槽轮机构设计方案
《机械设计原理》槽轮机构
1 棘轮机构 2 槽轮机构 3 凸轮式间歇机构 4 不完全齿轮机构
2 槽轮机构
1. 槽轮机构的工作原理 2. 槽轮机构的类型和特点 3. 槽轮机构的应用 4. 槽轮的槽数与运动特性1.槽轮机构的工作原理 Nhomakorabea2槽轮机构
主动销轮作等速转动,当圆销未进入径向槽时,槽 轮因其内凹的锁止弧被销轮外凸的锁止弧锁住而静止;
当圆销开始进入径向槽时,两锁止弧脱开,槽轮在 圆销的驱动下转动。
2 槽轮机构
1. 槽轮机构的工作原理 2. 槽轮机构的类型和特点 3. 槽轮机构的应用 4. 槽轮的槽数与运动特性
2.槽轮机构的类型和特点
2槽轮机构
2.槽轮机构的类型和特点 外啮合与内啮合
2槽轮机构
除从动件转向不同外,内啮合槽轮机构结构紧凑,传动 较平稳。
3.槽轮机构的应用
2槽轮机构
你一定看过电影,屏幕上连续播放的生动画面,让你 心旷神怡。但你知道吗?胶片的走动必须是间歇的,而槽 轮机构则为实现其间歇运动的可选方案之一。
放映机
3.槽轮机构的应用
自动灌装机
2槽轮机构
自动传送链装置
2 槽轮机构
1. 槽轮机构的工作原理 2. 槽轮机构的类型和特点 3. 槽轮机构的应用 4. 槽轮的槽数与运动特性
2.槽轮机构的类型和特点
2槽轮机构
圆销分布不等
用于要求拨盘转一周,槽轮k
次停歇的时间互不相等时。
圆销中心半径不等 用于拨盘旋转一周中槽轮k次的
运动时间也互不相等时。
2.槽轮机构的类型和特点
槽条机构
2槽轮机构
球面槽轮机构
2 槽轮机构
1. 槽轮机构的工作原理 2. 槽轮机构的类型和特点 3. 槽轮机构的应用 4. 槽轮的槽数与运动特性
槽轮机构设计方案
基于Predator SFC 系统的槽轮机构CAD/CAM 创新实验---------------槽轮机构设计方案1. 槽轮机构简介在图1中的外槽轮机构中,主动件拔盘以角速度w1匀速转动,当拔盘上的圆销转到图1所示的A 位置时,拨盘上锁止弧S1的起使边到达中心连线O 1O 2位置,槽轮开始转动。
当圆销转到A 1时,拔销退出轮槽,拔盘继续转动,槽轮却停止转动,我们称此时的槽轮被锁住,槽轮上的内凹锁止弧和拨盘上的外凸锁止弧啮合在一起。
这样,主动拨盘连续转动就转换成槽轮的间歇转动。
为避免槽轮在起动和停歇时发生刚性冲击,拔销开始进入和离开轮槽时,轮槽的中心线应和圆销中心A 的运动圆周相切,即拔销转到图1所示位置时,O 1A ⊥O 2A 。
图1外槽轮机构组成:带圆销的拨盘、带有径向槽的槽轮。
拨盘和槽轮上都有锁止弧:槽轮上的凹圆弧、拨盘上的凸圆弧,起锁定作用。
ωωo o 锁止弧 槽轮 拨盘 圆销工作过程:拨盘连续回转,当两锁止弧接触时,槽轮静止;反之槽轮运动。
作用:将连续回转变换为间歇转动。
特点:结构简单、制造容易、工作可靠、机械效率高,能平稳地、间歇地进行转位。
因槽轮运动过程中角速度有变化,不适合高速运动场合。
2.槽轮机构优点(1)结构简单,工作可靠,效率较高;(2)在进入和脱离啮合时运动较平稳,能准确控制转动的角度;(3)转位迅速,从动件能在较短的时间内转过较大的角度;(4)槽轮转位时间与静止时间之比为定值。
3.槽轮机构缺点(1)槽轮的转角大小不能调节;(2)槽轮转动的始、末位置加速度变化较大,从而产生冲击:(3)在工作盘定位精度要求较高时,利用锁紧弧面往往满足不了要求,而需另加定位装置。
(4)槽轮的制造与装配精度要求较高。
由于这些原因,槽轮机构一般应用在转速不高的装置中。
4.槽轮机构的工作原理槽轮机构,又叫马尔他机构或日内瓦机构,由具有径向槽的槽轮1和具有拨销2的拨杆3组成,其工作原理如图2所示。
图2 槽轮机构工作原理简图当拨杆转过一定的角度,拨动槽轮转过一个分度角,由图(a)所示的位置转到图(b)所示的位置时,拨销退出轮槽,此后,拨杆空转,直至拨销进入槽轮的下一个槽内,才又重复上述的循环。
【精品】槽轮机构设计方案(可编辑
槽轮机构设计方案------------------------------------------作者------------------------------------------日期基于Predator SFC系统的槽轮机构CAD/CAM创新实验---------------槽轮机构设计方案1.槽轮机构简介在图1中的外槽轮机构中,主动件拔盘以角速度w1匀速转动,当拔盘上的圆销转到图1所示的A位置时,拨盘上锁止弧S1的起使边到达中心连线O1O2位置,槽轮开始转动。
当圆销转到A1时,拔销退出轮槽,拔盘继续转动,槽轮却停止转动,我们称此时的槽轮被锁住,槽轮上的内凹锁止弧和拨盘上的外凸锁止弧啮合在一起。
这样,主动拨盘连续转动就转换成槽轮的间歇转动。
为避免槽轮在起动和停歇时发生刚性冲击,拔销开始进入和离开轮槽时,轮槽的中心线应和圆销中心A的运动圆周相切,即拔销转到图1所示位置时,O1A⊥O2A。
图1外槽轮机构ω2ω1o1 o2锁止弧槽轮拨盘圆销组成:带圆销的拨盘、带有径向槽的槽轮。
拨盘和槽轮上都有锁止弧:槽轮上的凹圆弧、拨盘上的凸圆弧,起锁定作用。
工作过程:拨盘连续回转,当两锁止弧接触时,槽轮静止;反之槽轮运动。
作用:将连续回转变换为间歇转动。
特点:结构简单、制造容易、工作可靠、机械效率高,能平稳地、间歇地进行转位。
因槽轮运动过程中角速度有变化,不适合高速运动场合。
2.槽轮机构优点(1)结构简单,工作可靠,效率较高;(2)在进入和脱离啮合时运动较平稳,能准确控制转动的角度;(3)转位迅速,从动件能在较短的时间内转过较大的角度;(4)槽轮转位时间与静止时间之比为定值。
3.槽轮机构缺点(1)槽轮的转角大小不能调节;(2)槽轮转动的始、末位置加速度变化较大,从而产生冲击:(3)在工作盘定位精度要求较高时,利用锁紧弧面往往满足不了要求,而需另加定位装置。
(4)槽轮的制造与装配精度要求较高。
由于这些原因,槽轮机构一般应用在转速不高的装置中。
槽轮机构设计
3
τ =td/T=(Z-2)K/(2Z)<1 112.5 112.5
0.75 247.5 22.50
φ 2=at((λ SINφ 1)/(1+λ COSφ 1))
10 W2=d(φ 1)/dt ξ 2=d(W1)/dt 槽轮角位移W2最大时φ 1 0.00 -35.36
φ 1=
Π
W2(MAX)=
6.20
槽轮角加速度ξ 2最大时φ 1 φ 1= ξ 2= ± ± 148.36 34.63
Z、A、r、K根据空间安装尺寸和大小受力决定
槽数 主动件转角 槽间角
Z/个 2α /度 2β /度
8
中心距 2α =PI(1-2/Z) 2β =180-2α
A/mm
81 135.00 45.00 31.00 0.38 6.5
主动件圆柱销中心半径 R1与A的比值 圆销半径 槽轮外圆半径 槽轮深度(最小值)
主动件轮毂直径(最大值)
R1/mm λ r/mm R2/mm h/mm d0/mm dk/mm Rx/mm K/个 K/个
槽轮轮毂直径(最大值) 锁止弧半径(最大值) 圆销个数(最大值) 圆销个数选定值 槽轮每次转位时间td 动停比 周期 运动系数 主动件角位移 槽轮角位移 主动件角速度 槽轮角速度 槽轮角加速度
κ T τ φ 1/度 φ 2/度 W1 W2 ξ 2
κ =td/ti=(Z-2)/(2Z/K-(Z-2))
R1=A*SIN(β ) λ =R1/A=SIN(β )
R2^2=(A*COS(β ))^2+r^2 h≥A(λ +COS(β )-1)+r d0<2A(1-COS(β )) dk<2A(1-λ )-2r Rx<R1-r K<2Z/(Z-2) 2 槽轮每次停歇时间ti
马氏槽轮机构计算公式
马氏槽轮机构计算公式马氏槽轮机构是一种重要的机械传动机构,它的运动规律和传动性能对于机械设备的设计和运行具有重要的影响。
在工程实践中,我们常常需要对马氏槽轮机构进行计算,以确定其运动参数和传动性能。
本文将介绍马氏槽轮机构的计算公式,并结合实例进行说明。
1. 马氏槽轮机构的基本结构和运动规律。
马氏槽轮机构由马氏槽轮和马氏槽轮架组成,其中马氏槽轮架固定,马氏槽轮绕其转动。
马氏槽轮的外轮廓呈槽状,内部有齿轮或链条与之相连,通过外部的驱动力使其转动。
马氏槽轮架上有一个定位轴,马氏槽轮绕定位轴做往复运动。
马氏槽轮的运动规律可以用以下公式描述:θ = ωt + φ。
其中,θ为马氏槽轮的转动角度,ω为角速度,t为时间,φ为初相位。
2. 马氏槽轮机构的传动性能计算。
马氏槽轮机构的传动性能可以通过以下公式进行计算:速比 = (r2 r1) / (r2 + r1)。
其中,r1为马氏槽轮的内半径,r2为马氏槽轮的外半径。
速比是马氏槽轮机构的一个重要参数,它决定了马氏槽轮的传动效果和传动比。
3. 马氏槽轮机构的动力学计算。
马氏槽轮机构的动力学性能可以通过以下公式进行计算:τ = J α。
其中,τ为马氏槽轮的扭矩,J为转动惯量,α为角加速度。
转动惯量是马氏槽轮机构的一个重要参数,它决定了马氏槽轮的惯性特性和动力传递能力。
4. 马氏槽轮机构的应用实例。
以某工程机械设备中的马氏槽轮机构为例,其马氏槽轮的内半径r1为20cm,外半径r2为30cm,角速度ω为10rad/s,初相位φ为π/4。
根据以上公式,可以计算出该马氏槽轮机构的转动角度、速比和扭矩等参数。
5. 结论。
马氏槽轮机构是一种重要的机械传动机构,其运动规律和传动性能可以通过一系列的计算公式来描述和分析。
在工程实践中,我们可以根据这些公式来计算马氏槽轮机构的运动参数和传动性能,从而为机械设备的设计和运行提供参考。
希望本文对于马氏槽轮机构的计算公式有所帮助,也希望能够为相关领域的工程师和研究人员提供参考和借鉴。
槽轮机构的组成及其特点
槽轮机构的组成及其特点newmaker(1) 槽轮的组成(Composition of Geneva Mechanism)如右图所示,主动拨盘上的圆柱销进进槽轮上的径向槽以前,凸锁止弧将凹锁止弧锁住,则槽轮静止不动。
圆柱销进进径向槽时,凸、凹锁止弧恰好分离,圆柱销可以驱动槽轮转动。
当圆柱销脱离径向槽时,凸锁止弧又将凹锁止弧锁住,从而使槽轮静止不动。
因此,当主动拨盘作连续转动时,槽轮被驱动作单向的间歇转动。
(2)槽轮的特点构造简单,外形尺寸小;机械效率高,并能较平稳地,间歇地进行转位;但因传动时存在柔性冲击,故常用于速度不太高的场合。
槽轮机构的类型及应用(1)槽轮机构的类型(Type of Geneva Mechanism)外槽轮机构:运动时,拨盘与槽轮为异向回转。
内槽轮机构:运动时,拨盘与槽轮为同向回转。
两种机构均用于平行轴之间的间歇传动。
(2)槽轮机构的应用举例(Application Sample of Geneva Mechanism)外槽轮机构被广泛应用于电影放映机中。
(3)球面槽轮机构(Sphere Geneva Mechanism)当需要在两相交轴之间进行间歇传动时,可采用球面槽轮机构。
右图为球面槽轮机构。
槽轮机构的运动系数及运动特性(1)槽轮机构的运动系数k (Motion Factor of Geneva Mechanism)k=td/t又因拨盘1一般为等速回转,因此时间的比值可以用拨盘转角的比值来表示。
可得外槽轮机构运动系数的另一表达式:由于运动系数k应大于零,所以由上式可知外槽轮径向槽的数目z应大于3。
又由上式可知,运动系数k总是小于0.5的。
也就是说,在这种槽轮机构中,槽轮的运动时间总是小于其静止的时间。
假如在拨盘1上均匀分布地装有n个圆销,则当拨盘转动一周时,槽轮将被波动n次,故运动系数是单圆销k=n(1/2-1/z)又因k值应小于或即是1,即n(1/2-1/z)≤1由此得n≤2z/(z-2)由此式可得槽轮z与圆销数n的关系如下表2)外槽轮机构的运动特性(Motion Property of Geneva Mechanism)如图所示为外槽轮机构在运动过程中的任一位置。
槽轮机构的结构改进设计与应用研究_
3()252255255,33)cos 21(sin 132ωλϕλϕλλεε⋅+−−⋅==i (1.8) 其中,λ- 图1-2中拨盘5的半径与槽轮机构中心距54O O 之比35i -图1-2中递纸滚筒3与主动拨盘5的传动比;2/15/15/13/135××=i 由式(1.6)~ (1.8)可得机构运动特性曲线如图1-3所示【2】:图1-3 直线槽轮递纸机构运动曲线Fig.1-3- Kinematics characteristics of straight Geneva mechanism由图1-3可以看出,槽轮间歇递纸机构具有以下优点:(1).递纸滚筒咬牙在输纸板前后有D 6的时间速度为零,保证递纸牙在静止条件下取纸;(2).递纸滚筒的速度变化规律为近似简谐运动,无速度突变。
但是该机构存在直线槽轮机构的固有缺陷,主要表现为:(1).拨盘圆销进出槽轮瞬间存在柔性冲击。
随着转速的增高,冲击更为明显,从而影响递纸精度和套印精度。
(2).角加速度峰值过大,引起的动载荷较大,导致圆销对槽轮的压力和接触应力增大,加剧了槽轮的磨损,从而影响定位精度,造成纸张套印不准。
(3).直线槽轮设计灵活性较差。
滚筒直径和位置一经确定,传纸滚筒和递纸滚筒的加减速角0α、0β及运动系数k 即为定值,设计灵活性较差。
综上可知,直线槽轮机构在动力学性能和设计柔性方面都存在固有缺陷,主要表现为启动和停歇阶段有柔性冲击、加速度峰值过大和运动系数灵活性差,其中的动力学性能方面的缺陷随着机器精度要求的提高而日趋明显,而设计灵活性差的问题始终无法解决。
1.3槽轮机构改进方案的研究现状由以上分析可知,直线槽轮机构存在一系列固有缺陷,其根本原因是采用直线作为轮廓线所致。
为克服槽轮机构结构缺陷,设计人员提出了多种改进方案,可以归结为两类:1.槽轮机构与其他机构组合为改善直线槽轮机构的动力特性,可采用其他机构,如连杆、凸轮、齿轮机构与槽轮机构组合应用。
槽轮棘轮机构
将2α1代入得:k=1/2-1/z ① 因为 k>0 所以槽轮的槽数z ≥3,由①式可知 其运动系数k总小于0.5,故这种单销外槽轮机构槽轮 的运动时间总小于其静止时间。 如果想要k ≥0.5的槽轮机构,则可在拨盘上多 装几个圆销,设装有n个均匀分布的圆销,则拨盘转 一圈,槽轮被拨动n次。故运动系数是单圆柱销的n倍, 即: k=n(1/2-1/z) 因为 k ≦1 得:n ≦ 2z/(z-2) ② 由②可得槽数与圆销数的关系
1.机构组成
图示为机械中常用的外啮合式棘 轮机构,它由主动摆杆,棘爪, 棘轮、止回棘爪和机架组成。
2.工作原理
主动件空套在与棘轮固连的从动 轴上,并与驱动棘爪用转动副相 联。当主动件顺时针方向摆动时, 驱动棘爪便插入棘轮的齿槽中, 使棘轮跟着转过一定角度,此时, 止回棘爪在棘轮的齿背上滑动。 当主动件逆时针方向转动时,止 回棘爪阻止棘轮发生逆时针方向 转动,而驱动棘爪却能够在棘轮 齿背上滑过,所以,这时棘轮静 止不动。因此,当主动件作连续 的往复摆动时,棘轮作单向的间 歇运动。
2棘轮机构所具有的单向间歇运动特性在实际应用中可满足如送进制动10122槽轮机构槽轮机构是由带有圆销a的主动具有径向槽的从动槽2和机架组成如图112类型及应用外槽轮机构内槽轮机构13槽轮机构一般应用在转速不高要求间歇地转过一定角度的分度装置中如转塔车床上的刀具转位机构
第十二章 其他常用机构
12-1 棘轮机构
二、螺纹的几何参数
1、螺距P
2、导程S S=nP
3、螺纹升角ψ tg ψ=nP/πd2
三、螺纹牙型特点和应用
联接螺纹
普通螺纹
管螺纹
自攻钉用螺纹
槽轮机构
槽轮机构一.槽轮机构的组成及工作特点(1)机构组成槽轮机构是由主动拨盘、从动槽轮和机架等组成。
(2)工作特点槽轮机构可将主动拨盘的等速回转运动转变为槽轮时动时停的间歇运动,并具有结构简单、外形尺寸小、机械效率高,以及能较平稳的、间歇地进行转位等优点,但存在柔性冲击的缺点,故常用于速度不太高的场合。
二、槽轮机构的类型及应用(1)槽轮机构的类型普通型特殊型外槽轮机构内槽轮机构槽条机构不等臂多销槽轮机构球面槽轮机构偏置式槽轮机构偏置外槽轮机构偏置内槽轮机构内啮合棘轮机构外啮合棘轮机构空间棘轮机构外槽轮机构内槽轮机构内槽轮机构特殊槽轮机构特殊槽轮机构 运动时间均不等槽轮机构时间间隔不等槽轮机构 空间球面槽轮机构参数变化时的槽轮机构运动情况(2)槽轮机构的应用例1 蜂窝煤制机模盘转位机构例2 幻灯片放映机机构自动灌装机切糕机三、槽轮的设计(1)槽轮机构的典型结构如图所示,它由主动拨盘、从动槽轮和机架组成。
拨盘以等角速度作连续回转,当上的圆销未进入槽轮的径向槽时,由于槽轮的内凹锁止弧nn被拨盘的外凹槽锁止弧mm卡住,故槽轮不懂。
图示为圆销钢进入槽轮径向槽时的位置,此时锁止弧nn又也刚被松开。
此后,槽轮受圆销的驱使而转动。
当圆销在另一边离开径向槽时,锁止弧nn又被卡住,槽轮又静止不懂。
直至圆销再次进入槽轮的另一个径向槽时,又重复上述运动。
所以槽轮作时动时停的间歇运动。
槽轮机构的结构简单,外形尺寸小,机械效率高,并能较平稳的、间歇的进行转位。
但因传动时尚存在柔性冲击,故常用于速度不太高的场合普通槽轮机构的运动系数在图中所示,当主动拨盘B回转一周时,槽轮A的运动时间与主动拨盘转一周的总时间之比,称为槽轮机构的运动系数,并以к表示因为拨盘B一般为等速回转,所以时间之比可以用拨盘转角之比来表示。
对于单圆销外槽轮机构,时t1与t2所对应的拨盘转角分别为2和2又为了避免圆销B和径向槽发生刚性冲击,圆销开始进入或脱出径向槽的瞬时,其线速度方向应沿着径向槽的中心线。
槽轮机构的工作原理
槽轮机构的工作原理
槽轮机构是一种常见的传动机构,其工作原理是利用槽轮和槽键的配合来实现传动。
具体工作原理如下:
1. 槽轮的设计:槽轮是一个圆盘状的装置,其边缘上有一系列等距的槽。
槽的数量和形状可以根据实际需求进行设计。
2. 槽键的配合:与槽轮相配合的是一系列槽键,槽键通常是具有长方形或楔形截面的薄片。
槽键的数量和形状与槽轮的槽一一对应。
3. 传动方式:当槽轮和槽键配合时,通过转动槽轮,槽轮上的槽会逐个与槽键配合,使得槽键被推进或拉出。
这样,槽键的运动将会传递给与其相连的零件,实现传动。
4. 传动特点:槽轮机构的传动特点是具有离合功能,即当槽轮不转动时,槽键和槽之间不会有相对运动,零件之间不会产生传动;而当槽轮开始转动时,槽键和槽之间的相对运动将会传递给相连的零件,实现传动功能。
总体来说,槽轮机构的工作原理是通过槽轮和槽键的配合,利用槽键的相对运动来实现传动功能。
槽轮棘轮机构ppt课件
3.棘轮机构的类型
双向棘轮机构
双动棘轮机构
回转棘爪双向式
-
勾头双动式
摩擦式
-
单动式
4.棘轮转角的调节
(1)调节摇杆的摆角 (2)变更遮板位置
-
5、特点和应用
(1)棘轮机构具有结构简单、制造方便 和运动可靠等优点,故在各类机械中有广 泛的应用。但是由于回程时摇杆上的棘爪 在棘轮齿面上滑行时引起噪声和齿尖磨损。 同时为使棘爪顺利落入棘轮齿间,摇杆摆 动的角度应略大于棘轮的运动角,这样就 不可避免地存在空程和冲击。此外棘轮的 运动角必须以棘轮齿数为单位有级地变化。 因此棘轮机构不宜应用于高速和运动精度 要求较高的场合。 (2)棘轮机构所具有的单向间歇运动特
α2/ω1²=λ(λ²-1)sinα/(1-2λcosα+λ²) ²
由式可知,当拨盘角速度ω1一定 时,槽轮角速度及角速度及角加速 度的变化取决于槽轮的模数。
-
槽轮运动前半段,槽轮角速度ω2 是增加的,角速度α2>0,后半段相反。 由图可知,当圆销开始进入和退出径向槽时,和外槽轮机构一样,也有角 加速度突变,但当|α| ~0时,角加速度数值迅速下降并趋于零。可见,内 槽轮机构的动力性能比外槽轮机构好得多。
s=( lA - lB )φ/(2π)
所以当lA 和 lB 相差很小时,S可以很小。
这种螺旋机构称为微动螺旋机构,常用
于测微计、分度机构及调节机构中。
若两段螺旋的螺纹旋向相反
s=( lA +lB )φ/(2π)
这种称为复式螺旋机构,应用于自动定心
夹紧机构。
-
螺旋传动的应用、 特点与分 类
-
12-3 螺旋机构
一、螺纹
螺纹有内外螺纹 之分,他们共同组 成螺旋副。螺纹按 工作性质分为联接 用螺纹和传动用螺 纹。
槽轮机构加工工艺设计及编程
摘要槽轮机构是一种步进间歇运动机构,由于结构简单、制造容易、工作可靠,能准确地控制转角, 机械效率高, 所以在自动和半自动生产线中得到广泛的应用但槽轮在销轴进出槽轮槽口时加速度大,机构产生较大的冲击,而且随着转速的增加和槽轮槽数的减少冲击加剧,因而不适用于高速运转的情况。
本设计以槽数6 、销轮和槽轮中心距6mm、销轴半径3mm、铣刀半径6mm 为例,设计槽槽轮机构,并对槽轮的运动特性进行分析。
采用CAM技术对槽轮和拨盘进行数控编程,对零件进行工艺分析,确定刀具和切削用量,最后形成NC指令。
关键词:槽轮机构工艺数控编程 NC目录前言第一章概述 (4)第一节、槽轮机构概述 (4)第二节、槽轮机构简介 (4)第三节、槽轮机构的应用和研究现状 (4)第二章槽轮机构的设计与分析 (7)第一节、槽轮机构的工作原理、特点及应用 (7)第二节、外槽轮机构角速度和角加速度的分析 (8)第三节、内槽轮机构的角速度和角加速度规律 (10)第四节、主要几何尺寸的设计 (10)第五节、本设计的主要几何尺寸的设计 (11)第三章数控加工技术概述 (17)第一节、数控加工技术的发展 (17)第二节、数控加工工艺的特点 (19)第三节、数控机床与普通机床相比具有的优越性 (20)第四章槽轮和拨盘的工艺规程设计 (21)第一节、机械加工工艺规程的作用 (21)第二节、机械加工工艺规程的制定程序 (21)第三节、毛坯的选择 (22)第四节、定位基准的选择 (22)第五节、加工顺序的安排 (23)第六节、本零件工艺规程设计 (23)第五章结论 (33)第六章致谢 (34)参考文献 (36)前言在机械加工工艺教学中,机械制造专业学生及数控技术专业学生都要学习数控车床操作技术。
让学生了解相关工种的先进技术,同时培养工作岗位的前瞻性;在讲授数控知识的同时,必须要求学生掌握基本的机械加工工艺,增强系统意识,理解手动操作与自动操作之间的联系,真正把学生培养成为适应各种工作环境和岗位的多面手。
六槽槽轮机构尺寸计算
六槽槽轮机构尺寸计算一、六槽槽轮机构尺寸计算相关知识大集合(一)基础概念1. 啥是六槽槽轮机构呢?简单来说呀,它就是一种机械结构,由槽轮和拨盘等部件组成的哦。
这槽轮上有六个槽,这些槽在整个机构的运转中可是起着超级重要的作用呢。
比如说在一些自动化生产设备里,它就能按照特定的规律来控制运动的间歇啥的。
2. 槽轮机构的组成部分除了槽轮和拨盘,还有机架呀。
机架就像是它们的家一样,把这些部件稳稳地固定在合适的位置上,这样整个机构才能正常工作呢。
(二)尺寸计算相关的重要参数1. 槽轮的直径该怎么确定呢?这可跟很多因素有关哦。
首先得考虑它要承担的负载大小,如果负载大,可能就需要更大的直径来保证强度。
然后呢,还得看它和其他部件的配合关系。
比如说和拨盘的连接部分,如果这个连接要求比较精密,那在计算直径的时候就得把这个因素考虑进去。
2. 槽的尺寸又怎么算呢?槽的宽度要能够容纳拨销顺利地进出,不能太窄,不然拨销容易卡住;也不能太宽,太宽了可能会导致运动不稳定。
槽的深度呢,也要根据拨销的长度等因素来确定,要保证拨销在槽内能够有效地传递动力。
3. 拨盘的尺寸计算也不简单。
拨盘的半径要根据槽轮的尺寸以及它们之间的传动比来计算。
传动比这个概念很重要哦,它决定了槽轮和拨盘之间的运动关系。
如果传动比不合适,整个机构的运动就会乱套的。
(三)尺寸计算中的数学关系1. 槽轮的分度圆直径和槽数之间有个很有趣的数学关系。
一般来说,分度圆直径和槽数是成一定比例的。
比如说,如果我们知道了槽数是6,再结合其他一些已知条件,像中心距之类的,就能算出分度圆直径的大致范围呢。
2. 在计算拨盘和槽轮的中心距的时候,也要用到一些几何知识。
这个中心距会影响到整个机构的紧凑性和运动的平稳性。
如果中心距太大,整个机构就会显得很松散;如果太小呢,又可能会导致部件之间相互干涉。
3. 还有槽轮的节圆半径和拨盘的节圆半径之间的关系。
这两个半径之间的比例关系会影响到动力传递的效率和运动的准确性。
槽轮机构的参数及设计
§4.2槽轮机构4.2.1槽轮机构的类型、工作原理和应用图4.10 槽轮机构槽轮机构又称马尔他机构,有外啮合和内啮合两种类型,如图4.10所示。
本节仅介绍常用的外槽轮机构。
槽轮机构由具有径向槽的槽轮2和具有圆销G 的拨杆1及机架所组成。
原动件l作等速连续转动时.,从动件2时而转动,时而静止。
当拨杆l的圆销A未进入槽轮2的径向槽时,由于槽轮2的内凹锁止弧夕被拨杆1的外凸锁止弧卡住,故槽轮2静止不动。
图4.10,a所示是圆销A 开始进入槽轮2的径向槽时的位置,这时锁止弧卢开始被松开,因而圆销A能驱使槽轮转动。
当圆销开始脱离槽轮的径向槽时,槽轮的另一锁止弧又被拨杆1的外凸圆弧卡住,致使槽轮2又静止不转,直至拨杆1的圆销A再次进入槽轮的另一径向槽时,两者又重复上述运动过程。
外啮合槽轮机构,原动拨杆1与从动槽轮转向相反;内啮合槽轮机构,原动拨杆l与从动槽轮2转向相同。
图4.11 槽轮机构在电影放映机中的应用槽轮机构具有构造简单、制造容易、工作可靠和机构效率高等特点;但槽轮机构在工作时有冲击,并随着转速的增加及槽数的减少而加剧,故适用范围受到一定的限制。
槽轮机构常用于某些自动机械(如自动机床、电影放映机等)和轻工机械中作转位机构。
图4.11所示为槽轮机构在电影放映机中的应用。
4.2.2槽轮机构的主要参数槽数n和圆销数k是槽轮机构的两个主要参数。
为了使槽轮开始转动和终止转动时的角速度为零以免刚性冲击,圆销进入或脱离槽轮的径向槽时,圆销中心的轨迹圆应与径向槽的中心线相切。
由图6.10,a 可得槽轮2转动时拨杆1的转角为01022221z ϕπϕπ⎛⎫=-- ⎪⎝⎭ (4-2)在一个运动循环中,槽轮2的运动时间与原动件1的运动时间之比称为运动系数,用τ表示。
对于单销槽轮机构,若原动件等速转动一周为一个运动循环,则时间比可转换成转角之比,即012222d t z t z ϕτπ-=== (4-3)由于d t >0,所以τ>0,因此z ≥3。
12-2槽轮机构
(cos ) 1 其中: dα/dt =ω1 2 2 dt 1 1 2 cos
d
2
2 ( 1) sin d 2 2 2 1 其中:dω1 /dt = 0 2 2 dt 1 (1 2 cos1 )
上式说明,当拨盘以等角速度运动时,槽轮随位置的变化而变化。因为λ随槽数z的不同 而变化,因此,不仅随机构位置变化,而且随槽数变化。
i21
2 1
(cos ) 6 i21 1 2 cos 2 5 (2 1) sin k 2 2 ( 1 2 cos ) 1 4
d1 R r
φ
1 r0 L s 2
s=Lcosφ=Lcos(π /z) h≥s-(L-R-r) d1≤2(L-s) d2≤2(L-R-r) b=3~5 mm 经验确定 r0=R-r-b
h
d2
b
§12-2 槽轮机构
一、槽轮机构的组成及其工作特点
拨盘
锁止弧
组成:带圆销的拨盘、带有径向 圆销 槽的槽轮。拨盘和槽轮上都有锁 止弧:槽轮上的凹圆弧、拨盘上 的凸圆弧,起锁定作用。 工作过程:拨盘连续回转,当两锁止 弧接触时,槽轮静止;反之槽轮运动。
ω1
o1
o2 ω2
槽轮
作用:将连续回转变换为间歇转动。 特点:结构简单、制造容易、工作可靠、机械效率高,
运动特性分析: ①槽轮运动的ω max、amax随槽数z的增多而减小。 ②存在柔性冲击。Z愈少,冲击愈大。
圆销进入或退出径向槽时,角速度有突变,
运动特性曲线
(2)内啮合槽轮机构
用同样方法可求得内啮合槽轮机构 的运动曲线如图所示。
2 12
10、第四章之二、槽轮机构、组合机构简介
当槽轮2转过2β角时,拨盘1转过2α角。
2α= π-2β=π-2π/ z =π(z -2)/ z
2、槽轮机构运动系数 运动系数( K):槽轮每次运动的时间t’对主动件拨盘1 回转一周的时间t之比。 ( ∵拨盘1等速回转, ∴时间 比可用转角比表示)
讨论:
2α π (Z-2)/Z 1 1 t' K= = = = t 2 Z 2π 2π
四、不完全齿轮机构简介
1、工作原理 由普通齿轮机构演化而来,不同之 处在于轮齿不布满整个圆周。主动 轮转一周,从动轮转1/4周。从动轮 停歇时,主动轮上的锁住弧与从动 轮上的锁住弧互相配合锁住,以保 证从动轮停歇在预定位置上。
2、特点和应用
从动轮每转一周的停歇时间、运 动时间及每次转动的角度变化范 围都较大,设计较灵活;但加工 工艺复杂,从动轮在运动开始, 终了时冲击较大,故一般用于低 速、轻载场合。
应用:用于转速较低,不需要调节转角大小的场合。
如图:刀架上装有六种刀 具,槽轮上相应开有六条 径向槽,两者固联在同一 根轴上。拨盘转动一周, 驱动槽轮与刀架一同转过 600,从而将下一工序所需 刀具转换到加工位置上。
图示为电影放映机的卷片机构——利用槽轮机构使电 影胶片每转过一个画面停留一定的时间,从而满足人 眼“视觉暂留现象”的要求。
4-2-1、槽轮机构的工作原理是怎样的?
4-2-2、为什么槽轮机构的运动系数K必须大于零而小于1?
4-2-3、如何选择槽轮的槽数?
§4.3 组合机构简介
导入:
在常用的机构中,通常把结构最简单的机构称为基本 机构。如:四杆机构、凸轮机构等。 但基本机构有一定的局限性,如:凸轮机构从动件不 能作整周转动,连杆机构不能完全准确地实现给定的运动 规律。为满足工程上对机构运动的多样性和复习性的要求, 常将几个基本机构组合成一体,这种形式的机构称组合机 构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于Predator SFC 系统的槽轮机构CAD/CAM 创新实验 ---------------槽轮机构设计方案1. 槽轮机构简介在图1中的外槽轮机构中,主动件拔盘以角速度w1匀速转动,当拔盘上的圆销转到图1所示的A 位置时,拨盘上锁止弧S1的起使边到达中心连线O 1O 2位置,槽轮开始转动。
当圆销转到A 1时,拔销退出轮槽,拔盘继续转动,槽轮却停止转动,我们称此时的槽轮被锁住,槽轮上的内凹锁止弧和拨盘上的外凸锁止弧啮合在一起。
这样,主动拨盘连续转动就转换成槽轮的间歇转动。
为避免槽轮在起动和停歇时发生刚性冲击,拔销开始进入和离开轮槽时,轮槽的中心线应和圆销中心A 的运动圆周相切,即拔销转到图1所示位置时,O 1A ⊥O 2A 。
图1外槽轮机构组成:带圆销的拨盘、带有径向槽的槽轮。
拨盘和槽轮上都有锁止弧:槽轮上的凹圆弧、拨盘上的凸圆弧,起锁定作用。
ω2ω1o 1o 2锁止弧槽轮拨盘 圆销工作过程:拨盘连续回转,当两锁止弧接触时,槽轮静止;反之槽轮运动。
作用:将连续回转变换为间歇转动。
特点:结构简单、制造容易、工作可靠、机械效率高,能平稳地、间歇地进行转位。
因槽轮运动过程中角速度有变化,不适合高速运动场合。
2.槽轮机构优点(1)结构简单,工作可靠,效率较高;(2)在进入和脱离啮合时运动较平稳,能准确控制转动的角度;(3)转位迅速,从动件能在较短的时间内转过较大的角度;(4)槽轮转位时间与静止时间之比为定值。
3.槽轮机构缺点(1)槽轮的转角大小不能调节;(2)槽轮转动的始、末位置加速度变化较大,从而产生冲击:(3)在工作盘定位精度要求较高时,利用锁紧弧面往往满足不了要求,而需另加定位装置。
(4)槽轮的制造与装配精度要求较高。
由于这些原因,槽轮机构一般应用在转速不高的装置中。
4.槽轮机构的工作原理槽轮机构,又叫马尔他机构或日内瓦机构,由具有径向槽的槽轮1和具有拨销2的拨杆3组成,其工作原理如图2所示。
图2 槽轮机构工作原理简图当拨杆转过一定的角度,拨动槽轮转过一个分度角,由图(a)所示的位置转到图(b)所示的位置时,拨销退出轮槽,此后,拨杆空转,直至拨销进入槽轮的下一个槽内,才又重复上述的循环。
这样,拨杆(主动件)的等速(或变速)连续(或周期)运动,就转换为槽轮(从动件)时转时停的间歇运动。
槽轮机构常采用锁紧弧定位,即利用拨杆上的外凸圆弧一锁紧弧A与槽轮上的内凹圆弧一定位弧B的接触锁住槽轮。
图(a)所示为拨销开始进入轮槽时的位置关系,这时外凸圆弧面的端点F点离开凹面中点,槽轮开始转动。
图(b)所示为拨销刚要离开轮槽时的位置关系,这时外凸圆弧面的另一端点E刚好转到内凹圆弧面的中点,拨杆继续转动,E点越过凹面中点,槽轮被锁住。
图(c)为拨销退出轮槽以后的情况,这时,外凸圆弧面与内凹圆弧面密切接触,槽轮被锁住而不能向任何方向转动.由上述工作过程的要求,拨杆上的外凸圆弧缺口应对称于拨杆轴线。
5.主要几何尺寸的设计公式图 3为槽轮机构主要尺寸关系图。
图中O1为拔盘中心,O2为槽轮中心,L1为拨销的轨迹半径;L2为槽轮半径;L3为中心距,h为槽轮槽深,rb为拨销半径,δ为间隙。
图3 槽轮机构主要几何尺寸关系图设拔盘轴的直径为d.为避免槽轮在起动和停歇时发生刚性冲击,圆销开始进入和离开轮槽时,轮槽的中心线应和圆销中心的运动圆周相切,从而决定了槽轮机构主要尺寸之间的关系,根据图4所示槽轮机构的设计计算公式如下:图4 槽轮机构主要几何尺寸计算关系图(1)已知参数:槽轮槽数 z , 拨盘上圆销数目 m , 中心距C=O1O2 ,拨盘上圆销半径R T , 拨盘转速 n1(2) 槽轮运动角: 2β=2л/z(3) 拨盘运动角: 2α=л-2β(4) 拨盘上圆销数目: m < 2z/(z-2)(5) 圆销中心轨迹半径: R1=C sin(β)(6) 槽轮外径: R2=[(C sin(β))2+R2T]½(7) 槽轮深度: h= R1+ R2- C + R T +δ(8) 拨盘回转轴直径: d1< 2(C- R2)(9) 槽轮轴直径: d2< 2(C - R1- R T - δ)(10) 拨盘上锁止弧所对中心角:γ=2(л/m –α)(11) 锁止弧半径:R0= R1- b - R T(12) 槽轮每循环运动时间:t f = [(z-2)/z] 30/n1(13) 槽轮每循环停歇时间: t d = [(2z-m(z-2))/(mz)] 30/n1(14) 槽轮机构的动停比k: k=(m(z-2))/(2z-m(z-2))(15) 圆销中心轨迹半径R1与中心距C的比λ:λ=R1/C=sin(л/z)(16) 槽轮角位移:Ф=arc tg [γsin(θ)/(1-γcos(θ)) -α≤θ≤+α(17) 槽轮角速度:ω2=(λcos(θ)-λ)ω1/(1+λ2-2λcos(θ))(18) 槽轮角加速度:ε2=(λ(λ2-1)sin(θ)ω21/(1+λ2-2λcos(θ)2)(19) 槽轮最大角速度所在位置:θ=00一般δ的取值范围为3-6mm, 当槽轮槽数z较大时。
6.槽轮机构设计方案方案1要求槽轮机构的动停比k=1/3设:槽轮槽数Z=4 拨销m=1 中心距C=70 拨销半径R=2mmT销与槽底间隙δ=3 槽齿宽b=5求解槽轮机构的尺寸参数:(1) 槽轮运动角: 2β=2л/z=2л/4=л/2(2) 拨盘运动角: 2α=л-2β=л/2(3) 拨盘上圆销数目: m=1 < 2z/(z-2)=8/2=4(4) 圆销中心轨迹半径: R1=C sin(β)=70 × SIN(45)=(5) 槽轮外径: R2=[(C sin(β))2+R2T]½=[+4]1/2=(6) 槽轮深度: h= R1+ R2- C + R T +δ=++2+3=34(7) 拨盘回转轴直径: d1=12 < 2(C- R2)=2=(8) 槽轮轴直径: d2=12 < 2(C - R1- R T - δ)=2(70-49.5-2-3)=31(9) 拨盘上锁止弧所对中心角:γ=2(л/m –α)=3л/2(10) 锁止弧半径:R0= R1- b - R T=49.5-5-2=(11) 槽轮机构的动停比k: k=(m(z-2))/(2z-m(z-2))=2/(8-2)=1/3(12) 圆销中心轨迹半径R1与中心距C的比λ:λ=R1/C=sin(л/z)=SIN(л/4)=方案2要求槽轮机构的动停比k=1设:槽轮槽数Z=4 拨销m=2 中心距C=70 拨销半径R T=2mm 销与槽底间隙δ=3 槽齿宽b=5求解槽轮机构的尺寸参数:(1) 槽轮运动角: 2β=2л/z=2л/4=л/2(2) 拨盘运动角: 2α=л-2β=л/2(3) 拨盘上圆销数目: m=2 < 2z/(z-2)=8/2=4(4) 圆销中心轨迹半径: R1=C sin(β)=70 × SIN(45)=(5) 槽轮外径: R2=[(C sin(β))2+R2T]½=[+4]1/2=(6) 槽轮深度: h= R1+ R2- C + R T +δ=++2+3=34(7) 拨盘回转轴直径: d1=12 < 2(C- R2)=2=(8) 槽轮轴直径: d2=12 < 2(C - R1- R T - δ)=2(70-49.5-2-3)=31(9) 拨盘上锁止弧所对中心角:γ=2(л/m –α)=л/2(10) 锁止弧半径:R0= R1- b - R T=49.5-5-2=(11) 槽轮机构的动停比k: k=(m(z-2))/(2z-m(z-2))=4/(8-4)=1(12) 圆销中心轨迹半径R1与中心距C的比λ:λ=R1/C=sin(л/z)=SIN(л/4)= 7. 方案1槽轮三维模型图5 槽轮三维模型方案1槽轮设计图纸(1)槽轮图6 槽轮部分(2)拨盘槽轮机构的拨盘部分起驱动作用。
本机构的拨盘如图7所示,本结构分2层,上层起驱动左右,下层起连接槽轮的作用。
两层圈盘实为一体。
图7 拨盘部分(3) 槽轮的装配如图8所示,槽轮机构要装在一底板上并加以固定。
图上销的作用为连接机构和底板。
图8 槽轮机构的装配图8.槽轮机构的配合和表面粗糙度(1)参照刀尖圆角来设计工件圆角,未注倒角—,未注圆角—。
(2)表面粗糙度配合面和滑动面,可见加工痕迹,一般用于没有相对运动的配合面。
其它表面Ra25,为达到一般容许公差而切削后自然得到的表面,接触状态要求稳定的面,常见用手接触的面。
(微见加工痕迹)和(不见加工痕迹)用于相对运动速度不高的接触面,要精车、精铰、精镗和精铣。
(3)拨盘和槽轮孔与轴低速旋转,拨销与槽低速相对运动,用间隙配合H8/f7。
(4)没有相对运动的配合,因受力较小,用小的过盈配合H7/h6(5)槽轮外轮廓与拨盘凹弧的配合是H9/e9,大的间隙配合。
(6)中心距公差是±到±。
9. 槽轮机构的运动分析外槽轮机构角速度和角加速度的分析假设槽轮机构在工作的某一状态时的工作简图如图2-1的(a)所示,其对应的状态矢量见图9的(b)所示,O1为槽轮中心,O2为拔盘中心,E1为槽轮开始进入运动时的圆销中心的位置,E为槽轮在运动中的任一位置,角速度和角加速度曲线见图10所示。
图9槽轮机构工作简图以及矢量分析图图10 槽轮的角速度曲线图(a)和角加速度曲线图(b)(1)槽轮机构运动起来是做变加速运动,槽轮机构的最大角速度出现在θ=0位置。
(2)在拨销进入与脱离轮槽的瞬间,槽轮速度为零,但加速度不为零,所以产生柔性冲击。
(3)槽轮机构的角速度和角加速度的变化取决于槽数z。
(4)在选择槽数时,应该综合考虑多种因素。
对于槽轮机构,槽数越少则工作效率越高,一方面,槽数越少角加速度变化越大,运动平稳性能差,槽轮机构的振动、冲击和噪声将随之加大;另一方面,随着槽数的增加,槽轮的结构尺寸将加大,从动端的惯性力矩也随着加大。
同时当槽数z大于9时,槽轮机构的动停比K变化趋于平稳,动力特性的改善也明显减弱,但随着槽数增加将给机构的设计带来的困难将越大。
因此,在实际应用中,槽轮机构的槽数多在4到8范围内。
10.槽轮机构创新槽轮机构的应用和研究现状槽轮机构结构简单、工作可靠、从动件的运动能够较准确地控制等优点,在工业生产中广泛地应用于较少工位的间歇转位机构和步进机构中。
但传统的槽轮机构存在有以下两个缺点:(1)动力特性差。
槽轮在进入啮合和退出啮合瞬间,拨销的向心加速度使槽轮角加速度发生突变,从而出现柔性冲击;在槽轮转动过程中加速度变化的瞬间,由于间隙的存在,出现横越间隙的冲击;转动过程中最大角加速度也较大。
(2)分度数与动停比有确定的关系,动停比无选择余地。