显微镜成像原理图
《显微镜》ppt课件

暗 视 野 照 明 方 式
六、紫外光显微镜
使用紫外光源可以明显提高显微镜的分辨率,对于 生物样品使用紫外光照明还具有独特的效果。生物 细胞中的原生质对可见光几乎是不吸收的,而蛋白 质和核酸等生物大分子对紫外光具有特殊的吸收作 用。因此,可以使用紫外光显微镜(ultraviolet microscope)研究单个细胞的组成与变化情况。
相衬显微镜比普通光学显微镜多了2个部件:
在聚光器上增加一个环形光阑; 在物镜后焦面增加一个相板,相板上有一个环形区,通过
环形区的光比从其它区域透过的光超前或滞后1/4λ,这样 就使通过标本不同区域光波的相位差转变为振幅差。
相衬显微镜照明原理
光通过标本致密区时发生衍射,产生偏折光,相位 和未受影响的直射光相比被推迟了1/4λ。只有未发 生偏折的的直射光可通过相位板的环形区,其它的 偏折光在物镜的后焦面上产生了一个与通过相位板 的环形区的光不同的1/4λ的光程差。两组光在平面 上成像。
如果离光轴越远处放大率越大,则像的外部线段将比中间 线段长,结果形成了枕形畸变,这种畸变称为正畸变。
反之则形成边缘放大率小而近轴放大率大的桶形畸变,称 为负畸变 。
(二)、 色 差
色差(chromatic aberration )是一种由白光或复色光经透镜成像 时,会因各种色光存在着光程差而造成颜色不同、位置不重 合、大小不一致的不同成像效果,从而造成像和物的较大失 真。
如相板的环形区使直射光超前1/4λ,加上开始直射 光超前的1/4λ,直射光共超前1/2 λ,直射光和偏折 光叠加形成的合成波振幅减少,产生暗反差。
如相板的环形区使直射光滞后1/4λ,加上开始直射 光超前的1/4λ,两者相抵直射光不发生变化,直射 光和偏折光无相位变化,形成的合成波振幅增加, 产生明反差。
显微镜成像原理

光学显微镜的原理发布时间:10-05-15 来源:仪表展览网点击量:2284 字段选择:大中小将微小物体或物体的微细部分高倍放大,以便观察的仪器或设备。
它广泛应用于工农业生产及科学研究。
生物学和医学工作者在业务中也经常使用显微镜。
大致分为光学显微镜和电子显微镜。
光学显微镜即以可见光为光源的显微镜。
普通的光学显微镜在结构上可分为光学系统和机械装置两个部分。
光学系统主要包括目镜、物镜、聚光器、光阑及光源等部分。
机械装置主要包括镜筒、镜柱、载物台、镜座、粗细调节螺旋等部分(图1)。
其基本光学原理如图2,图中左边小的凸透镜代表短焦距的一组透镜,称物镜。
右边大的凸透镜代表长焦距的一组透镜,称目镜。
被观察的物体(AB)放在物镜焦点(f1)稍外的地方。
物体的光线通过物镜后在目镜焦点(f2)稍内方形成一个倒立的放大实像(B'A')。
观察者的眼睛通过目镜将该实像(B'A')进一步放大为一个倒立的虚像(B″A″)。
目镜位于显微镜筒的上方,一般由两个凸透镜构成。
它除了进一步扩大物镜所形成的实像之外,也限制了眼睛所观察的视野。
按放大率分,常用目镜有5倍、10倍和15倍三种。
物镜一般位于显微镜筒的下方,接近所观察的物体。
由8~10片透镜组成。
其作用一是放大(给物体造成一个放大的实像),二是保证像的质量,三是提高分辨率。
常用物镜可按放大率分为低倍 (4×)、中倍(10×或20×)、高倍(40×)和油浸物镜(100×)。
多个物镜共同镶在换镜转盘上,可以按需要转动转盘选择不同倍数的物镜。
显微镜的放大倍数为目镜倍数乘物镜倍数,如目镜为10倍,物镜为40倍,则放大倍数为40×10倍(放大400倍)。
优良的显微镜可放大2000倍,可分辨相距1×10-5cm的两点。
当白光通过凸透镜时,波长较短的光(蓝紫色),其折射度大于长波长的光(红橙色),因此,成像时在像周出现各色光谱围绕,并且有一圈蓝色或红色的辉光,这种颜色上的缺陷称为色差。
显微镜的构造图

的形貌信息
功能
• 微电子技术:用于微器件的表面形貌检测和分析
03
显微镜的成像技术与发展
光学显微镜的成像技术
传统成像技术
• 利用透镜对光进行聚焦和放大
• 通过调整目镜和物镜来改变放大倍数和成像清晰度
成像技术
• 光学显微成像技术:利用光学原理对样品进行成像
• 荧光显微成像技术:利用荧光标记和荧光显微镜对样品进行成像
• 生物科学:观察细胞、细菌、病毒等微小生物结构
• 光的波长和透镜的折射率决定了显微镜的分辨率
• 材料科学:研究材料的微观结构和性能
• 医学领域:观察组织、细胞、病毒等微小结构
02
显微镜的分类与比较
光学显微镜的类型与特点
类型
• 简易显微镜:结构简单,放大倍数较低
• 显微镜:放大倍数较高,功能丰富
CREATE TOGETHER
DOCS SMART CREATE
显微镜构造图解析与应用
DOCS
01
显微镜的基本构造与原理
光学显微镜的组成部件及其功能
01
02
03
04
05
镜筒
•目镜
位于镜筒上方的透
镜
物镜
调焦装置
• 容纳光学组件的圆
• 用于放大观察物体
的图像
载玻片和盖玻
片
• 用于放置样品的平
品之间的距离
• 材料科学:研究材料的微观结构和性能
• 医学领域:观察组织、细胞、病毒等微小结构及其功能
04
显微镜在科研与工业领域的应用
显微镜在生物科学领域的应用
01
观察细胞结构
• 利用显微镜观察细胞的形态、结构和功能
• 研究细胞内的生物大分子和细胞器
人眼、光学显微镜以及电子显微镜成像原理、分辨率及其影响因素

人眼、光学显微镜以及电子显微镜成像原理、分辨率及其影响因素文章主要从人眼成像原理入手,逐步介绍光学显微镜以及电子显微镜的成像原理、分辨率和分辨率的影响因素。
分三部分作简要说明。
一人眼成像1 、人眼结构人眼成像原理图如下,所取的距离为250米,则人眼成像见下图1:图1人眼结构原理图2、成像原理自然界各种物体在光线的照射下,不同颜色可以反射出明暗不同的光线,这些光线透过角膜、晶状体、玻璃体的折射,眼球中的角膜和晶状体的共同作用,相当于一个“凸透镜”,在视网膜上形成倒立、缩小的实像,构成光刺激。
视网膜上的感光细胞(圆锥和杆状细胞)受光的刺激后,经过一系列的物理化学变化,转换成神经冲动,由视神经传入大脑层的视觉中枢,然后我们就能看见物体了,经过大脑皮层的综合分析,产生视觉,人就看清了正立的立体像。
人的眼睛是个复杂的成像系统,而人的大脑像CPU处理这些图像,让人能在视觉上感知到图像。
人眼成像最主要的是晶状体和视网膜。
晶状体调整眼睛的焦距是光束集中到富有视锥细胞和视柱细胞的视网膜上,在进行光电(生物电)变化,由视觉神经把信号传至大脑生成图像。
人类的目标就是能制造出能过可以和眼睛相媲美的视觉系统,这是机器智能化的关键部分。
3、分辨率说及人眼分辨率首先需要知道如下几个概念:(1)视角:观看物体时,人眼对该物体所张的角度。
(2)分辨角:人眼的分辨角:指刚能看出两黑点时,两黑点对人眼的张角。
(3)分辨力:人眼分辨图像细节的能力称为分辨力,可用分辨角来衡量,分辨角的倒数为分辨力。
它也反映了人眼的视力。
分辨力还与照度及景物相对对比度有关。
人眼分辨率指的是人眼能够分辨两个相邻的点或者线的能力,通常以刚能被分开的两点或两线与眼睛瞳孔中心所成的张角表示。
其最小分辨的距离在0.2mm 左右。
要观察和分析更小的距离时,就必须借助于专门仪器。
观看物体时,能清晰看清视场区域对应的分辨率为2169 X 1213。
再算上上下左右比较模糊的区域,最后的分辨率在6000X 4000。
显微镜的原理和使用方法

显微镜的原理和使用方法-装片的制作显微镜的结构和使用2显微镜的成像①光源天然光或人工光源→反光镜→光圈→物体→物镜凸透镜→在镜筒内形成物体放大的实像→目镜→把经物镜形成放大的实像进一步放大②显微镜放大倍数=物镜放大倍数×目镜放大倍数3高倍显微镜的使用①用低倍显微镜观察取镜与安放:a. 右手握镜臂,左手托镜座;b. 显微镜放在实验台的前方稍偏左;对光:a. 转动转换器,使低倍物镜对准通光孔;b. 选一较大的光圈对准通光孔,左眼注视目境,转动反光镜,使光线通过通光孔反射到镜筒内,通过目镜,可能看到自亮的视野;低倍镜观察:a. 把所要观察的玻片标本放在载物台上,用压片夹压住,标本要正对通光孔的中心;b. 转动粗准焦螺旋,使镜筒缓缓下降,直到物镜接近玻片标本为止此时实验者的眼睛应当看物镜镜头与标本之间,以免物镜与标本相撞;c. 左眼看目镜内,同时反向缓缓转动粗准焦螺旋,使镜筒上升,直到看到物像为止,再稍稍转动细准焦螺旋,使看到的物像更加清晰;②高倍镜观察a. 移动装片,在低倍镜下使需要放大观察的部分移动到视野中央;b. 转动转换器,移走低倍物镜,转换为高倍物镜;c. 调节光圈,使视野亮度适宜;d. 缓缓调节细准焦螺旋,使物像清晰③注意事项a. 使用显微镜一定要严格按照取镜→安放→对光→压片→观察的程序进行;b. 下降镜筒时,一定要用双眼从侧面注视物镜,使之接近装片,但又要防止镜头触及装片;否则会压碎装片和损坏物镜l0x物镜的工作距离为0. 5-1 cm;c. 有必要使用高倍物镜时,必须先在低倍物镜下将目标移到视野的中心,然后换用高倍物镜;因为在低倍物镜下看到的物像放大倍数小,但看到的标本实际面积大,容易找到目标;与低倍物镜相比,高倍物镜下看到的物像人,同样的视野面积看到的标本的实际面积小,在装片不动的情况下,高倍物镜看到的只是低倍物镜视野的中心部分;d. 换高倍物镜时,千万不可将镜筒升高,正确的做法是直接转动转换器,换上高倍物镜即可;e. 使用高倍物镜之后,透镜与装片之间的距离很近,使用粗准焦螺旋容易压碎玻片和损坏透镜,或者由于物像一闪而过,找不到要观察的目标.因此,必须用细准焦螺旋调焦,细准焦螺旋只在调节图像清晰度时使用;④原理说明1. 识别镜头:1目镜:装在镜筒的上端,通常备有2-3个,上面刻有5×、10×或15×符号以表示其放大倍数,一般装的是10×的目镜;放大倍数越大镜筒越短;2物镜:装在镜筒下端的转换器上,一般有2-3个物镜,其中最短的刻有“10×”符号的为低倍镜,较长的刻有“40×”符号的为高倍镜,放大倍数越大镜筒越长2. 放大倍数:显微镜的放大倍数是物镜的放大倍数与目镜的放大倍数的乘积,如物镜为10×,目镜为10×,其放大倍数就为10×10=100;放大的是物体的直线长度和宽度而不是面积;3. 工作距离:是指显微镜处于工作状态物象调节清楚时物镜的下表面与盖玻片盖玻片的厚度一般为上表面之间的距离,物镜的放大倍数愈大,它的工作距离愈小;如物镜是10×的工作距离比物镜是40×的工作距离大;4. 明暗程度:1显微镜用光源,自然光和灯光都可以,以灯光较好,因光色和强度都容易控制;2反光镜它有平、凹两面,再经通光孔照至标本;可向任意方向转动,凹面镜聚光作用强,适于光线较弱时使用,平面镜聚光作用弱,适于光线较强时使用;3光圈或遮光器在通光孔下方,光圈由十几张金属薄片组成,其外侧伸出一柄,推动它可调节其开孔的大小,以调节进光量;遮光器由几个直径大小不同的孔组成,选择某一孔以确定进光量;5. 物像:镜下见到的是完全的倒像,即标本位于玻片右上角时在镜下的左下角位置出现,移动的规律是物象在镜下的左下角时将玻片向左下角移动可以将物象移到视野的中央来;但是物体的运动方向不变,即标本中细胞质是顺时针方向流动的,镜下仍为顺时针流动;6. 污物的位置:在视野中常看到污物,要明确污物不会在反光镜上,因为反光镜的作用是将光源光线反射到玻片标本上;确定污物的位置首先移动玻片如污物随之移动即污物在玻片上;如污物不动,再转动目镜污物也随之转动即污物在目镜上;否则在物镜上;7. 普通光学显微镜下可以见到的细胞结构有:细胞壁、细胞核、液泡、叶绿体、线粒体、核仁,在质壁分离时可见到细胞膜,有丝分裂时可见到染色体;8. 玻片标本:必须是透明的,要使光线能透过标本内部;常用的种类有切片洋葱根尖纵切片;装片洋葱表皮临时装片;压片洋葱根尖临时压片观察有丝分裂;涂片血涂片、自生固氮菌的临时涂片;⑤相关原理例析1. 物像放大问题<1> 放大的对象:放大的是所观察的物体的长或宽即:边长被放大的倍数,不是指面积、体积的放大倍数;<2> 放大倍数=目镜倍数×物镜倍数如:目镜为20×;物镜为10×,则放大倍数为20×10=200倍细胞面积的放大倍数为2002 =40000倍<3> 放大倍数越大,物像越大,视野越小放大倍数越小,物像越小,视野越大如图:左图是放大10倍的物像,右图是放大20倍时的物像,非常明显放大倍数小,细胞物像小,但看到的细胞数目多,视野大;放大倍数大,细胞物像大,但看到的细胞数目少,视野小;<4> 物镜越长,放大倍数越大;目镜越长,放大倍数越小;2. 物像方位问题观察着从显微镜看到的是上下颠倒、左右颠倒的象;①成像原理图解如下:光线→反光镜→遮光器→通光孔→标本一定要透明→物镜的透镜第一次放大成倒立实像→镜筒→目镜再放大成虚像→眼②举例说明载玻片上物体形态与镜中物像之间的对应关系:例一:分析:从例一可以让学生体会显微镜下图像与装片上物体上下颠倒、左右颠倒的位置关系,进而得出判断物像的简便方法:即把纸张旋转1800直接观察;例二:分析:可以先让学生判断装片下的物体状态在镜下的图像,通过此例可以让学生明白镜下观察到的物体旋转的方向与实际旋转方向相同,并不是象部分学生所想当然的相反,而且也符合上下颠倒、左右颠倒的规律;3. 物像明暗问题①光圈小,成像暗;光圈大,成像亮②用平面反光镜,成像相对暗;用凹面反光镜,成像相对亮③高倍镜下视野暗;低倍镜下视野亮注:由于人眼感受物像的明暗是由进入人眼的光照强弱、光线多少决定的,因此对于①②不难理解,但在教学中会有很多师生对于③的理解不是很好,其实就其原因还是由于进入人眼的光线多少造成的;因为低倍镜视野大,看到的细胞多,高倍镜视野小,看到的细胞少,即:高倍镜下只有透过少量细胞的光线进入到人眼中,就感觉视野一些;低倍镜下透过较多细胞的光线进入到人眼中,就感觉视野亮一些;临时装片的制作:1准备:1. 用洁净的纱布把载玻片和盖玻片擦拭干净;2. 把载玻片放在实验台上,用吸管在载玻片的中央滴一滴清水2制片3. 用镊子取材;如:从洋葱鳞片叶子内侧的表皮上,撕取一小块透明薄膜4. 把材料如:撕下的薄膜浸入载玻片上的水滴中,用镊子把薄膜展平;5. 用镊子夹起盖玻片,使它的一边先接触载玻片上的水滴,然后轻轻地盖在薄膜上,避免盖玻片下面出现气泡;典型例题例1 观察细胞中染色体行为并计数时,使用光学显微镜的正确方法是A. 低倍镜对焦,将观察目标移至视野中央,转用高倍镜并减少光量,调焦观察B. 低倍镜对焦,将观察目标移至视野中央,转用高倍镜并增加光量,调焦观察C. 低倍镜对焦,换用高倍镜,将观察目标移至视野中央,增加光量,调焦观察D. 高倍镜对焦,将观察目标移至视野中央,增加光量,调焦观察答案:B解析:正确使用低倍镜:正确使用低倍镜的操作程序是:取镜、对光、安装片、下降镜筒、调焦;下降镜筒时,必须双眼注视镜和装片的距离,以免压坏装片和碰坏物镜;高倍显微镜的使用:1在低倍镜下将物像调到最清晰;2将所要放大的部位移至视野中央;3转动转换器,换高倍物镜;4调整反光镜和光圈,使视野亮度适宜;5左眼注视目镜内,同时转动细准焦螺旋约半圈,使镜筒缓缓上升直到看清物像; 例2 小华观察同一标本4次,每次除调整放大倍率外,其他条件都未变动,结果如图问:视野亮度最弱的是哪一个答案:B解析:低倍镜换成高倍镜后的视野变小,亮度变暗,细胞变大,数目变少;例3 使用显微镜观察水中微小生物,若发现镜中生物往图7中圆圈内所示方向游走,请问你该把载玻片往哪个方向移动才不至于使微小生物从视野中消失A. 甲B. 乙C. 丙D. 丁答案:C解析:显徽镜下看到的是倒像例4 在光照明亮的实验室中,用白色洋葱表皮做质壁分离实验;在显微镜视野中清晰地看到细胞壁,但看不清细胞是否发生了质壁分离,为了解决这一问题应A. 改用凹面反光镜,放大光圈B. 改用凹面反光镜,缩小光圈C. 改用平面反光镜,放大光圈D. 改用平面反光镜,缩小光圈答案:D解析:显徽镜的用光1对于折光性较强的材料,观察视野光线过强,往往易看清结构,却极易造成眼睛疲劳,影响实验效率;观察洋葱表皮细胞结构时,由于原生质层较薄,故在视野较暗时,观察效果较好;2观察视野过暗,也会看不清物像,影响效果;对比较厚的材料或颜色较深的材料,应增大通光量;观察视野的明暗程度应以眼睛感到舒适为宜;模拟试题1. 下图表示光学显微镜的一组镜头,目镜标有5×和15×字样,物镜标有10×和40×字样;请看图回答:1要仔细观察叶绿体的形态时,显微镜的目镜、物镜及其与盖玻片间距离的组合为___________用标号作答;此时放大的倍数为 ;2在观察中,③和④的显微视野中比较明亮的是 ;3若在低倍镜视野中发现有一异物,当移动装片时,异物不动,转换高倍镜后,异物仍可观察到,此异物可能存在于A. 物镜上B. 目镜上C. 装片上D. 反光镜上2. 观察叶绿体时,下列哪种材料不能直接放在载玻片上A. 葫芦藓的叶片B. 黄杨叶横切片C. 南瓜叶片D. 沾有少数叶肉细胞3. 下列关于叶绿体在细胞中的分布,正确的是A. 在强光下,叶绿体以其较小的面对着光源,以利于接受较多的光B. 在弱光下,叶绿体以其较大的面对着光源,可以接受更多的光C. 在弱光下,叶绿体会较多地聚集在背光一侧D. 在一般的叶片,背光面的细胞中含有较多的叶绿体4. 用小麦根尖成熟区表皮细胞观察细胞质流动时,由于根细胞的细胞质无色透明,难于观察到细胞质的流动,这时需采取的措施是A. 缩小光圈,用弱光线B. 开大光圈,用弱光线C. 缩小光圈,用强光线D. 开大光圈,用强光线5. 在观察细胞质流动时,把叶绿体等颗粒作为细胞质流动的标志物是因为A. 光学显微镜下看到的细胞器只有叶绿体B. 如果没有标志物,细胞质的流动就难以察觉C. 只有叶绿体等颗粒可以移动,细胞质基质不流动D. 细胞质基质是流动的,细胞器是随细胞质基质的流动被动运动的6. 在观察显微镜时,经常遇到以下4种现象:1视野太亮;2只见视野不见图像;3图象结构不完整;试分析出现这些现象的可能原因,并提出排除方法;7. 用显微镜观察同一材料的同一部分时,高倍镜视野与低倍镜视野相比前者A. 亮,看到的细胞数目多B. 暗,看到的细胞数目少C. 亮,看到的细胞数目少D. 暗,看到的细胞数目多8,. 用显微镜观察葫芦藓叶的装片时,为使视野内看到的细胞数目最多,应选用A. 目镜5×,物镜10×B. 目镜10×,物镜15×C. 目镜5×,物镜40×D. 目镜10×,物镜40×9. 光学显微镜所能分辨的最小长度单位是A. 厘米cmB. 毫米mmC. 微米μmD. 纳米nm10. 用显微镜观察装片时,要将物像从视野的左方移到正中,装片的移动方向应是A. 向右方B. 向上方C. 向左方D. 向下方11. 某学生在显微镜下观察落花生子叶的切片,当转动细准焦螺旋时,有部分细胞看得清晰,另一部分细胞较模糊,这是由于A. 反光镜未调节好B. 标本切得厚薄不均C. 细准焦螺旋未调节好D. 显微镜物镜损坏12. 下面①—⑤是用普通光学显微镜观察时的几个操作步骤,在显微镜下要把视野中的物像从如图中I转为II,正确简便的操作步骤一般是①转动粗准焦螺旋②调节光圈③转动细准焦螺旋④转动转换器⑤移动标本A. ④→⑤→③→②B. ②→①→⑤→④C. ⑤→④→②→③D. ①→②→③→④13. 用显微镜的一个目镜分别与4个不同倍数的物镜组合起来观察已发生质壁分离的细胞装片;当成像清晰时,每一物镜与载玻片的距离如图6-3所示;如果载玻片位置不变,用哪一物镜在一个视野中看到的细胞最多14. 一个细小物体被显微镜放大50倍,这里“被放大50倍”指放大该细小物体的A. 体积B. 表面积C. 像的面积D. 长度或宽度15. 当显微镜的目镜为10×,物镜为10×时,在视野直径范围内可看到相连的8个细胞;若目镜不变,物镜换成40×时,则在视野中可以看到这8个细胞中的A. 2个B. 4个C. 16个D. 32个16. 显微镜视野中用于指示的“指针”是用头发制作的,这根头发应安放在A. 物镜内B. 目镜内C. 镜筒内D. 装片上17. 在光学显微镜下观察细胞质流动的实验中,你看到细胞内正在流动的结构是A. 内质网B. 叶绿体C. 高尔基体D. 液泡18. 某同学做洋葱根尖细胞有丝分裂实验时,高倍镜下观察到一个呈正方体的细胞,染色体形态和数目非常清晰,但是染色体颁在整个细胞中;按形态和数目的清晰程度,此细胞应为中期;按染色体分布位置,此细胞应为前期;请你分析一下此细胞应为哪一时期,为什么19. 如图为黑藻细胞的细胞质环流示意图,视野中的叶绿体位于液泡的右方,细胞质环流的方向为逆时针,则实际上,黑藻细胞中叶绿体的位置和细胞质环流的方向分别为A. 叶绿体位于液泡的右方,细胞质环流的方向为顺时针B. 叶绿体位于液泡的左方,细胞质环流的方向为逆时针C. 叶绿体位于液泡的右方,细胞质环流的方向为逆时针D. 叶绿体位于液泡的左方,细胞质环流的方向为顺时针20. 用普通光学显微镜观察切片时,当用低倍物镜看清楚后,转换高倍镜却看不到或看不清原来观察的物体.不可能的原因是A. 物体不在视野中央B. 切片放反,盖玻片在下C. 低倍物镜和高倍物镜的焦点不在同一平面D. 未换目镜21. 某学生在实验时,先用一块洁净纱布揩拭镜头,再在一干净载玻片中央滴一滴清水,放入一小块植物组织切片,小心展平后,放在显微镜载物台正中央,并用弹簧夹片压住;然后在双眼侧视下,将物镜降至距玻片标本约1cm~2cm处停止;用左眼朝目镜里观察,同时转动粗调节器,缓缓上升镜筒;请指出该生操作中不正确的地方;。
显微镜 成像原理含图(基础教育)

显微镜现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.11微米,国内显微镜机械筒长度一般是160毫米。
显微镜系统中共轭距是物镜物方焦点到目镜物方焦点的距离。
物镜通过转换器旋转式接到镜筒的下端面目镜以插入式接镜筒的上端面应满足齐焦要求:调换物镜后,不需再调焦就能看到像。
a. 物镜调换后,像面不动,物面不动——物镜共轭距不变(195mm)b. 物镜像面即目镜前焦面不动——物镜像面在上端面以下10mm处c. 机械筒长——上下端面之间的距离(160mm),有的显微镜机械筒长可调调换物镜(目镜)后微调焦不可避免,故还必须有微动机构具有中间实像面,可放置分划板,用于测量(构成测微目镜)当中间实像A’位于Fe之前时,A”为实像,可投影到屏上。
也可用图像传感器接收实像,构成电子目镜。
物镜是显微镜最复杂和最重要的部分,在宽光束中工作(孔径大),但这些光束与光轴的倾角较小(视场小);目镜在窄光束中工作,但其倾角大(视场大).当计算物镜与目镜,在消除象差上有很大差别。
成像原理显微镜主要由目镜和物镜来进行成像,它们都是凸透镜,焦距不同。
物镜的凸透镜焦距小于目镜的凸透镜的焦距。
物镜相当于投影仪的镜头,物镜成像规律:f<u<2f,成放大倒立实像;目镜相当于普通的放大镜,目镜成像规律:u<f,成放大正立虚像(注:这里的正立是相对于物镜所成的像)故最后成出来的像是倒立放大的。
光学显微镜是根据凸透镜的成像原理,要经过凸透镜的两次成像。
第一次先经过物镜(凸透镜1)成像,这时候的物体应该在物镜(凸透镜1)的一倍焦距和两倍焦距之间,根据物理学的原理,成的应该是放大的倒立的实像。
而后以第一次成的物像作为“物体”,经过目镜的第二次成像。
由于我们观察的时候是在目镜的另外一侧,根据光学原理,第二次成的像应该是一个虚像,这样像和物才在同一侧。
因此第一次成的像应该在目镜(凸透镜2)的一倍焦距以内,这样经过第二次成像,第二次成的像是一个放大的正立的虚像。
第九讲(目视光学仪器--望远镜、显微镜)

3. 平视场物镜
平视场物镜主要用于显微照相和显微投影, 它要严格地
校正像面弯曲。这种物镜的结构非常复杂。
4 显微镜中的光束限制
图 9- 8 显微镜的光束限制
复杂的显微物镜是以最后一组透镜的框作为孔径光阑的,
测量用显微镜中往往在物镜的像方焦平面上专门设置孔径光阑, 在这种情况下显微系统的入瞳位于物方无限远处,出瞳则在整
眼视光应用光学
目视光学仪器— 显微镜和望远镜
1、 显 微 镜
1 显微镜的成像原理 显微镜的光学系统由物镜和目镜两个部分组成。显微镜成像的 原理如图 9- 6 所示。为方便起见,图中把物镜 L1 和目镜 L2 均 以单块透镜表示。人眼在目镜后面的一定位置上,物体AB位于 物镜前方、离开物镜的距离大于物镜的焦距但小于两倍物镜焦 距处。所以,它经物镜以后,形成一个放大的倒立实像 A′B′。 使 A′B′恰位于目镜的物方焦点 F2 上,或者在靠近 F2 的位置上。 再经过目镜放大为虚像A″B″后供眼睛观察。 虚像A″B″的位 置取决于 F2 和 A′B′之间的距离,可以在无限处,也可以在观 察者的明视距离处。目镜的作用和放大镜一样,所不同的只是 眼睛通过目镜看到的不是物体本身,而是物体被物镜所成的、 已经放大了一次的像。
望远镜的视放大率与视场角的关系可由(9- 9)式看出。当
目镜的类型确定时,它所对应的像方视场角ω ′就一定,增大 视放大率必然引起视场角ω 的减小。因此,视放大率总是和望
远镜的视场角一起考虑的。例如军用望远镜,为易于找到目标,
希望有尽可能大的视场角,这使望远镜倍率不宜过大。 望远系统的视放大率和仪器结构尺寸的关系可由(9- 9)式 看出,当目镜的焦距确定时,物镜的焦距随视放大率增大而加 大。若望远镜镜筒长度以 L=f1′+f2′表示,则随f1′的增大镜 筒变长。当目镜所要求的出瞳直径确定时,物镜的直径随视放 大率增大而加大。这种关系在某些应用中,是增大视放大率的 障碍。
《显微成像》课件

《显微成像》ppt课 件
REPORTING
2023
目录
• 显微成像技术简介 • 显微镜的种类与特点 • 显微成像技术的基本原理 • 显微成像技术的应用实例 • 未来显微成像技术的发展趋势与挑战
2023
PART 01
显微成像技术简介
REPORTING
显微成像的定义与原理
显微成像定义
显微成像技术是一种利用光学系 统对微小物体进行放大,并将其 转化为可观察图像的科学技术。
材料科学
环境科学
在材料科学领域,显微成像技术用于观察 材料微观结构、晶体形态、表面形貌等, 有助于材料性能的优化和改进。
环境科学领域中,显微成像技术用于观察 微小生物和污染物的形态和分布,有助于 环境监测和污染治理。
2023
PART 02
显微镜的种类与特点
REPORTING
光学显微镜
总结词
光学显微镜是最早的显微镜形式,它使用可见光和透镜来放大样品。
详细描述
目前的光学显微镜已经达到了相当高的分辨率,但仍然受到光的衍射极限的限制。未来 可以通过采用超分辨技术、光子晶体、量子点等新型材料和技术,突破衍射极限,实现 更高的分辨率。同时,利用新型的探测器、荧光染料/探针和信号放大技术,可以提高
成像的灵敏度和动态范围,从而更好地捕捉和区分微小细节和弱信号。
土壤与水体中微小颗粒物分析
通过显微成像技术观察土壤和水体中微小颗粒物的形态、大小、分布等特征,有助于环境质量评估和污染防治。
2023
PART 05
未来显微成像技术的发展 趋势与挑战
REPORTING
高分辨率与高灵敏度成像技术
总结词
随着科学研究的深入,对显微成像的分辨率和灵敏度的要求越来越高,未来将不断涌现 出更高分辨率和高灵敏度的成像技术。
光学显微镜成像原理和光路图

光学显微镜成像原理和光路图
物镜目镜Βιβλιοθήκη 光学显微镜是根据凸透镜的成像原理,要经过 凸透镜的两次成像。第一次先经过物镜(凸透镜1 )成像,这时候的物体应该在物镜(凸透镜1)的一 倍焦距和两倍焦距之间,根据物理学的原理,成 的应该是放大的倒立的实像。而后以第一次成的 物像作为“物体”,经过目镜的第二次成像。由 于我们观察的时候是在目镜的另外一侧,根据光 学原理,第二次成的像应该是一个虚像,这样像 和物才在同一侧。因此第一次成的像应该在目镜 (凸透镜2)的一倍焦距以内,这样经过第二次成 像,第二次成的像是一个放大的正立的虚像。如 果相对实物说的话,应该是倒立的放大的虚像。
三大显微镜原理与应用及图片

—、三大显微镜的原理。
1、扫描隧道显微镜的原理。
. 在x二0和x=a点,波函数及其导数连续,并假设k’a》l(另有论述),则推得隧道电流:Iocf(码呷(一2厂a).在简单情形下,对费米面电子来说,v一E相当于该材料的脱出功,由于一般稳定金属的脱出功为4一5“[5],所以k’一0.lrun,厂a》1很容易满足,上述假设是成立的.显然,当针尖一样品间距(即a)变化0.IYun时,电流将变化约一个数量级.g1M正是利用隧道电流对间距变化的敏感性来工作的.SIM的扫描过程描述为:针尖在扫描控制系统的控制下,可沿样品表面作三维移动,随着样品表面的起伏,针尖一样品间距将发生变化,隧道电流随之变化.通过一个反馈系统调节这个间距,使电流重新接近事先设定的值.由电流的表达式可知,由于偏压V恒定,故要求间距a也恒定,样品表面的形貌也就通过针尖的轨迹反映出来了.这是STM工作方式之一—恒流模式.若保持针尖在样品表面上方一个固定的平面内作二维移动,则样品表面的起伏可通过隧道电流的变化反映出来.此时,反馈系统的反应速度很慢,不能跟踪表面的细节.这是Sn竹工作方式之二—等高模式.这种工作方式要求表面起伏小,否则针尖很容易碰到样品,而且一般用于小范围的表面测量。
2、透射电子显微镜的原理。
透射电子显微镜(Transmission Electron Microscopy, TEM)是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子的碰撞而改变方向,从而产生立体角散射,散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。
通常,透射电子显微镜的分辨率为0.1~0.2nm, 放大倍数为几万~百万倍,用于观察超微结构,即小于0.2?m、光学显微镜下无法看清的结构,又称“亚显微结构”。
透射电镜特别适合对微细矿物及隐晶质矿物和超细粉体的形貌及结构分析,它决定了偏光显微镜分辨率低的不足,又克服了X射线衍射仪不能直接观察矿物形貌的困难。
开普勒望远镜原理图

显微镜成像原理图作者:佚名来源:本站整理发布时间:2009-11-18 9:45:13 [收藏] [评论]显微镜成像原理图我知道目镜的作用相当于放大镜,但放大镜成的像是物相同侧而显微镜当中的物镜将物体放大后,所成的像应在显微镜管内.如果目镜的原理和放大镜一样,那它的像岂不是朝人眼反方向放大(物相同侧)那么认识如何看到二次放大的像呢?显微镜的成像原理如图所示,物镜焦距较短,目镜焦距较长,物体经物镜成一倒立实像A"B",该像位于目镜焦点以内(镜筒内),它又可看作目镜的物,经目镜后成正立虚像;.其还是与放大镜一样,物像同侧)。
这个是两次折射的结果,并不是单纯一个目镜的作用。
STM的工作原理STM是利用量子隧道效应工作的。
若以金属针尖为一电极,被测固体样品为另一电极,当他们之间的距离小到1nm左右时,就会出现隧道效应,电子从一个电极穿过空间势垒到达另一电极形成电流。
且其中Ub:偏置电压;k:常数,约等于1,Φ1/2:平均功函数,S:距离。
从上式可知,隧道电流与针尖样品间距S成负指数关系。
对于间距的变化非常敏感。
因此,当针尖在被测样品表面做平面扫描时,即使表面仅有原子尺度的起伏,也会导致隧道电流的非常显著的、甚至接近数量级的变化。
这样就可以通过测量电流的变化来反应表面上原子尺度的起伏,如下图右边所示。
这就是STM的基本工作原理,这种运行模式称为恒高模式(保持针尖高度恒定)。
STM还有另外一种工作模式,称为恒流模式,如下图左边。
此时,针尖扫描过程中,通过电子反馈回路保持隧道电流不变。
为维持恒定的电流,针尖随样品表面的起伏上下移动,从而记录下针尖上下运动的轨迹,即可给出样品表面的形貌。
恒流模式是STM常用的工作模式,而恒高模式仅适于对表面起伏不大的样品进行成像。
当样品表面起伏较大时,由于针尖离样品表面非常近,采用恒高模式扫描容易造成针尖与样品表面相撞,导致针尖与样品表面的破坏。
STM原理图AFM的工作原理AFM的基本原理与STM类似,在AFM中,使用对微弱力非常敏感的弹性悬臂上的针尖对样品表面作光栅式扫描。