大数据分析、挖掘与应用(PPT 20张)

合集下载

大数据分析与挖掘培训ppt

大数据分析与挖掘培训ppt

AI与大数据挖掘的融合应用
深度学习
利用深度学习技术,对 大规模数据进行特征提 取和模式识别,提高数 据挖掘的精度和效率。
强化学习
结合强化学习技术,根 据环境反馈自动调整模 型参数,提高模型泛化 能力和鲁棒性。
多模态融合
将不同模态的数据进行 融合,如文本、图像、 视频等,挖掘多模态数 据的潜在价值。
进行全面评估。
欺诈检测
利用大数据技术,实时监测交易 行为,及时发现并阻止欺诈行为

风险评估
通过对历史数据和实时数据的分 析,对金融机构的风险状况进行
全面评估。
医疗健康
个性化医疗
通过大数据分析,为患者提供个性化的诊疗方案 和治疗建议。
疾病预测
利用大数据技术,对疾病的发生和发展趋势进行 预测,为预防和治疗提供参考。
数据收集
从各种来源收集大量数据。
数据转换
将数据从一种格式转换为另一 种格式,如从CSV转换为 JSON。
结果展示
将挖掘出的信息以图表、报告 等形式展示给用户。
02
大数据分析技术
数据预处理
01
02
03
数据清洗
去除重复、无效或错误数 据,保证数据质量。
数据转换
将数据从一种格式或结构 转换为另一种,以便于后 续分析。
数据聚合
对数据进行汇总、计算, 生成新的特征或指标。
分布式计算
分布式文件系统
Hadoop HDFS等,用于 存储大规模数据。
分布式计算框架
MapReduce、Spark等, 用于并行处理大规模数据 。
分布式数据库
HBase、Cassandra等, 用于存储和查询大规模数 据。
数据库技术

生物医学大数据分析与挖掘ppt课件

生物医学大数据分析与挖掘ppt课件
20
报告内容
一、生物医学大数据分析挖掘的几个方向 二、基于流感大数据发展流感预测预警新方法
21
临床大数据分析与挖掘-流感危害性预测
y = 31.31 x - 8.85 R2=0.83
通过分析流感监测产生的大数据,社会经济大数据以及大 量基因序列,以及大量的相关性分析,发现了快速预测流 感病毒危害性的新方法
1,目前该方法已经申请了专利。 2,在使用我们的方法向WHO推荐疫苗参考株。 3,Nature Communcations, 2012.
28
X X
X
XX XX
XX
X
29
新华社发布的新闻:我国科学家发明流感 疫苗株快速选择新技术
30
我国2013年华东地区H7N9溯源
进化分析
大规模病毒采样 与基因测序
Based on 7 seasons during 2002-2009.
Du et al. Nature Communications析与挖掘-流感疫苗推荐
大规模病毒采样 与基因测序
流感病毒关联 网络
疫苗推荐
该工作发表在《Nature Communications》上, 被选为亮点文章,并且同期《Nature》杂志也对 该工作进行了报道
商业大数据 生物医学大数据
智能交通
天气预报
股票
? 智慧医疗和
个性化医疗
3
医院信息化产生海量临床数据
临床大数据
4
美国卫生信息化发展计划
2011年,美国卫生信息技术协调官办公室发布全国卫生信息化发展计划,计 划时限2011-2015
5
我国卫生信息化发展计划
35212工程
6
美国VS中国
美国 系统逐步成型、理念推广、政策制定、科 学研究

大数据分析PPT(共73张)

大数据分析PPT(共73张)

2024/1/26
22
未来发展趋势预测
人工智能与大数据融合
人工智能技术将进一步提高大数据处 理和分析的效率和准确性。
数据驱动决策
大数据将更广泛地应用于企业决策、 政府治理等领域,提高决策的科学性 和有效性。
2024/1/26
跨界融合与创新
大数据将与云计算、物联网、区块链 等技术相结合,推动跨界融合和创新 发展。
模型评估与优化
通过交叉验证、网格 搜索等方法对模型进 行评估与优化,提高 模型预测性能。
成果展示
实现用户行为预测模 型,为电商平台提供 个性化推荐服务,提 高用户满意度和购买 转化率。
2024/1/26
26
项目经验教训总结
数据质量至关重要
在项目实施过程中,发现原始数据存在大量噪声 和缺失值,对数据清洗和预处理工作提出了更高 要求。为了保证分析结果的准确性,需要投入更 多时间和精力进行数据清洗和预处理。
模型评估不可忽视
在构建模型后,需要对模型进行评估和优化,以 确保模型在实际应用中的性能表现。采用合适的 评估指标和方法对模型进行全面评估是非常重要 的。
2024/1/26
特征工程影响模型性能
在特征工程阶段,需要仔细考虑哪些特征与用户 行为相关,并选择合适的特征提取方法。不同的 特征选择和处理方式会对模型性能产生较大影响 。
大数据分析PPT(共73张)
2024/1/26
1
目录
• 大数据分析概述 • 大数据技术基础 • 大数据分析方法与工具 • 大数据在各行业应用案例 • 大数据挑战与未来趋势 • 大数据分析实践项目分享
2024/1/26
2
01
大数据分析概述
2024/1/26

大数据专题(共43张PPT)

大数据专题(共43张PPT)
应用
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务 ,提供了高可用性和数据一致性保证。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode 。NameNode负责管理文件系 统的元数据,而DataNode负责
存储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
云计算发展
云计算技术的发展为大数据处理提供了强大的计 算能力和存储空间,使得大数据处理成为可能。
大数据发展趋势
数据驱动决策
未来企业将更加依赖数据进行决 策,大数据技术将发挥更加重要 的作用。
数据共享与开放
政府和企业将更加注重数据的共 享和开放,促进数据的流通和利 用,推动经济社会发展。
人工智能融合
应用
HBase适用于非结构化或半结构化数据的存储和查询,如用户画像、推荐系统、时序数 据等场景。
数据仓库Hive
01
概述
Hive是基于Hadoop的一个数据仓库 工具,可以将结构化的数据文件映射 为一张数据库表,并提供简单的SQL 查询功能。
02
特点
Hive支持类SQL查询语言HiveQL, 使得数据分析人员可以方便地使用 SQL语言对大规模数据进行查询和分 析。Hive还支持自定义函数和存储过 程等功能,增强了其数据处理能力。

2024版大数据ppt(数据有关文档)共30张[1]

2024版大数据ppt(数据有关文档)共30张[1]
利用大数据技术和人工智能算法,可以对海量医疗数据进行分析和挖掘,为医生提供临床决 策支持。例如,通过对病人的病史、检查结果、用药记录等数据进行综合分析,可以辅助医 生做出更准确的诊断和治疗方案。
远程医疗与健康管理
大数据技术可以实现远程医疗服务和健康管理,方便患者随时随地获取医疗服务和健康指导。 例如,通过可穿戴设备收集患者的生理数据,可以实时监测患者的健康状况,及时发现异常 情况并给出预警提示。
多元统计分析
处理多个变量的统计方法,如回归分析、 因子分析等。
16
机器学习算法应用
监督学习
利用已知结果的数据训 练模型,如线性回归、 决策树等。
2024/1/30
无监督学习
在没有已知结果的情况 下,通过数据之间的相 似性进行聚类或降维, 如K-means、主成分分 析等。
强化学习
让模型在与环境交互的 过程中学习,如Qlearning、深度强化学 习等。
18
2024/1/30
05
大数据在各领域应用案例
19
金融行业应用案例
2024/1/30
01
风险管理与合规
利用大数据分析技术,金融机构可以更准确地评估和管理风险,提高合
规性。例如,通过对客户交易数据的实时监控和分析,可以及时发现异
常交易行为,防止欺诈和洗钱等违法行为。
02
客户画像与精准营销
金融机构可以利用大数据技术对客户进行画像,了解客户的消费习惯、
包括企业数据库、业务系统、日志文件等。
外部数据源
包括社交媒体、公开数据集、第三方数据提供商 等。
数据类型
包括结构化数据(如关系型数据库中的表)和非 结构化数据(如文本、图像、音频、视频等)。
2024/1/30

大数据与数据挖掘之文本挖掘(PPT 56张)

大数据与数据挖掘之文本挖掘(PPT 56张)

文档的向量空间模型
W权值计算方法TF-IDF
目前广泛采用TF-IDF权值计算方法来计算权重, TF-IDF的主 要思想是,如果某个词或短语在一篇文章中出现的频率TF 高,并且在其他文章中很少出现,则认为此词或者短语具 有很好的类别区分能力,适合用来分类。 TF词频(Term Frequency)指的是某一个给定的词语在该文件 中出现的次数。 IDF逆文档频率(Inverse Document Frequency)是全体文档数与 包含词条文档数的比值。如果包含词条的文档越少,IDF越 大,则说明词条具有很好的类别区分能力。 在完整的向量空间模型中,将TF和IDF组合在一起,形成TFIDF度量:TF-IDF(d,t)= TF(d,t)*IDF(t)
• (11)查词表,W不在词表中,将W最右边一个字去掉, 得到W="是三" • (12)查词表,W不在词表中,将W最右边一个字去掉, 得到W=“是”,这时W是单字,将W加入到S2中,S2=“计 算语言学/ 课程/ 是/ ”, • 并将W从S1中去掉,此时S1="三个课时"; • ������ ������ • (21)S2=“计算语言学/ 课程/ 是/ 三/ 个/ 课时/ ”,此时 S1=""。 • (22)S1为空,输出S2作为分词结果,分词过程结束。
停用词
• • • • 指文档中出现的连词,介词,冠词等并无太大意义的词。 英文中常用的停用词有the,a, it等 中文中常见的有“是”,“的”,“地”等。 停用词消除可以减少term的个数,降低存储空间。停用词 的消除方法: • (1)查表法:建立一个停用词表,通过查表的方式去掉 停用词。 • (2)基于DF的方法:统计每个词的DF,如果超过总文档 数目的某个百分比(如80%),则作为停用词去掉。

大数据分析与挖掘ppt优质版(30张)

大数据分析与挖掘ppt优质版(30张)
型、类别型等。
消除数据间的量纲差异, 使数据具有可比性。
选择与分析目标相关的 特征,去除无关特征。
数据可视化呈现
图表类型选择
根据数据类型和分析目标选择合 适的图表类型,如柱状图、折线
图、散点图等。
数据可视化工具
如Excel、Tableau、Power BI等, 可实现数据的快速可视化呈现。
可视化设计原则
医疗行业应用案例
精准医疗
通过大数据分析技术,医疗机构可以对患者的基因组、生活习惯、病史等信息进行深入挖掘,实现精准诊断和治疗。例如, 基于基因测序的个性化用药方案,显著提高治疗效果和患者生活质量。
远程医疗
借助大数据和互联网技术,远程医疗得以实现。患者可以通过手机、电脑等设备与医生进行在线沟通,医生则可以通过数 据分析对患者的病情进行远程诊断和治疗建议。
预测性维护
大数据分析可以帮助物流企业实现预测性维护。通过对运输 设备的历史运行数据、维修记录等信息进行分析,可以预测 设备可能出现的故障和风险,提前进行维护和保养,确保运 输过程的顺畅和安全。
供应链优化
大数据分析在供应链优化方面也发挥着重要作用。通过对供 应链各环节的数据进行挖掘和分析,企业可以发现潜在的瓶 颈和问题,优化库存管理、采购策略等,提高供应链的效率 和灵活性。
物联网技术的兴起使得设备间的连接 和数据交互变得更加频繁和复杂,产 生了大量的数据。
大数据发展趋势
数据驱动决策
未来企业将更加依赖数据进行决策,大数据将成为企业核心竞争力的 重要组成部分。
人工智能与大数据融合
人工智能技术的发展将促进大数据的自动化处理和分析,提高数据处 理效率和准确性。
数据安全和隐私保护
医疗科研 大数据分析在医疗科研领域也发挥着重要作用。通过对海量医疗数据的挖掘和分析,科研人员可以发现 新的疾病规律、药物作用机制等,推动医学科学的进步。

关于大数据的ppt课件

关于大数据的ppt课件
分析才能发现。
大数据的发展历程
01
萌芽期
20世纪90年代至2008年,大数据概念开始萌芽,主要关注数据存储和
计算能力的提升。
02
发展期
2009年至2012年,大数据逐渐受到关注,出现了Hadoop等开源技术
,数据处理和分析能力得到进一步提升。
03
成熟期
2013年至今,大数据技术逐渐成熟,应用领域不断拓展,包括金融、
物流行业应用
智能调度
利用大数据和人工智能技 术,实现物流车辆的智能 调度和路线规划,提高运 输效率。
仓储管理
通过大数据分析,优化仓 库布局和库存管理,降低 仓储成本。
物流预测
基于历史数据和实时信息 ,预测物流需求和运输状 况,为物流企业提供决策 支持。
其他行业应用
教育行业
通过分析学生的学习数据和行为 习惯,提供个性化的教育方案和
分布式数据存储与处理
借助区块链技术的分布式特性,实现大数据的分布式存储和处理, 提高数据处理效率。
边缘计算对大数据处理的影响
降低数据传输成本
通过边缘计算将数据处理和分析任务部署在数据产生的源头,减少 数据传输量,降低传输成本。
提高数据处理效率边缘计源自能够实时处理和分析数据,减少数据传输延迟,提高数据 处理效率。
增强数据安全性
边缘计算将数据存储在本地,减少了数据泄露的风险,增强了数据安 全性。
大数据推动数字化转型
企业经营决策支持
通过大数据分析,为企业提供市场趋势、用户需求等关键信息, 支持企业经营决策。
业务流程优化
利用大数据技术对业务流程进行实时监控和分析,发现潜在问题, 优化业务流程。
产品创新与服务升级
基于大数据分析结果,推动企业产品创新和服务升级,提升市场竞 争力。

2024版大数据PPT完整版

2024版大数据PPT完整版

02
加密技术
采用加密算法对敏感数据进行加密 存储和传输,确保数据在传输和存
储过程中的安全性。
04
访问控制
建立严格的访问控制机制,确保只 有授权用户能够访问敏感数据。
30
企业如何制定和执行安全策略
制定完善的安全管理制度
明确数据安全管理的目标、原则、流程和组织架构。
强化员工安全意识培训
定期开展数据安全培训,提高员工对数据安全的重视程度和操作技能。
推论性统计
通过样本数据推断总体特征,包括假设检验、方差分析、回归分 析等。
应用案例
电商平台的用户行为分析、金融领域的风险评估、医疗行业的疾 病预测等。
21
机器学习算法原理及实践
监督学习
通过已知输入和输出数据进行训练,得到模型后用于预测新数据。
无监督学习
对无标签数据进行学习,发现数据中的内在结构和规律。
2
01
大数据概述
2024/1/29
BIG DATA EMPOWERS TO CREATE A NEW ERA
3
大数据定义与特点
定义
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数 据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能 力的海量、高增长率和多样化的信息资产。
将原始数据通过特定算法映射到视觉元素(如颜 色、形状、大小等)。
视觉编码
利用视觉元素对数据进行编码,以便人们能够直 观地理解数据。
交互设计
提供丰富的交互手段,如缩放、拖拽、筛选等, 以便用户能够更深入地探索数据。
2024/1/29
25
常见数据可视化工具介绍
2024/1/29
Tableau

大数据技术和应用(PPT 22张)

大数据技术和应用(PPT 22张)

大数据的收集方式
物联网 云计算
移动互联网
车联网 手机、平板电脑、PC 遍布地球各个角落的各种各样的传感器
大数据的收集方式
物联网、云计算、移动互联网、车联网、手机、车联网、PC以及遍 布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方 式。
大数据领域的技术
Hadoop
Hadoop原本来自于谷歌一款名为MapReduce 的编程模型包。谷歌的MapReduce框架可以把一个 应用程序分解为许多并行计算指令,跨大量的计算 节点运行非常巨大的数据集。 Hadoop得以在大数据处理应用中广泛应用得益 于其自身在数据提取、变形和加载(ETL)方面上的天 然优势。Hadoop的分布式架构,将大数据处理引擎 尽可能的靠近存储,对例如像ETL这样的批处理操 作相对合适,因为类似这样操作的批处理结果可以 直接走向存储。Hadoop的MapReduce功能实现了 将单个任务打碎,并将碎片任务(Map)发送到多个 节点上,之后再以单个数据集的形式加载(Reduce)
其他大数据技术
Apache Drill
为了帮助企业 用户寻找更为有效、 加快Hadoop数据查
大数据的应用
大数据在风电领域的应用
首先,结合了大数据分析和天气建模技术的能源 电力系统能够提高风电的可靠性。以往对风资源的预 测不够精准,在风能无法贡献预期功力时,火电就要 作为后备电力。这样,电网对风电的依赖程度越高, 需要建设后备电站的成本就越高。另外,启用火电站 的就等于向环境中释放碳排。然而,在大数据分析的 帮助下,温度、气压、湿度、降雨量、风向和风力等 变量都得到充分考虑,对风电的预测更加精准。电网 调度人员可以提前做好调度安排,也有助于电网消纳 更多风torm的话,可能会是这样: 分布式实时计算系统。按照storm作者的说法,storm 对于实时计算的意义类似于hadoop对于批处理的意 义。 在淘宝,storm被广泛用来进行实时日志处理, 出现在实时统计、实时风控、实时推荐等场景中。一 般来说,我们从类kafka的metaQ或者基于hbase的 timetunnel中读取实时日志消息,经过一系列处理, 最终将处理结果写入到一个分布式存储中,提供给应 用程序访问。我们每天的实时消息量从几百万到几十 亿不等,数据总量达到TB级。对于我们来说,storm

2024版大数据分析PPT模板

2024版大数据分析PPT模板

02
03
Spark
Flink
一个快速、通用的大规模数据处 理引擎,提供了Java、Scala、 Python等多种编程语言的API。
一个流处理和批处理的开源框架, 支持实时数据流分析和处理。
8
数据存储技术
03
Hadoop HDFS
一个分布式文件系统,用于存储大规模数 据集,提供高吞吐量访问和容错能力。
临床试验数据分析
对临床试验数据进行深入挖掘和分析,发现新的治疗方法和药物作用 机制,推动医学研究的进步。
2024/1/26
29
其他领域的大数据分析应用
2024/1/26
智慧城市
利用大数据分析技术,对城市交通、环境、能源等领域的 数据进行全面分析,提高城市管理的智能化水平。
教育领域 通过分析学生的学习数据、教师的教学数据等,发现教育 过程中的问题和不足,优化教学方法和策略,提高教育质 量。
大数据分析PPT模板
2024/1/26
1
目录
2024/1/26
• 大数据分析概述 • 大数据技术基础 • 大数据分析方法 • 大数据分析流程 • 大数据分析工具与平台 • 大数据分析实践案例
2
01
大数据分析概述
2024/1/26
3
大数据的定义与特点
数据量大
大数据通常指数据量在TB、PB甚至EB级 别以上的数据。
金融
信用评分、风险管 理、投资策略等。
2024/1/26
政府
城市规划、交通管 理、公共安全等。
制造业
生产优化、故障预 测、供应链管理等。
6
02
大数据技术基础
2024/1/26
7
分布式计算技术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大数据处理的基本流程
1)数据抽取与集成
2)数据分析 面临着一些新的挑战:数据量大并不一定意味着数 据价值的增加,相反这往往意味着数据噪音的增多;大数 据时代的算法需要进行调整,准确率不再是大数据应用 的最主要指标;数据结果好坏的衡量。
3)数据解释(可视化技术)
三、天体光谱大数据分析与挖掘
我国已建造一台大天区面积多目标光纤光谱望远镜 (LAMOST),是国家重大科学工程项目,也是世界上光 谱获取率最高的望远镜。预计LAMOST所观测到的光谱数 据容量将有可能达到4TB;巡天所覆盖的波段为3700埃至 9000埃,即其观测属性可达数千维,是典型的高维数据; 数据类型:图像和FITS文件等。
主要成果之一: 基于概念格的天体光谱离群数据挖掘系 统
将概念格中每个概念节点内涵描述为天体光谱数 据特征子空间,提出了一种天体光谱离群数据识别方 法。首先将概念节点的内涵缩减看作天体光谱特征子 空间,并依据稀疏度系数阈值确定稀疏子空间;其次 对于稀疏子空间,依据稠密度系数判定祖先概念节点 内涵是否为稠密子空间,进而判断出概念节点外延中 包含的数据对象是否为天体光谱离群数据;最后以离 散化天体光谱数据作为形式背景,实验验证了利用该 方法识别出的天体光谱离群数据是准确的、完备的和 有效的。
典型论文
[1] Jifu Zhang, Sulan Zhang, Kai H. Chang, and Xiao Qin. An Outlier Mining Algorithm Based on Constrained Concept Lattice, Interห้องสมุดไป่ตู้ational Journal of Systems Science(accept) [2] Sulan Zhang, Ping Guo, Jifu Zhang, Xinxin Wang, and Witold Pedrycz. A Completeness Analysis of Frequent Weighted Concept Lattices and Their Algebraic Properties, Data & Knowledge Engineering,81–82 (2012) :104–117 [3] Jifu Zhang,Yiyong Jiang, Kai H. Chang et al. A Concept Lattice Based Outlier Mining Method in Low Dimensional Subspaces. Pattern Recognition Letters,2009,30 (15) : 14341439 [4] 张继福;张素兰;蒋义勇. 基于约束概念格的天体光谱局部离群数据 挖掘系统,光谱学与光谱分析,2009,29(2):551-555 [5] 张继福等. 基于概念格的天体光谱离群数据识别方法,自动化学报, 2008,34(9):1060-1066 [6] Jianghui Cai;Jifu Zhang;Zhao Xujun. A Star Spectrum Outlier Mining System Based on Simulated Annealing, International Journal of Innovative Computing, Information and Control,2008,4(9):2263-2271
MapReduce的核心设计思想: 1)将问题分而治之; 2)把计算推到数据而不是把数据推到计算,有效的 避免数据传输过程中产生的大量通讯开销。 MapReduce模型简单,且现实中很多问题都可 用MapReduce模型来表示。因此该模型公开后,立 刻受到极大的关注,并在生物信息学、文本挖掘等领 域得到广泛的应用。
MAPREDUCE执行流程图
MapReduce模型首先将用户的原始数据源进行分 块,然后分别交给不同的Map任务区处理。Map任务 从输入中解析出Key/Value对集合,然后对这些集合 执行用户自行定义的Map函数得到中间结果,并将该 结果写入本地硬盘。Reduce任务从硬盘上读取数据 之后,会根据key 值进行排序,将具有相同key 值的 组织在一起。最后用户自定义的Reduce函数会作用 于这些排好序的结果并输出最终结果。
大数据分析、挖掘与应用
数据挖掘与智能信息系统实验室
一、大数据分析与挖掘
大数据的基本概念
比较有代表性: 1) 3V 定义,即认为大数据需满足3 个特点:规模性 (Volume)、多样性(Variety)和高速性(Velocity)。 2) 4V 定义,即尝试在3V 的基础上增加一个新的特性。 关于第四个V 的说法并不统一,IDC 认为大数据还应当具 有价值性(Value),大数据的价值往往呈现出稀疏性的特 点。而IBM 认为大数据必然具有真实性(Veracity)。 3) 维基百科对大数据的定义则简单明了:大数据是指利用 常用软件工具捕获、管理和处理数据所耗时间超过可容忍 时间的数据集。
近年来主持承担的部分课题
[1] 海量高维天体光谱数据挖掘及其并行化研究(61272263),国家 自然科学基金,2013.1-2016.12,(在研) [2] 面向LAMOST 天文光谱特征线的数据挖掘方法研究(61073145), 国家自然科学基金,2011.1-2013.12,(在研) [3] 面向天文光谱的数据挖掘算法性能分析与并行化研究 (61111120317),国家自然科学基金委国际合作与交流项目, 2011.6-2011.12,(结题) [4] 基于加权和约束概念格的数据挖掘方法与天体光谱数据挖掘技术 (60773014),国家自然科学基金,2008.1-2010.12,(结题) [5] 基于数据网格的分布式数据挖掘方法研究(60911120478),国 家自然科学基金委国际合作与交流项目,2009.9-2010.3,(结题) [6] 基于背景知识的数据挖掘方法及其在LAMOST中的应用 (60573075),国家自然科学基金,2006.1-2008.12,(结题) [7] 海量天体光谱数据挖掘算法研究与实现(2003AA133060) ,国家 “863”高技术计划子课题,2003.8-2005.8(结题)
科学目标: “星系红移巡天”、“恒星和银河系的结构 特征”和“多波段认证” 。 天体光谱大数据分析处理主要内容:预处理(去噪、归一 化等)、分类与识别、测量(红移等参数)等。
一条SEYFERT 2 光谱数据图(红移为0)
天体光谱是天体电磁辐射按照波长的有序排列,蕴含着天体的重要 物理信息,例如:天体的化学成份、天体的表面温度、直径、质量、光 度以及天体的视向运动和自转。天文学家和天体物理学家通过分析天体 光谱的信息,不仅可以研究宇宙中物质的分布特征,还可以研究天体的 形成和随时间的演化等重大科学问题。
由于天文界对宇宙的认识还比较有限,LAMOST 巡天计划的一个重要任务是要发现一些新的、特殊类 型的天体,因此,如何利用数据挖掘技术从海量天体 光谱数据中发现未知的、特殊的天体及天体规律是数 据挖掘值得研究和探索的新应用领域。 面向特定任务的数据挖掘是当前数据挖掘领域发 展的趋势之一。以LAMOST项目为背景,对天体光谱 数据挖掘技术进行了研究,其研究成果不仅具有重要 的理论价值,而且可直接应用到LAMOST中,为国家 重大科学工程提供技术支撑。
二、大数据处理架构
大数据处理模式
1)流处理(Stream Processing),即直接处理 流处理的基本理念是数据的价值会随着时间的流逝而 不断减少。因此,尽可能快地对最新的数据做出分析并 给出结果是所有流数据处理模式的共同目标。 2)批处理(Batch Processing),即先存储后处理 Google 公司在2004 年提出的MapReduce编程模 型是最具代表性的批处理模式。
相关文档
最新文档