外文翻译--有限元分析软件的发展

合集下载

有限元分析系统的发展现状与展望外文翻译

有限元分析系统的发展现状与展望外文翻译

Finite element analysis system development present situation and forecastAlong with modern science and technology development, the people unceasingly are making the faster transportation vehicle, the large-scale building, the greater span bridge, the high efficiency power set and the preciser mechanical device. All these request engineer to be able precisely to forecast in the design stage the product and the project technical performance,needs to be static,technical parameter and so on dynamic strength to the structure as well as temperature field,flow field, electromagnetic field and transfusion carries on the analysis computation.For example analysis computation high-rise construction and great span bridge when earthquake receives the influence, has a look whether can have the destructive accident; The analysis calculates the nuclear reactor the temperature field,the determination heat transfer and the cooling system are whether reasonable; Analyzes in the new leaf blade the hydrodynamics parameter,enhances its operating efficiency. The sell may sum up as the solution physics question control partial differential equations often is not impossible.In recent years the finite element analysis which develops in the computer technology and under the numerical analysis method support(FEA, Finite Element Analysis)the side principle for solves these complex project analysis estimation problems to provide the effective way. Our country in " 95 " Plan period vigorously promotes the CAD technology,mechanical profession large and middle scalene terries CAD popular rate from " 85 " End 20% enhances that present 70%.With enterprise application of CAD, engineering and technical personnel has gradually get rid drawing board, and will join the main energy how to optimize the design, engineering and improving the quality of products, computer-aided engineering analysis (puter Aided Engineering)method and software will be the key technical elements.ln engineering practice, finite element analysis software and CAD system integration design standards should be a qualitative leap, mainly in the following aspects :The increase design function,reduces the design cost;Reduces design and the analysis cycle period;Increase product and project reliability;Uses the optimized design,reduces the material the consumption or the cost;Discovers the latent question in advance before the product facture or the project construction;Simulates each kind of experimental plan, reduces the experimental time and the funds;Carries on the machine accident to analyze, search accident cause factor.In vigorously promotes the CAD technology today, from the bicycle to the aerospace craft, all designs manufacture all will not be able to leave the finite element analysis computation,FEA obtains the more and more widespread value in the engineering design and the analysis. The next chart is the American San Francisco bay bridge earthquake responds the computation the finite element analysis model. The development direction and on significant progress international early20th century in the end of the 50's, at the beginning of the 60's has the formidable function on the investment massive manpower and the physical resource development the finite element analysis procedure.What is most famous was (NASA) entrusts US by American country Space Agency in 1965 to calculate the NASTRAN finite element analysis system which the scientific company and the Bell aerospace system company developed.This system development until now had several dozens editions, is in the present world the scale is biggest, the function strongest finite element analysis system. From at that time to the present, the world each place development facility and the university also developed one batch of scales smaller but to use nimble, the price is lower special-purpose or general finite element analysis software, mainly had German ASKA,England's PAFEC, France's company's the and so on SYSTUS, US'S ABQUS, ADINA, ANSYS, BERSAFE,BOSOR, COSMOS, ELAS, MARC and STARDYNE product. Now on the international FEA method and the software development presents below some tendency characteristics:1. develops from the pure structure mechanics computation to solves many physicalfields question finite element analysis method most early is comes from the structure matrix analysis development,gradually promotes to the board, the shell and the entity and so on the continual body solid mechanics analysis, the practice proved this is one extremely effective numerical analysis method. Moreover the or etically also already proved, so long as uses in to be separated solution object theunit enough to be small, the obtained solution may enough approach to the precise value.Therefore the recent years finite element method has developed question the and so on hydromechanics,temperature field,electricity conduction,magnetic field, transfusion and sound field solution computation,recently developed solves several inter disciplinary studies. the questions.For example when the air current flows a very high iron tower to have the distortion, but the tower distortion in turn affects to the air current flows. This needs to use the solid mechanics and the hydrodynamics finite element analysis finally overlapping iteration solves, namely so-called " Flows solid coupling " Question.2 Progresses from the solution linear project question to the analysis non-linear problem along with the science and technology development, the linear theory already by far could not satisfy the design there quest. For example in construction profession high-rise construction and great span hanging bridge appearance,request consideration geometry non-linear problem and so on structure big displacement and big strain; Astronautics and power engineering high temperature part existence thermal deformation and thermal load, also must consider the material the non-linear problem;Such as the plastic,the rubber and the compound material and so on each kind of new material appearance,only depends on the question which the linear computation theory is insufficient to solve meets, only has uses the non-linear finite element algorithm to be able to solve. It is well known, the non-linear value computation is very complex,it involves to the very many special mathematics question and the operation skill, thanks the general engineering technical personnel to grasp very much. Has spent massive specialty and so on manpower and investment development such as MARC, ABQUS and ADINA for this recent years overseas some companies to solution non-linear problem finite element analysis software, and widely applies to the project practice. These software common characteristics are have the highly effective non-linear solution as well as rich and the practical non-linear material.Definitely.3The enhancement visible pretag e modelling and the post positioned data processing function early time finite element analysis software research key lies in infers new high efficiency solution method and the high accuracy unit. Along with the numerical analysis method gradually consummation,the computer operating speed rapid development,the entire computing system uses in to solve the operation inparticular the time more and more few, but the data preparation and the operation result performance question day by day is actually prominent. On the present project workstation, solves to contain100,000 equations the finite lement models only to need to use several dozens minutes.But if establishes this model with the manual way, then the rehandling massive computed result must use several week-long time. May not exaggerate said, engineer calculates a project question when the analysis has 80% above the energy all to spend in the data preparation and the result analysis. Therefore the present nearly all shangye finite element software all has the function very strong pretage modeling and the post positioned data processing module.Is emphasizing" Visible " Today,very many procedures have all established to user extremely friendly GUI (Graphics User Interface), enables the user direct-viewing fast to carry on the grid automatic division by the visible graphic mode, the production finite element analysis needs the data, and the massive computed result will reorganize the distortion chart, the equivalentd is tribution cloud chart according to the request, will be advantageous for the extreme value search and needs the data to tabulate the output.4 With the CAD software seamless integration now the finite element analysis system another characteristic is and the general CAD software integrated use namely, after uses CAD software to complete the part and the components modeling design, automatically produces the finite element grid and carries on the computation,if analyzes the result does not conform to the design requirement then recarries on themodeling and the computation,until satisfaction, thus enormously raised the design level and the efficiency.The complex project analysis question today, which engineer may quickly solves in integrated CAD and in the FEA software environment in before is unable to deal with. Therefore now all shangye finite element system business all has developed and famous CAD software (for example Pro/ENGINEER,Unigraphics,SolidEdge, SolidWorks, IDEAS, Bentley and AutoCAD and so on) connection.5 Basically in Wintel platform development early time finite element analysis software all is in the large and middle scale computers(mainly is Mainframe) on the development and the movement,after wards also developed take the project workstation(EWS, Engineering WorkStation)as the platform, their common characteristic all uses the UNIX operating system.. The PC machine appearance caused the computer the application to have he fundamental change,engineer hadlonged for completed the complex project analysis on the desk the dream to become the reality. But early PC machine uses 16 CPU and the DOS operating system, in the memory public block data is restricted, at that time there fore calculated the model the scale not to be able to surpass 10,000 steps equations. Microsoft the Windows operating system and 32 Intel Pentium processor promoting for used in the finite element analysis PC machine to provide essential software and the hardware supports the platform. Therefore on the current international famous finite element procedure research and the development organization all in abundance move theirs software the value to the Wintel platform in. Next cava logged version environment and the SGI workstation simultaneously calculates the solution time with ADINA the V7.3 in PC machine Windows on the NT which 4 projects examples needed. May see the newest upscale PC machine solution ability already and center low-grade EWS is equally matched.In order to will develop on the large and middle scale computers and EWS the finite element procedure will move the value to PE machine on, frequently will need to use Hummingbird Corporation simulation software Exceed.Does this the result quite is troublesome,moreover cannot fully use the PC machine software and hardware resources. Therefore recently some companies,for example IDEAS, ADINA and R&D starts in the Windows platform to develop the finite element procedure,is called as " Native Windows" The edition, meanwhile has the finite element routine package which in on Linux operating system environment develops in PC machine.The domestic development situation and the prospect in 1979 US'S SAP5linear structure was static, the mechanical analysis procedure transplants successfully to the domestic introduction, raised the application general finite element procedure to analyze the computation project question the high tide. This high tide continuously continued to 1981 the ADINA non-linear structure analysis procedure introduction, many continuously was unable the project difficult problem which solved all to be easily solved for a while. Everybody also starts to realize indeed is engineer carries on then is computation to the finite element analysis procedure using the computer the important tool。

外文翻译--有限元分析软件的发展

外文翻译--有限元分析软件的发展

中文3240字Steps in Finite Element AnalysisIntroductionRecently there is a trend towards using it in the early stages of design. A designer may use FEA just to validate the structural integrity of a design or she may use it for structural optimization along with the parametrized design techniques.This paper examines the requirements of a structural analysis agent and proposes an architecture to facilitate FEA in a concurrent design environment. The next section briefly describes how FEA is used in a typical industrial set up.Section 3 presents a survey of existing FE tools. Section 4 discusses some issues related to the development of an FEA agent. Section 5 proposes an architecture for the FEA agent that addresses the issues described in Section 4 and finally Section 6 presents the concluding remarks.Steps in Finite Element AnalysisThe process of FEA starts with identification of the region of interest and the formulation of the physical problem。

有限元的发展历史和趋势

有限元的发展历史和趋势

有限元的发展历史和趋势摘要1965年,“有限元”这个名词第一次在我国出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。

有限元法(Finite Element Method,简写为FEM)是求解微分方程的一种非常有效的数值计算方法,用这种方法进行波动数值模拟受到越来越多的重视。

有限元法起源于固体力学,并逐步扩展到热传导、计算流体力学、电磁学等不同领域,已经成为数学物理中很重要的数值计算方法。

关键词有限元数值发展趋势前言有限元方法在数值计算方法中具有极为重要的地位,有限元方法在应用中不仅本身具有很大的潜力,而且,结合其它理论和方法还有广阔的发展前景。

1有限元的发展历程有限元法的发展历程可以分为提出(1943)、发展(1944一1960)和完善(1961-二十世纪九十年代)三个阶段。

有限元法是受内外动力的综合作用而产生的。

1943年,柯朗发表的数学论文《平衡和振动问题的变分解法》和阿格瑞斯在工程学中取得的重大突破标志着有限元法的诞生。

有限元法早期(1944一1960)发展阶段中,得出了有限元法的原始代数表达形式,开始了对单元划分、单元类型选择的研究,并且在解的收敛性研究上取得了很大突破。

1960年,克劳夫第一次提出了“有限元法”这个名称,标志着有限元法早期发展阶段的结束。

有限元法完善阶段(1961一二十世纪九十年代)的发展有国外和国内两条线索。

在国外的发展表现为: 第一,建立了严格的数学和工程学基础;第二,应用范围扩展到了结构力学以外的领域;第三,收敛性得到了进一步研究,形成了系统的误差估计理论;第四,发展起了相应的商业软件包。

在国内,我国数学家冯康在特定的环境中独立于西方提出了有限元法。

1965年,他发表论文《基于变分原理的差分格式》,标志着有限元法在我国的诞生。

冯康的这篇文章不但提出了有限元法,而且初步发展了有限元法。

他得出了有限元法在特定条件下的表达式,独创了“冯氏大定理”并且初步证明了有限元法解的收敛性。

有限元方法的发展及应用

有限元方法的发展及应用

有限元方法的发展及应用1 有限元法介绍1.1 有限元法定义有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。

它是起源于20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。

有限元法的基本思想是将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。

这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。

由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。

1.2 有限元法优缺点有限元方法是目前解决科学和工程问题最有效的数值方法,与其它数值方法相比,它具有适用于任意几何形状和边界条件、材料和几何非线性问题、容易编程、成熟的大型商用软件较多等优点。

(1)概念浅显,容易掌握,可以在不同理论层面上建立起对有限元法的理解,既可以通过非常直观的物理解释来理解,也可以建立基于严格的数学理论分析。

(2)有很强的适用性,应用范围极其广泛。

它不仅能成功地处理线性弹性力学问题、费均质材料、各向异性材料、非线性应立-应变关系、大变形问题、动力学问题已及复杂非线性边界条件等问题,而且随着其基本理论和方法的逐步完善和改进,能成功地用来求解如热传导、流体力学、电磁场等领域的各类线性、非线性问题。

他几乎适用于求解所有的连续介质和场问题,以至于目前开始向纳米量级的分子动力学渗透。

(3)有限元法采用矩阵形式表达,便于编制计算机软件。

这样,不仅可以充分利用高速计算机所提供的方便,使问题得以快速求解,而且可以使求解问题的方法规范化、软件商业化,为有限元法推广和应用奠定了良好的基础。

世界CAE软件发展历史

世界CAE软件发展历史

CAE 软件历史发展图1972年,UAI 公司发布基于COSMIC NASTRAN 的UAI Nastran 软件。

1985年,CSAR 公司发布了基于COSMIC NASTRAN 的CSAR Nastran 软件。

为了满足宇航工业对结构分析的迫切需求,NASA 于1966年提出了发展世界上第一套泛用型的有限元分Nastran(NASA STRuctural ANalysis Program)的计划,MSC.Software 则参与了整个Nastran 程1969年NASA 推出了其第一个NASTRAN 版本,称为COSMIC Nastran 。

之后MSC 继续的改良Nastra MSC.Nastran 。

1999年,MSC 收购了UAI 和CSAR ,成为市场上惟一一家提供Nastran 商业代码的供应商。

而在此后的码的MSC Nastran 软件价格不断上涨,但是其功能和服务却没有得到相应的提升,从而引发大量客户的向美国联邦贸易委员会(FTC)提出了申诉。

美国FTC 判“MSC Nastran 垄断”,MSC Nastran 源代码须公开,而这一决定也引来了UGS 公司加入到而后,UGS 根据MSC 所提供的源代码、测试案例、开发工具和其他技术资源开发出了NX Nastran 。

至Nastran 一分为二,齐头并进,为用户带来了更多的新技术与服务。

1967年在NASA 的支持下SDRC 公司成立,并于1968年发布了世界上第一个动力学测试及模态分析软用有限元分析软件Supertab(后并入I-DEAS 软件中,这也就是为什么I-DEAS 作为一款设计软件其有限原因)。

2001年SDRC 公司被EDS 所收购,并将其与UGS 合并重组。

SDRC 的有限元分析程序演变成了NX 中的I-deas NX Simulation ,与NX Nastran 一起成为了NX 产品中的重要组成部分。

2009年,西门子35亿美元收购UGS 公司。

外文翻译 对于有限元分析的介绍

外文翻译 对于有限元分析的介绍

本科生毕业设计 (论文)
外文翻译
原文标题INTRODUCTION TO THE FINITE ELEMENT
METHOD
译文标题对于有限元分析的介绍
作者所在系别机械工程系
作者所在专业机械设计制造及其自动化
作者所在班级
作者姓名
作者学号
指导教师姓名
指导教师职称
完成时间
注:1. 指导教师对译文进行评阅时应注意以下几个方面:①翻译的外文文献与毕业设计(论文)的主题是否高度相关,并作为外文参考文献列入毕业设计(论文)的参考文献;②翻译的外文文献字数是否达到规定数量(3 000字以上);③译文语言是否准确、通顺、具有参考价值。

2. 外文原文应以附件的方式置于译文之后。

共 5 页第11 页。

ABAQUS有限元发展趋势

ABAQUS有限元发展趋势

有限元分析的发展趋势1 有限元的发展历程有限元方法(FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

有限元法的发展历程可以分为提出、发展和完善三个阶段。

有限元法是受内外动力的综合作用而产生的。

现代科学技术的发展,正在不断催生更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。

而这一切都要求在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。

分析计算高层建筑和大跨度桥梁在地震时所受到的影响;分析计算核反应堆的温度场;分析涡轮机叶片内的流体动力学参数。

这些问题的解析计算可归结为求解物理问题的控制偏微分方程式。

有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。

在工程实践中,有限元分析软件与CAD系统的集成应用主要表现在以下几个方面:(1)增加设计功能,减少设计成本;(2)缩短设计和分析的循环周期;(3)增加产品和工程的可靠性;(4)采用优化设计,降低材料的消耗或成本;(5)在产品制造或工程施工前预先发现潜在的问题;(6)模拟各种试验方案,减少试验时间和经费;(7)进行机械事故分析,查找事故原因。

目前流行的CAE分析软件主要有NASTRAN、ADINA 、ANSYS、ABAQUS、MARC、COSMOS等。

2 有限元分析软件的比较2.1 LSTC公司的LS-DYNA系列软件LS-DYNA是一个通用显式非线性动力分析有限元程序,最初目的是为核武器的弹头设计提供分析工具,后经多次扩充和改进,计算功能更为强大。

外文翻译对由ansys开发的大型工程模型的降阶大学论文

外文翻译对由ansys开发的大型工程模型的降阶大学论文

对由ansys开发的大型工程模型的降阶Evgenii B. Rudnyi 和 Jan G. KorvinkIMTEK微控技术研究所弗赖堡大学Georges-K ohler-Allee,103D - 79110,德国弗赖堡{ rudnyi,korvink } @imtek.dehttp://www.imtek.uni-freiburg.de/simulation/摘要工程师能够在ANSYS开发的有限元模型中运用现有的软件实现现代模型降阶技术。

我们着于一个人如何独立的从在ANSYS和C ++上实现的执行模型中提取所需的信息,而不用依靠特别的专业人士,我们将利用与结构力学和热力学有限元模型相关的实例来讨论计算成本。

1.介绍大型线性动态系统模型降阶已经是相当成熟的领域[1]。

许多论文(见参考文献[2])指出,模型降价的优势已在各种科学和工程应用上被证实。

我们目前的工作是集中讨论工程师如何将该技术与现有的商业有限元软件相结合,以达到如下目的:—加快对瞬变电压、谐波的分析;—自动生成系统级仿真的紧凑模型;—在设计阶段纳入有限元程序包。

通常大规模动态系统模型降阶第一步如下Ex˙=Ax+Bu (1.1)y=Cx其中A和E是系统矩阵,B是输入矩阵,C是输出矩阵。

模型降阶的目的是产生一个低维式以逼近(1.1),Erz=Arz.+BruY=Crz. (1.2)此式描述了输入向量u对输出向量y的依赖,因此,同一时间降阶后向量z的维数远小于原来x的状态向量维数。

对由偏微分描述的用户模型方程进行空间离散化后,有限元程序包通常产生一个常微分方程系统。

在这阶段,它有可能直接适用于模型降阶的方法[1]。

然而,从商业包装过的系统矩阵里提取却不是这样,我们将介绍我们是怎么用ANSYS有限元分析做到的[3]。

我们选择了市场矩阵形式来表示简化模型(1.2)[4]。

我们假设在另一个包如Matlab或Mathematica 上完成其仿真。

降价模型在数学方面的运作是可行的。

《有限元分析概述》课件

《有限元分析概述》课件

PART 05
有限元分析的未来发展与 挑战
新技术与新方法的探索
人工智能与机器学

利用人工智能和机器学习技术, 自动构建有限元模型、优化求解 过程和提高分值算法和 求解技术,提高有限元分析的稳 定性和精度。
多物理场耦合
探索多物理场耦合的有限元分析 方法,以解决复杂工程问题中的 多物理场耦合问题。
边界条件的处理
在有限元分析中,边界条件的处理是重要的环节。边界条件通常通过在边界节点上施加约束或加载来实现,以模拟实际系统 的边界条件。
边界条件的处理方式需要根据具体问题进行分析和设定,以确保求解结果的准确性和可靠性。
求解与后处理
求解是有限元分析的核心步骤,涉及到建立方程组、求解方程组并得到离散化模型的结果。常用的求 解方法包括直接法、迭代法和优化算法等。
优化设计
03
根据计算结果,对结构进行优化设计,提高其性能或降低成本

PART 04
有限元分析的优缺点
有限元分析的优缺点
• 有限元分析(FEA)是一种数值 分析方法,用于解决各种工程问 题,如结构分析、热传导、流体 动力学等。它通过将复杂的物理 系统离散化为有限数量的简单单 元(或称为“有限元”)来模拟 系统的行为。这些单元通过节点 相互连接,形成一个离散化的模 型,可以用来预测系统的性能和 行为。
2023-2026
ONE
KEEP VIEW
有限元分析概述
REPORTING
CATALOGUE
目 录
• 有限元分析简介 • 有限元分析的基本原理 • 有限元分析的实现过程 • 有限元分析的优缺点 • 有限元分析的未来发展与挑战
PART 01
有限元分析简介
定义与背景

CAE行业发展现状及趋势分析,CAE咨询细分市场快速发展「图」

CAE行业发展现状及趋势分析,CAE咨询细分市场快速发展「图」

CAE行业发展现状及趋势分析,CAE咨询细分市场快速发展「图」CAE行业发展现状及趋势分析,CAE咨询细分市场快速发展「图」一、CAE行业概述CAE(Computer Aided Engineering),即计算机辅助工程,是广泛应用于工业制造业产品研发设计过程中的一种技术工具,通过模拟产品在结构强度、热传导、刚度、运动学等方面的工作状态和表现,CAE可为产品功能、性能的可用性和可靠性提供依据,为企业产品设计提供决策支持,可助力企业降低设计风险、优化设计方案、提升设计效率。

根据软件的适用范围进行划分,CAE软件可以分为通用CAE 软件和专用CAE软件两类。

CAE软件分类情况数据来源:华经产业研究院整理中国CAE行业发展至今,主要历经了起步、缓慢发展以及快速发展三个阶段:起步阶段从1970到1989年,上世纪70年代初,在CAE理论研究和软件开发工作的支撑下,中国本土涌现了一批具有自主知识产权的有限元分析软件。

但是软件的通用性和适用范围相对局限、缺乏整体竞争力限制了此类本土CAE软件的市场化及产业化进程。

缓慢发展阶段从1990到2005年,国外CAE软件厂商进入中国市场,对中国本土CAE软件厂商产生了较大冲击。

本土CAE软件的发展在这一时期则面临一定的制约,受限于资金投入不足等因素,本土CAE软件从基础研究到工程应用、再到软件商业化的进程受阻,本土CAE软件厂商的发展在此阶段发展缓慢。

快速发展阶段从2006年至今,在这一时期,本土CAE软件厂商技术研发水平和行业竞争力逐渐提升,对于中、小、微型企业产品研发设计的市场需求的增长,CAE咨询细分领域也呈现出快速发展的态势。

行业下游汽车、工程机械、航空航天等行业的市场需求持续增大,刺激了CAE市场容量的释放。

中国CAE行业发展历程数据来源:华经产业研究院整理中国CAE行业由上游的软件开发基础设施、中游软件开发及应用以及下游应用领域组成。

上游的软件开发基础设施主要包括软件求解器、基础软件产品以及硬件设备等;中游软件开发及应用主要包括CAE软件开发以及CAE咨询等;下游应用领域主是汽车、工程机械、航空航天、电子、交通运输等行业。

有限元软件介绍13

有限元软件介绍13

(3)Steady-state transport analysis 用于包括摩擦和惯性影响的稳态滚轨 分 析 (steady-state rolling solutions including frictional effect and inertia effect);
(4)Heat transfer analysis a. Uncoupled heat transfer analysis 与应力/位移或电场无关,线性,非 线性的稳态和瞬态分析。 b. Sequentially coupled thermal stress analysis 应力/位移与温度场相关,但温度场 与应力 / 位移无关,所以,可以先分析 温度场,然后再分析应力/位移。
系统的接口
现在的有限元系统的前处理系统 都有一个与CAD/CAM相连的接口, 可以直接从CAD/CAM或其他工程绘 图软件读入数据文件,然后进入编码 转换,成为有限元系统的前处理用的 几何图形,接着就可以进行下一步的 前处理过程。
有限元系统之间的接口
此外有的有限元系统可读入其他 的有限元系统的数据文件来进行前处 理,求解和后处理。例NASTRAN可 以读入ANSYS和ABAQUS的输入文 件进行前处理,然后求解和后处理。
ADINA
• ADINA(Automatic Dynamic Incremental Nonlinear Analysis) 的开 发者为K.J.Bathe教授,也是 SAP5(Structural Analysis Program) 程 序 的 三 个 开 发 者 之 一 。
NISA/Display
B4.Response spectrum analysis, 线性 的响应谱分析; B5. Random response analysis( 随机 响应分析) 在系统固有模态的基础上计算模型 随机激励的线性化响应。

有限元分析软件外文翻译

有限元分析软件外文翻译

南京林业大学本科毕业设计(论文)外文资料翻译翻译资料名称(外文)Stress analysis of heavy duty truck chassis as apreliminary data for its fatigue life predictionusing FEM翻译资料名称(中文)利用重型载货汽车的有限元应力分析的初步数据预测其疲劳寿命院(系):汽车与交通工程学院专业:机械制造及其自动化(汽车设计方向)姓名:学号:指导教师:完成日期: 2012/5/31利用重型载货汽车的有限元应力分析的初步数据预测其疲劳寿命Roslan Abd Rahman, Mohd Nasir Tamin, Ojo Kurdi马来西亚工程大学机械工程系81310 UTM, Skudai,Johor Bahru摘要本文对一重型货车底盘做了应力分析。

应力分析能够确定零件的最大受力点,是分析零部件疲劳研究和寿命预测的重要手段。

前人已有用商用有限元软件ABAQUS软件对底盘模型进行分析的。

本次研究的底盘长12.35米,宽2.45米,材料是ASTM低合金钢710(3级),屈服极限552MPa,抗拉强度620MPa。

分析结果显示,最大应力点出现在底盘与螺栓连接的空缺处,最大应力为386.9MPa,底盘的疲劳破坏将会从最大应力点开始向车架各部位蔓延。

关键字:应力分析,疲劳寿命预测,货车底盘1.0简介在马来西亚,很多货车的车架寿命都有20多年,20多年架就会有使用安全的问题。

因此,为了确保底盘在工作期间的安全性能,就有必要对底盘作疲劳研究和寿命预测。

利用有限元法作应力分析能够确定受最大应力的关键点,这个关键点是导致底盘疲劳损伤的因素之一。

应力的大小能够预测底盘的寿命,所以可以根据应力分析的结果精确地预测底盘的寿命,应力分析越精确,底盘寿命预测的越合理。

本文是用商用有限元软件ABAQUS 软件完成底盘应力分析的。

汽车工业(汽车总成及各部件)在马来西亚的工业中占据非常重要的地位。

有限元软件历史

有限元软件历史

FEA软件的发展历史有限元方法思想的萌芽可以追溯到18世纪末,欧拉在创立变分法的同时就曾用与现代有限元相似的方法求解轴力杆的平衡问题,但那个时代缺乏强大的运算工具解决其计算量大的困难。

Courant(1943)用最小势能原理和现代有限元法中的线性三角元求解st Venant弹性扭转问题,但未能引起足够重视。

波音飞机工程师Turner,Clough等人在1956年首次将有限元法用于飞机机翼的结构分析,吹响了有限元的号角,有限元这一名称在1960年正式提出。

有限元方法的理论和程序主要来自各个高校和实验室,早期有限元的主要贡献来自于Berkeley大学。

Berkeley的Ed Wilson发布了第一个程序,其他著名的研究成员有J.R.Hughes,Robert Tayor,Juan Simo等人,第一代的程序没有名字,第二代线性程序就是著名的SAP(structural analysis program),非线性程序就是NONSAP。

位于洛杉矶的MSC公司自1963创立并开发了结构分析软件SADSAM,在1966年NASA招标项目中参与了Nastran的开发。

1969年NASA推出第一个Nastran 版本,MSC对原始的Nastran做了大量的改进并于1971年推出自己的专利版本MSC.Nastran,1983年股票上市并开始了一系列并购重组的活动。

第一批非线性有限元方法的主要贡献者有Argyris(1965),Marcal和King(1967),其中Pedro Marcal毕业于Berkeley大学,任教于Brown大学,于1969年创建了第一家非线性有限元软件公司MARC公司,在1999年被MSC公司收购。

K.J. Bathe是Ed Wilson在Berkeley的学生,后来在MIT任教,期间他在NONSAP 的基础上发表了著名的非线性求解器ADINA(Automatic Dynamic Incremental Nonlinear Analysis),其源代码因为长时期广泛流传而容易获得。

ABAQUS公司和软件介绍

ABAQUS公司和软件介绍

ABAQUS软件公司和产品应用介绍一、ABAQUS软件公司的发展历程1972年,ABAQUS的首要创始人David Hibbitt在布朗大学完成了Ph.D.论文,论文的一部分为基于有限元方法的计算力学内容。

这期间,他和他的导师创建了一个公司,产品为他们开发的有限元软件MARC。

此后,ABAQUS的另外一个创始人Paul Sorensen也加入了MARC,但之后回到布朗大学继续攻读Ph.D学位。

ABAQUS的另外一个创始人Dr. Bengt Karlsson曾经是Control Data公司的分析工程师,由于工作的关系,他逐步对当时各种有限元程序加以熟悉并产生浓厚兴趣。

1976年,他从欧洲来到美国和Hibbitt一同在MARC工作。

作为MARC的总工程师,Hibbitt越发意识到工业界对有限元软件有一种强烈的需求,将会成为工程师的日常工具,逐步取代传统的实验做法,但这要求对现有的程序进行大幅度修改,使之能够处理更大规模的模型,计算的可靠性和精度更高。

他建议导师重写MARC的内核来适应工业领域的要求,但是他的导师当时不愿意进行这样的一笔投资。

1977年,Hibbitt离开MARC开始从头编写ABAQUS。

Karlsson很快加入了他。

之后,已经从布朗大学博士毕业正在通用汽车公司工作的Sorensen也加入了他们的行列。

Hibbitt, Karlsson & Sorensen, Inc., (HKS) 公司于1978年2月1日正式成立。

三个力学专家开始了一个强大工程分析工具的发展历程。

HKS的第一个客户是Westinghouse Hanford公司,它在华盛顿州从事核反应堆方面的开发工作。

Westinghouse Hanford需要进行复杂的分析,包括核燃料棒的接触、蠕变和松弛等问题。

ABAQUS可以进行温度相关的蠕变、塑性以及接触建模体现了其优势,很快ABAQUS在核工业领域小有名气。

ABAQUS早期的应用还包括石油、军工等其它领域。

文献翻译—有限元概述

文献翻译—有限元概述

附录B.英文文献There are many types of CAE technology, including the finite element method, boundary element method, finite difference method. Each method has its own application areas, of which the application of finite element method more and more areas, has been used in structural mechanics, structural dynamics, thermodynamics, fluid mechanics, circuit theory, electromagnetism and so on.ANSYS software is the financial structure, fluid, electric field, magnetic field, acoustic field analysis in one large-scale finite element analysis software. By the world's largest finite element analysis software ANSYS, one of the United States developed it with most CAD software interface for data sharing and exchange, such as Pro / Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD, are modern Advanced CAE product design tools.ANSYS finite element package is a multi-purpose finite element method for computer design program, can be used to solve the structure, fluid, electricity, electromagnetic fields and collision issues. So it can be applied to the following industries: aerospace, automotive, biomedical, bridges, construction, electronics, heavy machinery, micro-electromechanical systems, sports equipment, etc..Finite Element Analysis (FEA,Finite Element Analysis) of the basic concept is tore-place the relatively simple problem to solve complex problems later. As it will solve the do-main is composed of many small-called finite element subdomain interconnection compone-nts,assuming that each unit of an appropriate (relatively simple) approximate solution,and then derived the general solution of the domain satisfy the conditions (such as balanced con-ditions),thus the solution of the problem. This solution is not exact solutions,but appro-ximate solution,since the actual problem is relatively simple to replace the problem. Since most practical problems it is difficult to be accurate solution,while finite element is not only high accuracy but also to adapt to a variety of complex shapes,thereby becoming an effective means of engineering analysis.FEM together those who are able to express the actual domain for the discrete element. The concept of the finite element as early as several centuries ago and have been applied,for example,polygon (a finite number of straight-line unit) to get close to circle thecir-cumference of a circle,but as a way to be made,it is the most recent matter. Finite ele-ment method was originally known as the matrix approximation method,the structural strength of aircraft used in the calculation,and because of its convenience,practicality and effectiveness arising from research scientists to engage in mechanical interest. Through the efforts of just a few decades,with the rapid development of computer technology and the popularity of the finite element method in structural engineering fromthe intensity of the rapid analysis extended to almost all areas of science and technology,become a rich and colorful,practical and efficient application of a wide range of numerical analysis.Finite element method with other methods of solving the boundary value problemsimil-ar to the fundamental difference is that the approximation of it is limited to relatively small sub-domain. 60 In the early 20th century structure was first proposed the concept of the finite element calculation of Clough (Clough),Professor vividly describes as: "The finite element method + = Rayleigh Ritz method piecewise function",that is,the finite element method is the Rayleigh Ritz method a localized situation. Different from the solution of (often difficult) to satisfy the boundary conditions of the definition of domain function to allow the Rayleigh Ritz method,finite element method will be defined in a simple function of geometry (such as two-dimensional problem of arbitrary quadrilateral or triangle) on the unit domain ( piecewise function),the definition does not consider the whole domain of the complex boundary conditions,this is the finite element method is superior to other similar methods of one of the reasons why.Different physical properties and mathematical models of the problem,finite element method to solve the basic steps are the same,only the specific formula to solve a different derivation and computation. Finite Element Analysis of the basic steps are as follows: The first step: the definition of the problem and solution domain: In accordance with the actual problem solving domain approximation to determine the physical properties and geometry of the region.The second step: Solving domain discretization: The approximate solution of the domain with different size and shape of a limited and linked to each other unit,composed of afin-ite number of discrete domains,the habit of division as the finite element network. Obvio-usly the smaller the unit (the finer t he network) is similar to the level of discrete domain,the better,the more accurate results,but the calculation of the volume and error will be larger,so to solve the discrete domain is the finite element method,one of the core tech-nology.The third step: to determine the state variables and control method: a specific physical problem can usually be handled by a group of state variables include the issue of boundary conditions that the differential equations for the finite element for solving differentialequa-tions are usually translated into the functional equivalent forms of .Step four: unit derived: on the unit to construct a suitable approximate solution,that is derived out of the finite element type,including a reasonable choice of coordinate system units,the establishment of unit test function,to one way or another unit of the stateva-riables given the discrete relations to form the unit matrix (the structure of said mechani-cal stiffness or flexibility matrix array).In order to ensure the convergence of problem solving,there are many principlesde-rived units to follow. In terms of engineering applications,it is important to payatten-tion to each unit of problem-solving performance and constraints. For example,the unit should be based on the rules for shape,and deformed not only low-precision,but also the risk of missing rank,will result in failure to solve.Step five: Solution assembly: assembly to form a discrete unit of the total domain matrix equation (Joint equations),reflecting the approximate solution of the discrete domain the request domain,that is,the continuity of function modules to meet the conditions for cer-tain. Assembly unit in the adjacent node,the state variables and their derivatives (if possib-le) to establish continuity in the junction point.Sixth step: solving simultaneous equations and the results of the interpretation: the finite element method eventually lead to simultaneous equations. Simultaneous equations can be used to solve the direct method,the election law and the random generation method. Solv-ing a result,the state Department unit node approximation variables. The results for the quality and design guidelines will be provided to allow values to evaluate and determine the need for double-counting.In short,the finite element analysis can be divided into three stages,pre-treatment,processing and post-processing. Pre-processing finite element model is built to complete the unit mesh; post-processing is the acquisition and processing the results of the analysis,a-lows users to extract information easy to understand results.In practice,the finite element method is usually composed of three main steps:1,pre-processing: the user object to be analyzed to establish part of the model,in this model,the geometry of the part being cut into several discrete sub-region - otherwise known as "modules." In some of the modules referred to as "nodes" of the discrete points connected with each other. Some of these nodes are fixed displacement,while the remaining loads are given. Prepare such a model could be extremely time-consuming process is why the commercial competition between the lies: how to use the most friendly graphical inter-face of the "pre-processing module",to help users complete the tedious work of boring. Some pre-processing module as a computerized drawing and an integral part of the de-ign process,can be pre-existing CAD file grid coverage,which can be easily completed by Finite Element Analysis.2,Analysis: the pre-processing module prepared data into finite element program,andthus constitutes a solution of linear or nonlinear system of algebraic equations thatKij * Uj = FiWhere u and f,respectively,for each node of the displacement and the role of external forces. Matrix form of K depend on the type of problem solving,the module will outline the truss with the linear elastic stress analysis. Business procedures may carry a very large library,the different types of unit s applicable to a wide range of various problems. Finite element method is one of the main advantages of: Many different types of problems are available to deal with the same procedure,the difference is only specified from the cell library for the problem in different cell types.3,post-processing: In the early finite element analysis,users need to carefully study the procedures for computing a large number of figures after,that is,the model set out in the discrete position of the displacement and stress. This method is easy to miss important trends and hot spots,and the latest graphics processing to be use to help the usercom-puting the results of direct observation. Typical post-processing module can display the model across the color line graph of stress for different stress levels,indicating the entire stress field is similar to the images or Photoelasticity moire results.附录C.中文翻译CAE的技术种类有很多,其中包括有限元法,边界元法,有限差法等。

20外文文献翻译原文及译文参考样式

20外文文献翻译原文及译文参考样式

20外⽂⽂献翻译原⽂及译⽂参考样式华北电⼒⼤学科技学院毕业设计(论⽂)附件外⽂⽂献翻译学号: 0819******** 姓名:宗鹏程所在系别:机械⼯程及⾃动化专业班级:机械08K1指导教师:张超原⽂标题:Development of a High-PerformanceMagnetic Gear年⽉⽇⾼性能磁齿轮的发展1摘要:本⽂提出了⼀个⾼性能永磁齿轮的计算和测量结果。

上述分析的永磁齿轮有5.5的传动⽐,并能够提供27 Nm的⼒矩。

分析表明,由于它的弹簧扭转常数很⼩,因此需要特别重视安装了这种⾼性能永磁齿轮的系统。

上述分析的齿轮也已经被应⽤在实际中,以验证、预测其效率。

经测量,由于较⼤端齿轮传动引起的磁⼒齿轮的扭矩只有16 Nm。

⼀项关于磁齿轮效率损失的系统研究也展⽰了为什么实际⼯作效率只有81%。

⼀⼤部分磁损耗起源于轴承,因为机械故障的存在,此轴承的备⽤轴承在此时是必要的。

如果没有源于轴的少量磁泄漏,我们估计能得到⾼达96%的效率。

与传统的机械齿轮的⽐较表明,磁性齿轮具有更好的效率和单位体积较⼤扭矩。

最后,可以得出结论,本⽂的研究结果可能有助于促进传统机械齿轮向磁性齿轮发展。

关键词:有限元分析(FEA)、变速箱,⾼转矩密度,磁性齿轮。

⼀、导⾔由于永久磁铁能产⽣磁通和磁⼒,虽然⼏个世纪过去了,许多⼈仍然着迷于永久磁铁。

,在过去20年的复兴阶段,正是这些优点已经使得永久磁铁在很多实际中⼴泛的应⽤,包括在起重机,扬声器,接头领域,尤其是在永久磁铁电机⽅⾯。

其中对永磁铁的复兴最常见于效率和转矩密度由于永磁铁的应⽤显著提⾼的⼩型机器的领域。

在永久磁铁没有获取⾼度重视的⼀个领域是传动装置的领域,也就是说,磁⼒联轴器不被⼴泛⽤于传动装置。

磁性联轴器基本上可以被视为以传动⽐为1:1磁⼒齿轮。

相⽐标准电⽓机器有约10kN m/m的扭矩,装有⾼能量永久磁铁的磁耦有⾮常⾼的单位体积密度的扭矩,变化范围⼤约300–400 kN 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中文3240字Steps in Finite Element AnalysisIntroductionRecently there is a trend towards using it in the early stages of design. A designer may use FEA just to validate the structural integrity of a design or she may use it for structural optimization along with the parametrized design techniques.This paper examines the requirements of a structural analysis agent and proposes an architecture to facilitate FEA in a concurrent design environment. The next section briefly describes how FEA is used in a typical industrial set up.Section 3 presents a survey of existing FE tools. Section 4 discusses some issues related to the development of an FEA agent. Section 5 proposes an architecture for the FEA agent that addresses the issues described in Section 4 and finally Section 6 presents the concluding remarks.Steps in Finite Element AnalysisThe process of FEA starts with identification of the region of interest and the formulation of the physical problem。

[1]. The region of interest might be an assembly, a component or a portion of a component (or an assembly). The interaction of the rest of the assembly and the environmental conditions with the region of interest is captured in two ways. One way to represent this interaction is to idealize them as loads and displacement constraints on the region of interest. For example a spot weld fixing a component to a bigger structure will result in a constraining all the degrees of freedom at that point. The other commonly used method is to use spring and/or gap elements.Analysts often draw a Free Body Diagram of the region of interest to clarify its interaction with the rest of the assembly and to gain more insight into its structural behavior.Required components and assemblies are then retrieved from the Solid Modeling system into the finite element package.In recent years a number of commercial systems have started offering both: FEA and Solid Modeling capabilities.In this case, the data exchange may occur between two modules of the same package.The original design geometry is sometimes too complicated for the purpose of analysis. The analyst may choose to simplify it so that it is easier to mesh and incurs less computational cost.This task of simplifying the design geometry is referred to as Global Idealization.Global Idealization may involve deletion/modification of some of the geometric features. The analyst may choose to take advantage of the symmetry and analyze only a portion of the model. If the problem is axi-symmetric, she may choose to reduce a 3D problem to 2D by analyzing the radial cross-section.If the analyst intends to make significant modifications in the geometry, she may choose to import the geometry in a drafting package first and then read the modified geometry in the analysis package.Global Idealization is often followed by Element Idealization. Element Idealization consists of characterizing the finite element dimensionality of the globally idealized object. The original 3D geometry may be transformed into a collection of 1D, 2D and 3D entities depending on the characterization of various geometric parts as beams, plates/shells, and solid elements respectively. Element Idealization decisions are based on two factors: shape of the object and the boundary conditions.The next step in the modeling process is selection of type of elements and their material properties. Based on this decision, the user discretizes the idealized geometry into finite elements.This step is commonly referred to as Mesh Generation.Traditionally the loads and boundary conditions are applied to the nodes and the element boundaries. In the proposed system they are applied to the geometry. Finally, he user has to select the type of analysis (static, modal,etc.) and the solution method and the finite element model is ready for analysis.The raw answers computed by the finite element solver have to be processed further. This includes calculation of derived quantities (such as stress and strain values), computing error estimates, creating创建graphical displays showing deformed shapes , stress contour plots, etc. All these tasks are collectively referred to as post-processing. Based on the post-processing results the user may modify the model at any stage of idealization (including the original design itself)and start the loop once again.An overview of the analysis process is shown in Figure 1.Figure 1 Steps in Finite Element AnalysisDevelopment of Finite Element ToolsDue to the obvious pay-offs associated with speeding up of the analysis process, there is almost an explosion of both research and commercial systems supporting FEA. The development of FEA tools has followed a path very similar to the development of Design Automation tools. The early software supporting FEA was primarily meant to automate tasks in the detailed analysis stage, namely Mesh Generation and Post-Processing. A survey of earlier work in automatic mesh generation methods can be found in references [2] and [3]. Earlier mesh generator would simply discretize the analysis geometry into a bunch of elements with almost no regard for the solution accuracy implied by the mesh.Adaptive meshing methods improved the reliability of mesh generation process.These methods use one of the several error estimation techniques [4,5] to estimate the discretization error for a trial mesh and improve the mesh quality either by refining the mesh in certain areas (called h-refinement methods) [6], or increasing the order of element interpolation (called p-enrichment methods) [7] or a combination of both (called h-p methods) [7].The raw FE data is usually too difficult to interpret due to its large volume.Post-Processing tools aid visualization and facilitate easier interpretation of the data. Post-processing features provided by today’s commercial packages include display of deformed shapes; calculation of useful engineering quantities such as V on Mises Stress, principal stresses, etc.; contour and shaded plotsshowing distributionf numerical parameters over the analysis domain.The emergence of Expert Systems technology saw the development of a new generation of FEA tools. The researchers became interested in applying Expert Systems techniques to automate early stages of the finite element modeling process. These systems try to capture the experiential and often subjective knowledge used by expert analysts and act as “modeling assistant” to a novice user. Fenves [8] suggested a framework for developing a knowledgebased system to assist FE analysis. Bennett et al. [9] developed a rule based system called SACON to suggest an analysis strategy to a novice user of MARC (a commercial FE code).Today’s commercial systems have incorporated most of the research in Mesh Generation and Post Processing. Also,the trend is towards developing integrated Computer Aided Engineering (CAE) packages which offer a range of facilities (solid modeling, drafting, analysis, etc.). This has greatly helped to ease the transition from a Solid Model of a design to its finite element model.Issues in Developing a Finite Element Analysis AgentAn FEA agent must surely support all the FE activities described in Section 2. But we prefer to use a commercial package for Mesh Generation and Post-Processing because today’s FE packages are fairly sophisticated in these areas and it seems pointless to duplicate this work. On the other hand, commercial codes are not suitable for合the Model Preparation tasks in any specific domain and the proposed FEA agent is intended to fill this gap. As a result, the following discussion primarily focuses on the model preparation tasks in FEA.1Exchanging Finite Element Modeling InformationThe FEA agent should facilitate exchange of an FE modeling problem at different levels of descriptions. A very high level description would consist of the sketch of the part to be analyzed with a verbal description of the operating conditions and the analysis requirements. Another form of description may consist of a B-Rep of the part with a descriptionof the boundary conditions with reference to the B-rep entities of the part. An ontology for describing assemblies, components, boundary conditions, etc. will have to developed to provide a formal language for the data exchange.The agent should have the capability to read and write IGES and STEP files. Both the standards have the capability of handling Constructive Solid Geometry (CSG) and Boundary Representation (B-Rep) formats. STEP is claimed to have the capability of exchanging FE entitiesas well.2Representation of a Finite Element ModelA representation of an FE modeling problem would have to include the following information:1. Geometry2. Boundary Conditions3. Material Properties4. Geometric Properties5. Type of Analysis6. Accuracy DesiredThe geometry should be maintained at different levels of FE idealizations. This would require the use of a non-manifold geometric modeler since FE models are often composed of elements of different dimensionality (e.g. a model may consist of plates and beams). The geometric description also needs to be maintained in the b-rep form since all of the mesh generators require it in this form.Traditionally, the boundary conditions are applied to model after it has been meshed even though the analyst knows what they are in the beginning and uses this knowledge in creating an appropriate FE mesh for the object. The Design Representation System (DRS) that we have developed allows us to prescribe boundary conditions along with the geometry and attachthem to the b-rep of the FE model.In practice, the FE problem seldom involves a single mechanical component, therefore it is desirable to maintain a symbolic representation of the assemblies and connections. The representation of connections can also be used to automatically derive the boundary conditions due to the interaction of mating components.3Geometry EditingAn analyst often wants to delete/modify certain geometric features of the model to simplify analysis procedure. This has been referred to as Global Idealization.Therefore the FE agent should provide feature-editing facility and quickly compute the b-rep of the resulting object. Certain higher level commands that convert one FE model into another should be provided (E.g. building a 2-D model by extracting the radial cross section of an axi-symmetric model).Geometric properties such as feature volumes, centroids, etc. should be automatically calculated. Direct addition/ deletion of FE entities such as beams, plates, etc. should also be possible for a quick what-if analysis in structural design.4 Interface with Commercial Finite Element PackagesThe proposed agent would use a commercial code for Mesh Generation, Analysis and Post-Processing.Therefore, the interface with this package may not be limited to just IGES or STEP files. The FEA agent must incorporate the knowledge needed for the effective use of the chosen FE package. This knowledge can then be used to write “program files” that w ill direct the abovementionedactivities in the FE code.5Knowledge-based AssistanceThe FE modeling decisions are primarily based on the two factors: shape of the components being analyzed and the boundary conditions. Since the geometry is maintained in terms of it’s boundary representation, the b-rep informationcan be used to infer about the shape attributes of the component. DRS also allows the user to attach boundary conditions to the b-rep entities (vertex, edge, face) in the geometric model, therefore the system has an integrated representation of the geometry and the boundary conditions. At the very least this information can be used to intelligently limit the options given to the user. For example, if the geometry is not axi-symmetric, the option for axi-symmetric 2- D elements may not be shown to the user. Going a step further a knowledge-base can be developed which makes use of the geometric and boundary conditions representation and the available domain specific information. This knowledge-base can be used to provide expert advice to a novice user.Architecture of the Proposed FEA AgentA schematic of the proposed architecture is shown in Figure 2. The Central Representation Module will be implemented in CLIPS. It will maintain all the aspects of a FE model listed in Section 4.2. The Geometry Kernel will be provided by the non-manifold geometric modeler called NOODLES. The graphics display programs will be written using TK/TCL interface builder. I-DEAS will be used for Mesh Generation, Analysis and Post-Processing. The Knowledge-based Module will be written using CLIPS rules and facts.The Interface Module will be able to read and write IGES and STEP files, write I-DEAS program files and use EIT’s software for agent communication.Figure 2 Schematic Diagram of the Proposed FEA Agent (Arrows indicate information flow.)Concluding RemarksThe implementation of the proposed agent will be CLIPS/C/TK/TCL based.Some of the features described in the earlier section have been previously implemented in Lisp.These are as follows:• Data structures for attaching boundary conditions to b-rep entities• Simple shape recognition and b-rep updating• Calculation of inertial properties such as volumes, centroids, moments of inertia, etc. from the solid b-reps• Creation of I-DEAS program files for modal analysis of beam models有限元分析软件的发展介绍最近有一种将有限元分析用在设计早期的趋势。

相关文档
最新文档