(完整版)散热器设计的基本计算
散热器散热量计算

散热器散热量计算散热器散热量计算;散热量是散热器的一项重要技术参数,每一种散热器出;现介绍几种简单的计算方法:;(一)根据散热器热工检验报告中,散热量与计算温差;铜铝复合74×60的热工计算公式(十柱)是:;Q=5.8259×△T(十柱);1.标准散热热量:当进水温度95℃,出水温度70;十柱散热量:;Q=5.8259×64.5=1221.4W;每柱散热量;1224.4W÷散热器散热量计算散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。
现介绍几种简单的计算方法:(一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。
在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是:Q=5.8259×△T (十柱)1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃十柱散热量:Q=5.8259×64.5 =1221.4W每柱散热量1224.4 W÷10柱=122 W/柱2.当进水温度80℃,出水温度60℃,室内温度18℃时:△T =(80℃+60℃)/2-18℃=52℃十柱散热量:Q=5.8259×52 =926W每柱散热量926 W÷10柱=92.6W/柱3.当进水温度70℃,出水温度50℃,室内温度18℃时:△T =(70℃+50℃)/2-18℃=42℃十柱散热量:Q=5.8259×42 =704.4W每柱散热量704.4W ÷10柱=70.4W/柱(二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量:我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。
散热器散热量计算

散热器散热量计算散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。
现介绍几种简单的计算方法:(一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。
在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是:Q=5.8259×△T(十柱)1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃十柱散热量:Q=5.8259×64.5=1221.4W每柱散热量1224.4 W÷10柱=122 W/柱2.当进水温度80℃,出水温度60℃,室内温度18℃时:△T =(80℃+60℃)/2-18℃=52℃十柱散热量:Q=5.8259×52=926W每柱散热量926 W÷10柱=92.6W/柱3.当进水温度70℃,出水温度50℃,室内温度18℃时:△T =(70℃+50℃)/2-18℃=42℃十柱散热量:Q=5.8259×42=704.4W每柱散热量704.4W ÷10柱=70.4W/柱(二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量:我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M 点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。
(三)利用传热系数Q=K·F·△T一般来说△T已经计算出来,F是散热面积,传热系数K,可通过类似散热器中计算出来或者从经验得到的,这种计算方法一般用在还没有经过热工检验,正在试制的散热器中。
散热器换热计算规范

1、范围2、散热器换热设计计算(理论)2. 1、发动机冷却水散热量2.2、冷却液循环量2.3、冷却空气需求量・・・.2.4、散热器正面积....2.5、散热器散热面积3、散热器换热设计计算(实际)3. 1、确定散热器结构3.2、冷却液侧换热系数的计算3.3、空气侧换热系数的计算3.4、百叶窗翅片风阻的计算.. 113.5、传热系数的计算113.6、管翅式交叉流换热器修正系数估算123. 7、温度校核13 4、现有冷却模块的性能曲线和风扇、水泵的匹配144.1、已知的数据、参数144.2、冷却模块和风扇的匹配154.3、液气温差的计算 (1)61、范日本规范规定了汽车散热器换热计算方法。
本规范适用于汽车散热器换热计算、选型。
2、散热器换热设计计算(理论)2.1、发动机冷却水散热量表1:发动机冷却水散热量若已告知发动机冷却系统数据单,则冷却系统散热量数据单(参考图1)为准。
冷却系统Cooling system图1:发动机冷却系统数据单2.2、冷却液循环量若已告知的发动机冷却系统数据单上有冷却液需求量,则Vw<V (数据单)时,满足冷却液需求量。
表2:冷却液需求量2.3、冷却空气需求量表3:冷却空气需求量2.4、散热器正面积表4:散热器正面积2.5、散热器散热面积表5:散热器散热面积3、散热器换热设计计算(实际)汽车散热器实际设计中,散热器外形边界(芯高、芯宽)、发动机参数(冷却液带走热量、冷却液流量、报警温度)、风扇参数(性能曲线)均已告知,在此基础上设计尽可能紧凑的散热器系统。
3.1、确定散热器结构由于现有常规结构汽车散热器均为管翅式交叉流散热器,故以下计算均为管翅式交叉流散热器换热计算。
3.2、冷却液侧换热系数的计算选择散热管类型、排布,确定散热管通水截面积A.散热管湿周长度P,得散热管水力直径①(m):d h =*(3. 1)散热管内冷却液平均流速ι⅛ (m/s):u fl =7⅛r(3. 2)hK为冷却水体积流量(m3∕s) , N为流道数量。
散热器散热量计算

散热器散热量计算散热器散热量计算;散热量是散热器的一项重要技术参数,每一种散热器出;现介绍几种简单的计算方法:;(一)根据散热器热工检验报告中,散热量与计算温差;铜铝复合74×60的热工计算公式(十柱)是:;Q=5.8259×△T(十柱);1.标准散热热量:当进水温度95℃,出水温度70;十柱散热量:;Q=5.8259×64.5=1221.4W;每柱散热量;1224.4W÷散热器散热量计算散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。
现介绍几种简单的计算方法:(一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。
在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是:Q=5.8259×△T (十柱)1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃十柱散热量:Q=5.8259×64.5 =1221.4W每柱散热量1224.4 W÷10柱=122 W/柱2.当进水温度80℃,出水温度60℃,室内温度18℃时:△T =(80℃+60℃)/2-18℃=52℃十柱散热量:Q=5.8259×52 =926W每柱散热量926 W÷10柱=92.6W/柱3.当进水温度70℃,出水温度50℃,室内温度18℃时:△T =(70℃+50℃)/2-18℃=42℃十柱散热量:Q=5.8259×42 =704.4W每柱散热量704.4W ÷10柱=70.4W/柱(二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量:我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。
设备散热器风扇的选型和设计计算

设备散热器风扇的选型和设计计算一、了解设备散热需求首先,需要准确了解设备的散热需求。
散热需求取决于设备的功率消耗、温度要求和工作环境等因素。
通常,功率消耗越高、温度要求越低、工作环境越苛刻,散热需求就越大。
二、计算散热功率在了解设备散热需求后,需要计算所需的散热功率。
散热功率的计算可以使用下述公式:Q=P×(T2-T1)/η其中,Q为散热功率(单位为瓦特),P为功率消耗(单位为瓦特),T2为设备工作温度(单位为摄氏度),T1为环境温度(单位为摄氏度),η为设备的热效率。
三、确定散热器类型根据散热功率和设备系统的特点,选择合适的散热器类型。
常见的散热器类型包括散热片(fin heat sink)、板式散热器(plate heat sink)、液冷散热器(liquid cooling heat sink)等。
四、计算散热器尺寸根据散热功率和散热器类型,计算散热器的尺寸。
散热器尺寸的计算可以使用估算法或者CFD模拟仿真方法。
估算法通常是基于实验数据和经验公式,而CFD模拟仿真方法可以提供更精确的结果。
五、选择合适的风扇根据散热器尺寸和散热需求,选择合适的风扇。
风扇的选型要考虑风量、风压、噪音、寿命等因素。
一般而言,风量和风压越大,散热效果越好,但噪音也会增加。
六、确定风扇位置和安装方式风扇的位置和安装方式对散热效果有重要影响。
一般而言,风扇应尽可能靠近散热表面并与之紧密结合,以提高热量传递效率。
此外,还需要保证风扇的气流方向和设备散热方向一致。
七、进行散热系统热流仿真分析为了验证散热系统的设计效果,可以进行热流仿真分析。
通过仿真分析,可以获得散热器各部位的温度分布和热流路径,从而优化设计。
以上是设备散热器的选型和设计计算的一般原理和步骤。
在实际应用中,还需要根据具体设备的要求和限制进行合理调整和优化。
此外,还需要注意散热系统的维护和保养,以确保其长期稳定工作。
(整理)散热器的表面积计算

散热器的表面积计算:S=0.86W/(△T*a))(平方米)式中△T——散热器温度与周围环境温度(Ta)之差(℃);a——传导系数,是由空气的物理性质及空气流速决定的。
a 的值可以表示为:A=Nu*λ/L式中λ——热电导率由空气的物理性质决定;L——散热器海拔高度();Nu——空气流速系数。
Nu 值由下式决定Nu = 0.664* [(V/V1)^(1/2)]*[Pr^(1/3)]式中V——动黏性系数,是空气的物理性质;V1——散热器表面的空气流速;Pr——参数(见表 1)。
温度t/℃20406080100120动黏性系数0.1380.1560.1750.1960.2170.2300.262热电导率0.02070.02210.02340.02470.02600.02720.0285Pr0.720.710.710.710.700.700.70散热器选择的计算方法一,各热参数定义:Rja———总热阻,℃/W;Rjc———器件的内热阻,℃/W;Rcs———器件与散热器界面间的界面热阻,℃/W;Rsa———散热器热阻,℃/W;Tj———发热源器件内结温度,℃;Tc———发热源器件表面壳温度,℃;Ts———散热器温度,℃;Ta———环境温度,℃;Pc———器件使用功率,W;Δ Tsa ———散热器温升,℃;二,散热器选择:Rsa =(Tj-Ta)/Pc - Rjc -Rcs式中:Rsa (散热器热阻)是选择散热器的主要依据。
Tj 和Rjc 是发热源器件提供的参数,Pc 是设计要求的参数,Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/ (接触面积 X 接触材料导热系数)。
(1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc(2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-RtcΔTsa=Rsa×Pc (3)确定散热器按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线( Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。
散热器面积及片数的计算方法

工程一:室内热水供暖工程施工模块三:散热器施工安装单元2 散热器的计算1-3-2-1散热器面积及片数的计算方法1.计算散热器的散热面积供暖房间的散热器向房间供应热量以补偿房间的热损失。
根据热平衡原理,散热器的散热量应等于房间的供暖设计热负荷。
散热器散热面积的计算公式为321)(βββn pj t t K QF -=(2-1-2)式中 F ——散热器的散热面积(m 2);Q ——散热器的散热量(W );K ——散热器的传热系数[W/(m 2·℃)]; t pj ——散热器内热媒平均温度(℃); t n ——供暖室内计算温度(℃); β1——散热器组装片数修正系数; β2——散热器连接形式修正系数; β3——散热器安装形式修正系数。
2.确定散热器的传热系数K散热器的传热系数K 是表示当散热器内热媒平均温度t pj 与室内空气温度t n 的差为1℃时,每1 m 2散热面积单位时间放出的热量。
选用散热器时希望散热器的传热系数越大越好。
影响散热器传热系数的最主要因素是散热器内热媒平均温度与室内空气温度的差值Δt pj 。
另外散热器的材质、几何尺寸、结构形式、表面喷涂、热媒种类、温度、流量、室内空气温度、散热器的安装方式、片数等条件都将影响传热系数的大小。
因而无法用理论推导求出各种散热器的传热系数值,只能通过实验方法确定。
国际化规范组织(ISO )规定:确定散热器的传热系数 K 值的实验,应在一个长×宽×高为(4±0.2)m ×(4±0.2)m ×(2.8±0.2)m 的封闭小室内,保证室温恒定下进行,散热器应无遮挡,敞开设置。
通过实验方法可得到散热器传热系数公式K=a (Δt pj )b =a (t pj -t n )b(2-1-3)式中 K ——在实验条件下,散热器的传热系数[W/(m 2·℃)]; a 、b ——由实验确定的系数,取决于散热器的类型和安装方式; Δt pj ——散热器内热媒与室内空气的平均温差,Δt pj =t pj –t n 。
散热器的散热量计算公式

散热器的散热量计算公式散热器是一种用于降低电子设备或机械设备温度的装置。
它通过将设备产生的热量转移到周围环境中,从而保持设备的正常运行温度。
散热器的散热量计算公式可以帮助我们了解散热器的散热能力和热量传递效率。
散热器的散热量计算公式如下:Q = U * A * ΔT其中,Q表示散热器的散热量,U表示散热器的传热系数,A表示散热器的表面积,ΔT表示散热器与环境之间的温度差。
我们来了解一下散热器的传热系数U。
传热系数是指单位时间内通过单位面积的热量传递量与温度差之间的比值。
它决定了散热器传热的效率和能力。
散热器的传热系数受到散热器材料、散热片结构和流体状态等因素的影响。
散热器的表面积A也是计算散热量的重要参数。
表面积越大,散热器与周围环境之间的热交换面积就越大,从而能够更快地将热量散发出去。
温度差ΔT是指散热器表面温度与环境温度之间的差值。
温度差越大,散热器的散热能力越强。
散热器的散热量计算公式可以帮助我们评估散热器的散热性能。
通过调整散热器材料、改进散热片结构和优化流体状态,可以提高散热器的传热系数和表面积,从而提高散热器的散热能力。
除了散热器自身的设计和性能,散热器的散热量还受到其他因素的影响。
例如,周围环境的温度和湿度、设备的功率和工作状态等都会对散热器的散热效果产生影响。
在实际应用中,我们可以根据设备的功率、工作温度和环境温度等参数,计算出散热器所需的散热量。
然后,根据散热器的传热系数和表面积,选择合适的散热器型号和规格。
散热器的散热量计算公式是评估散热器散热性能的重要工具。
通过合理选择散热器和优化散热系统设计,可以有效降低设备温度,提高设备的可靠性和稳定性。
在未来的发展中,我们可以期待散热器技术的进一步创新和提高,以满足不断增长的散热需求。
散热器计算方法

散热器计算方法之对数平均温差法已知:散热量Q ,初步设计散热器长L ,宽W ,空气侧和水侧的进口温度tin ,出口温度tout (空气侧下标为1,水侧下标为2);设计选取空气侧和水侧的翅高n ,翅宽nw ,翅厚h ,空气侧流动速度v ;根据其平均温度,分别选取空气侧和水侧密度ρ,比热容c,动力粘度η,普朗特数Pr,流体导热系数λ;计算过程:1、流通截面积A=h nw n W *L*nw h nw h n )(*)( ;当量直径de=2hnw h n h nw h n )(*)(2、空气体积流量qv 1=v 1*A ,空气质量流速qm 1=ρ1*qv 1/A 1;3、水侧流量由Q=c 2*q 2*Δt 2得质量流量q 2,则质量流速qm 2=q 2/A 1,同样可求得qv 2和v 2;4、雷诺数Re=e d qm *5、f 值:f =[1.82*lg(Re)-1.64]-26、努谢尔特数:当Re=2300-106时,Nu=ct H de *](1[*1)-(Pr *f/8*12.71Pr *1000)-(Re *8f 3/22/3 ;其中,对于气体ct=45.0)(w ft t ,对于液体ct=01.0Pr Pr (w f 当Re <2300时,Nu=14.03/1)(/Pr Re*(86.1wf de H ;f ,w 分别表示以流体平均温度及壁面温度所得值;7、计算对流换热系数h=Nu*λ/de ;8、计算传热系数K=2121111S S h h 9、对数平均温差ΔT=)()()()(21212121tin tout tout tin In tin tout tout tin ;10、容积紧凑系数,即面容比:R=)()2(2)()2(22122221111h n n nw h nw n h n n nw h nw n 11、P=两流体进口温度差冷流体加热度R=冷流体加热度热流体冷却度由P 和R 值查取 值12、散热面积S=Q/( K)/ΔT则散热器芯体高H=S/R/(W*L )散热器计算方法之ε-NTU法1~8和对数平均温差法相同。
(完整版)散热器设计的基本计算

判定结温温升限值是否符合;
注意计算时单位要统一。
四、 经验
1、 热路的分析和计算,由于影响因素较为复杂,可以忽略一些影响小的参数,来简 化计算,但一定要注意影响趋势的方向,是有利于传热的,可以作为设计余量储 备,由于影响小,所以不会影响经济性。
2、 还是因为影响因素复杂,理论计算是设计指导,结果一定以试验结论判定,埋点 测温是最有效的验证方式。
装配的步骤减少,即适应批量的流水装配作业。
符号—— Rth
单位——℃ /W。
? 稳态热传递的热阻计算 : Rth= (T1-T2)/P
T1——热源温度(无其他热源) (℃ ) T2——导热系统端点温度 (℃ ) ? 热路中材料热阻的计算 : Rth=L/(K·S)
L——材料厚度 (m) S——传热接触面积 ( m2)
3、 导热率: 是指当温度垂直向下梯度为 1℃ /m 时,单位时间内通过单位水平截面积所 传递的热量。
? 推荐:器件选型时应达到如下标准
民用等级: Tjmax≤150℃
工业等级: Tjmax≤135℃
军品等级: Tjmax≤125℃
航天等级: Tjmax≤105℃
? 以电路设计提供的,来自于器件手册的参数为设计目标
2、 温升限值
器件、内部环境、外壳: △T≤60℃
器件每升高 2℃,可靠性下降 10%;器件温升为 50℃时,寿命只有温升 25℃的 1/6 ,
? 条件
Rthjc——器件手册查询
Rthcs——材料热阻:
R =L /( K ·S ) th 绝缘垫
绝缘垫厚度
绝缘垫
绝缘垫接触 c 的面积
Rthsa——散热器热阻曲线图查询
T 结温——器件手册查询(待计算数值)
散热器散热量怎么计算

散热器散热量怎么计算?详细点放出热量Q放=cm(t-t0)散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。
现介绍几种简单的计算方法:(一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。
在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是:Q=5.8259×△T(十柱)1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃十柱散热量:Q=5.8259×64.5=1221.4W每柱散热量1224.4 W÷10柱=122 W/柱2.当进水温度80℃,出水温度60℃,室内温度18℃时:△T =(80℃+60℃)/2-18℃=52℃十柱散热量:Q=5.8259×52=926W每柱散热量926 W÷10柱=92.6W/柱3.当进水温度70℃,出水温度50℃,室内温度18℃时:△T =(70℃+50℃)/2-18℃=42℃十柱散热量:Q=5.8259×42=704.4W每柱散热量704.4W ÷10柱=70.4W/柱(二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量:我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M 点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。
(三)利用传热系数Q=K·F·△T一般来说△T已经计算出来,F是散热面积,传热系数K,可通过类似散热器中计算出来或者从经验得到的,这种计算方法一般用在还没有经过热工检验,正在试制的散热器中。
散热器的散热量计算公式

散热器的散热量计算公式散热器是一种用于散热的设备,广泛应用于电子设备、汽车发动机、工业设备等领域。
散热器的效果好坏取决于其散热量的大小。
散热器的散热量计算公式是通过计算散热器的表面积、传热系数和温度差来得到的。
散热器的表面积是散热器散热的关键因素之一。
表面积越大,散热器与周围环境的接触面积就越大,从而增加了散热器的散热效果。
散热器的表面积可以通过测量散热器的尺寸来得到,一般以平方米为单位。
传热系数是指散热器材料与空气之间传热的能力。
传热系数越大,散热器的散热效果就越好。
传热系数可以通过散热器材料的热导率来得到。
热导率是指材料在单位温度梯度下传热的能力,一般以瓦特/米·开尔文为单位。
温度差是指散热器表面温度与周围环境温度之间的差值。
温度差越大,散热器的散热效果就越好。
温度差可以通过测量散热器表面和周围环境的温度来得到,一般以摄氏度为单位。
根据以上三个因素,散热器的散热量可以通过以下公式来计算:散热量 = 表面积× 传热系数× 温度差其中,散热量以瓦特为单位。
散热器的散热量计算公式可以帮助工程师们在设计散热器时选择合适的尺寸、材料和工艺,以达到所需的散热效果。
通过增加散热器的表面积、提高传热系数和增大温度差,可以增加散热器的散热量,从而提高散热器的效果。
散热器的散热量计算公式在实际应用中非常重要。
在电子设备中,如计算机、手机等,散热器的散热量计算公式可以帮助工程师们设计合适的散热结构,以保证设备的正常运行。
在汽车发动机中,散热器的散热量计算公式可以帮助工程师们选择合适的散热器尺寸和材料,以保证发动机的散热效果,提高发动机的工作效率和寿命。
散热器的散热量计算公式是通过计算散热器的表面积、传热系数和温度差来得到的。
散热器的散热量计算公式可以帮助工程师们在设计散热器时选择合适的尺寸、材料和工艺,以达到所需的散热效果。
散热器的散热量计算公式在电子设备、汽车发动机等领域的应用非常广泛,对保证设备的正常运行和提高工作效率具有重要意义。
散热器设计的基本计算

散热器设计的基本计算1.散热功率计算:散热器主要的功能是将设备产生的热量迅速散发出去。
在设计散热器时,首先需要计算散热功率,即设备需要散发的热量。
散热功率的计算公式为:Q=P×R其中,Q为散热功率,单位为W;P为设备的功率,单位为W;R为散热器的散热系数,单位为W/℃。
2.散热面积计算:散热面积是散热器的一个重要参数。
散热面积越大,散热器的散热效果越好。
散热面积的计算公式为:A=Q/(h×ΔT)其中,A为散热面积,单位为m²;Q为散热功率,单位为W;h为热对流换热系数,单位为W/(m²·℃);ΔT为设备的工作温度与环境温度之差,单位为℃。
3.散热器材料选择:散热器的材料也会影响其散热性能。
一般来说,散热器的材料应具有良好的导热性能和强度。
常用的散热器材料有铝、铜、铝合金等。
不同的材料具有不同的热传导系数,选择合适的材料可以提高散热器的散热效果。
4.热传导性能计算:热传导性能是指散热器材料的导热能力。
我们可以通过热阻来衡量热传导性能。
热阻的计算公式为:Rt=L/(k×A)其中,Rt为热阻,单位为℃/W;L为材料的长度,单位为m;k为材料的热导率,单位为W/(m·℃);A为散热器的截面面积,单位为m²。
5.散热器的结构设计:散热器的结构设计也是散热器设计的重要部分。
在结构设计时,需要考虑到散热面积的最大化和散热器的流体阻力。
通常,散热器的散热面积可以通过增加散热片的数量和密度来实现。
而流体阻力则可以通过优化散热片的形状和间距来降低。
总之,散热器的设计需要考虑到多个因素,包括散热功率、散热面积、材料选择、热传导性能和结构设计等。
通过合理的计算和设计,可以达到提高散热效果的目的。
散热器到底如何计算

一、7805 设计事例设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W。
按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805 的热保护点150℃,7805 会断开输出。
二、正确的设计方法是:首先确定最高的环境温度,比如60℃,查出民品7805 的最高结温Tj(max)=125℃,那么允许的温升是65℃。
要求的热阻是65℃/2.45W=26℃/W。
再查7805 的热阻,TO-220 封装的热阻θJA=54℃/W,TO-3 封装(也就是大家说的“铁壳”)的热阻θJA=39℃/W,均高于要求值,都不能使用(虽然达不到热保护点,但是超指标使用还是不对的),所以不论那种封装都必须加散热片。
资料里讲到加散热片的时候,应该加上4℃/W 的壳到散热片的热阻。
计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W。
其实这个值非常大,只要是个散热片即可满足。
三、散热片尺寸设计散热片计算很麻烦的,而且是半经验性的,或说是人家的实测结果。
基本的计算方法是:1.最大总热阻θja =(器件芯的最高允许温度TJ -最高环境温度TA )/ 最大耗散功率其中,对硅半导体,TJ 可高到125℃,但一般不应取那么高,温度太高会降低可靠性和寿命。
最高环境温度TA 是使用中机箱内的温度,比气温会高。
最大耗散功率见器件手册。
2.总热阻θja=芯到壳的热阻θjc +壳到散热片的θcs +散热片到环境的θsa其中,θjc 在大功率器件的DateSheet 中都有,例如3---5θcs 对TO220 封装,用2 左右,对TO3 封装,用3 左右,加导热硅脂后,该值会小一点,加云母绝缘后,该值会大一点。
散热片到环境的热阻θsa 跟散热片的材料、表面积、厚度都有关系,作为参考,给出一组数据例子。
a.对于厚2mm 的铝板,表面积(平方厘米)和热阻(℃/W)的对应关系是:中间的数据可以估计了。
散热器尺寸设计计算方法(一)

散热器尺寸设计计算方法(一)引言概述:
散热器尺寸设计计算方法在热传导领域起着至关重要的作用。
正确的散热器尺寸设计能有效降低系统温度,提高热交换效率,确保设备的可靠运行。
本文将介绍散热器尺寸设计的基本原理和计算方法。
一、散热器尺寸设计的基本概念
1. 散热器的基本功能和作用
2. 散热器尺寸设计的重要性
3. 散热器尺寸设计的基本参数
二、散热器尺寸设计的传热计算方法
1. 热传导理论和公式
a. 热传导方程
b. 热传导系数的计算
2. 散热器的传热特性
a. 散热器的传热表面积计算
b. 散热器的传热效率计算
三、散热器尺寸设计的流体力学计算方法
1. 流体力学基础
a. 流体的流动特性
b. 流体的流动方程
2. 散热器的流体力学性能
a. 散热器的流体阻力计算
b. 散热器的流体速度分布计算
四、散热器尺寸设计的材料力学计算方法
1. 材料力学基本原理
a. 杨氏模量和泊松比的计算
b. 应力和应变的关系
2. 散热器的材料力学性能
a. 散热器的结构强度计算
b. 散热器的材料疲劳寿命计算
五、散热器尺寸设计的实际案例分析
1. 散热器尺寸设计实例1:电子设备散热器尺寸设计
2. 散热器尺寸设计实例2:汽车发动机散热器尺寸设计
3. 散热器尺寸设计实例3:工业设备散热器尺寸设计
总结:
通过本文的介绍,我们了解了散热器尺寸设计计算方法的基本原理和步骤。
合理的散热器尺寸设计能够有效提高散热效率,确保设备的可靠运行。
在实际应用中,我们需要根据具体的系统要求和材料特性来进行尺寸设计计算,以满足不同领域和应用的需求。
散热器面积计算表

散热器面积计算表散热器面积计算表是用于计算散热器表面积的一种工具。
散热器是用于散热的设备,广泛应用于电子设备、汽车发动机、工业设备等领域。
散热器的表面积大小决定了其散热效果的好坏,因此,对于设计和选型散热器来说,计算散热器表面积非常重要。
参数,值------,----长度, 30 cm宽度, 20 cm高度, 10 cm材料,铝散热器形状,矩形散热要求,100 W/cm²根据上表中给出的参数,可以按照以下步骤计算散热器的表面积:1. 计算散热器的底面积:底面积 = 长度×宽度= 30 cm × 20 cm = 600 cm²。
2. 计算散热器的侧面积:侧面积 = (长度× 高度)× 2 + (宽度× 高度)× 2 = (30 cm × 10 cm)× 2 + (20 cm × 10 cm)× 2 = 600 cm² + 400 cm² = 1000 cm²。
3. 计算散热器的表面积:表面积 = 底面积 + 侧面积= 600 cm² + 1000 cm² = 1600 cm²。
4. 根据散热要求,计算散热器的最小表面积:最小表面积 = 散热要求 / 散热器形状= 100 W/cm² / 10 cm² = 10 cm²。
5.判断散热器的实际表面积是否满足最小要求:如果实际表面积大于最小表面积,则散热器满足散热要求;如果实际表面积小于等于最小表面积,则散热器不满足散热要求。
散热器面积计算表的使用可以帮助工程师设计和选择合适的散热器,确保散热器的散热效果达到要求。
同时,散热器面积计算表也可以用于评估现有散热器的散热性能,从而优化散热系统。
对于需要大量使用散热器的领域,如电子设备制造和汽车工业,散热器面积计算表的使用可以提高工作效率,降低成本。
(完整版)水箱散热器的设计和计算

(完整版)水箱散热器的设计和计算A=0.3g e =0.205kg/kW·h P e =147kWh n =41870kJ/kgQ ω=105.1460kJ/sC= 4.187kJ/(kg·℃)ρ=1000kg/m3△t ω=7℃Q=0.0036m 3/sC p = 1.047kJ/(kg·℃)ρa = 1.01kg/m 3△t a =25℃空气密度进出散热器的空气温差,通常取△t a =10~30℃系数,拖拉机中柴油机A=0.25~0.35,涡流机通柴油机燃油消耗率柴油机有效功率燃料低热值,柴油h n =41870kJ/kg 二.冷却系统中循环水流量Q(m 3/s)的计算Q=Q ω/(C·ρ·△t ω)式中:冷却水的比热水箱的设计和计算Q ω=A·g e ·P e ·h n /3600式中:一.冷却系统的散热量Q ω(kJ/s)的计算冷却水的密度柴油机进出水温差,通常取△t ω=6~12℃空气定压比热三.冷却空气需求量Q a (m 3/s)的计算Q a =Q ω/(ρa ·C p ·△t a )式中:Q a =3.9773m 3/sv a =8m/s F R =0.4972m 2W=0.64mH=0.7768mW=0.73mH=0.74mF R =0.5402m 2v ω=0.3m/s l =0.019mb=0.0022mδ=0.0002mf 0=0.0000328m 2四.散热器正面积F R (m 2)的计算F R =Q a /v a式中:根据拖拉机总体设计要求,200马力拖拉机所需散热器芯子的宽度W=670mm ,则根据散热器正面积的要求,散热器芯子的高度应为:散热器正面前的空气流速,矿山车和拖拉机取v a =8m/s查散热器标准尺寸表,得出散热器芯子的标准尺寸为:五.散热器水管数的确定i 1=Q /(v ω·f 0)f 0=(l -b )·(b-2δ)+0.25(b-2δ)2·π水在散热器水管中的流速,一般取v ω=0.2~0.8m/s 水管断面尺寸,拖拉机用柴油机通常取前述尺寸式中:i 1=365t ω=℃t a =℃t a1=40℃△t=40℃δ=0.0002℃λ=0.093℃ K R =0.0774kJ/m 2·s·℃式中:△t=t ω-t a =0.5(t ω1+t ω2)-0.5(t a1+t a2)六.散热器中冷却水和冷却空气的平均温差△t的计算冷却水的平均温度散热器进气温度,一般取t a1=40~45℃冷却空气的平均温度t ω1=95℃散热器的进水温度,对开式冷却系统可取t ω1=90~95℃;闭式冷却系统可取t ω1=95~100℃;t ω2=89℃散热器的出水温度,t ω2=t ω1-△t ω,△t ω为冷却水的进出口温差,一般强制循环取△t ω=6~12℃,对流循环取△t ω=10~20℃t a2=65℃通过散热器后的空气温度,t a2=t a1+△t a ,△t a 是通过散热器后的空气的温升,一般取△t a =10~30℃七.散热器传热系数K R 的确定K R =1/(1/αω+δ/λ+1/αa )式中:材料的壁厚,取δ=0.0002m ;材料的传热系数,不同材料的传热系数可查表所得;αω= 2.4kJ/m 2·s·℃水的放热系数,当管内水流速v ω=0.2~0.6m/s 时,可取αω=2.33~4.07空气的放热系数,它主要取决于空气流过散热器的速度,一般取αa =0.070~0.122kJ/(m2·s·℃)八.散热器散热表面积F′的确定αa =0.08kJ/m 2·s·℃F′=39.55m 2 T=0.0915mT=0.100mt=0.0028mi 2=264y=0.0405m 式中:F ′=ΨR ·Q ω/(K R ·△t )散热器芯子的容积紧凑性系数,它表示单位散热器芯子容积所具有的散热面积。
散热器常用计算公式【最新】

散热器常用计算公式【最新】具体公式1,1、集中供暖节能房间散热器柱数N (单位柱)=S×Qh÷Qg×(1±15%)×(1±15%)×1.22×(1+20%)=S×Qh÷[Qb×(ΔTg÷64.5)]×(1±15%)×(1±15%)×1.464=S×45÷[Qb×(40.7÷64.5)]×(1±15%)×(1±15%)×1.464=S×45÷(Qb×0.63)×(1±15%)×(1±15%)×1.464=S×45÷Qb÷0.63×(1±15%)×(1±15%)×1.464=S×(45×1.464÷0.63)÷Qb(1±15%)×(1±15%)=S×105÷Qb(1±15%)×(1±15%)注意,集中供暖节能房间每平方米热耗由45w变为105w,是在非标准供热工况下的转换值。
1,2、集中供暖非节能房间散热器柱数N (单位柱)=S×Qh÷Qg×(1±15%)×(1±15%)×1.22×(1+20%)=S×Qh÷[Qb×(ΔTg÷64.5)]×(1±15%)×(1±15%)×1.464=S×70÷[Qb×(40.7÷64.5)]×(1±15%)×(1±15%)×1.464=S×70÷(Qb×0.63)×(1±15%)×(1±15%)×1.464=S×70÷Qb÷0.63×(1±15%)×(1±15%)×1.464=S×(70×1.464÷0.63)÷Qb(1±15%)×(1±15%)=S×163÷Qb(1±15%)×(1±15%)注意,集中供暖非节能房间每平方米热耗由70w变为163w,是在非标准供热工况下的转换值。
散热器如何选型及计算

散热器如何选型及计算散热器的选型和计算对于电子设备的正常工作和寿命有着重要的影响。
下面将通过以下几个方面来详细介绍如何选型和计算散热器。
1.热量产生量的计算:首先,需要计算电子设备产生的热量。
可以通过以下公式来计算:Q=P*t其中,Q表示热量(单位为焦耳J),P表示功率(单位为瓦特W),t表示时间(单位为秒s)。
通常情况下,可以根据设备的额定功率来计算。
2.散热器的热阻计算:散热器的热阻(单位为摄氏度/W)表示散热器对热量的传导能力。
热阻越小,散热能力越强。
通过以下公式来计算:R=(Tj-Ta)/P其中,R表示散热器的热阻,Tj表示芯片的最高温度(单位为摄氏度℃),Ta表示环境温度(单位为摄氏度℃),P表示功率。
3.散热器的尺寸和形状:散热器的选择应根据设备的尺寸和形状来确定。
尺寸和形状不仅应能适应设备的安装空间和外观要求,还应兼顾散热效果。
通常来说,散热器的表面积越大,散热能力越强。
同时,散热器的形状也会影响散热效果,如片状、鳍片状、风扇式等。
4.散热器材料的选择:散热器的材料也会影响散热效果。
常见的材料包括铝合金、铜、铜/铝复合材料等。
铜的导热性能较好,但成本较高;铝合金成本较低,但导热性能相对较差。
选择材料时需要综合考虑造价和散热效果。
5.辅助散热措施:散热器常常需要与风扇、散热片等辅助措施配合使用,以增强散热效果。
风扇的选择应注意风量、转速和噪音等因素;散热片的选择应考虑散热面积和形状。
同时,也可以采用其他辅助散热措施,如热管、热界面材料等。
6.测试和验证:在选型和计算完成后,还需要进行测试和验证,以确保散热器的散热效果符合要求。
可以通过测量芯片温度和散热器表面温度来评估散热效果,并根据需求进行调整。
综上所述,选型和计算散热器需要考虑热量产生量、热阻、尺寸和形状、材料选择、辅助散热措施等因素,同时还需要进行测试和验证。
只有在综合考虑了这些因素并进行了合理的计算和选型后,才能选择到适合设备需求的散热器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
散热器设计的基本计算
一、概念
1、热路:由热源出发,向外传播热量的路径。
在每个路径上,必定经过一些不同的介
质,热路中任何两点之间的温度差,都等于器件的功率乘以这两点之间的热阻,就像电路中的欧姆定律,与电路等效关系如下。
2、热阻:在热路中,各种介质及接触状态,对热量的传递表现出的不同阻碍作用——
在热路中产生温度差,形成对热路中两点间指标性的评价。
符号——Rth 单位——℃/W。
✓稳态热传递的热阻计算: R th= (T1-T2)/P
T1——热源温度(无其他热源)(℃)
T2——导热系统端点温度(℃)
✓热路中材料热阻的计算: R th=L/(K·S)
L——材料厚度(m)
S——传热接触面积(m2)
3、导热率:是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所
传递的热量。
符号——K or λ单位——W/m-K,
二、热设计的目标
1、确保任何元器件不超过其最大工作结温(T jmax)
✓推荐:器件选型时应达到如下标准
民用等级:T jmax≤150℃工业等级:T jmax≤135℃
军品等级:T jmax≤125℃航天等级:T jmax≤105℃
✓以电路设计提供的,来自于器件手册的参数为设计目标
2、温升限值
器件、内部环境、外壳:△T≤60℃
器件每升高2℃,可靠性下降10%;器件温升为50℃时,寿命只有温升25℃的1/6,电解电容温升超过10℃,寿命下降1/2。
三、计算
1、TO220封装+散热器
1)结温计算
✓热路分析
热传递通道:管芯j→功率外壳c→散热器s→环境空气a
注:因Rth ca较大,忽略不影响计算,故可省略。
Rth ja≈Rth jc+Rth cs+Rth sa≈(T结温-T环温)/P
✓条件
Rth jc——器件手册查询
Rth cs——材料热阻:R th绝缘垫=L绝缘垫厚度/(K绝缘垫·S绝缘垫接触c的面积)
Rth sa——散热器热阻曲线图查询
T结温——器件手册查询(待计算数值)
T环温——任务指标中的工作环境要求
P ——电路设计计算
✓计算
T结温=(Rth jc+Rth cs+Rth sa)·P+T环温<手册推荐结温
✓注:注意单位统一;判定结温温升限值是否符合。
2)散热器热阻计算(参见上图)
散热器的热阻一般可在由厂家提供的热阻曲线上标出,也可通过测试得出。
✓测试
在被测散热器上安装一发热器(or组)件,固定一个风速(M/S),测量进、出风温度,通过计算,得出该条件下的Rth sa。
设定一组风速,得出的不同Rth sa值,绘制出该散热器的热阻曲线,不同长度的散热器,可得到不同的曲线。
✓条件
T进风——进口温度
T出风——相同风速下的出口温度
P——电路设计计算的,发热器(or组)件的功耗
✓计算
Rth sa=(T出风-T进风)/P
✓注:亦可根据已有条件,如管芯的△T和功耗,计算出所需散热器的热阻上限,在热阻曲线图上选用足够尺寸的散热器。
2、共用同一散热器(见右图)
✓分析
对于散热器而言,总的传热功耗为:
J1J2
=P j1+P j2
P
总
那么散热器的温升为:
△T
=Rth sa·(P j1+P j2)
散热器
每只管子的传热路径中,热阻引起的温升为:
△T j1=(Rth jc1+Rth cs1)·P j1△T j2=(Rth jc2+Rth cs2)·P j2 热路中,所有温升之和加上环境温度就是最大结温,即:
T jmax1=△T j1+△T散热器+T环境T jmax2=△T j2+△T散热器+T环境✓条件
P j1——电路设计计算
P j2——电路设计计算
Rth jc1——器件手册查询
Rth jc2——器件手册查询
Rth cs1——材料热阻:R th绝缘垫=L绝缘垫厚度/(K绝缘垫·S绝缘垫接触c的面积)
Rth cs2——材料热阻:R th绝缘垫=L绝缘垫厚度/(K绝缘垫·S绝缘垫接触c的面积)
Rth sa——散热器热阻曲线图查询
T环境——任务指标中的工作环境要求
✓计算
J1的最大结温:T jmax1=(Rth jc1+Rth cs1)·P j1+Rth sa·(P j1+P j2)+T环境
J2的最大结温:T jmax2=(Rth jc2+Rth cs2)·P j2+Rth sa·(P j1+P j2)+T环境✓注:判定计算出的最大结温,是否小于手册推荐结温;
判定结温温升限值是否符合;
注意计算时单位要统一。
四、经验
1、热路的分析和计算,由于影响因素较为复杂,可以忽略一些影响小的参数,来简
化计算,但一定要注意影响趋势的方向,是有利于传热的,可以作为设计余量储备,由于影响小,所以不会影响经济性。
2、还是因为影响因素复杂,理论计算是设计指导,结果一定以试验结论判定,埋点
测温是最有效的验证方式。
3、电源的热设计是和电路设计密不可分的,实际情况往往因为空间问题,把散热设
计到最大化,也就刚刚满足需求,而热路的设计只能截止到外壳,外壳(或散热器)的温度怎么办?这就需要电路设计来降低功耗,甚至和客户讨论如何给电源散热,这就需要我们是否能提的出所有计算数据。
4、关于余量问题,建议只要满足结温和温升限制,即可保证产品工作的可靠性。
5、热设计的装配工艺应符合相应的工艺规范,首先确保装配的难度不大,其次考虑
装配的步骤减少,即适应批量的流水装配作业。