七年级数学上册全册单元测试卷测试卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册全册单元测试卷测试卷(含答案解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.
(1)求点D的坐标;
(2)如图(1),求△ACD的面积;
(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.
【答案】(1)解:∵B(3,0),
∴OB=3,
∵BC=8,
∴OC=5,
∴C(﹣5,0),
∵AB∥CD,AB=CD,
∴D(﹣2,﹣4)
(2)解:如图(1),连接OD,
∴S△ACD=S△ACO+S△DCO﹣S△AOD=﹣=16
(3)解:∠M=45°,理由是:
如图(2),连接AC,
∵AB∥CD,
∴∠DCB=∠ABO,
∵∠AOB=90°,
∴∠OAB+∠ABO=90°,
∴∠OAB+∠DCB=90°,
∵∠OAB与∠OCD的角平分线相交于点M,
∴∠MCB=,∠OAM=,
∴∠MCB+∠OAM==45°,
△ACO中,∠AOC=∠ACO+∠OAC=90°,
△ACM中,∠M+∠ACM+∠CAM=180°,
∴∠M+∠MCB+∠ACO+∠OAC+∠OAM=180°,
∴∠M=180°﹣90°﹣45°=45°.
【解析】【分析】(1)利用B的坐标,可得OB=3,从而求出OC=5,利用平移的性质了求出点D的坐标.
(2)如图(1),连接OD,由S△ACD=S△ACO+S△DCO+S△AOD,利用三角形的面积公式计算即得.
(3)连接AC,利用平行线的性质及直角三角形两锐角互余可得∠OAB+∠DCB=90°,
利用角平分线的定义可得∠MCB+∠OAM==45°,根据三角形的内角和等于180°,即可求出∠M的度数.
2.如图(1),AB∥CD,试求∠BPD与∠B、∠D的数量关系,说明理由.
(1)填空:解:过点P作EF∥AB,
∴∠B+∠BPE=180°
∵AB∥CD,EF∥AB
∴________(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
∠EPD+________=180°
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(2)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D 的数量关系,并说明理由.
(3)观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B、∠D的数量关系,不用说明理由.
【答案】(1)CD∥EF;∠D
(2)解:猜想∠BPD=∠B+∠D,
理由:过点P作EP∥AB,
∵EP∥AB,
∴∠B=∠BPE(两直线平行,内错角相等),
∵AB∥CD,EP∥AB,
∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),
∴∠EPD=∠D,
∴∠BPD=∠B+∠D
(3)图③结论:∠D=∠BPD+∠B,
理由是:过点P作EP∥AB,
∵EP∥AB,
∴∠B=∠BPE(两直线平行,内错角相等),
∵AB∥CD,EP∥AB,
∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),
∴∠EPD=∠D,
∴∠BPD=∠B+∠D;
图④结论∠B=∠BPD+∠D,
理由是:∵EP∥AB,
∴∠B=∠BPE(两直线平行,内错角相等),
∵AB∥CD,EP∥AB,
∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),
∴∠EPD=∠D,
∴∠B=∠BPD+∠D
【解析】【解答】(1)过点P作EF∥AB,
∴∠B+∠BPE=180°,
∵AB∥CD,EF∥AB,
∴CD∥EF(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),
∴∠EPD+∠D=180°,
∴∠B+∠BPE+∠EPD+∠D=360°,
∴∠B+∠BPD+∠D=360°,
故答案为:CD∥EF,∠D;
【分析】(1)过点P作EF∥AB,根据平行线的性质,可证得∠B+∠BPE=180°,再证明CD∥EF,就可证得∠EPD+∠D=180°,两式相加,就可得出∠BPD与∠B、∠D的数量关系。(2)过点P作EP∥AB ,就可证得CD∥EP,利用两直线平行,内错角相等,可证∠B=∠BPE,∠EPD=∠D,就可证得∠BPD与∠B、∠D的数量关系。
(3)过点P作EP∥AB,易证CD∥EP,再根据平行线的性质,可证得∠B=∠BPE,∠EPD=∠D,即可证得∠BPD与∠B、∠D的数量关系;图4,利用同样的方法,可证得∠BPD与∠B、∠D的数量关系。
3.如图,已知∠AOB=α°,∠COD在∠AOB内部且∠COD=β°.
(1)①若α,β满足|α-2β|+(β-60)2=0,则①α=________;
②试通过计算说明∠AOD与∠COB有何特殊关系________;
(2)在(1)的条件下,如果作OE平分∠BOC,请求出∠AOC与∠DOE的数量关系;
(3)若α°,β°互补,作∠AOC,∠DOB的平分线OM,ON,试判断OM与ON的位置关系,并说明理由.
【答案】(1)120°;解:∵∠AOB=α°=120°,∠COD=β°=60°,
∴∠AOD=∠AOB-∠DOB=120°-∠DOB,∠COB=∠COB+∠DOB=60°+∠DOB,∴∠AOD+∠COB=180°,即∠AOD与∠COB互补
(2)解:设∠AOC=θ,则∠BOC=120°-θ.
∵OE平分∠BOC,∴∠COE= ∠BOC= (120°-θ)=60°- θ,
∴∠DOE=∠COD-∠COE=60°-60°+ θ= θ= ∠AOC;
(3)解:OM⊥ON.理由如下:
∵OM,ON分别平分∠AOC,∠DOB,
∴∠COM= ∠AOC,
∴∠DON= ∠BOD,