的焦点到准线的距离;(2)在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°).图1 图2 图3答案:(1)14;(2)9.59 .。

十年高考分类上海高考数学试卷精校版含详解11立体几何部分

十年高考分类上海高考数学试卷精校版含详解11立体几何部分

十年高考分类上海高考数学试卷精校版含详解11立体几何部分一、选择题(共11小题;共55分)1. 给定空间中的直线l及平面α,条件“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”的 A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件2. 给定空间中的直线l及平面α,条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的 A. 充要条件B. 充分非必要条件C. 必要非充分条件D. 既非充分又非必要条件3. 如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是 A. B.C. D.4. 若有平面α与β,且α∩β=l,α⊥β,P∈α,P∉l,则下列命题中的假命题为 A. 过点P且垂直于α的直线平行于βB. 过点P且垂直于l的平面垂直于βC. 过点P且垂直于β的直线在α内D. 过点P且垂直于l的直线在α内5. 若空间中有两条直线,则"这两条直线为异面直线"是"这两条直线没有公共点"的 A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 既非充分又非必要条件6. 已知直线l,m,n及平面α,下列命题中的假命题是 A. 若l∥m,m∥n,则l∥nB. 若l⊥α,n∥α,则l⊥nC. 若l⊥m,m∥n,则l⊥nD. 若l∥α,n∥α,则l∥n7. 若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件8. 如图,在正方体ABCD−A1B1C1D1中,E,F分别为BC,BB1的中点,则下列直线中与直线EF相交的是 A. 直线AA1B. 直线A1B1C. 直线A1D1D. 直线B1C19. 一个封闭的立方体,它的6个表面各标出A、B、C、D、E这6个字母中的1个字母,现放成下面3个不同位置,所看见的表面上的字母已标明,则字母A、B、C对面的字母分别是 A. D、E、FB. F、D、EC. E、F、DD. E、D、F10. 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 A. 48B. 18C. 24D. 3611. 在下列关于直线l、m与平面α、β的命题中,真命题是 A. 若l⊂β且α⊥β,则l⊥αB. 若l⊥β且α∥β,则l⊥αC. 若l⊥β且α⊥β,则l∥αD. 若α∩β=m且l∥m,则l∥α二、填空题(共24小题;共120分)12. 若正三棱柱的所有棱长均为a,且其体积为163,则a=.13. 若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为.14. 若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积为.15. 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个"正交线面对".在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的"正交线面对"的个数是.16. 如图,在正四棱柱ABCD−A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan2,则该正四棱柱的高等于.317. 若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为.18. 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.19. 如图,若正四棱柱ABCD−A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是(结果用反三角函数表示).20. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.21. 一个高为2的圆柱,底面周长为2π.该圆柱的表面积为.22. 若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是.23. 若球O1、O2表面积之比S1S2=4,则它们的半径之比R1R2=.24. 如图,若正四棱柱ABCD−A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的正切值是.25. 在正四棱锥P−ABCD中,若侧面与底面所成二面角的大小为60∘,则异面直线PA与BC所成角的正切值等于.26. 下图表示一个正方体表面的一种展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有对.27. 若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为(结果用反三角函数值表示).28. 若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为(结果用反三角函数值表示).29. 已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A、B是下底面圆周上两个不同的点,BC是母线,如图.若直线OA与BC所成角的大小为π6,则lr=.30. 在xOy平面上,将两个半圆弧x−12+y2=1x≥1和x−32+y2=1x≥3、两条直线y=1和y=−1围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为Ω,过0,y∣y∣≤1作Ω的水平截面,所得截面面积为4π 1−y2+8π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为.31. 如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于点O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A B、C、D、O为顶点的四面体的体积是.32. 有两个相同的直三棱柱,高为2,底面三角形的三边长分别为3a,4a,5a a>0.用它们拼成一a个三棱柱或四棱柱,在所有可能的情况中,全面积最小的是一个四棱柱,则a的取值范围是.33. 如图,在底面边长为2的正三棱锥V−ABC中,E是BC的中点,若△VAE的面积是1,则侧4棱VA与底面所成角的大小为(结果用反三角函数值表示).34. 如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.35. 有两个相同的直三棱柱,高为2,底面三角形的三边长分别为3a,4a,5a a>0.用它们拼成a一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,则a的取值范围是.三、解答题(共22小题;共286分)36. 如图,正三棱锥O−ABC底面边长为2,高为1,求该三棱锥的体积及表面积.37. 如图,在棱长为2的正方体ABCD−A1B1C1D1中,E是BC1的中点.求直线DE与平面ABCD所成角的正切值.38. 如图,在正四棱锥P−ABCD中,PA=2,直线PA与平面ABCD所成的角为60∘,求正四棱锥P−ABCD的体积V.π,39. 将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为23 A1B1长为π,其中B1与C在平面AA1O1O的同侧.3(1)求三棱锥C−O1A1B1的体积.(2)求异面直线B1C与AA1所成角的大小.,A1B1 40. 将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为5π6,其中B1与C在平面AA1O1O的同侧.长为π3(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.41. 如图,圆锥的顶点为P,底面圆心为O,底面的一条直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点,已知PO=2,OA=1,求三棱锥P−AOC的体积,并求异面直线PA与OE 所成角的余弦值.42. 如图,在长方体ABCD−A1B1C1D1中,AA1=1,AB=AD=2,E,F分别是棱AB,BC的中点.证明A1,C1,F,E四点共面,并求直线CD1与平面A1C1FE所成角的正弦值.43. 底面边长为2的正三棱锥P−ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.44. 如图,在长方体ABCD−AʹBʹCʹDʹ中,AB=2,AD=1,AAʹ=1,证明直线BCʹ平行于平面DʹAC,并求直线BCʹ到平面DʹAC的距离.45. 如图,在三棱锥P−ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=π,AB=2,2 AC=23,PA=2.求:(1)三棱锥P−ABC的体积;(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示).46. 如图,在四棱锥P−ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点.已知AB=2,AD=22,PA=2.求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.47. 已知ABCD−A1B1C1D1是底面边长为1的正四棱柱,高AA1=2,求:(1)异面直线BD与AB1所成角的余弦值;(2)四面体AB1D1C的体积.48. 已知ABCD−A1B1C1D1是底面边长为1的正四棱柱,O1是A1C1和B1D1的交点.(1)设AB1与底面A1B1C1D1所成的角的大小为α,二面角A−B1D1−A1的大小为β.求证:tanβ=2tanα;(2)若点C到平面AB1D1的距离为4,求正四棱柱ABCD−A1B1C1D1的高.349. 已知ABCD−A1B1C1D1是底面边长为1的正四棱柱,O1为A1C1与B1D1的交点.(1)设AB1与底面A1B1C1D1所成角的大小为α,二面角A−B1D1−A1的大小为β.求证:tanβ=2tanα;,求正四棱柱ABCD−A1B1C1D1的高.(2)若点C到平面AB1D1的距离为4350. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.骨架将圆柱底面8等分,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)在灯笼内,以矩形骨架的顶点为端点,安装一些霓虹灯.当灯笼底面半径为0.3米时,求图中两根直线型霓虹灯A1B3、A3B5所在异面直线所成角的的余弦值.51. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出用于灯笼的三视图(作图时,不需考虑骨架等因素).52. 在长方体ABCD−A1B1C1D1中,点E,F分别在BB1,DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥平面AEF;(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角),则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.试根据上述定理,在AB=4,AD=3,AA1=5时,求平面AEF与平面D1B1BD所成的角的大小.(用反三角函数值表示)53. 用一块钢锭浇铸一个厚度均匀,且全面积为2平方米的正四棱锥形有盖容器(如图),设容器的高为ℎ米,盖子边长为a米.(1)求a关于ℎ的函数解析式;(2)设容器的容积为V立方米,则当ℎ为何值时,V最大?求出V的最大值.(求解本题时,不计容器的厚度)54. 如图,在直三棱柱ABC−A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1−A1C−C1的大小.55. 在四棱锥P−ABCD中,底面是边长为2的菱形,∠DAB=60∘,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60∘.(1)求四棱锥P−ABCD的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.56. 在直三棱柱ABC−A1B1C1中,∠ABC=90∘,AB=BC=1.(1)求异面直线B1C1与AC所成的角的大小;(2)若A1C与平面ABC所成角为45∘,求三棱锥A1−ABC的体积.57. 如图,P−ABC是底面边长为1的正三棱锥,D,E,F分别为侧棱PA,PB,PC上的点,截面DEF∥底面ABC,且棱台DEF−ABC与棱锥P−ABC的棱长和相等(棱长和是指多面体中所有棱的长度之和).(1)证明:P−ABC为正四面体;PA,求二面角D−BC−A的余弦值;(2)若PD=12(3)设棱台DEF−ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF−ABC有相同的棱长和? 若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.答案第一部分1. C2. C3. B4. D5. A6. D7. A 【解析】答案 A8. D 【解析】只有B1C1与EF在同一平面内,是相交的,选项A,B,C中直线与EF都是异面直线.9. C 10. D【解析】提示:问题可以等价转化为求正方体中过顶点的直线与过顶点的四边形所在平面垂直的对数共有多少个.11. B第二部分12. 413. 33π【解析】设圆锥的底面的圆的半径为r,高为ℎ,母线为l,则由题设πrl=2π,πr2=π,则r=1,l=2.于是ℎ=2−r2=4−1=3.该圆锥的体积V=13πr2ℎ=33π.14. 3π【解析】由主视图,得该圆锥的底面圆的半径为r=1,母线l=3,则该圆锥的侧面积是S=πrl= 3π.15. 36【解析】正方体中,一个面有四条棱与之垂直,所以六个面共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.16. 22【解析】BD=32,DD1=BD⋅23=22.17. 33π【解析】由圆锥的底面面积为π,可知圆锥的底面半径为1,由圆锥的侧面积为2π,可得圆锥的母线为2,则圆锥的高为3,所以V=13×3×π×12=33π.18. 33π【解析】设圆锥底面半径为r,母线长为l,高为ℎ,则πl=2πr,12πl2=2π,解得l=2,r=1,从而ℎ=.所以该圆锥的体积V=13πr2⋅ℎ=13π×12×3=33π.19. arctan520. 24【解析】由三视图可知,切割后的两个小长方体的长、宽、高分别为2、3、2,所以体积和为22×3×2=24.21. 6π22. 8π323. 224.25. 2【解析】过点P作PO⊥平面ABCD于O,取AD的中点H,连接OH,PH,如图:要求PA与BC所成的角,即求∠PAD,由题意知,∠PHO=60∘,设HO=a,则PH=2a,AH=12AD=OH=a,故tan∠PAD=PHAH=2.26. 3【解析】提示:原正方体中四条线段AB、CD、EF和GH的位置如图所示:27. arcsin1328. arccos1329.【解析】如图,取下底面中心,记为M,连接OM、AM,则BC∥OM,所以OA与BC所成的角就是∠MOA,即∠MOA=π6,tanπ6=rl.30. 2π2+16π【解析】一个半径为1,高为2π的圆柱平放,和一个高为2,底面面积8π的长方体放在一起构成一个组合体,根据祖暅原理,这个几何体与Ω的每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积值为π⋅12⋅2π+2⋅8π=2π2+16π.31. 823【解析】由于正方形的边长为4,且AC和BD相交于点O,那么AO=CO=DO=22,且∠AOD=∠DOC=∠COB=90∘,通过折叠,可得如下图形,而且AO、CO、DO两两垂直,那么对应的四面体的体积为V=13×12×22×22×22=823.32. 0<a<153【解析】①拼成一个三棱柱时,有三种情况:将上、下底面对接,其全面积为:S1=2×12×3a×4a+3a+4a+5a×4a=12a2+48;3a边可以合在一起时,S2=24a2+36;4a边合在一起时,S3=24a2+32.②拼成一个四棱柱,有三种情况:就是分别让边长为3a,4a,5a所在的侧面重合,其上、下底面积之和都是2×2×12×3a×4a=24a2,但侧面积分别为:24a+5a×2a =36,23a+5a×2a=32,23a+4a×2a=28,显然,三个四棱柱中全面积最小的值为:S4=2×2×12×3a×4a+23a+4a×2a=24a2+28.由题意,得24a2+28<12a2+48.解得0<a<153.33. arctan14【解析】设V在底面上的射影为O,则O∈AE,且∠VAE就是侧棱VA与底面所成的角.因为底面△ABC的边长为2,所以其BC边上的高AE=3.由S△VAE=12VO⋅AE=14,解得VO=36,而AO=23AE=233,所以tan∠VAE=VOAO=14.34. 23c a2−c2−1【解析】利用椭圆的定义及割补法求体积.由AB+BD=AC+CD=2a>AD=2c,可得点B与点C都在以A、D为焦点的椭球上运动.过BC作垂直于AD的平面EBC交AD于E点,则四面体ABCD的体积为V=13AD⋅12×2 BE2−1=2c3BE2−1,要求四面体ABCD体积的最大值,即求BE的最大值.当E与AD的中点O重合,即B为椭圆短轴的端点时,BE最大,且BE=2−c2故四面体ABCD的体积的最大值为2c3a2−c2−1.35. 0,153【解析】两个相同的直三棱柱并排放拼成一个三棱柱或四棱柱,有三种情况:四棱柱有三种,边长为3a的边重合在一起,构成的四棱柱的表面积为24a2+36,边长为4a的边重合在一起,构成的四棱柱的表面积为24a2+32,边长为5a的边重合在一起,表面积为24a2+28;拼成三棱柱有一种,就是两个三棱柱的上下底面对接,此时新的三棱柱的表面积为12a2+48;若最小的是一个四棱柱,则要求24a2+28<12a2+48,解得0<a<153.第三部分36. 三棱锥O−ABC的体积是V O−ABC=1⋅S△ABC⋅1=3.设O在面ABC中的射影为Oʹ,BC的中点D,则OOʹ=1,OʹD=3 ,在Rt△OOʹD中,有OD=OOʹ2+DOʹ2=12+3=3,三棱锥O−ABC的表面积为S O−ABC=3S△OBC+S△ABC=3⋅BC⋅OD+3=33,所以,三棱锥O−ABC的体积为33,表面积为3.37. 如图:过E作EF⊥BC,交BC于F,连接DF,则EF⊥平面ABCD,所以∠EDF是直线DE与平面ABCD所成的角.由EF是△BCC1的中位线,得EF=12CC1=1.由F为BC的中点,得CF=1CB=1,在Rt△DCF中,DF=5,因为EF⊥DF,所以tan∠EDF=EFDF=55,故直线DE与平面ABCD所成角的正切值是55.38. 如图,作PO⊥平面ABCD,垂足为O,连接AO,O是正方形ABCD的中心,所以∠PAO是直线PA与平面ABCD所成的角.由题∠PAO=60∘,PA=2.所以PO=3,AO=1,AB=2,因此V=13PO⋅S ABCD=13×3×2=233.39. (1)连O1B1,则A1B1=∠A1O1B1=π3,所以△A1O1B1为正三角形,所以S△A1O1B1=34,所以V C−O1A1B1=13OO1⋅S△A1O1B1=312.(2)设点B1在下底面圆周的射影为B,连BB1,则BB1∥AA1,所以∠BB1C为直线B1C与AA1所成角(或补角).BB1=AA1,连BC,BO,OC,AB=A1B1=π3,AC=2π3,所以BC=π3,所以∠BOC=π3,所以△BOC为正三角形,所以BC=BO=1,所以tan∠BB1C=BCBB1=1,所以∠BB1C=45∘,所以直线B1C与AA1所成角大小为45∘.40. (1)由题意可知,圆柱的母线长l=1,底面半径r=1.圆柱的体积V=πr2l=π×12×1=π,圆柱的侧面积S=2πrl=2π×1×1=2π.(2)设过点B1的母线与下底面交于点B,则O1B1∥OB,所以∠COB或其补角为O1B1与OC所成的角.由A1B1长为π3,可知∠AOB=∠A1O1B1=π3,由AC长为5π6,可知∠AOC=5π6,∠COB=∠AOC−∠AOB=π2,所以异面直线O1B1与OC所成的角的大小为π2.41. V P−AOC=13×12×2=13.因为AC∥OE,所以∠PAC为异面直线PA与OE所成的角或其补角.由PO=2,OA=OC=1,得PA=PC=AC=在△PAC中,由余弦定理得cos∠PAC=1010,故异面直线PA与OE所成角的余弦值为1010.42. 如图,以D为原点建立空间直角坐标系,可得有关点的坐标为A12,0,1,C10,2,1,E2,1,0,F1,2,0,C0,2,0,D10,0,1.因为A1C1=−2,2,0,EF=−1,1,0,所以A1C1∥EF,因此直线A1C1与直线EF共面,即A1,C1,F,E四点共面.设平面A1C1FE的法向量为n=u,v,w,则n⊥EF,n⊥FC1,又EF=−1,1,0,FC1=−1,0,1,故−u+v=0,−u+w=0,解得u=v=w.取u=1,得平面A1C1FE的一个法向量n=1,1,1.又CD1=0,−2,1,故CD1⋅n ∣∣CD1∣∣∣n∣=−1515.因此直线CD1与平面A1C1FE所成角的正弦值为1515.43. 在△P1P2P3中,P1A=P3A , P2C=P3C,所以AC是△P1P2P3的中位线,故P1P2=2AC=4.同理P2P3=P3P1=4,所以△P1P2P3是等边三角形,且边长为4.设Q是△ABC的中心,则PQ⊥平面ABC,所以AQ=233,PQ= AP22=236.因此V=1S△ABC⋅PQ=22.44. 因为ABCD−AʹBʹCʹDʹ为长方体,故AB∥CʹDʹ,AB=CʹDʹ,故ABCʹDʹ为平行四边形,故BCʹ∥ADʹ,显然直线BCʹ不在平面DʹAC上,于是直线BCʹ平行于平面DʹAC;直线BCʹ到平面DʹAC的距离即为点B到平面DʹAC的距离,设为ℎ.考虑三棱锥ABCDʹ的体积,以ABC为底面,可得V=1×1×1×2×1=1.而△ADʹC中,AC=DʹC=,ADʹ=,故S△ADʹC=3 2 .所以,V=1×3×ℎ=1⇒ℎ=2,即直线BCʹ到平面DʹAC的距离为23.45. (1)S△ABC=12AB⋅AC=12×2×23=23,三棱锥P−ABC的体积为V=1S△ABC×PA=1×23×2=43.(2)如图,取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角.在△ADE中,DE=2,AE=,AD=2,所以cos∠ADE=22+22−22×2×2=34,所以∠ADE=arccos 3 .因此,异面直线BC与AD所成的角的大小是arccos34.46. (1)因为PA⊥底面ABCD,CD⊂平面ABCD,所以PA⊥CD.又AD⊥CD,PA∩AD=A,所以CD⊥平面PAD,从而CD⊥PD.因为在直角三角形PCD中,PD=22+222=23,CD=2,所以三角形PCD的面积为1×2×23=2 3.(2)解法一:如图所示,建立空间直角坐标系,则B2,0,0,C 2,22,0,E 1,2,1,AE=1,2,1,BC=0,22,0.设AE与BC的夹角为θ,则cosθ=AE⋅BC ∣∣AE∣∣∣∣BC∣∣=42×22=22,所以θ=π4 ,由此知,异面直线BC与AE所成的角的大小是π4.解法二:如图所示,取PB的中点F,连接EF,AF,则EF∥BC,从而∠AEF(或其补角)是异面直线BC与AE所成的角.在△AEF中,由EF=2,AF=2,AE=2,知△AEF是等腰直角三角形,所以∠AEF=π4,因此,异面直线BC与AE所成的角的大小是π4.47. (1)连接BD,AB1,B1D1,AD1,因为BD∥B1D1,AB1=AD1,所以异面直线BD与AB1所成角为∠AB1D1,记∠AB1D1=θ,AB12=AD12=22+12=5,B1D12=2,所以在△AB1D1中,由余弦定理cosθ=AB12+B1D12−AD122AB1×B1D1=1010.所以异面直线BD与AB1所成角的余弦值为1010.(2)连接AC,CB1,CD1,则所求四面体的体积V=V ABCD−A1B1C1D1−4×V C−B1C1D1=2−4×1 3=2 .48. (1)因为AA1⊥底面A1B1C1D1,所以AB1与底面A1B1C1D1所成的角为∠AB1A1,即∠AB1A1=α.因为△ABB1≌△ADD1,所以AB1=AD1,又O1为B1D1中点,所以AO1⊥B1D1,又A1O1⊥B1D1,则∠AO1A1是二面角A−B1D1−A1的平面角,即∠AO1A1=β.在Rt△AA1B1中,tanα=AA1 A1B1.在Rt△AA1O1中,tanβ=AA1 11.又A1B1=2A1O1,所以tanβ=α.(2)建立如图空间直角坐标系.设正四棱柱的高为 ℎ,底面边长为 1,则 A 0,0,ℎ ,B 1 1,0,0 ,D 1 0,1,0 ,C 1,1,ℎ ,从而AB 1 = 1,0,−ℎ ,AD 1 = 0,1,−ℎ ,AC = 1,1,0 .设平面 AB 1D 1 的一个法向量为 n = x ,y ,z ,则n ⋅AB 1 =0,n ⋅AD 1 =0,即x −ℎz =0,y −ℎz =0,取 z =1,得 n = ℎ,ℎ,1 .则点 C 到平面 AB 1D 1 的距离为d =∣∣n ⋅AC ∣∣= ℎ2+ℎ2+1=4.解得 ℎ=2.49. (1) 连接 AO 1,AA 1⊥ 底面 A 1B 1C 1D 1 于 A 1.AB 1 与底面 A 1B 1C 1D 1 所成的角为 ∠AB 1A 1,即 ∠AB 1A 1=α. 因为 AB 1=AD 1,O 1 为 B 1D 1 中点,所以 AO 1⊥B 1D 1,又 A 1O 1⊥B 1D 1,所以 ∠AO 1A 1 是二面角 A −B 1D 1−A 1 的平面角,即 ∠AO 1A 1=β. 设 AA 1=ℎ,所以tan α=AA 111=ℎ,(2) 建立如图空间直角坐标系,有 A 0,0,ℎ ,B 1 1,0,0 ,D 1 0,1,0 ,C 1,1,ℎ ,AB 1 = 1,0,−ℎ ,AD 1 = 0,1,−ℎ ,AC= 1,1,0 . 设平面 AB 1D 1 的一个法向量为 n = x ,y ,z ,则n ⊥AB 1 ,n ⊥AD 1,即n ⋅AB 1 =0,n ⋅AD 1 =0,取 z =1 得n = ℎ,ℎ,1 .所以点 C 到平面 AB 1D 1 的距离为d =∣∣n ⋅AC ∣∣= ℎ2+ℎ2+1=4, 则 ℎ=2.50. (1) 设圆柱形灯笼的母线长为 l ,则l=1.2−2r 0<r <0.6 ,S=−3π r −0.4 2+0.48π,所以当 r =0.4 时,S 取得最大值约为 1.51 平方米. (2) 当 r =0.3 时,l =0.6,建立空间直角坐标系,可得A1B3=0.3,0.3,0.6,A3B5=−0.3,0.3,0.6,设向量A1B3与A3B5的夹角为θ,则cosθ=A1B3⋅A3B5∣A1B3∣⋅∣A3B5∣=2,所以A1B3、A3B5所在异面直线所成角的余弦值为23.51. (1)圆柱体的高为1.2−2r,故S=πr2+2πr1.2−2r=π−3r2+2.4r0<r<0.6.当r=0.4时,S max=1.5080≈1.51m2.(2)当r=0.3时,l=0.6,作三视图如图.52. (1)因为CB⊥平面A1B,所以A1C在平面A1B上的射影为A1B.由A1B⊥AE,AE⊂平面A1B,得A1C⊥AE,同理可证A1C⊥AF,因为AF∩AE=A,AF⊂平面AEF,AE⊂平面AEF,所以A1C⊥平面AEF.(2)过A作BD的垂线交CD于G,因为D1D⊥AG,所以AG⊥平面D1B1BD.设AG与A1C所成的角为α,则α即为平面AEF与平面D1B1BD所成的角.由已知,计算得DG=94.如图,建立直角坐标系,则得点 A 0,0,0 ,G 94,3,0 ,A 1 0,0,5 ,C 4,3,0 ,AG = 94,3,0 ,A 1C = 4,3,−5 ,因为 AG 与 A 1C 所成的角为 α.所以 cos α=∣∣AG ⋅A 1C ∣∣∣∣AG ∣∣⋅∣∣A 1C ∣∣=12 225,α=arccos12 225.由定理知,平面 AEF 与平面 D 1B 1BD 所成角的大小为 arccos 12 225.53. (1) 设 ℎʹ 为正四棱锥的斜高. 由已知a 2+4⋅1ℎʹa =2,ℎ2+1a 2=ℎʹ2,解得 a =ℎ2+1ℎ>0 .(2) V =13ℎa 2=ℎ3 ℎ2+1ℎ>0 ,易得 V =13 ℎ+1ℎ,因为 ℎ+1ℎ≥2 ℎ⋅1ℎ=2,所以 V ≤16. 等号当且仅当 ℎ=1ℎ,即 ℎ=1 时取得.故当 ℎ=1 米时,V 有最大值,V 的最大值为 16立方米. 54. 如图,建立空间直角坐标系.则 A 2,0,0 ,C 0,2,0 ,A 1 2,0,2 ,B 1 0,0,2 ,C 1 0,2,2 . 设 AC 的中点为 M ,连接 BM .∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥ 平面 A 1C 1C ,即 BM = 1,1,0 是平面 A 1C 1C 的一个法向量. 设平面 A 1B 1C 的一个法向量是 n = x ,y ,z .因为A 1C = −2,2,−2 ,A 1B 1 = −2,0,0 ,所以n ⋅A 1B 1 =−2x =0,n ⋅A 1C =−2x +2y −2z =0,令 z =1,解得x =0,y =1.所以n = 0,1,1 .设法向量 n 与 BM 的夹角为 φ,二面角 B 1−A 1C −C 1 的大小为 θ,显然 θ 为锐角. 因为cos θ=∣cos φ∣=∣∣n ⋅BM ∣∣∣n ∣⋅∣∣BM ∣∣=12,解得θ=π.所以,二面角 B 1−A 1C −C 1 的大小为 π3.55. (1) 在四棱锥 P −ABCD 中,因为 PO ⊥ 平面 ABCD , ∠PBO 是 PB 与平面 ABCD 所成的角,∠PBO =60∘. 在 Rt △AOB 中 BO =AB sin30∘=1,由 PO ⊥BO , 于是,PO =BO tan60∘= 3,而底面菱形的面积为 2 3. 故四棱锥 P −ABCD 的体积 V =13×2 3× 3=2.(2) 解法一:以 O 为坐标原点,射线 OB 、 OC 、 OP 分别为 x 轴、 y 轴、 z 轴的正半轴建立空间直角坐标系.在 Rt △AOB 中 OA = A 、 B 、 D 、 P 的坐标分别是 A 0,− 0 、 B 1,0,0 、 D −1,0,0 、 P 0,0, 3 . E 是 PB 的中点,则 E 12,0,32,于是 DE = 32,0,32,AP = 0, 3, 3 .设 DE与 AP 的夹角为 θ,有 cos θ=324+4⋅ 3+3=24. 所以,异面直线 DE 与 PA 所成角的余弦值为 24. 解法二:取 AB 的中点 F ,连接 EF 、 DF .由E是PB的中点,得EF∥PA,∴∠FED是异面直线DE与PA所成角(或它的补角).在Rt△AOB中AO=AB cos30∘=3=OP,于是,在等腰Rt△POA中,PA=EF=62.在正△ABD和正△PBD中,DE=DF=3,所以cos∠FED=12EFDE=643=24,故异面直线DE与PA所成角的余弦值为24.56. (1)∵BC∥B1C1,∴∠ACB为异面直线B1C1与AC所成角(或它的补角),∵∠ABC=90∘,AB=BC=1,∴∠ACB=45∘,∴异面直线B1C1与AC所成角为45∘.(2)∵AA1⊥平面ABC,∴∠ACA1是A1C与平面ABC所成的角,∠A1CA=45∘,∵∠ABC=90∘,AB=BC=1,AC=2,∴AA1=2,∴三棱锥A1−ABC的体积V=13S△ABC×AA1=26.57. (1)∵棱台DEF−ABC与棱锥P−ABC的棱长和相等,∴DE+EF+FD=PD+PE+PF.又∵截面DEF∥底面ABC,∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60∘,∴P−ABC是正四面体.(2)取BC的中点M,连接PM,DM,AM.∵BC⊥PM,BC⊥AM,∴BC⊥平面PAM,BC⊥DM,则∠DMA为二面角D−BC−A的平面角.由(1)知,P−ABC的各棱长均为1,∴PM=AM=32,由D是PA的中点,得sin∠DMA=ADAM =33,∴二面角D−BC−A的余弦值为63.(3)存在满足条件的直平行六面体.棱台DEF−ABC的棱长和为定值6,体积为V.设直平行六面体的棱长均为12,底面相邻两边夹角为α,则该六面体棱长和为6,体积为18sinα=V.∵正四面体P−ABC的体积是212,故构造棱长均为12,底面相邻两边夹角的正弦值为8V的直平行六面体即满足要求.。

近五年(2017-2021)高考数学真题分类汇编11 立体几何

近五年(2017-2021)高考数学真题分类汇编11 立体几何

近五年(2017-2021)高考数学真题分类汇编十一、立体几何一、多选题1.(2021·全国高考真题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P二、单选题2.(2021·浙江高考真题)如图已知正方体1111ABCD A BC D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDDB C .直线1A D 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDDB 3.(2021·浙江高考真题)某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3C .2D .4.(2021·全国高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A .12BC .4D 5.(2021·全国高考真题(文))在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A .B .C .D .6.(2021·全国高考真题(理))在正方体1111ABCD A BC D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π67.(2021·全国高考真题)圆锥的母线长为( )A .2B .C .4D .8.(2020·天津高考真题)若棱长为面积为( )A .12πB .24πC .36πD .144π 9.(2020·北京高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .6B .6+C .12D .12+10.(2020·浙江高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .611.(2020·海南高考真题)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°12.(2020·全国高考真题(文))下图为某几何体的三视图,则该几何体的表面积是( )A .B .C .D .13.(2020·全国高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 14.(2020·全国高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .14B .12C .14D .1215.(2020·全国高考真题(理))已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .216.(2020·全国高考真题(理))如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 17.(2019·浙江高考真题)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .32418.(2019·全国高考真题(理))如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线19.(2019·浙江高考真题)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .3220.(2019·浙江高考真题)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<21.(2019·全国高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 22.(2019·全国高考真题(文))设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面23.(2019·上海高考真题)已知平面αβγ、、两两垂直,直线a b c 、、满足:,,a b c αβγ⊆⊆⊆,则直线a b c 、、不可能满足以下哪种关系A .两两垂直B .两两平行C .两两相交D .两两异面 24.(2018·浙江高考真题)已知直线,m n 和平面α,n ⊂α,则“//m n ”是“//m α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件25.(2018·上海高考真题)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( )A .4B .8C .12D .1626.(2018·浙江高考真题)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤ 27.(2018·全国高考真题(文))在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30,则该长方体的体积为A .8B .C .D .28.(2018·北京高考真题(理))某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1 B.2C.3 D.429.(2018·全国高考真题(文))某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.B.C.3D.2,,,是同一个半径为4的球的球面上四点,30.(2018·全国高考真题(理))设A B C D体积的最大值为ABC为等边三角形且其面积为D ABCA.B.C.D.31.(2018·全国高考真题(理))中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .32.(2018·浙江高考真题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .8 33.(2018·全国高考真题(文))在正方体1111ABCD A BC D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2BCD .2 34.(2018·全国高考真题(文))已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π35.(2018·全国高考真题(理))在长方体1111ABCD A BC D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为A .15BCD .2 36.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A B C D 37.(2017·全国高考真题(文))如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面 MNQ 不平行的是( )A .B .C .D .未命名未命名三、解答题38.(2021·全国高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.39.(2021·全国高考真题(文))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.40.(2021·浙江高考真题)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.41.(2021·全国高考真题(文))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.42.(2021·全国高考真题(理))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 43.(2021·全国高考真题(理))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.44.(2020·海南高考真题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB PB 与平面QCD 所成角的正弦值.45.(2020·天津高考真题)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.46.(2020·北京高考真题)如图,在正方体1111ABCD A BC D -中, E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.47.(2020·浙江高考真题)如图,三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.48.(2020·海南高考真题)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.49.(2020·江苏高考真题)在三棱锥A—BCD中,已知CB=CD BD=2,O为BD 的中点,AO⊥平面BCD,AO=2,E为AC的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.50.(2020·江苏高考真题)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F 分别是AC,B1C的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.51.(2020·全国高考真题(理))如图,在长方体1111ABCD A BC D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A--的正弦值. 52.(2020·全国高考真题(文))如图,在长方体1111ABCD A BC D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.53.(2020·全国高考真题(文))如图,D为圆锥的顶点,O是圆锥底面的圆心,ABC 是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面P AB⊥平面P AC;(2)设DO,求三棱锥P−ABC的体积. 54.(2020·全国高考真题(理))如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为=.ABC是底面的内接正三角形,P为DO上一点,PO=.底面直径,AE AD(1)证明:PA⊥平面PBC;--的余弦值.(2)求二面角B PC E55.(2020·全国高考真题(文))如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=π3,求四棱锥B–EB1C1F的体积.56.(2020·全国高考真题(理))如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.57.(2019·江苏高考真题)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC 的中点,AB=BC.求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .58.(2019·天津高考真题(理))如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 59.(2019·全国高考真题(理))图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B−CG−A 的大小.60.(2019·全国高考真题(文))如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.61.(2019·全国高考真题(理))如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.62.(2019·上海高考真题)如图,在正三棱锥P ABC -中,2,PA PB PC AB BC AC ======(1)若PB 的中点为M ,BC 的中点为N ,求AC 与MN 的夹角;(2)求P ABC -的体积.63.(2018·上海高考真题)已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.64.(2018·江苏高考真题)在平行六面体1111ABCD A BC D -中,1AA AB =,111AB B C ⊥. 求证:(1)11//AB A B C 平面;(2)111ABB A A BC ⊥平面平面.65.(2018·江苏高考真题)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.66.(2018·全国高考真题(文))如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.67.(2018·北京高考真题(理))如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11AC ,1BB 的中点,AB=BC AC =1AA =2.(1)求证:AC ⊥平面BEF ;(2)求二面角B−CD −C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.68.(2018·北京高考真题(文))如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .69.(2018·全国高考真题(理))如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.70.(2018·全国高考真题(理))如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.71.(2018·浙江高考真题)如图,已知多面体ABC-A 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.72.(2018·全国高考真题(文))如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.73.(2018·全国高考真题(文))如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.74.(2017·山东高考真题(文))由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:1AO ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.四、填空题75.(2021·全国高考真题(理))以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).76.(2021·全国高考真题(文))已知一个圆锥的底面半径为6,其体积为30 则该圆锥的侧面积为________.77.(2020·海南高考真题)已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________78.(2020·海南高考真题)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以D BCC1B1的交线长为________.179.(2020·江苏高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是____cm.80.(2020·全国高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.81.(2020·全国高考真题(理))设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝82.(2019·江苏高考真题)如图,长方体1111ABCD A BC D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.83.(2019·北京高考真题(理))某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.84.(2019·北京高考真题(理))已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.85.(2019·全国高考真题(理))学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A BC D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB=BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .86.(2019·天津高考真题(文)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.87.(2019·全国高考真题(文))已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________. 88.(2018·江苏高考真题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.89.(2018·全国高考真题(文))已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30,若SAB 的面积为8,则该圆锥的体积为__________.90.(2018·全国高考真题(理))已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB 的面积为面积为__________.91.(2018·天津高考真题(理))已知正方体1111ABCD A BC D -的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M EFGH 的体积为__________.五、双空题92.(2019·全国高考真题(文))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.近五年(2017-2021)高考数学真题分类汇编十一、立体几何(答案解析)1.BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值; 对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB BC λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1A ⎫⎪⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫ ⎪⎝⎭,则11A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+,取1BB ,1CC 中点为,M N .BP BM MN λ=+,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫=- ⎪ ⎪⎝⎭,11,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确. 故选:BD .【小结】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.2.A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A BC D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A BC D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【小结】关键点小结:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系. 3.A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A BC D -,其高为1,底面为等腰梯形ABCD ,1=,故111113122ABCD A B C D V -=⨯=, 故选:A.4.A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=则ABC ,又球的半径为1, 设O 到平面ABC 的距离为d ,则2d ==所以11111332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=. 故选:A.【小结】关键小结:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.D【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.【解析】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D6.D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D7.B【分析】 设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=l =故选:B.8.C【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【小结】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.9.D【分析】首先确定几何体的结构特征,然后求解其表面积即可.【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D.【小结】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.10.A【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为: 11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A【小结】本小题主要考查根据三视图计算几何体的体积,属于基础题.11.B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选:B【小结】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.12.C【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C.【小结】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.13.A【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【小结】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题. 14.C【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.。

2012年-2021年(10年)全国高考数学真题分类汇编 立体几何客观题(精解精析版)

2012年-2021年(10年)全国高考数学真题分类汇编 立体几何客观题(精解精析版)

2012-2021十年全国高考数学真题分类汇编立体几何客观题(精解精析版)一、选择题1.(2021年高考全国乙卷理科)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D解析:如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D2.(2021年高考全国甲卷理科)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()()A.B.C.D.【答案】D解析:由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D3.(2021年高考全国甲卷理科)已如A.B.C是半径为1的球O的球面上的三个点,且,1AC BC AC BC⊥==,则三棱锥O ABC-的体积为()A.212B.312C.24D.34【答案】A解析:,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则22d =,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A .【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.4.(2020年高考数学课标Ⅰ卷理科)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.5.(2020年高考数学课标Ⅰ卷理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()()A .514-B .512-C .514+D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得154b a =(负值舍去).故选:C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.6.(2020年高考数学课标Ⅱ卷理科)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A .3B .32C .1D .32【答案】C解析:设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=-=,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.7.(2020年高考数学课标Ⅱ卷理科)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()()A .EB .FC .GD .H【答案】A解析:根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.(2020年高考数学课标Ⅲ卷理科)下图为某几何体的三视图,则该几何体的表面积是()()A .6+4B .C .D .【答案】C解析:根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.(2019年高考数学课标Ⅲ卷理科)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线【答案】B 【解析】取DC 中点E ,如图连接辅助线,在BDE △中,N 为BD 中点,M 为DE 中点,所以//MN BE ,所以BM ,EN 共面相交,选项C ,D 错误. 平面CDE ⊥平面ABCD ,EF CD ⊥,EF ∴⊥平面ABCD ,又DC CD ⊥,∴DC ⊥平面DCE ,从而EF FN ⊥,BC MC ⊥.所以MCB △与EFN△均为直角三角形.不妨设正方形边长为2,易知3,1MC EF NF ===,所以22(3)27BM =+=,22(3)12EN =+=,BM EN ∴≠,故选B .【点评】本题比较具有综合性,既考查了面面垂直、线面垂直等线面关系,还考查了三角形中的一些计算问题,是一个比较经典的题目.10.(2019年高考数学课标全国Ⅱ卷理科)设α、β为两个平面,则αβ//的充要条件是()()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ//的充分条件,由面面平行性质定理知,若αβ//,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ//的必要条件,故选B .【点评】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.11.(2019年高考数学课标全国Ⅰ卷理科)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A .B .C .D 【答案】D解析:三棱锥P ABC -为正三棱锥,取AC 中点M ,连接,PM BM ,则,AC PM AB BM ⊥⊥,PM BM M = ,可得AC ⊥平面PBM ,从而AC PB ⊥,又//,PB EF EF CE ⊥,可得PB CE ⊥,又AC CE C = ,所以PB ⊥平面PAC ,从而,PB PA PB PC ⊥⊥,从而正三棱锥P ABC -的三条侧棱,,PA PB PC 两两垂直,且PA PB PC ===,,PA PB PC 为棱的正方体,正方体的体对角线即为球O 的直径,即22R R ==,所以球O 的体积为343V R π==.12.(2018年高考数学课标Ⅲ卷(理))设,,,A B C D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为()A.B.C.D.【答案】B解析:设ABC △的边长为a,则21sin 6062ABC S a a =︒=⇒=△,此时ABC △外接圆的半径为112sin 60232a r =⋅=⨯︒,故球心O 到面ABC2==,故点D 到面ABC 的最大距离为26R +=,此时11633D ABC ABC D ABC V S d --=⋅=⨯=△,故选B.点评:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到23BM BE ==,再由勾股定理得到OM ,进而得到结果,属于较难题型.13.(2018年高考数学课标Ⅲ卷(理))中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体.则咬合时带卯眼的木构件的俯视图可以是()()【答案】A解析:依题意,结合三视图的知识易知,带卯眼的木构件的俯视图可以是A 图.14.(2018年高考数学课标Ⅱ卷(理))在长方体1111ABCD A B C D -中,1AB BC ==,1AA =线1AD 与1DB 所成角的余弦值为()A .15B .56C .55D .22【答案】C解析:以D 为坐标原点,1,,DA DC DD DA 为,,x y z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,1,3),(0,0,3)D A B D ,所以11(1,0,3),(1,1,3)AD DB =-=因为111111135cos ,5||||25AD DB AD DB AD DB ⋅-+<>===⋅⨯所以异面直线1AD 与1DB 所成角的余弦值为55,故选C .15.(2018年高考数学课标卷Ⅰ(理))已知正方体的校长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面而积的最大值为()A .334B .233C .324D .32【答案】A【解析一】根据题意,平面α与正方体对角线垂直,记正方体为111ABCD A B C D -不妨设平面α与1AC 垂直,且交于点M .平面ABD 与平面11B D C 与1AC 分别交于,P Q .正方体中心为O ,则容易证明当M 从A 运动到P 时,截面为三角形且周长逐渐增大:当M 从P 运动到Q 时,截面为六边形且周长不变;当M 从Q 运动到1C 时,截面为三角形且周长还渐减小。

上海市近5年高考真题分类汇编(立体几何理科)

上海市近5年高考真题分类汇编(立体几何理科)

立体几何部分(理科)2013年上海市13.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几 何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48ππ,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________三、解答题(共74分)19.(本题满分12分)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C ,并求直线BC 1到平面D 1AC 的距离.13、【解答】根据提示,一个半径为1,高为2π的圆柱平放,一个高为2,底面面积8π的长方体,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积值为221228216πππππ⋅⋅+⋅=+.三、解答题19.【解答】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =, 故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C ;C 11AC 1A直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯= 而1AD C ∆中,11AC DC AD ===,故132AD C S ∆= 所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.2012年上海市6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为 常数,则四面体ABCD 的体积的最大值是 . 三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,P A=2.求:(1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分)解答:6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V 78 .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为π33.ABC D14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是12232--c a c 19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,P A=2.求:(1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分)[解](1)因为P A ⊥底面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,所以CD ⊥平面P AD , 从而CD ⊥PD . ……3分 因为PD=32)22(222=+,CD =2,所以三角形PCD 的面积为3232221=⨯⨯.(2)[解法一]如图所示,建立空间直角坐标系, 则B (2,0,0),C (2,22,0),E (1,2,1),)1,2,1(=AE ,)0,22,0(=BC . ……8分设AE 与的夹角为θ,则222224||||cos ===⨯⋅BC AE BCAE θ,θ=4π. 由此可知,异面直线BC 与AE 所成的角的大小是π……12分[解法二]取PB 中点F ,连接EF 、AF ,则 EF ∥BC ,从而∠AEF (或其补角)是异面直线 BC 与AE 所成的角 ……8分在AEF ∆中,由EF =2、AF =2、AE =2 知AEF ∆是等腰直角三角形, 所以∠AEF =4π. 因此异面直线BC 与AE 所成的角的大小是4π 2011年上海市21.(14分)已知1111ABCD A BC D -是底面边长为1的正四棱柱,1O 是11AC 和11B D 的交点。

(完整word)历年上海高考试题(立体几何)

(完整word)历年上海高考试题(立体几何)

GH 在原正方体中相互异面的有 对。

3(02)若正四棱锥的底面边长为 2、3cm ,体积为4cm 3,则它的侧面与底面所成的二面角的大小是 ________ 30(03春)关于直线a,b,l 以及平面M , N ,下列命题中正确的是().(A) 若a//M,b//M ,则 a//b (B) 若 a // M , b a ,则 b M (C) 若 a M ,b M ,且 l a,l b ,则 I M (D) 若 a M ,a // N ,则 MN D(03)在正四棱锥P —ABCD 中,若侧面与底面所成二面角的大小为60°,则异面直线 PA历年上海高考试题(立体几何)(01春)若有平面与,且 (A )过点P 且垂直于 (C )过点P 且垂直于 I, ,P 的直线平行于 的直线在 内. ,P I ,则下列命题中的假命题为( )B )过点P 且垂直于I 的平面垂直于 . (D )过点P 且垂直于|的直线在 内. (01)已知a 、b 为两条不同的直线,a 、B 为两个不同的平面,且命题中的假命题是( )D a 丄a, b 丄则下列 A.若 a // b ,则 a//B C.若a 、b 相交,则a 、B 相交B.若a 丄B ,贝y a 丄b D.若a 、B 相交,则 a 、b 相交 (02春)下图表示一个正方体表面的一种展开图,图中四条线段 AB 、CD 、EF 和一 2(05)有两个相同的直三棱柱 ,高为一,底面三角形的三a边长分别为3a 、4a 、5a (a>0).用它们拼成一个三棱 柱或四棱柱,在所有可能的情况中,全面积最小的是一个四棱柱,则a 的取值范围是 _____________ . 0<a<上153(06春)正四棱锥底面边长为 4,侧棱长为3,则其体积为 _________________ .—3(06文)若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没 有公共点”的()(A )充分非必要条件 (B )必要非充分条件(C )充分必要条件(D )既非充分又非必要条件 A(06理)若空间中有四个点,则"这四个点中有三点在同一直线上”是"这四个点在同一平面 上”的 [答]( )A (A )充分非必要条件;(B )必要非充分条件;(C )充要条件;(D )非充分非必要条件. (07文)如图,在直三棱柱ABC A 1B 1C 1中,ACB 90,AA 1 2,AC BC 1,则异面直线 AB 与AC 所成角的A与BC 所成角的大小等于.(结果用反三角函数值表示) arctg2(03)在下列条件中,可判断平面a 与B 平行的是A .a 、B 都垂直于平面r.B .a 内存在不共线的三点到B 的距离相等 C. l , m 是a 内两条直线,且 I 〃B, m . D.I , m 是两条异面直线,且 I //a, m //a, I //3, m . (04春)如图,在底面边长为2的正三棱锥 V-ABC 中,E 是BC 的中点,1若厶VAE 的面积是一,则侧棱VA 与底面所成角的大小为41(结果用反三角函数表示)arctg(04)在下列关于直线I 、m 与平面a 、B 的命题中,真命题是()(A )若I B 且a 丄B 则I 丄a . (B )若I 丄B 且all B 则I 丄a. (C )若 I 丄 B 且 a 丄 B 则 I //a . (D )若 aA3 =&1 // m,则 I // a. B (05春)已知直线I 、m 、n 及平面 ,下列命题中的假命题是(A )若 l//m , m//n ,则 l//n .(B )若 I , n 〃,则 I n .(C )若 I m , m 〃 n ,则 I n .(D )若 I// , n 〃 ,贝U l//n.DD大小是________________________ (结果用反三角函数值表示).1B!arccos ——6(07理)在平面上,两条直线的位置关系有相交、平行、重合三种.已知, 是两个相交平面,空间两条直线l i ,I 2在 上的射影是直线 S i , s,,h, I 2在 上的射影是直线t i , t 2 •用S i 与S 2 , t i 与t 2的位置关系,写出一个总能确定 l i 与丨2是异面直线的充分条件: ____________________________________________________ • S i //S 2 ,并且 t i 与 t 2 相交(t i // t 2 ,并且 S i与S 2相交) 且全面积为2平方米的正四棱锥形有盖容器 (如图), 设容器的高为h 米,盖子边长为a 米.(1) 求a 关于h 的函数解析式;(2)设容器的容积为 V 立方米,则当h 为何值时,V 最大?求出V 的最大值.(求解本题时,不计容器的厚度) 解(i )设h'为正四棱锥的斜高14 —h'a 2,2i解得a 心0)易得V因为h * 2,所以V 1i等式当且仅当h -,即h i 时取得。

历年(2019-2023)全国高考数学真题分项(立体几何)汇编(附答案)

历年(2019-2023)全国高考数学真题分项(立体几何)汇编(附答案)

历年(2019-2023)全国高考数学真题分项(立体几何)汇编考点一 空间几何体的侧面积和表面积1.(2021( )A .2B .C .4D .2.(2022•上海)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为 .3.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为 .4.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为 .5.(2019•上海)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( ) A .1B .2C .4D .86.(2020•浙江)已知圆锥的侧面积(单位:2)cm 为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:)cm 是 .7.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π8.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积22(1cos )S r πα=-(单位:2)km ,则S 占地球表面积的百分比约为( ) A .26%B .34%C .42%D .50%考点二 空间几何体的体积9.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l 剟,则该正四棱锥体积的取值范围是( )A .[18,81]4B .27[4,814C .27[4,643D .[18,27]10.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为2140.0km ;水位为海拔157.5m 时,相应水面的面积为2180.0km .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为 2.65)(≈ ) A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯11.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .20+B .C .563D .312.【多选】(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:)m 的正方体容器(容器壁厚度忽略不计)内的有( ) A .直径为0.99m 的球体 B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体13.【多选】(2022•新高考Ⅱ)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,//FB ED ,2AB ED FB ==.记三棱锥E ACD -,F ABC -,F ACE -的体积分别为1V ,2V ,3V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =14.【多选】(2021•新高考Ⅰ)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则( ) A .当1λ=时,△1AB P 的周长为定值 B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 15.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .16.(2023•新高考Ⅰ)在正四棱台1111ABCD A B C D -中,2AB =,111A B =,1AA =,则该棱台的体积为 . 17.(2020•海南)已知正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点,则三棱锥1A NMD -的体积为 .18.(2022•上海)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==. (1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.19.(2020•上海)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60︒,求PD 的长.考点三 空间中直线与直线之间的位置关系20.(2022•上海)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为( )A .点PB .点BC .点RD .点Q21.(2021•浙江)如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B22.(2020•上海)在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线交正方体于P 、Q 两点,则Q 点所在的平面是( )A .11AAB BB .11BBC CC .11CCD DD .ABCD23.(2023•上海)如图所示,在正方体1111ABCD A B C D -中,点P 为边11A C 上的动点,则下列直线中,始终与直线BP 异面的是( )A .1DDB .ACC .1ADD .1B C考点四 异面直线及其所成的角24.【多选】(2022•新高考Ⅰ)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒考点五 空间中直线与平面之间的位置关系25.(2019•上海)已知平面α、β、γ两两垂直,直线a 、b 、c 满足:a α⊆,b β⊆,c γ⊆,则直线a 、b 、c 不可能满足以下哪种关系( )A .两两垂直B .两两平行C .两两相交D .两两异面26.【多选】(2021•新高考Ⅱ)如图,下列正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点,则满足MN OP ⊥的是( )A .B .C .D .考点六 直线与平面所成的角27.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为)O ,地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为( )A .20︒B .40︒C .50︒D .90︒28.(2021•上海)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =. (1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积; (2)求直线1AB 与平面11ACC A 的夹角大小.29.(2021•浙江)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(Ⅰ)证明:AB PM ⊥;(Ⅱ)求直线AN 与平面PDM 所成角的正弦值.30.(2020•海南)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,QB =,求PB 与平面QCD 所成角的正弦值.31.(2020•上海)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.32.(2020•山东)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.33.(2020•浙江)如图,在三棱台ABC DEF -中,平面ACFD ⊥平面ABC ,45ACB ACD ∠=∠=︒,2DC BC =. (Ⅰ)证明:EF DB ⊥;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.34.(2019•上海)如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,已知2BM =,3CD =,4AD =,15AA =.(1)求直线1A C 和平面ABCD 的夹角; (2)求点A 到平面1A MC 的距离.35.(2019•浙江)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A A C AC ==,E ,F 分别是AC ,11A B 的中点.(Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.考点七 二面角的平面角及求法36.(2022•浙江)如图,已知正三棱柱111ABC A B C -,1AC AA =,E ,F 分别是棱BC ,11A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ剟B .βαγ剟C .βγα剟D .αγβ剟37.(2019•浙江)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<38.【多选】(2023•新高考Ⅱ)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45︒,则( )A .该圆锥的体积为πB .该圆锥的侧面积为C .AC =D .PAC ∆39.(2023•上海)已知直四棱柱1111ABCD A B C D -,AB AD ⊥,//AB CD ,2AB =,3AD =,4CD =. (1)证明:直线1//A B 平面11DCC D ;(2)若该四棱柱的体积为36,求二面角1A BD A --的大小.40.(2023•新高考Ⅱ)如图,三棱锥A BCD -中,DA DB DC ==,BD CD ⊥,60ADB ADC ∠=∠=︒,E 为BC 中点.(1)证明BC DA ⊥;(2)点F 满足EF DA =,求二面角D AB F --的正弦值.41.(2023•新高考Ⅰ)如图,在正四棱柱111ABCD A B C D -中,2AB =,14AA =.点2A ,2B ,2C ,2D 分别在棱1AA ,1BB ,1CC ,1DD 上,21AA =,222BB DD ==,23CC =. (1)证明:2222//B C A D ;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P .42.(2022•浙江)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为AE ,BC 的中点.(Ⅰ)证明:FN AD ⊥;(Ⅱ)求直线BM 与平面ADE 所成角的正弦值.43.(2022•新高考Ⅱ)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 为PB 的中点. (1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.44.(2022•新高考Ⅰ)如图,直三棱柱111ABC A B C -的体积为4,△1A BC 的面积为 (1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.45.(2021•新高考Ⅱ)在四棱锥Q ABCD -中,底面ABCD 是正方形,若2AD =,QD QA ==3QC =.(Ⅰ)求证:平面QAD ⊥平面ABCD ; (Ⅱ)求二面角B QD A --的平面角的余弦值.46.(2021•新高考Ⅰ)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点. (1)证明:OA CD ⊥;(2)若OCD ∆是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.考点八 立体几何的交线问题47.(2020•山东)已知直四棱柱1111ABCD A B C D -的棱长均为2,60BAD ∠=︒.以1D 为半径的球面与侧面11BCC B 的交线长为 .参考答案考点一 空间几何体的侧面积和表面积1.(2021,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .C .4D .【详细解析】由题意,设母线长为l ,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有2l ππ=⋅,解得l =所以该圆锥的母线长为 故选:B .2.(2022•上海)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为 . 【详细解析】因为圆柱的底面积为9π,即29R ππ=, 所以3R =,所以224S Rh ππ==侧.故答案为:24π.3.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为 .【详细解析】如图1,上底面圆心记为O ,下底面圆心记为O ',连接OC ,过点C 作CM AB ⊥,垂足为点M , 则12ABC S AB CM ∆=⨯⨯, 根据题意,AB 为定值2,所以ABC S ∆的大小随着CM 的长短变化而变化,如图2所示,当点M 与点O 重合时,CM OC ==,此时ABC S ∆取得最大值为122⨯=;如图3所示,当点M 与点B 重合,CM 取最小值2, 此时ABC S ∆取得最小值为12222⨯⨯=.综上所述,ABC S ∆的取值范围为.故答案为:.4.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为 . 【详细解析】圆柱的底面半径为1r =,高为2h =, 所以圆柱的侧面积为22124S rh πππ==⨯⨯=侧. 故答案为:4π.5.(2019•上海)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( ) A .1B .2C .4D .8【详细解析】如图,则21142133V ππ=⨯⨯=,22121233V ππ=⨯⨯=,∴两个圆锥的体积之比为43223ππ=. 故选:B .6.(2020•浙江)已知圆锥的侧面积(单位:2)cm 为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:)cm 是 .【详细解析】 圆锥侧面展开图是半圆,面积为22cm π,设圆锥的母线长为acm ,则2122a ππ⨯=,2a cm ∴=,∴侧面展开扇形的弧长为2cm π,设圆锥的底面半径OC rcm =,则22r ππ=,解得1r cm =. 故答案为:1cm .7.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π3=4=,如图,设球的半径为R 1=,解得5R =, ∴该球的表面积为24425100R πππ=⨯=.当球心在台体内时,如图,1=,无解. 综上,该球的表面积为100π. 故选:A .8.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积22(1cos )S r πα=-(单位:2)km ,则S 占地球表面积的百分比约为( ) A .26%B .34%C .42%D .50%【详细解析】由题意,作出地球静止同步卫星轨道的左右两端的竖直截面图,则36000640042400OP =+=,那么64008cos 4240053α==; 卫星信号覆盖的地球表面面积22(1cos )S r πα=-,那么,S 占地球表面积的百分比为222(1cos )4542%4106r r παπ-=≈.故选:C .考点二 空间几何体的体积9.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l 剟,则该正四棱锥体积的取值范围是( )A .[18,814B .27[4,814C .27[4,643D .[18,27]【详细解析】如图所示,正四棱锥P ABCD -各顶点都在同一球面上,连接AC 与BD 交于点E ,连接PE ,则球心O 在直线PE 上,连接OA , 设正四棱锥的底面边长为a ,高为h ,在Rt PAE ∆中,222PA AE PE =+,即222221(22l h a h =+=+, 球O 的体积为36π,∴球O 的半径3R =,在Rt OAE ∆中,222OA OE AE =+,即222(3)(2R h =-+, ∴221602a h h +-=,∴22162a h h +=,26l h ∴=,又3l 剟∴3922h剟, ∴该正四棱锥体积2232112()(122)4333V h a h h h h h h ==-=-+,2()282(4)V h h h h h '=-+=- ,∴当342h <…时,()0V h '>,()V h 单调递增;当942h <…时,()0V h '<,()V h 单调递减,()max V h V ∴=(4)643=, 又327(24V = ,981()24V =,且278144<,∴2764()43V h 剟, 即该正四棱锥体积的取值范围是27[4,643, 故选:C .10.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为2140.0km ;水位为海拔157.5m 时,相应水面的面积为2180.0km .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为 2.65)(≈ )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯【详细解析】26214014010km m =⨯,26218018010km m =⨯,根据题意,增加的水量约为661401018010(157.5148.5)3⨯+⨯⨯-9=6693(32060 2.65)103143710 1.410m ≈+⨯⨯⨯=⨯≈⨯.故选:C .11.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .20+B .C .563D 【详细解析】解法一:如图1111ABCD A B C D -为正四棱台,2AB =,114A B =,12AA =. 在等腰梯形11A B BA 中,过A 作11AE A B ⊥,可得14212A E -==,AE ==. 连接AC ,11A C ,AC ==,11A C ==,过A 作11AG A C ⊥,12A G -==AG ==, ∴正四棱台的体积为:V h =22243+== 解法二:作出图形,连接该正四棱台上下底面的中心,如图,该四棱台上下底面边长分别为2,4,侧棱长为2,∴该棱台的记h ==下底面面积116S =,上底面面积24S =, 则该棱台的体积为:1211((16433V h S S =++=+=故选:D .12.【多选】(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:)m 的正方体容器(容器壁厚度忽略不计)内的有( )A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体【详细解析】对于A ,棱长为1的正方体内切球的直径为10.99>,选项A 正确; 对于B ,如图,正方体内部最大的正四面体11D A BC - 1.4=>,选项B 正确;对于C ,棱长为1 1.8<,选项C 错误;对于D ,如图,六边形EFGHIJ 为正六边形,E ,F ,G ,H ,I ,J 为棱的中点,高为0.01米可忽略不计,看作直径为1.2米的平面圆,六边形EFGHIJ 棱长为2米,30GFH GHF ∠=∠=︒,所以FH ===米,故六边形EFGHIJ而223()(1.2) 1.4422=>=,选项D 正确. 故选:ABD .13.【多选】(2022•新高考Ⅱ)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,//FB ED ,2AB ED FB ==.记三棱锥E ACD -,F ABC -,F ACE -的体积分别为1V ,2V ,3V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【详细解析】设22AB ED FB ===, 114||33ACD V S ED ∆=⨯⨯=,212||33ABC V S FB ∆=⨯⨯=,如图所示,连接BD 交AC 于点M ,连接EM 、FM ,则FM =EM =,3EF =,故12EMF S ∆==,3112332EMF V S AC ∆=⨯=⨯⨯=,故C 、D 正确,A 、B 错误. 故选:CD .14.【多选】(2021•新高考Ⅰ)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则( )A .当1λ=时,△1AB P 的周长为定值 B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【详细解析】对于A ,当1λ=时,1BP BC BB μ=+ ,即1CP BB μ= ,所以1//CP BB,故点P 在线段1CC 上,此时△1AB P 的周长为11AB B P AP ++,当点P 为1CC 的中点时,△1AB P ,当点P 在点1C 处时,△1AB P 的周长为1, 故周长不为定值,故选项A 错误;对于B ,当1μ=时,1BP BC BB λ=+ ,即1B P BC λ= ,所以1//B P BC, 故点P 在线段11B C 上, 因为11//B C 平面1A BC ,所以直线11B C 上的点到平面1A BC 的距离相等, 又△1A BC 的面积为定值,所以三棱锥1P A BC -的体积为定值,故选项B 正确;对于C ,当12λ=时,取线段BC ,11B C 的中点分别为M ,1M ,连结1M M , 因为112BP BC BB μ=+,即1MP BB μ= ,所以1//MP BB ,则点P 在线段1M M 上,当点P 在1M 处时,1111A M B C ⊥,111A M B B ⊥, 又1111B C B B B = ,所以11A M ⊥平面11BB C C ,又1BM ⊂平面11BB C C ,所以111A M BM ⊥,即1A P BP ⊥, 同理,当点P 在M 处,1A P BP ⊥,故选项C 错误;对于D ,当12μ=时,取1CC 的中点1D ,1BB 的中点D , 因为112BP BC BB λ=+ ,即DP BC λ= ,所以//DP BC ,则点P 在线的1DD 上,当点P 在点1D 处时,取AC 的中点E ,连结1A E ,BE ,因为BE ⊥平面11ACC A ,又1AD ⊂平面11ACC A ,所以1AD BE ⊥, 在正方形11ACC A 中,11AD A E ⊥, 又1BE A E E = ,BE ,1A E ⊂平面1A BE ,故1AD ⊥平面1A BE ,又1A B ⊂平面1A BE ,所以11A B AD ⊥, 在正方体形11ABB A 中,11A B AB ⊥,又11AD AB A = ,1AD ,1AB ⊂平面11AB D ,所以1A B ⊥平面11AB D , 因为过定点A 与定直线1A B 垂直的平面有且只有一个, 故有且仅有一个点P ,使得1A B ⊥平面1AB P ,故选项D 正确.故选:BD .15.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .【详细解析】如图所示,根据题意易知△11SO A SOA ∆∽,∴11112SO O A SO OA ===,又13SO =, 6SO ∴=,13OO ∴=,又上下底面正方形边长分别为2,4,∴所得棱台的体积为1(4163283⨯++⨯=.故答案为:28.16.(2023•新高考Ⅰ)在正四棱台1111ABCD A B C D -中,2AB =,111A B =,1AA =,则该棱台的体积为 . 【详细解析】如图,设正四棱台1111ABCD A B C D -的上下底面中心分别为M ,N ,过1A 作1A H AC ⊥,垂足点为H ,由题意易知12A M HN ==,又AN =,2AH AN HN ∴=-=,又1AA =,1A H MN ∴==∴该四棱台的体积为1(143⨯++故答案为:6.17.(2020•海南)已知正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点,则三棱锥1A NMD -的体积为 .【详细解析】如图,正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点, ∴111122ANM S ∆=⨯⨯=, ∴111112323A NMD D AMN V V --==⨯⨯=.故答案为:13.18.(2022•上海)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==. (1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.【详细解析】(1)在三棱锥P ABC -中,因为PO ⊥底面ABC ,所以PO AC ⊥, 又O 为AC 边中点,所以PAC ∆为等腰三角形,又2AP AC ==.所以PAC ∆是边长为2的为等边三角形,PO ∴=,三棱锥体积2112133P ABC ABC V S PO -∆=⋅==, (2)以O 为坐标原点,OB 为x 轴,OC 为y 轴,OP 为z 轴,建立空间直角坐标系,则(0P ,0,B 0,0),(0C ,1,0),M 12,0),(2PM = ,12,, 平面PAC的法向量OB =0,0), 设直线PM 与平面PAC 所成角为θ,则直线PM 与平面PAC所成角的正弦值为3sin ||||||PM OB PM OB θ⋅===⋅所以PM 与面PAC所成角大小为arcsin4. 19.(2020•上海)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60︒,求PD 的长.【详细解析】(1)PD ⊥ 平面ABCD ,PD DC ∴⊥. 3CD = ,5PC ∴=,4PD ∴=,2134123P ABCD V -∴=⨯⨯=,所以四棱锥P ABCD -的体积为12.(2)ABCD 是正方形,PD ⊥平面ABCD , BC PD ∴⊥,BC CD ⊥又PD CD D = BC ∴⊥平面PCDBC PC ∴⊥异面直线AD 与PB 所成角为60︒,//BC AD ∴在Rt PBC ∆中,60PBC ∠=︒,3BC =故PC =在Rt PDC ∆中,3CD =PD ∴=考点三 空间中直线与直线之间的位置关系20.(2022•上海)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为( )A .点PB .点BC .点RD .点Q【详细解析】线段MN 上不存在点在线段1A S 、1B D 上,即直线MN 与线段1A S 、1B D 不相交,因此所求与1D 可视的点,即求哪条线段不与线段1A S 、1B D 相交,对A 选项,如图,连接1A P 、PS 、1D S ,因为P 、S 分别为AB 、CD 的中点, ∴易证11//A D PS ,故1A 、1D 、P 、S 四点共面,1D P ∴与1A S 相交,A ∴错误;对B 、C 选项,如图,连接1D B 、DB ,易证1D 、1B 、B 、D 四点共面, 故1D B 、1D R 都与1B D 相交,B ∴、C 错误;对D 选项,连接1D Q ,由A 选项分析知1A 、1D 、P 、S 四点共面记为平面11A D PS , 1D ∈ 平面11A D PS ,Q ∉平面11A D PS ,且1A S ⊂平面11A D PS ,点11D A S ∉, 1D Q ∴与1A S 为异面直线,同理由B ,C 选项的分析知1D 、1B 、B 、D 四点共面记为平面11D B BD , 1D ∈ 平面11D B BD ,Q ∉平面11D B BD ,且1B D ⊂平面11D B BD ,点11D B D ∉,1D Q ∴与1B D 为异面直线,故1D Q 与1A S ,1B D 都没有公共点,D ∴选项正确.故选:D .21.(2021•浙江)如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B【详细解析】连接1AD ,如图:由正方体可知11A D AD ⊥,1A D AB ⊥,1A D ∴⊥平面1ABD , 11A D D B ∴⊥,由题意知MN 为△1D AB 的中位线,//MN AB ∴,又AB ⊂ 平面ABCD ,MN ⊂/平面ABCD ,//MN ∴平面ABCD .A ∴对; 由正方体可知1A D 与平面1BDD 相交于点D ,1D B ⊂平面1BDD ,1D D B ∉, ∴直线1A D 与直线1D B 是异面直线,B ∴、C 错;//MN AB ,AB 不与平面11BDD B 垂直,MN ∴不与平面11BDD B 垂直,D ∴错.故选:A .22.(2020•上海)在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线交正方体于P 、Q 两点,则Q 点所在的平面是( )A .11AAB B B .11BBC C C .11CCD DD .ABCD【详细解析】如图,由点P 到11A D 的距离为3,P 到1AA 的距离为2,可得P 在△1AA D 内,过P 作1//EF A D ,且1EF AA 于E ,EF AD 于F , 在平面ABCD 中,过F 作//FG CD ,交BC 于G ,则平面//EFG 平面1A DC .连接AC ,交FG 于M ,连接EM ,平面//EFG 平面1A DC ,平面1A AC ⋂平面11A DC A C =,平面1A AC ⋂平面EFM EM =, 1//EM A C ∴.在EFM ∆中,过P 作//PQ EM ,且PQ FM 于Q ,则1//PQ A C .线段FM 在四边形ABCD 内,Q 在线段FM 上,Q ∴在四边形ABCD 内. ∴则Q 点所在的平面是平面ABCD .故选:D .23.(2023•上海)如图所示,在正方体1111ABCD A B C D -中,点P 为边11A C 上的动点,则下列直线中,始终与直线BP 异面的是( )A .1DDB .ACC .1ADD .1B C【详细解析】对于A ,当P 是11A C 的中点时,BP 与1DD 是相交直线; 对于B ,根据异面直线的定义知,BP 与AC 是异面直线; 对于C ,当点P 与1C 重合时,BP 与1AD 是平行直线; 对于D ,当点P 与1C 重合时,BP 与1B C 是相交直线. 故选:B .考点四 异面直线及其所成的角24.【多选】(2022•新高考Ⅰ)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒ 【详细解析】如图,连接1B C ,由11//A B DC ,11A B DC =,得四边形11DA B C 为平行四边形, 可得11//DA B C ,11BC B C ⊥ ,∴直线1BC 与1DA 所成的角为90︒,故A 正确;111A B BC ⊥ ,11BC B C ⊥,1111A B B C B = ,1BC ∴⊥平面11DA B C ,而1CA ⊂平面11DA B C ,11BC CA ∴⊥,即直线1BC 与1CA 所成的角为90︒,故B 正确;设1111A C B D O = ,连接BO ,可得1C O ⊥平面11BB D D ,即1C BO ∠为直线1BC 与平面11BB D D 所成的角,1111sin 2OC C BO BC ∠== ,∴直线1BC 与平面11BB D D 所成的角为30︒,故C 错误; 1CC ⊥ 底面ABCD ,1C BC ∴∠为直线1BC 与平面ABCD 所成的角为45︒,故D 正确.故选:ABD .考点五 空间中直线与平面之间的位置关系25.(2019•上海)已知平面α、β、γ两两垂直,直线a 、b 、c 满足:a α⊆,b β⊆,c γ⊆,则直线a 、b 、c 不可能满足以下哪种关系( )A .两两垂直B .两两平行C .两两相交D .两两异面【详细解析】如图1,可得a 、b 、c 可能两两垂直; 如图2,可得a 、b 、c 可能两两相交; 如图3,可得a 、b 、c 可能两两异面;故选:B .26.【多选】(2021•新高考Ⅱ)如图,下列正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点,则满足MN OP ⊥的是( )A .B .C .D .【详细解析】对于A ,设正方体棱长为2,设MN 与OP 所成角为θ,则1tan 12θ==,∴不满足MN OP ⊥,故A 错误; 对于B ,如图,作出平面直角坐标系,设正方体棱长为2,则(2N ,0,0),(0M ,0,2),(2P ,0,1),(1O ,1,0),(2MN = ,0,2)-,(1OP = ,1-,1),0MN OP ⋅= ,∴满足MN OP ⊥,故B 正确;对于C ,如图,作出平面直角坐标系,设正方体棱长为2,则(2M ,2,2),(0N ,2,0),(1O ,1,0),(0P ,0,1),(2MN =- ,0,2)-,(1OP =- ,1-,1),0MN OP ⋅= ,∴满足MN OP ⊥,故C 正确;对于D ,如图,作出平面直角坐标系,设正方体棱长为2,则(0M ,2,0),(0N ,0,2),(2P ,1,2),(1O ,1,0),(0MN = ,2-,2),(1OP = ,0,2),4MN OP ⋅= ,∴不满足MN OP ⊥,故D 错误.故选:BC .考点六 直线与平面所成的角27.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为)O ,地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为( )A .20︒B .40︒C .50︒D .90︒【详细解析】可设A 所在的纬线圈的圆心为O ',OO '垂直于纬线所在的圆面,由图可得OHA ∠为晷针与点A 处的水平面所成角,又OAO '∠为40︒且OA AH ⊥,在Rt OHA ∆中,O A OH '⊥,40OHA OAO '∴∠=∠=︒,另解:画出截面图,如下图所示,其中CD 是赤道所在平面的截线.l 是点A 处的水平面的截线,由题意可得OA l ⊥,AB 是晷针所在直线.m 是晷面的截线,由题意晷面和赤道面平行,晷针与晷面垂直,根据平面平行的性质定理可得//m CD ,根据线面垂直的定义可得AB m ⊥,由于40AOC ∠=︒,//m CD ,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与A 处的水平面所成角为40BAE ∠=︒,故选:B .28.(2021•上海)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =.(1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积;(2)求直线1AB 与平面11ACC A 的夹角大小.【详细解析】(1)如图,在长方体1111ABCD A B C D -中,1112322332C PAD PAD C PAD V S h -∆-⎛⎫=⋅=⨯⨯⨯⨯= ⎪⎝⎭平面; (2)连接1111A C B D O = ,AB BC = ,∴四边形1111A B C D 为正方形,则11OB OA ⊥,又11AA OB ⊥,111OA AA A = ,1OB ∴⊥平面11ACC A ,∴直线1AB 与平面11ACC A 所成的角为1OAB ∠,∴111sin OB OAB AB ∠=== ∴直线1AB 与平面11ACC A所成的角为29.(2021•浙江)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(Ⅰ)证明:AB PM ⊥;(Ⅱ)求直线AN 与平面PDM 所成角的正弦值.【详细解析】(Ⅰ)证明:在平行四边形ABCD 中,由已知可得,1CD AB ==,122CM BC ==,60DCM ∠=︒, ∴由余弦定理可得,2222cos60DM CD CM CD CM =+-⨯⨯︒11421232=+-⨯⨯⨯=, 则222134CD DM CM +=+==,即CD DM ⊥,又PD DC ⊥,PD DM D = ,CD ∴⊥平面PDM ,而PM ⊂平面PDM ,CD PM ∴⊥,//CD AB ,AB PM ∴⊥;(Ⅱ)解:由(Ⅰ)知,CD ⊥平面PDM ,又CD ⊂平面ABCD ,∴平面ABCD ⊥平面PDM ,且平面ABCD ⋂平面PDM DM =,PM MD ⊥ ,且PM ⊂平面PDM ,PM ∴⊥平面ABCD ,连接AM ,则PM MA ⊥,在ABM ∆中,1AB =,2BM =,120ABM ∠=︒, 可得2114212(72AM =+-⨯⨯⨯-=,又PA =Rt PMA ∆中,求得PM ==,取AD 中点E ,连接ME ,则//ME CD ,可得ME 、MD 、MP 两两互相垂直,以M 为坐标原点,分别以MD 、ME 、MP 为x 、y 、z 轴建立空间直角坐标系,则(A ,2,0),(0P ,0,,1,0)C -,又N 为PC的中点,1(22N ∴-,5(,22AN =- , 平面PDM 的一个法向量为(0,1,0)n = ,设直线AN 与平面PDM 所成角为θ,则5||sin |cos ,|6||||AN n AN n AN n θ⋅=<>===⋅ . 故直线AN 与平面PDM所成角的正弦值为6.30.(2020•海南)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l上的点,QB =,求PB 与平面QCD 所成角的正弦值.【详细解析】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线,PD ⊥ 平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CD PD D = ,BC ∴⊥平面PCD ,设m 为平面PCD 中任意一条直线,则BC m ⊥,//l BC ,l m ∴⊥,由线面垂直的定义是l ⊥平面PCD ;(2)解:如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,1PD AD == ,Q 为l上的点,QB =,PB ∴=,1QP =,则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),作//PQ AD ,则PQ 为平面PAD 与平面PBC 的交线为l,因为QB =,QAB ∆是等腰直角三角形,所以(1Q ,0,1),则(1DQ = ,0,1),(1PB = ,1,1)-,(0DC = ,1,0),设平面QCD 的法向量为(n a = ,b ,)c ,则00n DC n DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,∴00b a c =⎧⎨+=⎩,取1c =,可得(1n =- ,0,1),|cos n ∴<,||||||||n PB PB n PB ⋅>=== , PB ∴与平面QCD所成角的正弦值为3. 31.(2020•上海)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.【详细解析】(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成, 221214S πππ∴=⨯⨯+⨯=.故该圆柱的表面积为4π.(2) 正方形11ABC D ,1AD AB ∴⊥, 又12DAD π∠=,1AD AD ∴⊥,AD AB A = ,且AD 、AB ⊂平面ADB ,1AD ∴⊥平面ADB ,即1D 在面ADB 上的投影为A ,连接1CD ,则1D CA ∠即为线段1CD 与平面ABCD 所成的角,而11cos 3AC D CA CD ∠==, ∴线段1CD 与平面ABCD所成的角为3. 32.(2020•山东)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.【详细解析】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线, PD ⊥ 平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CD PD D = ,BC ∴⊥平面PCD , 设平面PCD 中有任一直线l ',则BC ⊥直线l ',//l BC ,l ∴⊥直线l ',∴由线面垂直的定义得l ⊥平面PCD ;(2)如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz-则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),设(Q m ,0,1),(DQ m = ,0,1),(1PB = ,1,1)-,(0DC = ,1,0),设平面QCD 的法向量为(n a = ,b ,)c ,则00n DC n DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,∴00b am c =⎧⎨+=⎩,取1a =-,可得(1n =- ,0,)m , cos n ∴<,||||n PB PB n PB ⋅>==⋅ , PB ∴与平面QCD。

【免费下载】上海市近5年高考真题分类汇编(立体几何理科)

【免费下载】上海市近5年高考真题分类汇编(立体几何理科)

3.
B
特约教师: 刘庆玲
B x
F
ABCD
4
P
A

3 3

.
……3 分
z ……6 分
P
E
A1B1C1D1
B
C
E C
……12 分
A
A1
的高。
AD=2 2 ,PA=2.求: (1)三角形 PCD 的面积;(6 分)
解答:
(2)异面直线 BC 与 AE 所成的角的大小.(6 分)
6.有一列正方体,棱长组成以
V1,V2,…,Vn,…,则 lnim(V1
1
为首项,
V2
2
Vn )
1 2

1 2
,故 SAD1C
32

3 2
特约教师: 刘庆玲
5, AD1
所以,V 1 3 h 1 h 2 ,即直线 BC1 到平面 D1AC 的距离为 2 .
2012 年上海市
32 3
6.有一列正方体,棱长组成以
V1,V2,…,Vn,…,则 lnim(V1 V2 Vn )
1
3
为首项,
8.若一个圆锥的侧面展开图是面积为 2的半圆面,则该圆锥的体积为
知 AEF 是等腰直角三角形,
所以∠AEF=
BC

AE
4
.
所成的角的大小是
2 2

2
,=
AE

2
4
.
32
所成的角的大小是
……8 分
4
21.(14 分)已知 ABCD A1B1C1D1 是底面边长为 1 的正四棱柱, O1 是 A1C1 和 B1D1 的交

上海市2024年高考二模分类汇编:立体几何

上海市2024年高考二模分类汇编:立体几何

立体几何汇编一、题型一:空间几何体1.(2024·上海闵行·二模)已知空间中有2个相异的点,现每增加一个点使得其与原有的点连接成尽可能多的等边三角形.例如,空间中3个点最多可连接成1个等边三角形,空间中4个点最多可连接成4个等边三角形.当增加到8个点时,空间中这8个点最多可连接成个等边三角形.2.(2024·上海虹口·二模)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,且60BAD ∠= .若12AB AA ==,点M 为棱1CC 的中点,点P 在1A B 上,则线段,PA PM 的长度和的最小值为.3.(2024·上海崇明·二模)已知底面半径为1的圆柱,O 是其上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线.若直线OA 与BC 所成角的大小为π3,则BC =.4.(2024·上海青浦·二模)如图,在棱长为1的正方体1111ABCD A B C D -中,P Q R 、、在棱1AB BC BB 、、上,且111,,234PB QB RB ===,以PQR 为底面作一个三棱柱111PQR PQ R -,使点111,,P Q R 分别在平面11111111A ADD D DCC A B C D 、、上,则这个三棱柱的侧棱长为.二、题型二:表面积与体积5.(2024·上海普陀·二模)若一个圆锥的体积为22π3,用通过该圆锥的轴的平面截此圆锥,得到的截面三角形的顶角为π2,则该圆锥的侧面积为()A 2πB .2πC .22πD .42π6.(2024·上海徐汇·二模)三棱锥-P ABC 各顶点均在半径为的球O 的表面上,90AB AC BAC ==∠=。

,二面角P BC A --的大小为45。

,则对以下两个命题,判断正确的是()①三棱锥O ABC -的体积为83;②点P 形成的轨迹长度为.A .①②都是真命题B .①是真命题,②是假命题C .①是假命题,②是真命题D .①②都是假命题7.(2024·上海奉贤·二模)学生到工厂劳动实践,利用3D 打印技术制作模型,如图所示.该模型为长方体1111ABCD A B C D -中挖去一个四棱锥O EFGH -,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,4cm AB BC ==,12cm AA =,3D 打印所用原料密度为30.9/cm g .不考虑打印损耗,制作该模型所需原料的质量为g .8.(2024·上海奉贤·2,则该圆锥的侧面积为.9.(2024·上海松江·二模)若一个圆锥的侧面展开图是面积为2π的半圆面,则此圆锥的体积为.(结果中保留π)10.(2024·上海静安·二模)正四棱锥P ABCD -底面边长为2,高为3,则点A 到不经过点A 的侧面的距离为.11.(2024·上海黄浦·二模)在四面体PABC 中,2PD PA PB =+u u u r u u r u u r ,523PE PB PC =+uur uu r uu u r ,23PF PC PA =-+ ,设四面体PABC 与四面体PDEF 的体积分别为1V 、2V ,则21V V 的值为.12.(2024·上海黄浦·二模)若一个圆柱的底面半径为2,母线长为3,则此圆柱的侧面积为.13.(2024·上海嘉定·二模)已知圆锥的母线长为2,高为1,则其体积为.14.(23-24高三下·上海浦东新·期中)如图,有一底面半径为1,高为3的圆柱.光源点A 沿着上底面圆周作匀速运动,射出的光线始终经过圆柱轴截面的中心O .当光源点A 沿着上底面圆周运动半周时,其射出的光线在圆柱内部“扫过”的面积为.15.(2024·上海长宁·二模)用铁皮制作一个有底无盖的圆柱形容器,若该容器的容积为π立方米,则至少需要平方米铁皮16.(2024·上海静安·二模)如图1所示,ABCD 是水平放置的矩形,23AB =2BC =.如图2所示,将ABD 沿矩形的对角线BD 向上翻折,使得平面ABD ⊥平面BCD .(1)求四面体ABCD 的体积V ;(2)试判断与证明以下两个问题:①在平面BCD 上是否存在经过点C 的直线l ,使得l AD ⊥?②在平面BCD 上是否存在经过点C 的直线l ,使得//l AD ?三、题型三:位置关系17.(2024·上海静安·二模)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是()A .若//m α,//n α,则//m n ;B .若m α⊂,n β⊂,//m n ,则//αβ;C .若m α⊥,//n α,则m n ⊥;D .若m α⊂,n ⊂α,//m β,//n β,则//αβ.18.(2024·上海金山·二模)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则以下命题中正确的是().A .BM EN =B .CD MN⊥C .A 、M 、N 三点共线D .直线BM 与EN 相交19.(2024·上海长宁·二模)已知直线,a b 和平面α,则下列判断中正确的是()A .若//,//a b αα,则//a bB .若//,//a b b α,则//a αC .若//,a b αα⊥,则a b⊥D .若,//a b b α⊥,则a α⊥20.(2024·上海杨浦·二模)正方体1111ABCD A B C D -中,异面直线AB 与1DC 所成角的大小为.21.(2024·上海金山·二模)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,点G 是 DF的中点,点P 在 CE 上,异面直线BP 与AD 所成的角是30︒.(1)求证:AE BP ⊥;(2)若3AB =,2AD =,求二面角E AG C --的大小.22.(2024·上海虹口·二模)如图,在三棱柱111ABC A B C -中,CA CB ⊥,D 为AB 的中点,2CA CB ==,13CC =.(1)求证:1//AC 平面1B CD ;(2)若1CC ⊥平面ABC ,点P 在棱1AA 上,且PD ⊥平面1B CD ,求直线CP 与平面1B CD 所成角的正弦值.23.(2024·上海黄浦·二模)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,点E 是棱PD 上的一点,//PB 平面AEC .(1)求证:点E 是棱PD 的中点;(2)若PA ⊥平面ABCD ,2AP =,23AD =PC 与平面ABCD 所成角的正切值为13,求二面角D AE C--的大小.24.(2024·上海嘉定·二模)如图,在三棱柱111ABC A B C -中,1A A ⊥平面ABC ,D 是BC 的中点,2AC =,11A A AB BC ===.(1)求证:1//A B 平面1ADC ;(2)求直线1DC 与1A B 的所成角的大小.25.(2024·上海长宁·二模)如图,在长方体1111ABCD A B C D -中,12,1AB AD AA ===;(1)求二面角1D AC D --的大小;(2)若点P 在直线11AC 上,求证:直线//BP 平面1D AC ;26.(23-24高三下·上海浦东新·期中)在四棱锥P ABCD -中,底面ABCD 为等腰梯形,平面PAD ⊥底面ABCD ,其中//AD BC ,24AD BC ==,3AB =,23PA PD ==,点E 为PD 中点.(1)证明://EC 平面PAB ;(2)求二面角P AB D --的大小.四、题型四:大题综合27.(2024·上海松江·二模)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PD ⊥平面ABCD ,E 为PD 的中点.(1)设平面ABE 与直线PC 相交于点F ,求证://EF CD ;(2)若2AB =,60DAB ∠=︒,42PD =,求直线BE 与平面PAD 所成角的大小.28.(2024·上海普陀·二模)如图,在四棱锥S ABCD -中,底面ABCD 是边长为1的正方形,2SA SB ==,E 、F 分别是SC 、BD 的中点.(1)求证://EF 平面SAB ;(2)若二面角S AB D --的大小为π2,求直线SD 与平面ABCD 所成角的大小.29.(2024·上海徐汇·二模)如图,D 为圆锥的顶点,O 是圆锥底面圆的圆心,AE 为圆O 的直径,且4AE AD ==,ABC 是底面圆O 的内接正三角形,P 为线段DO 上一点,且6DO PO =.(1)证明:PA ⊥平面PBC ;(2)求直线PB 与平面PCE 所成角的正弦值.30.(2024·上海杨浦·二模)如图,P 为圆锥顶点,O 为底面中心,A ,B ,C 均在底面圆周上,且ABC 为等边三角形.(1)求证:平面POA ⊥平面PBC ;(2)若圆锥底面半径为2,高为22A 到平面PBC 的距离.31.(2024·上海奉贤·二模)如图1是由两个三角形组成的图形,其中90APC ︒∠=,30PAC ︒∠=,2AC AB =,30BCA ︒∠=.将三角形ABC 沿AC 折起,使得平面PAC ⊥平面ABC ,如图2.设O 是AC 的中点,D 是AP 的中点.(1)求直线BD 与平面PAC 所成角的大小;(2)连接PB ,设平面DBO 与平面PBC 的交线为直线l ,判别l 与PC 的位置关系,并说明理由.32.(2024·上海闵行·二模)如图,已知ABCD 为等腰梯形,//AD BC ,120BAD ∠=︒,PA ⊥平面ABCD ,2AB AD AP ===.⊥;(1)求证:PC AB--的大小.(2)求二面角C BP A参考答案一、题型一:空间几何体1.(2024·上海闵行·二模)已知空间中有2个相异的点,现每增加一个点使得其与原有的点连接成尽可能多的等边三角形.例如,空间中3个点最多可连接成1个等边三角形,空间中4个点最多可连接成4个等边三角形.当增加到8个点时,空间中这8个点最多可连接成个等边三角形.【答案】20.【分析】结合正四面体的结构特征,判断求解空间中这8个点最多可连接成等边三角形的个数.【详解】空间中4个点最多可连接成4个等边三角形,构成正四面体,正四面体的每一个面向外作一个正四面体,此时是增加一个点,增加正三角形3个,新增加的4个点,又构成1个正四面体,所以当增加到8个点时,空间中这8个点最多可连接成434420+⨯+=个等边三角形.故答案为:20.2.(2024·上海虹口·二模)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,且60BAD ∠= .若12AB AA ==,点M 为棱1CC 的中点,点P 在1A B 上,则线段,PA PM 的长度和的最小值为.【答案】9+210【分析】取11D C 的中点N ,连接MN 、1A N 、BM 、1D C ,首先证明1//A B MN ,即可1A 、B 、M 、N 四点共面,连接1A M ,11AC ,求出190A BM ︒∠=,将1ABA △绕1A B 翻折,使得平面1ABA 与平面1A BMN 共面,连接AM 交1A B 于点P ,最后利用余弦定理计算可得.【详解】取11D C 的中点N ,连接MN 、1A N 、BM 、1D C ,因为点M 为棱1CC 的中点,所以1//MN D C ,又11//A D BC 且11A D BC =,所以11A D CB 为平行四边形,所以11//A B D C ,所以1//A B MN ,即1A 、B 、M 、N 四点共面,连接1A M ,11AC ,故答案为:9210+3.(2024·上海崇明·二模)已知底面半径为1的圆柱,O是其上底面圆心,A、B是下底面圆周上两个不同的点,BC是母线.若直线OA与BC所成角的大小为π3,则BC=.即可求解.【详解】如图所示,因为//AD BC ,且AD BC=则直线OA 与BC 所成角即为直线OA 与AD 所成角的大小为π3,可得π3OAD ∠=,在直角OAD △中,可得13π3tan3AD ==,即33BC =.故答案为:33.4.(2024·上海青浦·二模)如图,在棱长为1的正方体1111ABCD AB C D -中,P Q R 、、在棱1AB BC BB 、、上,且111,,234PB QB RB ===,以PQR 为底面作一个三棱柱111PQR PQ R -,使点111,,P Q R 分别在平面11111111A ADD D DCC A B C D 、、上,则这个三棱柱的侧棱长为.【答案】18112【分析】建立平面直角坐标系写出点的坐标,根据三棱柱中向量相等得到1P 坐标,进而得到1PP的坐标,从而得到侧棱1PP .【详解】以D 为原点,以1,,DA DC DD 所在直线为11,,02P ⎛⎫⎪⎝⎭,21,03Q ⎛⎫ ⎪⎝⎭,1,1,R ⎛ ⎝则11,,032PQ ⎛⎫=- ⎪⎝⎭,0,PR ⎛= ⎝由三棱柱可知11P Q PQ = ,即(P R PR = ,即()0,,0,y z ⎛-= 二、题型二:表面积与体积5.(2024·上海普陀·三角形的顶角为π2,则该圆锥的侧面积为()A B .2πC .D .故选:C .6.(2024·上海徐汇·二模)三棱锥-P ABC 各顶点均在半径为22的球O 的表面上,22,90AB AC BAC ==∠=。

2024届全国高考数学真题分类专项(立体几何)汇编(附答案)

2024届全国高考数学真题分类专项(立体几何)汇编(附答案)

2024届全国高考数学真题分类专项(立体几何)汇编1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧)A .B .C .D .2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( )A .12 B .1 C .2 D .33.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙.4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD 中,8AB =,3CD =,AD =90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M为AD 的中点.(1)证明://BM 平面CDE ; (2)求二面角F BM E --的正弦值.参考答案1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高,则圆锥的体积为( )A .B .C .D .【详细详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( ) A .12B .1C .2D .3【详细详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D =可知11111662222ABC A B C S S =⨯⨯==⨯= 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h = 如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AA DN AD AM MN x =--=-,可得1DD ==结合等腰梯形11BCC B 可得22211622BB DD -⎛⎫=+ ⎪⎝⎭,即()221616433x x +=++,解得x = 所以1A A 与平面ABC 所成角的正切值为11tan 1A MA ADAM?=; 解法二:将正三棱台111ABC A B C -补成正三棱锥-P ABC ,则1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,因为11113PA A B PA AB ==,则111127P A B C P ABC V V --=, 可知1112652273ABC A B C P ABC V --==,则18P ABC V -=, 设正三棱锥-P ABC 的高为d,则116618322P ABC V d -=⨯⨯⨯=,解得d =,取底面ABC 的中心为O ,则PO ⊥底面ABC,且AO = 所以PA 与平面ABC 所成角的正切值tan 1POPAO AO∠==. 故选:B.3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙. 【详细详解】由题可得两个圆台的高分别为)12h r r ==-甲,)12h r r ==-乙,所以((212113143S S h r r V h V h S S h +-====+甲甲甲乙乙乙.4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ; (2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD . 【详细详解】(1)(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥, 又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB , 而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC , 又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF , 因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =, 所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF , 根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠= 因为AD DC ⊥,设AD x =,则CD =2DE =,又242xCE -=,而EFC 为等腰直角三角形,所以2EF=,故22tan DFE∠==x =AD =5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD 中,8AB =,3CD =,AD =,90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.【详细详解】(1)由218,,52AB AD AE AD AF AB ====, 得4AE AF ==,又30BAD ︒∠=,在AEF △中,由余弦定理得2EF =,所以222AE EF AF +=,则AE EF ⊥,即EF AD ⊥, 所以,EF PE EF DE ⊥⊥,又,PE DE E PE DE =⊂ 、平面PDE , 所以EF ⊥平面PDE ,又PD ⊂平面PDE , 故EF ⊥PD ;(2)连接CE ,由90,3ADC ED CD ︒∠===,则22236CE ED CD =+=,在PEC 中,6PC PE EC ===,得222EC PE PC +=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD , 所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -, 由F 是AB的中点,得(4,B ,所以(4,(2,0,PC PD PB PF =-=-=-=-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z ==,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令122,y x ==11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==- ,所以cos ,m nm n m n ⋅===设平面PCD 和平面PBF 所成角为θ,则sin θ== 即平面PCD 和平面PBF所成角的正弦值为65.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求二面角F BM E --的正弦值.【详细详解】(1)因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;(2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =, 结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =, 所以ABM 为等边三角形,O 为AM中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =, 四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m = ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,m n =故二面角F BM E --的正弦值为13.。

2017-2021年上海市高考数学真题分类汇编:立体几何(附答案解析)

2017-2021年上海市高考数学真题分类汇编:立体几何(附答案解析)

2017-2021年上海市高考数学真题分类汇编:立体几何
一.选择题(共6小题)
1.(2020•上海)在棱长为10的正方体ABCD﹣A1B1C1D1中,P为左侧面ADD1A1上一点,已知点P到A1D1的距离为3,P到AA1的距离为2,则过点P且与A1C平行的直线交正

方体于P、Q两点,则Q点所在的平面是(
A.AA1B1B B.BB1C1C C.CC1D1D D.ABCD 2.(2019•上海)已知平面α、β、γ两两垂直,直线a、b、c满足:a⊆α,b⊆β,c⊆γ,则直线a、b、c不可能满足以下哪种关系()
A.两两垂直B.两两平行C.两两相交D.两两异面3.(2019•上海)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为()
A.1B.2C.4D.8 4.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面

矩形的一边,则这样的阳马的个数是(
A.4B.8C.12D.16 5.(2018•上海)如图,在直三棱柱ABC﹣A1B1C1的棱所在的直线中,与直线BC1异面的直线的条数为()
第1页(共30页)。

上海市各地市高考数学联考试题分类汇编(8)立体几何(20201103191811)

上海市各地市高考数学联考试题分类汇编(8)立体几何(20201103191811)

点 M 、 N 分别是棱 AB、AA1的中点,则异面直线 MN 与 BC1 所成的角是

3
10. ( 上海市黄浦区 2011 年 4 月高考二模试题文科 ) 已知圆柱 M 的底面圆的半径与球 O 的半
径相同,若圆柱 M 与球 O 的表面积相等,则它们的体积之比 V圆柱 : V球 =
(用数值作
答 ). 3 4
A(0,0,0) 、 D1(0,a,a) 、
B1( a,0,a) 、C1(a,a,a) ,向量 C1 A ( a, a, a) ,AD1 (0,a, a) ,AB1 (a,0,a) .
设 n ( x, y, z) 是平面 AB1D1 的法向量,于是,有
n AD1
0
ay
,即
az 0

n AB1 0
ax az 0
C. 必要非充分条件 D. 既非充分又非必要条件
16 . ( 上 海 市 五 校 2011 年 联 合 教 学 调 研 理 科 下 列 四 个 命 题 中 真 命 题 是
(B )
( A)同垂直于一直线的两条直线互相平行;
( B)过空间任一点与两条异面直线都垂直的直线有且只有一条;
( C)底面各边相等、侧面都是矩形的四棱柱是正四棱柱; ( D)过球面上任意两点的大圆有且只有一个。
( D)( 1)(2)( 4)
11. ( 上海市黄浦区 2011 年 4 月高考二模试题理科 ) 已知圆柱 M 的底面圆的半径与球 O 的半
径相同,若圆柱 M 与球 O 的表面积相等,则它们的体积之比 V圆柱 : V球 =
(用数值作
答 ). 3
4
8.( 上海市黄浦区 2011 年 4 月高考二模试题文科 ) 已知正方体 ABCD A1B1C1D1 的棱长是 3,
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近五年上海高考汇编——立体几何一、填空题1.(2009年高考5)如图,若正四棱柱1111-ABCD A B C D 的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是_____ ___.(结果用反三角函数值表示) 答案:arctan 52.(2009年高考理科8)已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S 满足的等量关系是_____ ___. 答案:12323S S S +=3.(2009年高考文科6)若球12,O O 的面积之比124S S =,则它们的半径之比12RR =___ ____. 答案:24.(2009年高考文科8)若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是____ ____. 答案:83π5.(2010年高考理科12)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于点O ,剪去AOB ,将剩余部分沿,OC OD 折叠,使,OA OB 重合,则以(),A B ,,C D O 为顶点的四面体的体积是_____ ___. 答案:8236.(2010年高考文科6)已知四棱锥P ABCD -的底面是边长为6的正方体,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱锥的体积是_____ ___. 答案:967.(2011年高考理科7)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为_____ __. 答案:33π 8.(2011年高考文科7)若一个圆锥的主视图是边长为3,3,2的三角形,则该圆锥的侧面积为_____ ____. 答案:3π9.(2012年高考理科6)有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞+++=_____ ____.答案:8710.(2012年高考理科8)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为_____ ____.答案:33π 11.(2012年高考理科14)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2BC =,若2AD c =,且2AB BD AC CD a +=+=,其中,a c 为常数,则四面体ABCD 的体积的最大值是_____ ____.答案:22213c a c -- 12.(2012年高考文科5)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为_____ ____. 答案:6π13.(2013年高考理科13)在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω.过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ-+.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为_____ ____. 答案:2216ππ+14.(2013年高考文科10)已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则l r =_____ ____.3二、选择题1.(2009年高考文科16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是 ( ) 答案:B 三、解答题1.(2009年高考理科19)如图,在直三棱柱ABC A B C '''-中,2AA BC AB '===,AB BC ⊥,求二面角B A C C '''--的大小答案:如图,建立空间直角坐标系则 A ()2,0,0,C ()0,2,0,A 1()2,0,2,B 1()0,0,2,C 1()0,2,2, 设AC 的中点为M ,BM ⊥AC ,BM ⊥CC 1,∴ BM ⊥平面AC 1C ,即BM =()1,1,0是平面AC 1C 的一个法向量。

设平面A 1B 1C 的一个法向量是n =(),,x y z ,1AC =()2,2,2--,11A B =()2,0,0-,∴n ⋅11A B =2x -=0,∴n ⋅1AC =2220x y z -+-=,1z =, 解得0,1x y ==。

∴n =()0,1,1,设法向量n 与BM 的夹角为ϕ,二面角111B AC C --θθ的大小为,显然为锐角 2.(2010年高考理科21)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.骨架将圆柱底面8等分.再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(精确到0.01平方米); (2)在灯笼内,以矩形骨架的顶点为端点,安装一些霓虹灯.当灯笼底面半径为0.3米时,求图中两根直线型霓虹灯1335,A B A B 所在异面直线所成角的大小(结果用反三角函数值表示).答案:(1) 设圆柱形灯笼的母线长为l ,则l =1.2-2r (0<r <0.6),S =-3π(r -0.4)2+0.48π,所以当r =0.4时,S 取得最大值约为1.51平方米;(2) 当r =0.3时,l =0.6,建立空间直角坐标系,可得13(0.3,0.3,0.6)A B =-,35(0.3,0.3,0.6)A B =--,设向量13A B 与35A B 的夹角为θ,则133513352cos 3||||A B A B A B A B θ⋅==⋅, 所以A 1B 3、A 3B 5所在异面直线所成角的大小为2arccos 3.3.(2010年高考文科20)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1) 当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米);(2) 若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).答案:(1) 设圆柱形灯笼的母线长为l ,则l =1.2-2r (0<r <0.6),S =-3π(r -0.4)2+0.48π,所以当r =0.4时,S 取得最大值约为1.51平方米; (2) 当r =0.3时,l =0.6,作三视图略.4.(2011年高考理科21)已知1111ABCD A B C D -是底面边长为1的正四棱柱,1O 为11A C 与11B D 的交点. (1)设1AB 与底面1111A B C D 所成角的大小为α,二面角111A B D A --的大小为β求证:tan 2tan βα=;(2)若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A B C D -的高 答案:解:设正四棱柱的高为h⑴ 连1AO ,1AA ⊥底面1111A B C D 于1A ,∴ 1AB 与底面1111A B C D 所成的角为11AB A ∠,即11AB A α∠= ∵ 11AB AD =,1O 为11B D 中点,∴111AO B D ⊥,又1111A O B D ⊥,A 1 A 2A 3 A 4A 5A 6A 7A 8B 1B 2B 3B 4B 5B 6 B 7B 8∴ 11AO A ∠是二面角111A B D A --的平面角,即11AO A β∠= ∴ 111tan AA h A B α==,111tan AA AO βα===. ⑵ 建立如图空间直角坐标系,有11(0,0,),(1,0,0),(0,1,0),(1,1,)A h B D C h11(1,0,),(0,1,),(1,1,0)AB h AD h AC =-=-=,设平面11AB D 的一个法向量为(,,)n x y z =,∵ 111100n AB n AB n AD n AD ⎧⎧⊥⋅=⎪⎪⇔⎨⎨⊥⋅=⎪⎪⎩⎩,取1z =得(,,1)n h h = ∴ 点C 到平面11AB D 的距离为2||43||n AC d n h ⋅===,则2h = 5.(2011年高考文科20)已知1111ABCD A B C D -是底面边长为1的正四棱柱,高12AA = (1)求异面直线BD 与1AB 所成角的大小(结果用反三角函数值表示); (2)求四面体11AB D C 的体积答案:⑴ 连1111,,,BD AB B D AD ,∵ 1111//,BD B D AB AD =,∴ 异面直线BD 与1AB 所成角为11AB D ∠,记11AB D θ∠=,∴ 异面直线BD 与1AB 所成角为.⑵ 连11,,AC CB CD ,则所求四面体的体积6.(2012年高考理科19)如图,在四棱锥P ABCD -中,底面ABCD,E 是PC 的中点,已知2AB =,AD =2PA =,求: (1)三角形PCD 的面积(2)异面直线BC 与AE 所成的角的大小.答案:(1)因为P A ⊥底面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,所以CD ⊥平面P AD , 从而CD ⊥PD . 因为PD=32)22(222=+,CD =2, 所以三角形PCD 的面积为3232221=⨯⨯. (2)[解法一]如图所示,建立空间直角坐标系,DBD 11B则B (2, 0, 0),C (2, 22,0),E (1,2, 1), )1,2,1(=AE ,)0,22,0(=BC .设AE 与的夹角为θ,则222224cos ===⨯⋅BC AE θ,θ=4π.由此可知,异面直线BC 与AE 所成的角的大小是4π [解法二]取PB 中点F ,连接EF 、AF ,则EF ∥BC ,从而∠AEF (或其补角)是异面直线BC 与AE 所成的角在AEF ∆中,由EF =2、AF =2、AE =2,知AEF ∆是等腰直角三角形,所以∠AEF =4π. 因此异面直线BC 与AE 所成的角的大小是4π7.(2012年高考文科19)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =2π,2AB =,AC =2PA =,求:(1)三棱锥P ABC -的体积(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示)答案:(1)3232221=⨯⨯=∆ABC S ,三棱锥P -ABC 的体积为3343131232=⨯⨯=⨯=∆PA S V ABC .(2)取PB 的中点E ,连接DE 、AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角. 在三角形ADE 中,DE=2,AE=2,AD=2,4322222222cos ==∠⨯⨯-+ADE ,所以∠ADE =43arccos . PA BCDE A BCDPEy因此,异面直线BC 与AD 所成的角的大小是43arccos . 8.(2013年高考理科19)如图,在长方体''''ABCD A B C D -中,2AB =,1AD =,'1AA =. 证明直线'BC 平行于平面'D AC ,并求直线'BC 到平面'D AC 的距离答案:建立空间直角坐标系,可得的有关点的坐标为(1,0,1)A 、(1,2,1)B 、(0,2,1)C 、'(0,2,0)C 、'(0,0,0)D .设平面'D AC 的法向量为(,,)n u v w =,则'n D A ⊥,'n D C ⊥. 因为'(1,0,1)D A =,'(0,2,1)D C =,'0n D A ⋅=,'0n D C ⋅=, 所以020u w v w +=⎧⎨+=⎩,解得2u v =,2w v =-.取1v =,得平面'D AC 的一个法向量(2,1,2)n =-.因为'(1,0,1)BC =--,所以'0n BC ⋅=,所以'n BC ⊥. 又'BC 不在平面'D AC 内,所以直线'BC 与平面'D AC 平行.由(1,0,0)CB =, 得点B 到平面'D AC 的距离223n CB d n⋅⨯===, 所以直线'BC 到平面'D AC的距离为239.(2013高考文科19)如图,正三棱锥O ABC -的底面边长为2,高为1,求该三棱锥的体积及表面积 答案:由已知条件可知,正三棱锥O ABC -的底面△ABC 是边长为2的正三角形,经计算得底面△ABC.所以三棱锥的体积为1133=. 设'O 是正三角形ABC 的中心.由正三棱锥的性质可知,'OO 垂直于平面ABC . 延长'AO 交BC于D ,得AD ='3O D =. 又因为'1OO =,所以正三棱锥的斜高OD =故侧面积为162⨯= 因此,所求三棱锥的体积为3,表面积为。

相关文档
最新文档