基于单片机的一种嵌入式温度采集实时控制系统设计
基于STM32单片机的温度控制系统设计
基于STM32单片机的温度控制系统设计一、本文概述本文旨在探讨基于STM32单片机的温度控制系统的设计。
我们将从系统需求分析、硬件设计、软件编程以及系统测试等多个方面进行全面而详细的介绍。
STM32单片机作为一款高性能、低功耗的微控制器,广泛应用于各类嵌入式系统中。
通过STM32单片机实现温度控制,不仅可以精确控制目标温度,而且能够实现系统的智能化和自动化。
本文将介绍如何通过STM32单片机,结合传感器、执行器等硬件设备,构建一套高效、稳定的温度控制系统,以满足不同应用场景的需求。
在本文中,我们将首先分析温度控制系统的基本需求,包括温度范围、精度、稳定性等关键指标。
随后,我们将详细介绍系统的硬件设计,包括STM32单片机的选型、传感器和执行器的选择、电路设计等。
在软件编程方面,我们将介绍如何使用STM32的开发环境进行程序编写,包括温度数据的采集、处理、显示以及控制策略的实现等。
我们将对系统进行测试,以验证其性能和稳定性。
通过本文的阐述,读者可以深入了解基于STM32单片机的温度控制系统的设计过程,掌握相关硬件和软件技术,为实际应用提供有力支持。
本文也为从事嵌入式系统设计和开发的工程师提供了一定的参考和借鉴。
二、系统总体设计基于STM32单片机的温度控制系统设计,主要围绕实现精确的温度监测与控制展开。
系统的总体设计目标是构建一个稳定、可靠且高效的环境温度控制平台,能够实时采集环境温度,并根据预设的温度阈值进行智能调节,以实现对环境温度的精确控制。
在系统总体设计中,我们采用了模块化设计的思想,将整个系统划分为多个功能模块,包括温度采集模块、控制算法模块、执行机构模块以及人机交互模块等。
这样的设计方式不仅提高了系统的可维护性和可扩展性,同时也便于后续的调试与优化。
温度采集模块是系统的感知层,负责实时采集环境温度数据。
我们选用高精度温度传感器作为采集元件,将其与STM32单片机相连,通过ADC(模数转换器)将模拟信号转换为数字信号,供后续处理使用。
温度采集系统
显示:采用传统的四位共阴数码管显示。数码管具有低压低 耗能、寿命长、对外界环境要求低等特点,而且其精度比较高。 采用BCD编码方式显示数字,程序编译简单,价格较低。
软件部分
3.2 DS18B20温度传感器运行时序
软件设计关键在于DS18B20的使用,DS18B20属于单线式 器件,它在一根数据线上实现数据的双向传输,这就需要一定 的协议,来对读写数据提出严格的时序要求,而AT89C51单 片机并不支持单线传输,因此必须采用软件的方法来模拟单线 的协议时序,操作协议为:初使化DS18B20(发复位脉冲)→ 发ROM功能命令→发存储器操作命令→处理数据。
硬件计
2.3 总体电路设计
本设计主要由单片机、温度采集器、LED数码管显示等部分组成。温度采集器 用来采集温度并将数据转换成单片机可以识别的数据,然后再四位数码管上显示出 测量到的温度。
软件部分
3.1 主程序流程图
主程序的功能是负责温度的实时显示、读出并处理DS18B20的测量的 当前温度值,温度测量每1s进行一次。这样可以在一秒之内测量一次 被测温度,其程序流程见图
软件部分
(1)初始化 单总线的所有处理均从初始化开始,初始化过程是主 机通过向作为从机的DS18B20芯片发一个有时间宽度要求的 初始化脉冲实现的。初始化后,才可以进行读写操作
(2)ROM操作命令 总线主机检测到DS18B20的存在,便可以发出 ROM操作命令之一
(3)存储器操作命令如下表
软件设计
结论
嵌入式系统课程设计(基于ARM的温度采集系统设计)
教师批阅目录一、设计内容............................................................................................................. - 1 -1.1设计目的....................................................................................................... - 3 -1.2设计意义....................................................................................................... - 3 -二、设计方案............................................................................................................. - 5 -2.1设计要求....................................................................................................... - 5 -2.2方案论证....................................................................................................... - 5 -三、硬件设计............................................................................................................. - 6 -3.1设计思路....................................................................................................... - 6 -3.2系统电路设计............................................................................................... - 6 -四、软件设计............................................................................................................. - 8 -4.1设计思路....................................................................................................... - 8 -4.2程序清单..................................................................................................... - 10 -五、心得体会........................................................................................................... - 12 -参考文献................................................................................................................... - 13 -教师批阅基于ARM的温度采集系统摘要:本设计是基于嵌入式技术作为主处理器的温度采集系统,利用S3C44B0xARM微处理器作为主控CPU,辅以单独的数据采集模块采集数据,实现了智能化的温度数据采集、传输、处理与显示等功能,并讨论了如何提高系统的速度、可靠性和可扩展性。
基于单片机的温度控制系统课设报告
基于单片机的温度控制系统摘要:该实验设计基于飞思卡尔MC9S12DG128开发板平台,根据实验任务要求,完成了水温自动控制系统的设计,该系统的温度给定值可由人工通过键盘进行设定,测量温度经过A/D转换由数码管显示,通过PID控制算法对温度进行调节,使温度输出值在给定值上下波动,控制该系统的静态误差为1℃,用LED灯模拟加热强度,并用串口将输出的水温随时间的变化数值发到PC机上。
关键字:飞思卡尔单片机水温控制MC9S12DG1281、设计题目与设计任务σ≤;3.温度误要求:1温度连续可调范围是30-150摄氏度;2 超调量20%<±;4尝试使用能预估大滞后的方法,如史密斯预估,或大林算法;也可差0.5用PID及改进算法。
内容:1.根据题目的技术要求,画出系统组成的原理框图;2. 给出系统硬件电路图;3.确定温度控制方案;4. 给出控制方法及控制程序;5.整理设计数据资料,课程设计总结,撰写设计计算说明书。
2、前言:随着电子技术和计算机的迅速发展,计算机测量控制技术拥有操作简单、控制灵活、使用便捷以及性价比较高的优点,从而得到了广泛的应用。
单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可以实现对数字信息的处理和控制,因此,单片机广泛应用于现代工业控制中。
利用单片机对温度测量控制会大大提高系统的可靠性和准确性。
该设计实验是在实验室完成,实验任务是设计制作一个水温自动控制系统,控制对象为1L净水,容器为搪瓷器皿。
水温由人工通过4*4的键盘设定,并能在环境温度改变时实现对水温的自动控制,采用PWM技术控制电阻丝的加热,加热强度由8个LED小灯模拟,以保持设定的温度基本不变,测量温度经过A/D 转换在4位数码管上显示(保留一位小数),并将温度每秒钟向计算机发送一次。
一、系统设计的功能该系统的闭环控制系统框图如图所示。
图水温控制系统结构框图单片机对温度的测量控制是基于传感器、A/D转换器以及扩展接口和执行机构来进行的。
基于C51单片机的温度控制系统应用系统设计(附程序)
基于C51单片机的温度控制系统应用系统设计(附程序)基于C51单片机的温度控制系统应用系统设计--------- 单片机原理及应用实践周设计报告姓名:班级:学号:同组成员:指导老师:成绩:时间:2011 年7 月3 日单片机温度控制系统摘要温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。
很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。
因此,智能化温度控制技术正被广泛地采用。
本温度设计采用现在流行的AT89S51单片机,配以DS18B2数字温度传感器,上、下限进行比较,由此作出判断是否触发相应设备。
本设计还加入了常用的液晶显示及状态灯显示灯常用电路,使得整个设计更加完整,更加灵活。
关键词:温度箱;AT89C52 LCD1602单片机;控制目录1引言11.1温度控制系统设计的背景、发展历史及意义11.2温度控制系统的目的11.3温度控制系统完成的功能12总体设计方案22.1方案一 22.2方案二 23DS18B20温度传感器简介73.1温度传感器的历史及简介73.2DS18B20的工作原理7DS18B20工作时序7ROM操作命令93.3DS18B20的测温原理98B20的测温原理:9DS18B20的测温流程104单片机接口设计124.1设计原则124.2引脚连接12晶振电路12串口引脚12其它引脚135系统整体设计145.1系统硬件电路设计14主板电路设计14各部分电路145.2系统软件设计16 系统软件设计整体思路系统程序流图176结束语2116附录22参考文献391引言1.1温度控制系统设计的背景、发展历史及意义随着社会的发展,科技的进步,以及测温仪器在各个领域的应用,智能化已是现代温度控制系统发展的主流方向。
基于STM32单片机的智能温度控制系统的设计
01 引言
03 系统设计
目录
02 研究现状 04 (请在此处插入系统
整体架构设计图)
目录
05 实验结果
07 结论与展望
06
(请在此处插入实验 数据记录表)
基于STM32单片机的智能温度控 制系统设计
引言
随着科技的不断发展,智能化和精准化成为现代控制系统的两大发展趋势。其 中,智能温度控制系统在工业、农业、医疗等领域具有广泛的应用前景。 STM32单片机作为一种先进的微控制器,具有处理能力强、功耗低、集成度高 等特点,适用于各种控制系统的开发。因此,本次演示旨在基于STM32单片机 设计一种智能温度控制系统,以提高温度控制的精度和稳定性。
实验结果
为验证本系统的性能,我们进行了以下实验:
1、实验设计
选用一款典型的目标物体,设定不同期望温度值,通过本系统对其进行智能温 度控制,记录实验数据。
2、实验结果及分析
下表为实验数据记录表,展示了不同期望温度值下系统的实际控制精度和稳定 性:
(请在此处插入实验数据记录表)
通过分析实验数据,我们发现本系统在智能温度控制方面具有较高的精度和稳 定性,能够满足大多数应用场景的需求。
结论与展望
本次演示成功设计了一种基于STM32单片机的智能温度控制系统,实现了对环 境温度的实时监测与精确控制。通过实验验证,本系统在智能温度控制方面具 有一定的优势和创新点,如高精度、低功耗、良好的稳定性等。然而,系统仍 存在一些不足之处,需在后续研究中继续优化和改进。
展望未来,我们将深入研究先进的控制算法和其他传感技术,以提高系统的性 能和适应各种复杂环境的能力。我们将拓展系统的应用领域,如医疗、农业等, 为推动智能温度控制技术的发展贡献力量。
基于单片机的温度控制系统设计
基于单片机的温度控制系统设计摘要:温度是在生产与生活中都常涉及到的表征物体的冷热程度的物理量,故温度控制在各生产领域中都会受到重视。
以stc89c52单片机为主控制单元,以ds18b20为温度传感器,从硬件电路和系统程序这两个方面设计了一种温度控制系统。
结果表明:该系统可以实时存储及显示相关温度数据,并能调控相关温度。
关键词:单片机;温度控制;stc89c52;ds18b20由于系统受其他热源的干扰,系统在实际生产环境下热交换较难控制的,故系统温度往往会因受到外界干扰的影响。
目前,51系列单片机在工业检测领域中得到了广泛的应用,因此我们可以在许多单片机应用领域中,配接各种类型的语音接口,构成具有合成语音输出能力的综合应用系统,以增强人机对话的功能。
stc89c52属于51系列增强型的8位单片机。
为此,本文拟以stc89c52单片机为主控制单元,以ds18b20为温度传感器,来设计温度实时测量及控制系统,该系统能够根据温度传感器ds18b20 所采集的温度在液晶屏上实时显示,并能通过stc89c52单片机的控制把温度控制在设定的范围之内。
一、硬件电路设计本文所设计的系统是一种以stc89c52单片机为主控制单元,以ds18b20为温度传感器的温度控制系统,其主要模块有:单片机最小系统模块、温度采集模块、电源模块、按键处理模块、实时时钟模块、数据存储模块、lcd显示模块以及通讯模块。
该系统可以实时存储及显示相关温度数据,并能调控相关温度。
1、单片机最小系统模块设计在本文所设计的系统中,其控制核心是51系列增强型8位单片机stc89c52。
stc89c52单片机是深圳宏晶科技有限公司生产的一种单片机,在一小块芯片上集成了一个微型计算机的各个组成部分。
每一个单片机包括:一个8位的微型处理器cpu;一个512k的片内数据存储器ram;4k片内程序存储器;四个8位并行的i/o接口p0-p3,每个接口既可以输入,也可以输出;两个定时器/记数器;五个中断源的中断控制系统;一个全双工uart的串行i/o口;片内振荡器和时钟产生电路,但石英晶体和微调电容需要外接。
基于STM32的温度采集系统设计
基于 STM32的温度采集系统设计摘要:本文利用STM32的一种微型处理器来当主控的CPU,通过使用一个独立的数据采集模块采集数据,在这个基础上实现了智能化的温度数据采取、然后还有传输、处理和显示等功能。
并商讨了该怎么提高系统的速度、性能和拓展性。
数据采集是获取信号对象信息的过程。
关键词:嵌入式系统;ARM;DS18B20温度传感器;STM32;温度采集;数据的处理一、引言当今社会,随着社会的不断发展,科学技术的不断进步,测温仪器在各个领域的广泛应用,智能化服务已成为这个时代温控系统发展的重要趋势。
温度控制在生活中还有在工业领域中涉及的非常多,像室内、供暖机构、天气预告等这些场所的温度控制。
像之前传统的温度控制都是手动的,操作起来很麻烦。
本文系统设计目的,首先它得是实现一种精准度高的系统来采集的温度控制系统,其应用必须得以普及,功能强大。
二、整体系统设计(一)系统方案设计第一个方案:需要使用模拟分立的元件,例如电容、电感、晶体管等非线性元件,观察采集的温度和显示的具体效果,这个方案的设计十分的好理解,特别简单,并且它的操作也不是特别的难,还有个好处,就是它的价格是非常合适的。
缺点就是如果用分立的元件,会造成它的分散性特别的大,对集成数字化是十分不好,而且最后测量之后,会存在很大的误差的,所以这个方案的可行性不太好,尽量不用。
第二个方案:选用PC机作为本次设计的主控机。
利用温度传感器来选用温度的信号,通过信号放大器之后,再送到A/D转换芯片中,然后再一次的经过拥有单片机的检测系统来进行下一步的解析和处理,然后再利用通信线路到PC机的上面,在PC的上面也可以通过对温度信号来进行很多的解析和处理的方式,所以这个方案简单来说还是不错的。
(二)系统工作原理通过了解设计需求方面确定了系统的总体方案,这个整体的系统其实是根据使用单片机、温度的传感器、显示屏的模块、报警器还有按键等五个部分来组成的。
使用者最开始得先将这个温度的报警的值输入到程序里,也就是温度的上下限。
基于单片机的温度控制系统设计
基于单片机的温度控制系统设计温度控制系统是指通过对温度进行监控和控制,使温度维持在设定的范围内的一种系统。
单片机作为电子技术中的一种集成电路,具有控制灵活、精度高、反应迅速等优点,被广泛应用于温度控制系统。
一、系统硬件设计1.温度传感器:温度传感器是温度控制系统中的核心设备之一。
通过对环境温度的监测,将实时采集到的温度值传到单片机进行处理。
目前主要的温度传感器有热敏电阻、热电偶、晶体温度计等。
其中热敏电阻价格低廉、精度高,使用较为广泛。
2.单片机:单片机作为温度控制系统的基本控制模块,要求其具有高速、大容量、低功耗、稳定性强的特点。
常用单片机有STM32、AVR、PIC等,其中STM32具有性能优良、易于上手、接口丰富的优点。
3.继电器:温度控制系统中的继电器用于控制电源开关,当温度超出设定范围时,继电器将给单片机发送一个信号,单片机再通过控制继电器使得温度回到正常范围内。
4.数码管:数码管用于显示实时采集到的温度值。
在实际开发中,可以采用多位数码管来显示多个温度值,提高温度控制的精度性和准确性。
二、程序设计1.程序框架:程序框架最关键是实时采集环境温度,然后判断当前温度是否超出正常范围,若超出则控制继电器将电源关断,实现温度控制。
程序框架可参考以下流程:2.温度采集:采用热敏电阻作为温度传感器,利用AD转换实现数字化。
然后通过查表法或算法将AD值转化为环境温度值。
3.温度控制:将温度设定值与实时采集到的温度进行比较,若温度超出设定值范围,则控制继电器实现自动关断。
4.数码管控制:实时显示温度传感器采集到的温度值。
三、系统调试和性能测试1.系统调试:对系统进行硬件电路的检测和单片机程序的调试,确保系统各部分正常工作。
2.性能测试:利用实验室常温环境,将温度传感器置于不同的温度环境,测试系统的温度控制精度、反应速度和稳定性等性能指标。
在此基础上对系统进行优化,提高控制精度和稳定性。
四、总结基于单片机的温度控制系统通过对环境温度的实时监测和控制,实现自动化温度调节。
单片机温度控制系统毕业设计论文
单片机温度控制系统毕业设计论文标题:基于单片机的温度控制系统设计与实现摘要:本论文设计和实现了一种基于单片机的温度控制系统。
该系统利用单片机的强大计算和控制能力,通过传感器采集环境温度,并运用PID控制算法,控制温度在预定的范围内波动。
本系统具有设计灵活、控制精度高、反应迅速等优势,非常适合温度控制领域应用。
关键词:单片机、温度控制、传感器、PID算法第一章引言1.1研究背景随着科技的进步和人们生活质量的提高,温度控制在各个领域都变得日益重要。
例如,家庭中的恒温器、温室中的温度调节、工业生产过程中的温度控制等。
传统的温度控制方法费时费力,且精度和效率较低,因此需要开发一种新的温度控制系统来满足各种需求。
1.2目的和意义本论文旨在设计和实现一种基于单片机的温度控制系统,以提高温度控制的精度和效率,满足不同领域对温度控制的需求。
通过论文的研究,可以为相关领域的温度控制系统设计提供参考,并促进温度控制技术在各个领域的应用。
第二章设计与实现方法2.1系统硬件设计本系统的硬件设计主要包括单片机选择、传感器选择以及执行设备选择等。
选用一款功能强大的单片机,例如ATmega328P,作为系统的核心控制器。
此外,选择一个高精度的温度传感器用于采集环境温度,并根据采集到的数据进行控制。
2.2系统软件设计本系统的软件设计主要包括温度采集与控制算法的设计和实现。
采用PID控制算法,通过单片机进行计算和控制,实现温度控制的闭环反馈。
同时,设计界面友好的人机交互界面,使操作更加简便。
第三章系统测试与分析3.1硬件测试对系统硬件进行测试,包括传感器的准确性测试、单片机的功能性测试以及执行设备的工作状态测试。
通过测试,验证系统的硬件设计的正确性和稳定性。
3.2软件测试对系统的软件进行测试,包括温度控制算法的准确性测试以及人机交互界面的操作测试。
通过测试,验证系统的软件设计的正确性和可靠性。
第四章结果与讨论4.1实验结果通过实验,得到了系统在不同环境下的温度控制效果,并进行数据统计和分析。
基于单片机的智能温度检测控制系统设计
1 概述在人类的生活环境中,温度扮演着极其重要的角色。
温度是工业生产、现代农业乃至人们日常现实生活中经常会需要测量的一个重要物理量,如石油化工、环境控制、食品加工、实验研究、农业大棚等[1]。
温度的检测与控制是工业生产自动控制系统的重要任务之一,因此,各行各业对温度检测系统的便捷性、精确性、智能化要求越来越高。
由此可见,温度的检测和控制是非常重要的。
测量温度需要使用温度传感器,传统的温度传感器是模拟的,如热敏电阻、热电偶等[2]。
热敏电阻采集温度变化的实质是电阻值,所以在实际使用过程中需要额外的辅助器件将其转化为电压信号并且通过调整后送到模拟-数字转化器件(A/D)才能让单片机处理,数字温度传感器的产生解决了这个问题。
本文采用内部集成了A/D 转换器、电路结构简单的数字化温度传感器DS18B20,与单片机技术相结合实现智能温度检测控制系统的设计。
系统只需要占用单片机的一个I/O 口,就能够实现实时温度检测,这使得系统具有很强的扩展性,并且应用前景广泛、实用价值高。
2 系统总体设计本系统设计的基于单片机的智能温度检测控制系统,总体设计框图如图1所示,主要包括单片机最小系统、温度采集电路、实时时钟电路、独立式按键电路、显示电路、报警电路、加热电路和散热电路,其中主控芯片采用功耗低、性能高的单片机STC89C52,温度采集电路采用数字温度传感器DS18B20,显示电路采用LCD1602液晶显示器,报警电路采用蜂鸣器、一个LED 指示灯设计实现声光报警,独立式按键用来设置当前实时时间(年、月、日、时、分、秒)和设定不同时间段温度报警的上下限阈值。
当实测环境温度值大于设定时间段的温度上限值时,系统自动进入散热模式,直流电机运转带动风扇工作,同时蜂鸣器响、LED 指示灯点亮;若低于设定时间段的温度下限阈值,系统自动进入加热模式,继电器控制加热设备工作,同时蜂鸣器响、LED 指示灯点亮;若当前温度处于设定时间段的温度上下限阈值之间时,关闭散热、加热及报警,从而使温度控制在设定的范围内。
基于单片机的温度采集系统的设计
基于单片机的温度采集系统的设计本系统选用AT89C52 单片机作为数据处理与控制单元,单片机控制数字温度传感器,把温度信号通过单总线从数字温度传感器传递到单片机上。
系统选用AT89S52 作为主处理器,LCD模块选用LM6029作为人机接口。
外围电路有数字温度传感器DS18B20 ,通过单片机进行温度数据的运算处理,竟单片机串口传输温度信息到PC机上,实现检测记录变化曲线。
标签:单片机;温度传感器;显示1 引言温度检测在工农业等场所占有重要地位。
对于环境检测和监控数据的分析,并且对于数据进行处理,显示数据/信息存储并做到实时控制非常必要。
随工业科技、农业科技的发展,温度检测来提高生产效率及产品质量的检测,能源节约等都有重要的作用。
本系统可被广泛的应用于温度实时显示和动态记录的温度检测系统中,对实现物联网应用方向的智能化有很好的应用价值。
2 温度采集系统的整体设计本设计采用STC89C52单片机作为数据处理与控制单元,首先单片机控制DS18B20数字温度传感器,把温度采集信号传送至单片机进行数据处理,单片机发出控制信息,在LCD上每隔一定时间进行动态显示温度信息。
温度的传输通过按键,从存储器中提取温度信息发送出去,并通过单片机串口送至PC机上,PC 机可通过串口调试软件接受现实数据。
总体硬件框图如图1。
3 温度采集系统硬件构成系统硬件包括单片机处理器、温度检测单元、温度储存单元、温度数据传输和显示部分(LCD 与按键)五个电路模块。
3.1 单片机控制器由于控制系统方案比较简单,数据处理量不大,考虑到经济性和可扩展性,选用AT89S52作为主控制器,AT89C52是一个低功耗,高性能CMOS 型单片机,内含8KB的Flash存储器和256 B的随机存储器(RAM),并有在系统可编码ISP 功能,兼容标准MCS-51指令系统,便于软件调试和程序修改,可以缩短系统设计开发时间。
3.2 数据存储单片机AT89C52 内有256个字节的RAM,高8位字节与特殊功能寄存器地址重复,进行分时复用。
基于51单片机的温控系统设计
基于51单片机的温控系统设计1.引言1.1 概述概述部分的内容可以包括以下几个方面:温控系统是一种广泛应用于各个领域的实时温度控制系统。
随着科技的发展和人们对生活质量的要求提高,温控系统在工业、家居、医疗、农业等领域得到了广泛应用。
温度作为一个重要的物理量,对于许多过程和设备的稳定运行至关重要。
因此,设计一种高效可靠的温控系统对于提高工作效率和产品质量具有重要意义。
本文将基于51单片机设计一个温控系统,通过对系统的整体结构和工作原理的介绍,可以深入了解温控系统在实际应用中的工作机制。
以及本文重点研究的51单片机在温控系统中的应用。
首先,本文将介绍温控系统的原理。
温控系统的核心是温度传感器、控制器和执行器三部分组成。
温度传感器用于实时检测环境温度,通过控制器对温度数据进行处理,并通过执行器对环境温度进行调节。
本文将详细介绍这三个组成部分的工作原理及其在温控系统中的作用。
其次,本文将重点介绍51单片机在温控系统中的应用。
51单片机作为一种经典的微控制器,具有体积小、功耗低、性能稳定等优点,广泛应用于各种嵌入式应用中。
本文将分析51单片机的特点,并介绍其在温控系统中的具体应用,包括温度传感器的数据采集、控制器的数据处理以及执行器的控制等方面。
最后,本文将对设计的可行性进行分析,并总结本文的研究结果。
通过对温控系统的设计和实现,将验证51单片机在温控系统中的应用效果,并对未来的研究方向和发展趋势进行展望。
通过本文的研究,可以为温控系统的设计与应用提供一定的参考和指导,同时也为利用51单片机进行嵌入式系统设计的工程师和研究人员提供一定的技术支持。
1.2文章结构文章结构部分的内容可以包含以下内容:文章结构部分旨在介绍整篇文章的组织结构和各个部分的内容。
本篇文章基于51单片机的温控系统设计,总共分为引言、正文和结论三部分。
引言部分主要包括概述、文章结构和目的三个小节。
首先,概述部分介绍了本文的主题,即基于51单片机的温控系统设计。
基于单片机的温度控制系统设计毕业论文
分类号:TP212单位代码:科技大学本科专业职业生涯设计基于单片机的温度控制系统设计2012 年 4 月10日摘要近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。
本文从硬件和软件两方面来讲述对烘干箱温度的自动控制过程,在控制过程中主要应用AT89C51、ADC0809、LED显示器、LM324比较器,而主要是通过DS18B20数字温度传感器采集环境温度,以单片机为核心控制部件,并通过四位数码管显示实时温度的一种数字温度计。
软件方面采用汇编语言来进行程序设计,使指令的执行速度快,节省存储空间。
为了便于扩展和更改,软件的设计采用模块化结构,使程序设计的逻辑关系更加简洁明了,使硬件在软件的控制下协调运作。
关键词:单片机系统;传感器;数据采集;模数转换器;温度AbstractIn recent years along with computer penetration in the social sphere, SCM applications are constantly deepening, led the traditional control test at the same time ever updated..In this paper, from two aspects of hardware and software about automatic temperature control process, the control process is mainly used AT89C51, ADC0809, LED display, LM324 comparator, but mainly through the DS18B20 digital temperature sensor to collect the environmental temperature, the single-chip microcomputer as the core control component, and through four digital tube display real-time temperature of a digital thermometer. Software using assembly language to program design, so that the instruction execution speed, save the memory space. In order to facilitate the expansion and the change, the software design uses the modular structure, make the logic relation of designing program more concise, making hardware tocoordinatetheoperation under the software control.Keywords: SCM system; sensor; data acquisition; a / D converter temperature;目录1 绪论 (3)1.1课题的背景及其意义 (3)1.2课题研究的容及要求 (4)1.2.1 课题的主要研究的容 (4)2 AT89C51系列单片机介绍及硬件设计 (6)2.1 AT89C51系列单片机介绍 (6)2.1.1 AT89C51系列基本组成及特性 (6)2.1.2 AT89C51系列引脚功能 (7)2.1.3 AT89C51系列单片机的功能单元 (9)2.2 硬件设计 (12)2.2.1 温度采样部分 (12)2.2.2 控制温度 (14)2.2.3 模数转换部分 (15)2.2.4 模数转换技术 (15)2.2.5 积分型模数转换器 (15)2.2.6 显示部分 (16)3 软件设计 (18)3.1主程序流程图 (18)3.2 读温度子程序 (19)3.3 计算温度子程序 (19)3.4按键流程图 (20)3.5 显示流程图 (22)结论 (24)参考文献 (25)辞 (26)1 绪论1.1课题的背景及其意义现代工业设计,工程建设及日常生活中温度控制都起着重要的作用,早期的温度控制主要用于工厂时间生产中,能起到实时采集温度数据,提高生产效率,产品质量之用。
本科生单片机毕业设计
毕业设计题目:基于单片机的智能温度控制系统一、引言随着科技的发展和社会的进步,人们对生活质量的要求越来越高。
温度控制作为日常生活和工业生产中的重要环节,直接影响到人们的舒适度和产品的质量。
单片机作为一种常见的嵌入式系统芯片,具有集成度高、功能强大、易于编程等优点,被广泛应用于各种智能控制系统中。
本设计旨在开发一款基于单片机的智能温度控制系统,实现对温度的实时监测和智能调控。
二、系统方案1.硬件方案本系统主要由单片机、温度传感器、显示模块、按键模块和加热模块等部分组成。
单片机选用常用的51系列芯片,温度传感器采用常用的DS18B20,显示模块采用LCD1602,按键模块用于设定温度上下限,加热模块采用继电器控制的加热棒。
2.软件方案软件部分主要包括主程序和各个子程序。
主程序主要完成系统的初始化和各个模块的调度工作。
子程序包括温度采集、温度处理、显示、按键处理和加热控制等。
三、系统实现1.硬件搭建根据设计要求,完成硬件电路的搭建。
包括单片机最小系统、温度传感器接口、显示模块接口、按键模块接口和加热模块接口等。
2.软件编程采用C语言编写程序,实现系统的各项功能。
包括初始化程序、主程序和各个子程序。
子程序包括温度采集、温度处理、显示、按键处理和加热控制等。
在编程过程中,要注重程序的健壮性和可读性,以便于后期的维护和升级。
3.系统调试完成软硬件联调,测试系统的各项功能是否正常。
在调试过程中,要注重观察系统的实时响应速度和稳定性,以便于及时发现和解决问题。
同时,要注意保护硬件设备,避免因操作不当造成损坏。
四、总结与展望本设计通过单片机实现了对温度的实时监测和智能调控,具有较高的实用价值。
在实际应用中,可以根据需要对系统进行扩展和改进,例如增加通信功能、优化算法等。
同时,也可以将本设计应用于其他领域,例如湿度控制、光照控制等。
在未来的研究中,可以尝试将人工智能技术应用于控制系统,提高系统的自适应性和智能性。
本科生进行单片机毕业设计时,通常会选择结合实际应用的项目来进行,以下是一个大致的设计流程和建议:1. 选题阶段:- 根据自身兴趣、专业方向及指导教师建议,选定一个具体且具有实用价值或创新意义的单片机应用课题。
嵌入式系统课程设计(基于ARM的温度采集系统设计)
嵌入式系统课程设计(基于ARM的温度采集系统设计)1000
字
嵌入式系统是一种基于微处理器或微控制器、专用硬件和软件的计算机系统,具有小型化、低功耗、实时性强等特点。
本次课程设计旨在设计一种基于ARM的温度采集系统,实现对温度值的实时监测与显示。
首先,需要选用一款适合嵌入式系统的ARM处理器。
考虑到性能和功耗的平衡,本次选用STM32F103C8T6处理器。
其主要特点有:基于ARM Cortex-M3内核,时钟频率为72MHz,具有64KB闪存和20KB SRAM。
接下来,需要选择温度传感器。
考虑到成本和精度等因素,本次选用DS18B20数字温度传感器。
DS18B20具有以下特点:数字接口,
精度为±0.5℃,温度响应快速,封装为TO-92。
然后,需要编写嵌入式软件。
本次采用Keil MDK-ARM开发环境,编写C语言程序。
程序主要包括以下部分:
1. 初始化:包括STM32外设的初始化,如时钟、GPIO、USART等。
2. 温度采集:通过OneWire协议与DS18B20通信,读取温度值,计算并保存到指定变量中。
3. 温度显示:使用USART串口通信,把温度值转换为ASCII码,并通过串口发送到上位机。
上位机可以使用串口调试助手等软件进行数据接收和显示。
最后,进行实验测试。
将DS18B20连接到STM32,把程序烧录到处
理器中,通过串口调试助手连接上位机,即可实时显示温度值。
实验测试表明,该系统温度采集准确可靠,响应速度快,可广泛应用于各种实时温度监测场景。
基于单片机的温度控制系统设计
基于单片机的温度控制系统设计温度控制系统是现代生活中不可或缺的一部分,常见于家庭的的空调、电饭煲、烤箱等家用电器,以及工业生产中的各种自动化设备。
本文基于单片机设计针对室内温度控制系统的实现方法进行说明,包括温度采集、温度控制器的实现和人机交互等方面。
一、温度采集温度采集是温度控制系统的核心部分。
目前比较常见的温度采集器主要有热电偶、热敏电阻和半导体温度传感器。
在本文中我们以半导体温度传感器为例进行说明。
常见的半导体温度传感器有DS18B20、LM35等,本次实验中采用DS18B20进行温度采集。
DS18B20是一种数字温度传感器,可以直接与单片机通信,通常使用仅三根导线连接。
其中VCC为控制器的电源正极,GND为电源负极,DATA为数据传输引脚。
DS18B20通过快速菲涅耳射线(FSR)读取芯片内部的温度数据并将其转换为数字信号。
传感器能够感知的温度范围通常为-55℃至125℃,精度通常为±0.5℃。
为了方便使用,DS18B20可以通过单片机内部的1-Wire总线进行控制和数据传输。
具体实现方法如下:1.首先需要引入相关库文件,如:#include <OneWire.h> //引用1-Wire库#include <DallasTemperature.h> //引用温度传感器库2.创建实例对象,其中参数10代表连接传感器的数字I/O引脚:OneWire oneWire(10); //实例化一个1-Wire示例DallasTemperature sensors(&oneWire); //实例化一个显示温度传感器示例3.在setup中初始化模块:sensors.begin(); // 初始化DS18B204.在主循环中,读取传感器数据并将温度值输出到串口监视器:sensors.requestTemperatures(); //请求温度值float tempC = sensors.getTempCByIndex(0); // 读取温度值Serial.println(tempC); //输出温度值二、温度控制器的实现温度控制器是本次实验的关键部件,主要实现对温度的控制和调节,其基本原理是根据温度变化情况来控制输出电压或模拟脚电平,驱动继电器控制电器设备工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度采集与控制系统不仅在工业中大量应用, 在日常家 居 生 活 中 也 有 广 泛 的 用 途 。 [1-3] 在 温 度 采 集与控制系统中,常会用 到 单 片 机 。 [4-6] 单 片 机 具 有 多功能、高性能、高 速 度、低 电 压、低 功 耗、外 围 电 路 内装化及片内 储 存 器 容 量 可 增 等 特 性,现 在 已 广 泛 应用于智能仪器 仪 表、工 业 控 制、家 用 电 器、医 用 设 备 、航 空 航 天 、汽 车 设 备 等 专 用 设 备 的 智 能 化 管 理 及 过程控制等领 域 。 [7-11] 本 文 对 温 度 采 集 与 控 制 系 统
temperature.The experimental results show that the system is better. Keywords SCM,Temperature acquisition,Control system
1 引 言
不 同 ,它 采 用 单 根 信 号 线 ,既 可 传 输 时 钟 信 号 又 可 传 送 数 据 信 号 ,而 数 据 可 双 向 传 送 ,因 此 这 种 总 线 技 术
Abstract Aiming at the current status of widely used real-time control of temperature acquisition,using SCM as a e- lectronic component,we designed a temperature control system with digital clock.The system displays the parameters of the time classes on character LCD screen.According to the temperature setting,it can make real-time control of
具 有 线 路 简 单 、成 本 低 廉 、便 于 扩 展 和 维 护 等 优 点 。 单总线 上 同 样 允 许 挂 接 多 个 单 总 线 器 件。 因
此,每个单总线 器 件 必 须 有 各 自 固 有 的 地 址。 单 总 线通常需接一个 约 4.7kΩ 的 上 拉 电 阻。 这 样,当 总 线空闲时,状态 为 高 电 平。 图 1 电路。
(3)读时序:当 主 机 从 DS18B2 读 取 数 据 时,产 生 读 时 序 。 此 时 ,主 机 将 数 据 线 的 电 平 从 高 拉 到 低 , 使读时序被初始化。如果此后 15us内,主机在 总线 上采样到高电平,则从 DS18B2读“1”。
3 温 度 采 集 控 制 系 统 设 计
DS18B20的工作时 序 包 括 初 始 化 时 序、写 时 序
单总线适用于 单 主 机 系 统,能 够 控 制 一 个 或 多 个从机设备。主 机 通 常 是 单 片 机,从 机 一 般 是 单 总 线器件,它 们 之 间 通 过 一 条 信 号 线 进 行 数 据 交 换。 美国 DALLAS公司推 出 的 单 总 线 技 术 与I2C 总 线
第 39 卷 第 10 期 专 辑 2012 年 10 月
计算机科学 Computer Science
Vol.39No.10Supp Oct 2012
基于单片机的一种嵌入式温度采集实时控制系统设计研究
韩泽远 张 宁 闫 陶
(北 京 联 合 大 学 信 息 学 院 北 京 100101)
摘 要 针对目前温度采集实时控制的广泛使用的现状,以单片机为电子器件,设计了一种带数字钟的测 温 控 制 系 统。系统通过字符型 LCD 液晶屏幕显示时间类参数,并根据温度设定,实时控制温度。实验结 果 表 明,本 系 统 效 果 较好。 关 键 词 单 片 机 ,温 度 采 集 ,控 制 系 统
和读时序。 (1)初始化:单片机将数据线的电平拉低 480~
960us后释放,等待15~60us,单总线器 件 即 可 输 出 一个持续60~240us的 低 电 平 (存 在 脉 冲 ),单 片 机
本 文 受 2012 年 启 明 星 项 目 资 助 。 韩 泽 远 男 ,硕 士 生 ,主 要 研 究 方 向 为 通 信 电 子 技 术 ;张 宁 男 ,教 授 ,硕 士 生 导 师 ,主 要 研 究 方 向 为 通 信 电 子 教 学 。
Design and Research on Real-time Control System of an Embedded Temperature Acquisition Based on SCM
HAN Ze-yuan ZHANG Ning YAN Tao
(School of Information,Beijing Union University,Beijing 100101,China)
进行研究,设计 了 一 种 温 度 采 集 系 统。 这 种 系 统 利
用 AT89C51 单 片 机 控 制 单 总 线 温 度 传 感 器 DS18B20以及 DS1302 实时时钟,并通过 LCD 液 晶 显示对温度发生的变化进行实时测量与控制。
2 单 总 线 技 术 分 析
图1 单片机与单总线器件 DS18B20的接口电路
· 39 ·
收到此应答后即可进行操作。 (2)写时 序:当 主 机 将 数 据 线 的 电 平 从 高 拉 到
低时,形成写时序,有写“0”和写“1”两种时序。 写时 序 开 始 后 ,DS18B20 在 15~60us期 间 从 数 据 线 上 采 样。如果采样到低电平,则 向 DS18B20 写“0”;如 果 采样到高电平,则向 DS18B20写“1”,两 个 独 立 的 时 序 间 至 少 需 要 1us的 恢 复 时 间 (拉 高 总 线 电 平 )。