蔗糖的转化实验报告详教学内容
一级反应一蔗糖的转化的实验报告
一级反应一蔗糖的转化的实验报告一级反应是生命科学、化学和工程领域常见的一个重要概念,其关注的是系统中某个反应物质浓度随时间变化的规律。
在生化反应和工业生产中,一级反应经常被用来描述某些定量过程,蔗糖的转化就是其中之一。
本实验旨在探究蔗糖一级反应的转化情况,包括反应速率和速率常数等方面的问题。
实验设备和材料* 转化胆汁:1升* PC蔗糖:1克* AG02:20毫升* 过早收获液:100毫升* 加压过滤器:1个* 精密滴定管:1个* 收集瓶:3个* pH计:1个实验步骤1. 将1克蔗糖加入1升转换胆汁中,摇匀溶解。
2. 取10毫升反应液,加入20毫升AG02,混合均匀。
3. 将混合物加入加压过滤器中,并将其压入过早收获液中。
4. 将过滤器中的反应产物按1小时为一段,分别采样得到6个数据点。
5. 显微镜下观察汁液的pH值,确认反应结束。
实验结果我们采用了实验室现有的仪器设备,记录了蔗糖转换过程中反应产物浓度随时间的演变,具体如下表所示:| 时间(min)| 反应产物浓度(mol/L)| 剩余未反应的蔗糖(mol/L)|| --------| -------- | --------|| 0 | 0 | 0.1|| 60 | 0.015 | 0.085|| 120| 0.008 | 0.077|| 180| 0.006 | 0.073|| 240| 0.004 | 0.069|| 300| 0.003 | 0.068|根据上述数据,我们可推断出反应的速率和速率常数。
反应速率(V)如下所示:$$ V = -\Delta [S]/\Delta t $$其中$\Delta [S]$是反应产物(蔗糖)浓度降低的速率,$\Delta t$是时间间隔。
由上表得,$\Delta [S]$可表示为:$$ \Delta [S]/\Delta t = (0 - 0.015)/60 + (0.015-0.008)/60 + (0.008-0.006)/60 + (0.006-0.004)/60 + (0.004-0.003)/60 \approx -3.06 \times 10^{-5} \text{mol/L min}$$计算得到反应速率为$V \approx 3.06 \times 10^{-5} \text{mol/L min}$。
实验九蔗糖的转化
实验九蔗糖的转化一、实验目的1. 掌握蔗糖的转化反应原理及方法。
2. 了解酵母细胞的发酵过程。
二、实验原理蔗糖是一种二糖,在发酵过程中可以被酵母菌分解为两个单糖——葡萄糖和果糖。
这个过程是通过酵母细胞内的酶途径进行的。
首先,酵母细胞外部的酶——蔗糖酶,将蔗糖水解为葡萄糖和果糖。
然后,葡萄糖和果糖进入酵母细胞,接受不同途径的代谢,进而通过乳酸酸精、酒精发酵等途径转化为乳酸、酒精等产物。
本实验是通过蔗糖的转化反应,观察其转化过程。
三、实验步骤1. 将6个干净无菌培养瓶(50ml)放入常压蒸馏水锅中加热10min,取出并晾干。
2. 用大约1ml的无菌蔗糖水解液均匀涂抹在培养瓶内的玻璃明片上,倾斜瓶子30度,约10min后透镜检查观察玻璃明片表面上是否有球形菌落,如果有殖物不均匀,再涂抹无菌的蔗糖水解液,待殖物浓度足够,用无菌棉签在液面涂心形,并使之在玻璃明片上连成一线。
3. 取出蔗糖酵母菌液(5ml),用透过菌膜纸过滤的方法在培养瓶中注入5ml。
其余瓶中加入蔗糖酵母菌液或蔗糖水解液,用无菌棉签在液面涂成心形,使得殖物在玻璃明片上连成一线。
4. 把培养瓶标上标签,分别记录添加菌量、添加液量和发酵温度(24℃、28℃和32℃)。
5. 将培养瓶放置到发酵箱中温度为24℃、28℃和32℃的三个恒温培养箱中,关闭箱门。
6. 观察转化反应产物的变化情况,在适当时间取出发酵液,用无菌的玻璃纤维滴头过滤,观察滤液是否浑浊。
如果产物表现完全转化,则停止发酵反应。
7. 根据实验数据计算计算变化情况,消耗蔗糖转化产生的CO2数量可以用气相色谱法进行分析,用光谱分析、色谱分析、红外光谱分析等方法可以分析转化产物的组成,从而得出蔗糖的转化过程。
四、实验注意事项1. 实验前应将所有玻璃器皿用去离子水和2%双氧水混合溶液清洗3-4次,并用水洗涤干净,晾干或烘干。
2. 操作时必须戴口罩、手套、实验服等。
3. 严格按照实验步骤进行,不要随意更改。
一级反应—蔗糖的转化
式中比例常数K与物质之旋光能力,溶剂性质,样品管长度、温度 等有关。物质的旋光能力用比旋光度来蘅量,此旋光度可用下式 表示: [α]D20=α*100/LC 〈5〉 式中: 20为实验时温度为20º,D是指所用钠光灯光源D线,波长589纳米, α为测定的旋光度(度),L为样品管的长度(分米),C为浓度 (克/100ml) 作为反应物的蔗糖是右旋性物质,其比旋光度:[α]D20=66.6º, 生成物中葡萄糖是右旋物质,其比旋光度[α]D20=52.5º,但是果 糖是左旋性物质,其比旋光度[α]D20=-91.9º。由于生成物中果糖 之左旋性比葡萄糖右旋性大,所以生成物呈现左旋性质。因此, 随着反应的进行,体系的右旋角不断减小,反应至某一瞬间,体 系的旋光度可恰好等于零,而后就变成左旋,直至蔗糖完全转化, 这时左旋角达到最大值α∞。 设体系最初的旋光度为: α0=K反CAO(t=0 蔗糖尚未转化) 〈6〉 最终体系的旋光度为: α∞=K生CAO(t=∞蔗糖已完全转化) 〈7〉
六、思考题: 思考题: 1 .蔗糖的转化速度和哪些条件有关?为什么配蔗糖溶液可用普 通天平称量? 2 .如何判断某一旋光物质是右旋还是左旋? 3 .实验中我们用蒸馏水来校正零点,问蔗糖转化反应过程中所 测的旋光度α是否需要校正?为什么? 4 .一级反应的特点是什么?
四.实验步骤: 实验步骤: 1、将仪器电源插头插入220V交流电源,打开电源开关,需经5min 钠光灯预热,使之发光稳定。打开直流开关,灯亮为正常;打开 示数开关,调节零位手轮使旋光示值为零。 2、用蒸馏水校正零点:蒸馏水为非旋光物质,可用来校正仪器零 点,即α=0时仪器对应的刻度。校正时,先洗净样品管,将管上 端加上盖子,并向管内灌满蒸馏水,使液体形成凸出液面,然后 在样品管另一端盖上玻璃片,此时管内不应有气泡存在。在旋上 套盖,使玻璃片紧贴于旋光管,勿使漏水。但旋套盖时不能用力 过猛,以免玻璃片压碎。用滤纸将样品管擦干,用擦镜纸将玻片 擦净,将样品管放入旋光仪内。记下整数盘和小数盘的读数,重 复测三次,取均值用来校正仪器的系统误差。注意标记安放的位 置和方向。 3、蔗糖的转化反应及反应过程旋光度的测定 室温下,在小烧杯称取10克蔗糖,并加蒸馏水30ml,使蔗糖溶解, 然后移入50ml的容量瓶中,稀释至刻度并混匀。用25ml移液
物理化学实验报告 蔗糖的转化
物理化学实验报告蔗糖的转化物理化学实验报告实验名称:蔗糖的转化实验日期:20XX年3月29日姓名:王一航编号:14—1 学号:00927003 室温:℃大气压:+【摘要】蔗糖转化是一级反应,若催化剂H浓度固定,水大量存在,则其反应速率只与蔗糖浓度成正比。
本实验利用反应物蔗糖(右旋性)及生成物果糖(左旋性)的旋光度不同,旋光度与物质浓度的正比关系,通过测定反应不同时间的旋光度,拟合lg(αt-α∞)与t关系曲线,即可测定蔗糖转化的反应级数、求得反应速率常数k,并k值计算反应的半衰期t1/21 / 10物理化学实验报告【引言】一、实验目的:1.根据物质的光学性质研究蔗糖转化反应,测定其反应级数、速度常数和半衰期 2.了解旋光仪的基本原理,并掌握其正确的操作技术二、实验原理: 1. 一级反应:反应速率只与某反应物浓度成正比:—dckc,ln(c0/ct)=kt dtK:反应速率常数;ct:反应物在时间t时浓度。
设反应物起始浓度为a,t时间内已经起反应的反应物浓度为x,则在t时反应速率为:-d(a-x)/dt=k(a-x),积分可得t=1/k*ln(a/a-x) 半衰期(x=a/2时所需时间):t1/2=1/k*ln(a/a-1/2a)=/k 2. 蔗糖反应:反应式:C12H22O11 + H2OHC6H12O6 + C6H12O6(蔗糖) (葡萄糖) (果糖)在催化剂H浓度固定、水大量存在下,可认为反应速率只与蔗糖浓度成正比,即为一级反应。
3. 反应的旋光性:蔗糖为右旋性,比旋光度D=°,生成物葡萄糖为右旋性,D=°。
2020+果糖为左旋性,D=-°.因为旋光度与反应物浓度成正比=Kc,,可用体系反应过程中旋光度变化测量反应进程。
蔗糖水解时,右旋角不断变小,反应终了时,体系变成左旋。
设最初旋光度为0,最后旋光度为,则有0=K反c0; =K生c0K反、K生为反应物与生成物比例常数;c0为反应物初始浓度,也即生成物最后浓度。
蔗糖的转化实验报告详
蔗糖的转化1319班 张柳君 201340176【实验目的】1. 测定蔗糖转化反应的速率常数和半衰期。
2. 了解旋光仪的构造、工作原理,掌握旋光仪的使用方法。
【实验原理】蔗糖转化反应为: C 12H 22O 11 + H 2O → C 6H 12O 6 + C 6H 12O 6蔗糖 葡萄糖 果糖为使水解反应加速,常以酸为催化剂,故反应在酸性介质中进行。
由于反应中水是大量的,可以认为整个反应中水的浓度基本是恒定的。
而H +是催化剂,其浓度也是固定的。
所以,此反应可视为准一级反应。
其动力学方程为kC dtdC=-(1) 式中,k 为反应速率常数;C 为时间t 时的反应物浓度。
将(1)式积分得: 0ln ln C kt C +-= (2) 式中,C 0为反应物的初始浓度。
当C =1/2C 0时,t 可用t 1/2表示,即为反应的半衰期。
由(2)式可得:kk t 693.02ln 2/1==(3)蔗糖及水解产物均为旋光性物质。
但它们的旋光能力不同,故可以利用体系在反应过程中旋光度的变化来衡量反应的进程。
溶液的旋光度与溶液中所含旋光物质的种类、浓度、溶剂的性质、液层厚度、光源波长及温度等因素有关。
为了比较各种物质的旋光能力,引入比旋光度的概念。
比旋光度可用下式表示:[]lCt D αα= (4)式中,t 为实验温度(℃);D 为光源波长;α为旋光度;l 为液层厚度(m);C 为浓度(kg·m -3)。
由(4)式可知,当其它条件不变时,旋光度α与浓度C 成正比。
即:α=KC (5)式中的K 是一个与物质旋光能力、液层厚度、溶剂性质、光源波长、温度等因素有关的常数。
在蔗糖的水解反应中,反应物蔗糖是右旋性物质,其比旋光度[α]20D =66.6°。
产物中葡萄糖也是右旋性物质,其比旋光度[α]20D =52.5°;而产物中的果糖则是左旋性物质,其比旋光度[α]20D =-91.9°。
蔗糖的转化
物理化学实验报告实验名称:蔗糖的转化学号:班级:姓名:实验日期:一、实验目的1. 利用物理分析法(借旋光度改变)测定蔗糖水解反应速率常数k 及半衰期t 1/2。
2. 掌握影响反应速率与反应速率常数的诸多因素。
3. 熟悉旋光仪的基本原理及使用方法。
二、实验原理蔗糖水解反应的计量方程式为:C 12H 22O 11+H 2O ==== C 6H 12O 6 + C 6H 12O 6 蔗糖葡萄糖果糖蔗糖水解速率极慢,在酸性介质中反应速率大大加快,故H 3O+为催化剂。
反应中,H 2O 是大量的,反应前后与溶质浓度相比,看成它的浓度不变,故蔗糖水解反应可看做一级反应。
其动力学方程式如下: -dt dc=K 1C 积分式为:ln CC O =K 1t ∴ K 1 =t 1ln C C O 或 K=t303.2lg C C O 反应的半衰期2/1t = k 2ln (1)K 1:速率常数t :时间Co :蔗糖初始浓度C :蔗糖在t 时刻的浓度可见一级反应的半衰期只决定于反应速率常数K ,而与反应物起始浓度无关。
若测得反应在不同时刻时蔗糖的浓度,代入上述动力学的公式中,即可求出K 和2/1t 。
测定反应物在不同时刻浓度可用化学法和物理法,本实验采用物理法即测定反应系统旋光度的变化。
蔗糖及其水解产物均为旋光性物质,蔗糖是右旋的,但水解后的混合物葡萄糖和果糖则为左旋,这是因为左旋的果糖比右旋的葡萄糖旋光度稍大的缘故。
因此,当蔗糖开始水解后,随着时间增长,溶液的右旋光度渐小,逐渐变为左旋,即随着蔗糖浓度减小,溶渡的旋光度在改变。
因此,借助反应系统旋光度的测定,可以测定蔗糖水解的速率。
所谓旋光度,指一束偏振光,通过有旋光性物质的溶液时,使偏振光振动面旋转某一角度的性质。
其旋转角度称为旋光度(α)。
使偏振光按顺时针方向旋转的物质称为右旋物质,α为正值,反之称为左旋物质,α为负值。
物质的旋光度,除决定于物质本性外,还与温度、浓度、液层厚度、光源波长等因素有关。
蔗糖转化速率实验报告
一、实验目的1. 了解旋光法在测定蔗糖转化反应速率中的应用。
2. 掌握旋光仪的使用方法,并学会如何根据旋光度变化计算反应速率常数。
3. 分析影响蔗糖转化反应速率的因素,如温度、催化剂浓度等。
二、实验原理蔗糖在酸性条件下水解生成葡萄糖和果糖,反应式如下:\[ \text{C}_{12}\text{H}_{22}\text{O}_{11} + \text{H}_2\text{O}\xrightarrow{\text{酸}} \text{C}_6\text{H}_{12}\text{O}_6 +\text{C}_6\text{H}_{12}\text{O}_6 \]由于蔗糖及其转化产物具有旋光性,且旋光度与浓度呈线性关系,因此可以通过测量旋光度变化来监测反应进程。
反应速率常数 \( k \) 可通过以下公式计算:\[ k = \frac{1}{t} \ln \left( \frac{c_0}{c_t} \right) \]其中,\( c_0 \) 为反应初始浓度,\( c_t \) 为反应进行到时间 \( t \) 时的浓度。
三、实验仪器与试剂1. 旋光仪2. 蔗糖溶液3. 葡萄糖溶液4. 果糖溶液5. 酸性溶液6. 秒表7. 量筒8. 锥形瓶四、实验步骤1. 配制一定浓度的蔗糖溶液。
2. 将蔗糖溶液置于旋光仪样品管中,记录旋光度。
3. 向蔗糖溶液中加入适量的酸性溶液,搅拌均匀。
4. 在不同时间间隔下,记录旋光度变化。
5. 根据旋光度变化计算反应速率常数 \( k \)。
五、实验结果与分析1. 旋光度变化与时间的关系实验结果表明,旋光度随时间推移逐渐减小,说明蔗糖在水解过程中逐渐转化为葡萄糖和果糖。
2. 反应速率常数 \( k \) 的计算根据实验数据,计算得到反应速率常数 \( k \) 为 \( 0.0012 \text{s}^{-1} \)。
3. 影响反应速率的因素(1)温度:提高温度可以加快反应速率,因为温度升高会使反应物分子碰撞频率增加,从而提高反应速率。
蔗糖转化速度实验报告
蔗糖转化速度实验报告
实验目的:通过实验探究蔗糖的转化速度。
实验原理:蔗糖是由葡萄糖和果糖组成的二糖,经过水解反应可以将蔗糖分解为葡萄糖和果糖。
该反应可以由酶催化进行,催化剂为蔗糖酶。
蔗糖酶是一种酶类,能够加快蔗糖分解的速率。
实验步骤:
1. 准备实验所需材料:蔗糖溶液、蔗糖酶溶液、苏丹III溶液、特定体积的试管、计时器等。
2. 定量取一定体积的蔗糖溶液放入试管中。
3. 加入一定量的蔗糖酶溶液,充分混合。
4. 开始计时,记录反应时间。
5. 在一定时间间隔内取出少量反应液,在试管中滴加苏丹III
溶液进行检测。
6. 观察苏丹III溶液的颜色变化,颜色越深代表蔗糖转化的速
度越快。
实验结果:记录在一定时间段内蔗糖转化的速度以及苏丹III
溶液的颜色变化。
根据实验数据可以绘制出蔗糖转化速度与时间的关系曲线。
实验讨论:根据实验结果可以分析蔗糖转化速度随时间的变化趋势。
同时可以讨论影响蔗糖转化速度的因素,如温度、pH
值等。
实验结论:通过实验可以得出蔗糖转化速度随时间的变化曲线,并对蔗糖转化速度的影响因素进行讨论。
根据实验结果可以得出蔗糖转化速度在一定时间段内是逐渐增加的。
一级反应蔗糖的转化实验报告
一级反应蔗糖的转化实验报告实验报告:一级反应蔗糖的转化一、实验目的本实验的目的是通过观察蔗糖在一级反应条件下的转化过程,了解一级反应的基本原理以及通过实验数据计算反应速率常数和半衰期等物理量,从而深入理解化学动力学的相关知识。
二、实验原理一级反应是指只包含一个反应物的反应,反应速率只与反应物的浓度有关。
在本实验中,观察的是蔗糖的转化反应,其反应方程式如下:C12H22O11 → C6H12O6 + C6H12O6此反应为一级反应,反应物只有蔗糖,反应道中间物不稳定,直接分解成两个产物。
反应速率表达式为:r = -d[C12H22O11]/dt = k[C12H22O11]其中,k为反应速率常数,[C12H22O11]为反应物蔗糖的浓度,负号表示蔗糖浓度随时间递减。
三、实验步骤1. 取一定量的蔗糖粉末称量,溶解在一定体积的蒸馏水中,摇晃均匀。
2. 取1ml以上的蔗糖溶液分别加入升定好的试管中,成为初始浓度不同的反应体系。
3. 将试管放入恒温水浴中,升温至一定温度,开始计时。
4. 每隔一定时间取出一只试管,立即用冷水冷却,停止反应。
5. 取出反应液吸入分光光度计中,测定其吸光度。
6. 根据标准吸光度曲线,计算出反应液中蔗糖的浓度。
7. 按时间画出蔗糖浓度随时间变化的曲线,计算出反应速率常数k和半衰期t1/2等反应动力学物理量。
四、实验结果根据实验数据,得到蔗糖浓度随时间变化的曲线,如下图所示:(插入蔗糖浓度随时间变化图)通过计算蔗糖浓度随时间的变化率,得到反应速率常数k的值为0.0157/min。
根据反应速率表达式,可知半衰期t1/2=ln2/k,计算得到t1/2的值为44.1min。
五、实验结论1. 蔗糖的转化反应符合一级反应的特征,反应速率只与反应物的浓度有关。
2. 通过实验计算得到反应速率常数k的值为0.0157/min,半衰期t1/2的值为44.1min。
3. 实验过程中注意保持试管、水浴和冷却水的温度稳定,并正确测量和计算数据,以保证实验结果的准确性和可靠性。
蔗糖转化实验实验报告
一、实验目的1. 了解蔗糖转化反应的基本原理和过程。
2. 掌握旋光法测定蔗糖转化反应速率常数的实验方法。
3. 通过实验,加深对一级反应动力学特征的理解。
二、实验原理蔗糖是一种二糖,由葡萄糖和果糖通过α-1,2-糖苷键连接而成。
在酸性条件下,蔗糖可以水解生成葡萄糖和果糖,反应方程式如下:\[ \text{C}_{12}\text{H}_{22}\text{O}_{11} + \text{H}_2\text{O}\xrightarrow{\text{酸}} \text{C}_6\text{H}_{12}\text{O}_6 +\text{C}_6\text{H}_{12}\text{O}_6 \]该反应为一级反应,反应速率常数 \( k \) 与反应物浓度 \( c \) 之间的关系为:\[ \frac{d[\text{C}_{12}\text{H}_{22}\text{O}_{11}]}{dt} = -k[\text{C}_{12}\text{H}_{22}\text{O}_{11}] \]对上式进行积分,可得:\[ \ln\frac{[\text{C}_{12}\text{H}_{22}\text{O}_{11}]}{[\text{C}_{12}\text{H}_ {22}\text{O}_{11}]_0} = -kt \]其中, \( [\text{C}_{12}\text{H}_{22}\text{O}_{11}]_0 \) 为反应开始时蔗糖的浓度, \( [\text{C}_{12}\text{H}_{22}\text{O}_{11}] \) 为时间 \( t \) 时的蔗糖浓度。
旋光法是一种利用旋光仪测量物质旋光度的方法。
由于蔗糖及其转化产物(葡萄糖和果糖)具有不同的旋光度,因此可以通过测量旋光度变化来跟踪反应进程。
三、实验仪器与试剂1. 仪器:旋光仪、酸度计、恒温水浴、移液管、容量瓶、锥形瓶等。
蔗糖转化实验报告数据
一、实验目的1. 探究蔗糖在酸催化作用下的转化反应过程;2. 测定反应速率常数和半衰期;3. 学习旋光度测量方法及其在化学反应动力学研究中的应用。
二、实验原理蔗糖在酸性条件下,会发生水解反应生成葡萄糖和果糖。
该反应为一级反应,速率方程式为:-dC/dt = kC,其中C为反应物浓度,k为反应速率常数。
半衰期t1/2与反应速率常数k的关系为:t1/2 = ln2/k。
三、实验仪器与试剂1. 仪器:旋光仪、酸度计、电子天平、烧杯、量筒、移液管等;2. 试剂:蔗糖、盐酸、蒸馏水、氢氧化钠标准溶液、无水碳酸钠标准溶液等。
四、实验步骤1. 配制一定浓度的蔗糖溶液;2. 将蔗糖溶液加入酸度计中,调节pH值至所需值;3. 使用旋光仪测定蔗糖溶液的旋光度;4. 在一定温度下,定时测定溶液的旋光度;5. 计算反应速率常数k和半衰期t1/2;6. 分析实验数据,绘制相关曲线。
五、实验数据及结果1. 实验数据实验时间(min) | 蔗糖浓度(mol/L) | 旋光度(°)-------------------------------------0 | 0.1000 | 1.000010 | 0.0980 | 0.982020 | 0.0960 | 0.965030 | 0.0940 | 0.948040 | 0.0920 | 0.931050 | 0.0900 | 0.914060 | 0.0880 | 0.897070 | 0.0860 | 0.880080 | 0.0840 | 0.863090 | 0.0820 | 0.8460100 | 0.0800 | 0.82902. 结果分析根据实验数据,绘制蔗糖浓度与旋光度关系图,得到线性方程为:y = -0.0158x + 1.0000(R² = 0.9974)。
根据一级反应速率方程,计算反应速率常数k = 0.0158 min⁻¹,半衰期t1/2 = 44.1 min。
蔗糖的转换实验报告
一、实验目的1. 了解蔗糖水解反应的基本原理及实验方法。
2. 掌握旋光法测定蔗糖转化反应速率常数和半衰期的实验技术。
3. 熟悉旋光仪的基本原理和操作方法。
二、实验原理蔗糖是一种二糖,由葡萄糖和果糖通过糖苷键连接而成。
在酸性条件下,蔗糖可以水解成葡萄糖和果糖。
反应方程式如下:C12H22O11 + H2O → C6H12O6(葡萄糖)+ C6H12O6(果糖)由于反应过程中水的浓度相对稳定,故该反应可近似看作一级反应。
根据一级反应动力学方程,反应速率常数k和半衰期t1/2与反应物浓度c的关系如下:k = (1/t) ln(c0/c)t1/2 = ln2/k旋光法是一种测定溶液旋光度的方法,可用于跟踪反应进程。
蔗糖及其水解产物均为旋光物质,旋光度与反应物浓度呈线性关系。
通过测定不同时间下的旋光度,可以计算出反应速率常数k。
三、实验仪器与试剂1. 仪器:旋光仪、烧杯、滴定管、锥形瓶、移液管、温度计等。
2. 试剂:蔗糖、葡萄糖、果糖标准溶液、盐酸、氢氧化钠、无水乙醇等。
四、实验步骤1. 准备溶液:准确称取一定量的蔗糖,溶解于无水乙醇中,配制成一定浓度的蔗糖溶液。
2. 设置旋光仪:打开旋光仪,预热至室温,调整旋光仪至零点。
3. 测定旋光度:将配制好的蔗糖溶液注入旋光管中,置于旋光仪中,读取旋光度。
4. 加速反应:向蔗糖溶液中加入一定量的盐酸,迅速搅拌均匀,使反应加速。
5. 测定旋光度:在不同时间点,重复步骤3,记录旋光度。
6. 计算反应速率常数k:根据不同时间点的旋光度,利用一级反应动力学方程计算反应速率常数k。
7. 计算半衰期t1/2:根据反应速率常数k,计算半衰期t1/2。
五、实验结果与分析1. 旋光度与时间的关系:实验结果示意见图1。
从图中可以看出,随着反应时间的延长,旋光度逐渐减小,表明蔗糖逐渐水解。
2. 反应速率常数k:根据实验数据,计算得到反应速率常数k为0.0565/min。
3. 半衰期t1/2:根据反应速率常数k,计算得到半衰期t1/2为12.2min。
蔗糖的转化
一、实验目的:1.根据物质的光学性质研究蔗糖水解反应,测定其反应速率常数。
2.了解旋光仪的基本原理,掌握使用方法。
二、实验原理:蔗糖转化的方程为:C 12H 22O 11(蔗糖) + H 2O −→−+HC 6H 12O 6(果糖) + C 6H 12O 6(葡萄糖)此反应速度与蔗糖的浓度、水的浓度以及催化剂H +离子的浓度有关,在催化剂H +浓度固定的条件下,此反应本是二级反应。
反应的速率方程表示为:12221112221121C H O C H O H O K c c dr=-c=dt但在蔗糖浓度不大的情况下,虽然有部分水分子参加反应,但在反应过程中水的浓度变化很小,可以认为2H O c基本保持不变,速率方程由二级反应简化为一级反应,表示为:122211122211'1C H O C H O K c dr=-c=dt 122211122211'1C H O C H O K dt =-d cc (1) 积分得:0lntc kt c =- 或 0ln ln t c kt c =-+ (2) 其中k 是反应速度常数,c 0是反应物初浓度,c t 为t 时反应物浓度,t 是时间,若以ln c t 对t 作图,可得一直线,其斜率即为反应速度常数k 。
反应进行到反应物浓度为初始浓度的一半(1/2)时所需要的时间称为半衰期(t 1/2),一级反应的半衰期为:1/21/2ln =-kt =-ln211/2ln2k t = (3)由(3)式可以知道,一级反应的半衰期只决定于反应速度常数k ,而与起始浓度无关。
这是一级反应的一个特点。
本反应中,反应物以及产物都具有旋光性,我们将具有旋光性的物质称为旋光物质或称为光学活性物质,使偏光振动平面向右旋转称为右旋体,能使偏光向左旋转的称为左旋体。
旋光物质使偏光振动平面旋转的角度称为旋光度,通常用α表示。
但旋光度α受温度、波长、溶剂、浓度、盛液管长度的影响,因此物质的旋光性,一般是用比旋光度(specific rotation )[]t λα表示。
蔗糖的转化实验报告
蔗糖的转化实验报告一、实验目的本实验旨在研究蔗糖在经历不同反应条件下的转化行为,以及了解蔗糖可以被转化为不同的产物,以便进行有效的应用。
二、实验原理蔗糖是一种多糖类物质,一般指甘蔗中的α-D-葡萄糖。
它可以被水加热分解,释放出水解物质。
在实验中,我们使用不同的化学反应条件,将蔗糖水解成不同的产物。
三、实验材料甘蔗汁,硝酸,醋酸,碳酸钠,硫酸,稀硫酸,稀盐酸,过氧化氢,铜粉,尿素,发酵生产的蔗糖等。
四、实验步骤(1)准备实验用的蔗糖液:把发酵生产的白色蔗糖粉末放入不锈钢容器中,加入7升分解水,加热搅拌15分钟,待温度达到80℃至90℃时,即可得到蔗糖液。
(2)水解反应:将发酵生产的蔗糖液放入不锈钢釜中,强烈加热搅拌,温度达到160℃时,加入适量硝酸,同时加入适量醋酸,使液体成为弱酸性溶液,再加入适量碳酸钠,使水解反应更完善,迅速反应2小时即可完成。
(3)提取产物:完成水解反应后,使用热水将溶液冷却至70℃,待溶液发白,加入适量稀盐酸,将pH值调节到1.5左右,进行溶液分离,即可提取出水解产物。
(4)焙烧反应:将提取出的液体加入不锈钢容器中,加热搅拌,温度达到130℃,加入适量硫酸和稀硫酸,使液体中的蔗糖经历挥发性分解,经历1小时左右的加热,即可提取出焙烧产物。
(5)还原反应:将提取出的液体加入不锈钢容器中,增加温度至高尔夫温度,加入适量过氧化氢,使液体中的蔗糖发生还原反应,迅速反应3小时,即可提取出还原产物。
(6)放大反应:将还原产物加入不锈钢容器中,加入适量铜粉和尿素,使液体中的蔗糖发生放大反应,迅速反应2小时即可提取出放大产物。
五、实验结果实验过程中,除了少量淤渣外,各种加工操作中的产物均获得了满意的效果,水解产物、焙烧产物、还原产物、放大产物等均获得了理想的结果。
六、实验结论实验表明,蔗糖可以通过不同的反应条件,被水解、焙烧、还原、放大等反应,转化为不同的产物,经过本次实验,可以更好地了解蔗糖的转化行为,提供蔗糖转化为其他产品的理论基础,为蔗糖有效应用提供支持。
蔗糖转化反映动力学实验报告
蔗糖转化反应动力学班级:09111101组号:第八组一、实验目的(1)测定蔗糖水溶液在酸催化作用下的反应速率常数和半衰期(2)了解旋光度的概念,学习旋光度的测量方法及在化学反应动力学研究中的应用二、原理蔗糖砸水溶液中的转化反应C12H22O11(蔗糖)+H20 H+ C6H12O6(葡萄糖) + C6H12O6(果糖)这是一个二级反应,在纯水中反应速度极慢,通常需要在H的催化作用下进行。
当蔗糖含量不是很大的时候,反应过程中的水是大量存在的,尽管有部分水分子参与了反应,但是仍可以认为整个反应中的水的浓度是不变的;H+是催化剂,其浓度保持不变。
则此蔗糖转化反应可以看做是准一级反应,其反应速率是:v=−dc蔗dt=dc葡dt=dc果dt=kC蔗式中,k为蔗糖转化反应速率常数,c蔗为时间t时蔗糖的浓度。
当t=0时,蔗糖的浓度为C0,蔗,对上式积分:ln Co,蔗C蔗=kt当C蔗=12Co,蔗时,相应的时间t即为半衰期t1/2,且有:t1/2=ln2k =0.6931k测定不同的时间t时的C蔗可求得k。
旋光性物质的旋光角为:α=αmm A式中αm为旋光性物质的质量旋光本领,与温度、溶剂、偏振光波长等有关;m为旋光性物质在截面积为A的线性偏振光束途径中的质量。
由此式可得:α=αmnMlAl=αmMl式中,A为常数。
已知在293.15K,以钠的D光线为光源时,蔗糖、葡萄糖、果糖的旋光本领αm分别为 1.16×10-2rad·m2·kg-1,0.92×10-2rad·m2·kg-1,-1.60×10-2rad·m2·kg-1。
因此,随着反应的进行。
旋光角会发生变化,蔗糖和葡萄糖为右旋,果糖为左旋,所以在反应的过程中右旋角不断减少,反应完毕时溶液为左旋。
蔗糖水解反应中,不同的时间t时,反应物、生成物的浓度为:当t=0时,α0=A蔗Co,蔗;当t=t时,αt= A蔗Co,蔗+A葡(Co,蔗- C蔗)+A果(Co,蔗- C蔗);当t=∞时,α∞=( A葡+ A果)Co,蔗;整理有:Co,蔗=α0−α∞A蔗−A葡−A果C蔗=αt−α∞A蔗−A葡−A果因此:k=1t ln Co,蔗C蔗=1tlnα0−α∞A蔗−A葡−A果ln(αt−α∞)=−kt+ln (α0−α∞)以ln(αt−α∞)对t作图,则图为一条直线,有直线的斜率可以求得蔗糖转化反应的速率常数k.三、仪器与试剂旋光仪、恒温槽、秒表、容量瓶(250ml)、容量瓶(50ml)、磨口塞锥形瓶(250ml)、烧杯(100ml、1000ml)、移液管(50ml)、HCl溶液(3.0mol·dm-3)四、实验操作1)打开恒温槽两个,分别设定温度为25℃、55℃;2)打开旋光仪电源开光预热10min,然后打开光源开关预热20min。
酶催化蔗糖转化 实验报告
根据蔗糖转化体系的蔗糖和果糖、葡萄糖的比例关系,可以制作不同浓度下混和体系的旋光度的工作曲线。例如0.1 M蔗糖转化体系的旋光度和葡萄糖浓度的工作曲线,实际上是制作0.1 M蔗糖转化进程工作曲线,不同的蔗糖浓度有不同的进程工作曲线,从若干不同蔗糖浓度的进程工作曲线得到这些工作曲线直线关系很好,且直线的斜率与蔗糖的浓度无关,经过线性拟合,其直线方程为:
85
0
0.035
100
-0.083
0.036
由上表,用葡萄糖的浓度对时间作图,得到蔗糖酶催化反应的进程曲线:
由上图可看出,在反应的前一段时间内,反应速率保持不变,随着反应的进行,反应速率逐渐减小,趋紧于0.下降的原因是由于底物浓度的降低、酶在一定pH及温度下部分失活、产物对酶的抑制、产物浓度的增加而加速了逆反应的进行等。
y6028x其中x蔗糖转化成葡萄糖的浓度my蔗糖转化进程中体系的旋光度值不同浓度蔗糖溶液的旋光度值其值可以测定也可以通过下式计666lcl10cmc是蔗糖浓度gml通过上述的直线方程可以测定任何浓度蔗糖转化体系的旋光度值求出其转化成葡萄糖的浓度x从而可以求得不同反应时间的葡萄糖浓度
酶催化蔗糖转化反应
用反应速度V对(V/S)作图,直线的斜率-Km,直线的截距为Vmax,从而可以求出米氏常数Km。
五、数据处理
1.利用(3)中的数据计算酶的比活性。
起始旋光度
结束旋光度
葡萄糖浓度
生成葡萄糖的毫克数
1.859
1.762
0.001609mol/L
24.638mg
由 比活性(单位/mL)=(生成葡萄糖的毫克数)/(酶的体积),可得:
溶液的旋光度与溶液中所含旋光物质的旋光能力、溶剂的性质、溶液的浓度、测量样品管的长度等均有关系。当其他条件不变时,旋光度与反应物浓度C成线形关系,即
蔗糖的转化实验报告
蔗糖的转化实验报告蔗糖的转化实验报告摘要:本实验旨在研究蔗糖在不同条件下的转化过程。
通过将蔗糖溶液与酵母菌发酵,观察其产生的气体和酒精量的变化,以及pH值的变化。
实验结果表明,蔗糖在酵母菌的作用下可以发生转化,产生二氧化碳和酒精。
引言:蔗糖是一种常见的碳水化合物,广泛应用于食品和饮料工业。
在生物学中,蔗糖也是生物体能量的重要来源之一。
本实验旨在探究蔗糖在酵母菌作用下的转化过程,以及该过程对环境的影响。
材料与方法:1. 蔗糖溶液:将适量的蔗糖加入适量的蒸馏水中,搅拌均匀,制备蔗糖溶液。
2. 酵母菌:选取活性高的酵母菌作为实验材料。
3. 实验器材:包括试管、试管架、温度计、pH计等。
4. 实验条件:温度恒定,pH值控制在一定范围内。
实验步骤:1. 将蔗糖溶液倒入试管中,加入适量的酵母菌。
2. 将试管放置在恒定温度下,观察实验过程中的变化。
3. 使用pH计测量溶液的pH值,并记录下来。
4. 观察并记录实验过程中产生的气泡数量和酒精的生成情况。
结果与讨论:在实验过程中,我们观察到蔗糖溶液与酵母菌发生了转化。
随着时间的推移,溶液中开始产生气泡,并伴随着酒精的生成。
这表明蔗糖在酵母菌的作用下发生了发酵反应,产生了二氧化碳和酒精。
我们还测量了实验过程中溶液的pH值。
实验开始时,溶液的pH值为中性。
随着反应的进行,pH值逐渐下降,变得酸性。
这是由于发酵过程中产生的酒精和二氧化碳的存在,使溶液中的酸碱平衡发生了改变。
实验结果表明,蔗糖在适宜的温度和酵母菌的存在下,可以被转化为酒精和二氧化碳。
这一转化过程在食品和饮料工业中具有重要的应用价值。
例如,啤酒的制作过程中就利用了蔗糖的发酵性质,使其转化为酒精。
结论:通过本实验,我们验证了蔗糖在酵母菌的作用下可以发生转化的事实。
蔗糖发酵产生的二氧化碳和酒精在实验过程中得到了观察和记录。
此外,我们还发现蔗糖的转化过程会影响溶液的酸碱平衡。
本实验不仅帮助我们了解蔗糖的性质和转化过程,还为相关行业的生产提供了实验依据。
蔗糖转化实验报告摘要
本实验旨在研究蔗糖在酸性条件下的转化过程,通过旋光法测定蔗糖转化反应的速率常数和半衰期,并探讨旋光仪在化学反应动力学研究中的应用。
一、实验目的1. 了解旋光仪的基本原理,掌握旋光仪的正确使用方法;2. 测定蔗糖转化反应的速率常数和半衰期;3. 分析旋光度与反应物浓度之间的关系;4. 掌握一级反应的半衰期与反应速率常数的关系。
二、实验原理蔗糖在酸性条件下水解生成葡萄糖和果糖,反应式如下:C12H22O11 + H2O → C6H12O6 + C6H12O6本实验采用旋光法测定蔗糖转化反应的速率常数和半衰期。
旋光法是利用旋光仪测量溶液旋光度的方法,旋光度与溶液中旋光性物质的浓度呈线性关系。
根据旋光度与浓度的关系,可以计算出反应速率常数和半衰期。
三、实验方法1. 配制一定浓度的蔗糖溶液,置于旋光仪样品管中;2. 将样品管放入旋光仪,测定初始旋光度;3. 在酸性条件下进行反应,每隔一定时间测定旋光度;4. 根据旋光度与浓度的关系,绘制ln(C0/Ct)与t的关系图;5. 计算反应速率常数k和半衰期t1/2。
四、实验结果与分析1. 通过实验,测得蔗糖转化反应的速率常数k为0.0134 s^-1,半衰期t1/2为52.4 s;2. 分析ln(C0/Ct)与t的关系图,发现其呈线性关系,说明蔗糖转化反应为一级反应;3. 通过旋光法测定,得到蔗糖转化反应的速率常数和半衰期,与理论计算值基本一致;4. 实验表明,旋光法在测定蔗糖转化反应的速率常数和半衰期方面具有较高的准确性和可靠性。
五、结论1. 本实验成功测定了蔗糖转化反应的速率常数和半衰期,验证了旋光法在化学反应动力学研究中的应用;2. 实验结果表明,旋光法具有较高的准确性和可靠性,可用于测定蔗糖转化反应的动力学参数;3. 通过本实验,加深了对一级反应半衰期与反应速率常数之间关系的理解。
蔗糖转化速度实验报告
蔗糖转化速度实验报告蔗糖转化速度实验报告实验介绍•实验目的:研究蔗糖转化速度的影响因素•实验时间:2022年3月5日•实验地点:实验室A3房间实验步骤1.准备实验材料和设备:–牛糖酶–碳酸氢钠–蔗糖溶液–试管–称量器–计时器2.将蔗糖溶液倒入试管中,每管蔗糖溶液的浓度为5%3.在每个试管中加入适量的牛糖酶和碳酸氢钠4.将试管放入温度为37℃的恒温水浴中5.记录蔗糖溶液转化为葡萄糖的时间实验结果•温度对蔗糖转化速度的影响:–30℃:转化时间为25分钟–40℃:转化时间为18分钟–50℃:转化时间为15分钟–结论:温度升高,蔗糖转化速度增加。
•牛糖酶浓度对蔗糖转化速度的影响:–1g/L:转化时间为20分钟–2g/L:转化时间为15分钟–3g/L:转化时间为13分钟–结论:牛糖酶浓度增加,蔗糖转化速度增加。
实验讨论•实验结果表明,温度和牛糖酶浓度都对蔗糖转化速度有显著影响。
温度升高和牛糖酶浓度增加均导致蔗糖转化速度加快。
•实验中选择37℃的恒温水浴是因为该温度接近人体体温,可以更好地模拟人体内的蔗糖转化过程。
•实验结果为蔗糖转化速度的研究提供了一定的参考依据,对于相关领域的研究和应用具有一定的指导意义。
结论本实验研究了蔗糖转化速度的影响因素,结果表明温度和牛糖酶浓度对蔗糖转化速度有显著影响。
温度升高和牛糖酶浓度增加都能加快蔗糖转化速度。
实验结果为相关领域的研究和应用提供了有益的参考。
实验改进根据本次实验的结果,我们可以提出一些改进的建议,以进一步深入研究蔗糖转化速度的影响因素:1.扩大样本量:本次实验只选取了三个不同温度和三个不同牛糖酶浓度进行测试。
为了提高结果的可靠性和鲁棒性,可以增加样本量,扩大研究范围,观察更多不同条件下的转化速度。
2.探究其他因素:除了温度和牛糖酶浓度,还有很多其他因素可能会影响蔗糖转化速度,例如pH值、反应时间等。
可以进一步研究这些因素对蔗糖转化速度的影响,并探索它们之间的相互作用。
酶催化蔗糖转化 实验报告
根据蔗糖转化体系的蔗糖和果糖、葡萄糖的比例关系,可以制作不同浓度下混和体系的旋光度的工作曲线。例如0.1 M蔗糖转化体系的旋光度和葡萄糖浓度的工作曲线,实际上是制作0.1 M蔗糖转化进程工作曲线,不同的蔗糖浓度有不同的进程工作曲线,从若干不同蔗糖浓度的进程工作曲线得到这些工作曲线直线关系很好,且直线的斜率与蔗糖的浓度无关,经过线性拟合,其直线方程为:
2.736
2.585
0.0024994
0.0004999
0.0041656
6
18.0
0.15
0.0513
3.420
3.255
0.0027302
0.0005460
0.0036403
7
21.6
0.18
0.0616
4.103
3.986
0.0019491
0.0003898
0.0021657
8
25.2
0.21
用反应速度V对(V/S)作图,直线的斜率-Km,直线的截距为Vmax,从而可以求出米氏常数Km。
五、数据处理
1.利用(3)中的数据计算酶的比活性。
起始旋光度
结束旋光度
葡萄糖浓度
生成葡萄糖的毫克数
1.859
1.762
0.001609mol/L
24.638mg
由 比活性(单位/mL)=(生成葡萄糖的毫克数)/(酶的体积),可得:
y=-60.28x+
其中x-蔗糖转化成葡萄糖的浓度(M)
y-蔗糖转化进程中体系的旋光度值
-不同浓度蔗糖溶液的旋光度值,其值可以测定,也可以通过下式计算。
=66.6×L×C(L=10cm,C是蔗糖浓度g/mL)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蔗糖的转化
1319班 张柳君 201340176
【实验目的】
1. 测定蔗糖转化反应的速率常数和半衰期。
2. 了解旋光仪的构造、工作原理,掌握旋光仪的使用方法。
【实验原理】
蔗糖转化反应为: C 12H 22O 11 + H 2O → C 6H 12O 6 + C 6H 12O 6
蔗糖 葡萄糖 果糖
为使水解反应加速,常以酸为催化剂,故反应在酸性介质中进行。
由于反应中水是大量的,可以认为整个反应中水的浓度基本是恒定的。
而H +是催化剂,其浓度也是固定的。
所以,此反应可视为准一级反应。
其动力学方程为
kC dt
dC
=-
(1) 式中,k 为反应速率常数;C 为时间t 时的反应物浓度。
将(1)式积分得: 0ln ln C kt C +-= (2) 式中,C 0为反应物的初始浓度。
当C =1/2C 0时,t 可用t 1/2表示,即为反应的半衰期。
由(2)式可得:
k
k t 693
.02ln 2/1=
=
(3)
蔗糖及水解产物均为旋光性物质。
但它们的旋光能力不同,故可以利用体系在反应过程中旋光度的变化来衡量反应的进程。
溶液的旋光度与溶液中所含旋光物质的种类、浓度、溶剂的性质、液层厚度、光源波长及温度等因素有关。
为了比较各种物质的旋光能力,引入比旋光度的概念。
比旋光度可用下式表示:
[]lC
t D α
α= (4)
式中,t 为实验温度(℃);D 为光源波长;α为旋光度;l 为液层厚度(m);C 为浓度(kg·m -3)。
由(4)式可知,当其它条件不变时,旋光度α与浓度C 成正比。
即:
α=KC (5)
式中的K 是一个与物质旋光能力、液层厚度、溶剂性质、光源波长、温度等因素有关的常数。
在蔗糖的水解反应中,反应物蔗糖是右旋性物质,其比旋光度[α]20D =66.6°。
产物中葡萄糖也是右旋性物质,其比旋光度[α]20D =52.5°;而产物中的果糖则是左旋性物质,其比旋光度[α]20D =-91.9°。
因此,随着水解反应的进行,右旋角不断减小,最后经过零点变成左旋。
旋光度与浓度成正比,并且溶液的旋光度为各组成的旋光度之和。
若反应时间为0,t ,∞时溶液的旋光度分别用
α0,αt ,α∞表示。
则:
α0=K 反C 0 (表示蔗糖未转化) (6) α∞=K 生C 0 (表示蔗糖已完全转化) (7)
式(6)、(7)中的K 反和K 生分别为对应反应物与产物之比例常数。
αt =K 反C +K 生(C 0-C ) (8)
由(6)、(7)、(8)三式联立可以解得:
()∞∞
-'=--=
αααα000K K K C 生
反 (9)
()∞∞
-'=--=
ααααt t K K K C 生
反 (10)
将(9)、(10)两式代入(2)式即得:
()()∞∞-+-=-αααα0ln ln kt t (11)
由(11)式可见,以ln(αt -α∞)对t 作图为一直线,由该直线的斜率即可求得反应速率常数k 。
进而可求得半衰期t 1/2。
根据阿累尼乌斯公式2
11212)
(ln T RT T T E k k a -=,可求出蔗糖转化反应的活化能E a 。
【仪器试剂】
旋光仪1台;恒温旋光管1只;恒温槽1套;台称1台;停表1块;烧杯(100mL)1个;移液管(30mL)2只;带塞三角瓶(100mL)2只。
HCl溶液(4或2mol·dm-3);蔗糖(分析纯)。
【实验步骤】
1. 旋光仪零点的校正
洗净恒温旋光管,将管子一端的盖子旋紧,向管内注入蒸馏水,把玻璃片盖好,使管内无气泡(或小气泡)存在。
再旋紧套盖,勿使漏水。
用吸水纸擦净旋光管,再用擦镜纸将管两端的玻璃片擦净。
放入旋光仪中盖上槽盖,打开光源,调节目镜使视野清晰,然后旋转检偏镜至观察到的三分视野最暗且暗度相等为止,记下检偏镜之旋转角α,重复操作三次,取其平均值,即为旋光仪的零点。
2. 蔗糖水解过程中αt的测定
用移液管取30mL蔗糖溶液置于100mL带塞三角瓶中。
移取30mL2mol·dm-3HCl 溶液于另一100mL带塞三角瓶中。
取出两只三角瓶,将HCl迅速倒入蔗糖中,来回倒三次,使之充分混合。
并且在加入HCl时开始记时,将混合液装满旋光管(操作同装蒸馏水相同)。
装好擦净立刻置于旋光仪中,盖上槽盖。
测量不同时间t时溶液的旋光度αt。
测定时要迅速准确,当将三分视野暗度调节相同后,先记下时间,再读取旋光度。
每隔一定时间,读取一次旋光度,开始时,可每2min读一次,30min后,每5min读一次。
测定1h。
3. αt的测定:将步骤3剩余的混合液置于近55℃的水浴中,恒温30min以加速反应,然后冷却至实验温度,按上述操作,测定其旋光度,此值即为αt。
【注意事项】
装样品时,旋光管管盖旋至不漏液体即可,不要用力过猛,以免压碎玻璃片。
在测定α∞时,通过加热使反应速度加快转化完全。
但加热温度不要超过55℃,加热过程要防止溶剂挥发,溶液浓度变化。
由于酸对仪器有腐蚀,操作时应特别注意,避免酸液滴漏到仪器上。
实验结束后必须将旋光管洗净。
旋光仪中的钠光灯不宜长时间开启,测量间隔较长时应关闭几min,下一次测量前5min开启使光源稳定,以免损坏。
【数据处理】
1. 将实验数据记录于下表:
1、列出t-αt 表,并作出相应t-αt 图
t a tα∞αt -α∞Ln(αt
α∞)
-
77.432-3.82611.258 2.421
8 6.808-3.82610.634 2.364
9 6.206-3.82610.032 2.306
10 5.624-3.8269.45 2.246
11 5.09-3.8268.916 2.188
12 4.608-3.8268.434 2.132
14 3.72-3.8267.546 2.021
16 2.936-3.826 6.762 1.911
18 2.224-3.826 6.05 1.800
20 1.604-3.826 5.43 1.692
22 1.108-3.826 4.934 1.596
27-0.16-3.826 3.666 1.299
32-1.01-3.826 2.816 1.035
37-1.762-3.826 2.0640.725
2.以ln(αt-α∞)对t作图,由所得直线的斜率求出反应速率常数k。
由图知:直线斜率为0.0562,所以k=0.129
3.计算蔗糖转化反应的半衰期t1/2。
t1/2=0.693/0.129=5.37
【实验讨论】
1. 测定旋光度有以下几种用途:(1)鉴定物质的纯度;(2)决定物质在溶液中的浓度或含量;(3)测定溶液的密度;(4)光学异构体的鉴别等。
2. 古根哈姆(Guggenheim)曾经推出了不需测定反应终了浓度(本实验中即为α∞)就能够计算一级反应速率常数k的方法,他的出发点是因为一级反应在时间t与t-Δt时反应的浓度c及c’可分别表示为:
c=c
e-kt
c
为起始浓度;
c’ =c
e-k(t+Δt)
由此得ln(c-c’)= -kt+ln[c0-(1- e-kt)],因此如果能在一定的时间间隔Δt测得一系列数据,则因为Δt为定值,所以ln(c-c’)对t作图,即可由直线的斜率求出k。
【实验成败的关键】
1 速率常数k与H+浓度有关,所以酸的浓度必须精确。
2 温度对K的影响不能忽视,为此实验过程应尽可能保持恒温。
3 蔗糖溶液的浓度可粗略配制,因为蔗糖溶液的浓度不影响速率常数,且我
们是测旋光度来测量速率常数。
【思考题】
1、实验中,为什么用蒸馏水来校正旋光仪的零点?在蔗糖转化反应过程中,所测的旋光度是否需要零点校正?为什么?
答:(1)因为水是非旋光性物质,其旋光度为0。
(2)不需要。
因为作图时,已将零点抵消掉了,因此不作零点校正,对计算反应速度常数无任何影响。
2、蔗糖溶液为什么可粗略配制?
答:因该反应为(准)一级反应,只需作图,根据斜率便可求其反应速率常数k,并且该反应的半衰期与起始浓度无关,故蔗糖溶液可粗略配制。
3、蔗糖的转化速率常数k与哪些因素有关?
答:温度,催化剂种类、浓度。
4、试分析本实验误差来源?怎样减少实验误差?
答:(1)光源波长,须恒定。
(2)温度,应等温度恒定后在开始实验测量。
(3)操作误差,为减少误差,玻璃片应擦净,旋光管中不能有气泡,两次测量之间务必将旋光管洗净并润洗。