计算机视觉期末复习-参考模板
计算机视觉期末考试题及答案
![计算机视觉期末考试题及答案](https://img.taocdn.com/s3/m/229f4206e418964bcf84b9d528ea81c758f52e99.png)
计算机视觉期末考试题及答案一、选择题1. 下列哪个是计算机视觉的基本任务?A. 物体识别B. 图像去噪C. 特征提取D. 图像压缩答案:A2. 图像分割的目标是什么?A. 将图像分成若干不重叠的区域B. 提取图像中的边缘和角点C. 对图像进行降噪处理D. 对图像进行缩放和旋转答案:A3. 下列哪个不属于计算机视觉中的特征提取方法?A. 边缘检测B. 霍夫变换C. SIFTD. 形态学操作答案:D4. 目标识别中最常用的算法是?A. 支持向量机(SVM)B. 卷积神经网络(CNN)C. 决策树D. 随机森林答案:B5. 计算机视觉中的光照问题指的是什么?A. 图像中的曝光问题B. 图像中的阴影和反射问题C. 图像中的亮度和对比度问题D. 图像中的色彩平衡问题答案:B二、填空题1. 图像的分辨率是指图像中的像素数量()图像的单位面积。
答案:除以2. 特征匹配算法中常用的匹配度量指标是()。
答案:距离3. 边缘检测算法中,经典的Sobel算子是基于()的。
答案:梯度4. 目标检测中的非极大值抑制是用来()。
答案:过滤掉重复的检测结果5. 目标跟踪中最常用的方法是()。
答案:卡尔曼滤波三、简答题1. 请简要解释计算机视觉中的图像金字塔是什么,并说明其应用场景。
答案:图像金字塔是一种多尺度表示的方法,通过对原始图像进行多次模糊和下采样,得到一系列分辨率不同的图像。
它的应用场景包括图像缩放、图像融合、目标检测等。
图像金字塔可以在不同尺度下对图像进行处理,以适应不同场景的需求。
2. 请简要介绍计算机视觉中的物体识别技术,并指出其挑战和解决方案。
答案:物体识别是指在图像或视频中自动识别出特定物体的技术。
其挑战包括光照变化、视角变化、遮挡等因素的影响。
解决方案包括利用深度学习方法进行特征提取和分类,使用数据增强技术增加训练数据,以及采用多模态融合的方法提高识别准确率。
3. 请简要解释计算机视觉中的图像分割技术,并说明常用的分割方法。
计算机视觉考试题及答案解析
![计算机视觉考试题及答案解析](https://img.taocdn.com/s3/m/0442aca018e8b8f67c1cfad6195f312b3069eb5e.png)
计算机视觉考试题及答案解析计算机视觉(Computer Vision),是研究如何使机器“看”的一门学科。
它涵盖了图像处理、模式识别、机器学习等多个领域。
作为计算机科学的重要分支之一,计算机视觉已经在各个领域得到了广泛的应用,包括人脸识别、图像搜索、无人驾驶等。
本文将介绍一些常见的计算机视觉考试题,并对答案进行解析。
一、选择题1.下列哪种方法可以实现图像分割?A. 边缘检测B. 直方图均衡化C. 图像降噪D. 全局阈值法答案:D。
图像分割是将图像划分为多个区域的过程,全局阈值法是一种常用的图像分割方法,通过设置一个合适的全局阈值,将图像中的像素分为两个类别。
2.计算机视觉中常用的特征描述子是什么?A. SIFTB. SURFC. HOGD. All of the above答案:D。
在计算机视觉中,SIFT(尺度不变特征变换)、SURF (加速稳健特征)和HOG(方向梯度直方图)都是常用的特征描述子,用于提取图像中的关键特征。
3.以下哪项不是深度学习在计算机视觉中的应用?A. 目标检测B. 图像分类C. 图像修复D. 人脸识别答案:C。
深度学习在计算机视觉中的应用非常广泛,包括目标检测、图像分类、人脸识别等,但不包括图像修复。
二、填空题1.卷积神经网络(CNN)是一种_________学习模型。
答案:深度。
2.在图像处理中,直方图均衡化是一种用于_____________的方法。
答案:增强图像对比度。
3.在目标检测中,R-CNN的全称是_________________。
答案:Region-based CNN。
三、解答题1.请简要解释计算机视觉中的目标跟踪是指什么?答:目标跟踪是指在连续的图像序列中,根据已有的目标位置信息,在下一帧图像中准确定位并跟踪目标的过程。
目标跟踪在视频监控、无人驾驶等领域中有着广泛的应用。
常用的目标跟踪方法包括基于特征的跟踪(如颜色、纹理等特征)和基于深度学习的跟踪(如Siamese网络、深度学习特征提取等)。
《计算机视觉》知识要点总结终极
![《计算机视觉》知识要点总结终极](https://img.taocdn.com/s3/m/aae6399f52ea551811a6878c.png)
1、、。
;视觉是人类观察世界、认知世界的重要功能手段。
人类从外界获得信息约有80%来自视觉系统。
2、计算机视觉是指用计算机实现人类的视觉功能,即对客观世界中三维场景的感知、加工和理解。
计算机视觉的研究方法只有有两种:一种是仿生学的方法,参照人类视觉系统的结构原理,建立相应的处理模块完成类似的功能和工作;另一种是工程的方法,即从分析人类视觉过程的功能着手,并不刻意模拟人,视觉系统内部结构,而仅考虑系统的输入和输出,并采用任何现有的手段来实现系统的功能。
计算机视觉主要研究目标有两个:一是建立计算机视觉系统来完成各种视觉任务;二是把该研究作为探索人脑视觉工作机理的手段,即生物学机理。
3、计算机视觉系统的功能模块主要有以下几个模块:图像采集、预处理、基元检测、目标分割、表达描述、形状分析等,参考下图1.4.14、整个视觉过程是由光学过程,化学过程和神经处理过程这3个顺序的子过程所构成。
光学过程:我们需要掌握的是人眼水平截面的示意图,见图2.1.1。
光学过程基本确定了成像的尺寸。
类似照相机。
化学过程:视网膜表面的光接收细胞可分为:锥细胞(亮视觉)和柱细胞(暗视觉)。
化学过程,基本确定了成像的亮度或颜色。
神经处理过程:将对光的感觉转换为对景物的知觉。
视觉处理过程流图2.1,2如下:5、形状知觉是对景物各部分相对关系的知觉,也与视野中各种空间关系的知觉有关。
6、轮廓(封闭的边界)是形状知觉中最基本的概念,人在知觉一个形状以前一定先看到轮廓。
轮廓的构成如果用数学语言来说就是轮廓对应亮度的二阶导数。
轮廓与形状又有区别,轮廓不等于形状。
轮廓在帮助构成形状时还有“方向性”。
轮廓通常倾向于对它所包围的空间发生影响,即轮廓一般是向内部而不是向外部发挥构成形状的作用。
7、主观轮廓:在没有直接刺激作用下产生的轮廓知觉。
主观轮廓的形成是在一定感觉信息的基础上进行知觉假设的结果8、空间知觉的问题本质是一个深度感知的问题。
人对空间场景的深度感知主要依靠双目视觉实现。
计算机视觉基础复习
![计算机视觉基础复习](https://img.taocdn.com/s3/m/1131d2d4580216fc710afd9a.png)
第一章P11什么就是讣算机视觉- -■让计算机理解图像与视频P12讣算机视觉与图像处理得区别»数字图像处理图像/视频-〉图像/视频(图像变换、图像滤波、图像复原、图像压缩、…)>计算机视觉图像/视频-〉模型(二维基素图-〉2、5维要素图-〉三维模型表征)P14-20计算机视觉中存在哪些难点与挑战挑战:外观、卜小与形状;■姿态/运动;复杂与理预测得行为;噪声与遮挡汐卜观变化;上下文间依赖性;视点变化P23-28图像中存在哪些计算机视觉线索深度线索:直线透视;空间透视远近顺序线索:遮挡形状线索:纹理梯度形状与光照线索:阴影位置与光照线索:投影P30-46讣算机视觉有哪些典型应用OCR (光学字符识別)、智能交通、人脸检测、表情识别、多视点三维重建、基于视觉得生物识另U、辅助驾驶、无人驾驶汽车、基于视觉得人机交互、智能机器人、匸业机器人P48 CCD/CMOS传感器得成像原理:尤绘转换P49-54采样与量化影响图像得哪些属性采样影响图像空间分辨率;量化影响图像幅度分辨率(灰度)P61图像坐标系左上角为坐标原点P75-78像素距离与邻域关系习題1、2 P19汁算机视觉要达到得目得有哪些?答:计算机通过图像与视頻对客观世界得感烁识別与理解;对场景进荷耨与描述;根据对场景得解释与描述制定行为规划.第三章PM薄透镜成像模型薄透镜模型/:焦距瓦F:焦点xwhere and12P17-21射影几何中哪些物理信息丢失•与保留了?丢失信息:长度、角度 保留信息疽线特性、交比 不变性 P22-24灭点打火线得概念场景中得平行线投影到图像平而后,会聚于“灭点”灭线:火点得集合P46-49像机成像过程中包含了哪些内参与外参?像机内参和外参: 一般化形式£■//(血 & • d»像机内参和外参:般化形式像机内部参数(内参)像机外部参数(外參)Z 叭0] 0 A Vo i 0 00 1 loj示〃轴和诸由的不垂直因子。
计算机视觉与机器学习设计考核试卷
![计算机视觉与机器学习设计考核试卷](https://img.taocdn.com/s3/m/23b335557dd184254b35eefdc8d376eeaeaa17ae.png)
C.图像传输
D.图像压缩
2.以下哪种算法不属于机器学习算法?()
A.支持向量机
B.决策树
C.快速排序
D.神经网络
3.在计算机视觉中,SIFT算法主要应用于()
A.图像分类
B.特征提取
C.目标跟踪
D.光流估计
4.以下哪种方法不常用于图像去噪?()
A.中值滤波
B.高斯滤波
C.索引滤波
D.双边滤波
5.下列哪种算法不属于监督学习?()
A.线性回归
B.逻辑回归
C. K-近邻
D.聚类分析
6.在卷积神经网络中,卷积核的主要作用是()
A.提取特征
B.模糊图像
C.增强图像
D.色彩转换
7.以下哪个库是Python中用于数据分析和数据挖掘的?()
A. OpenCV
B. TensorFlow
C. Scikit-learn
计算机视觉与机器学习设计考核试卷
考生姓名:__________答题日期:______年__月__日得分:____________判卷人:__________
一、单项选择题(本题共20小题,每小题1分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.计算机视觉的主要任务是()
A.图像识别
C.最小样本分裂
D.特征选择
17.以下哪个算法常用于图像风格转换?()
A.神经风格迁移
B.卷积神经网络
C.支持向量机
D.图像金字塔
18.在计算机视觉中,以下哪个概念用于描述图像的颜色空间?()
A. HSV
B. RGB
C. YUV
D.所有以上选项
19.以下哪个库是Python中用于图像显示的?()
计算机视觉技术考核试卷
![计算机视觉技术考核试卷](https://img.taocdn.com/s3/m/4c7770acbb0d4a7302768e9951e79b89680268a2.png)
B.对比度增强
C.锐化
D.模糊
8.计算机视觉中的特征匹配方法包括以下哪些?()
A.暴力匹配
B. FLANN匹配
C. RANSAC
D. KNN
9.以下哪些是图像风格转换中常用的神经网络?()
A. VGG-19
B. ResNet
C. GAN
D. Inception
10.以下哪些技术可以用于图像的三维重建?()
17. ABCD
18. ABCD
19. ABC
20. ABCD
三、填空题
1.数字
2.红色、绿色、蓝色
3. ImageNet
4.卷积层
5.像素值
6. SIFT、SURF
7. Faster R-CNN
8.主成分分析(PCA)
9.区域生长
10.压缩感知(Compressive Sensing)
四、判断题
1. √
B.基于互信息的配准
C.基于模型的配准
D.基于像素的配准
14.以下哪些技术可以用于图像的语义分割?()
A. FCN
B. U-Net
C. Mask R-CNN
D. YOLO
15.以下哪些方法可以用于图像压缩?()
A. JPEG
B. PNG
C. BMP
D. GIF
16.计算机视觉中,以下哪些技术用于图像检索?()
A. CBIR
B. SIFT
C. BoW
D. VLAD
17.以下哪些是计算机视觉中的目标检测方法?()
A. R-CNN
B. Fast R-CNN
C. Faster R-CNN
D. SSD
18.以下哪些技术可以用于图像的边缘检测?()
计算机视觉试题及答案大全
![计算机视觉试题及答案大全](https://img.taocdn.com/s3/m/cb5ff128a88271fe910ef12d2af90242a895abc7.png)
计算机视觉试题及答案大全一、选择题1. 计算机视觉是利用计算机对图像、视频等视觉信息进行分析和处理的一门学科。
以下哪项不属于计算机视觉的应用领域?A. 人脸识别B. 遥感图像分析C. 智能车辆导航D. 机器学习算法答案:D2. 在计算机视觉中,图像分类是指将输入的图像分到预先定义的类别中。
以下哪项不属于常见的图像分类方法?A. 支持向量机(SVM)B. 卷积神经网络(CNN)C. 高斯混合模型(GMM)D. 循环神经网络(RNN)答案:D3. 目标检测是计算机视觉中的关键任务之一,其目标是在图像或视频中准确地找出目标的位置和类别。
以下哪个是常用的目标检测算法?A. 基于颜色空间的图像分割B. 基于特征点的匹配算法C. 卷积神经网络(CNN)D. 基于相似度的模板匹配答案:C4. 图像分割是计算机视觉中的基础问题,其目标是将图像分成若干个具有语义意义的区域。
以下哪项不属于图像分割的常用方法?A. 边缘检测B. 区域生长C. K均值聚类D. 图像去噪答案:D5. 三维重建是计算机视觉中的重要研究方向,其目标是通过图像或视频等二维输入重建出对应的三维场景。
以下哪个是常用的三维重建方法?A. 模板匹配B. 直方图均衡化C. 结构光扫描D. 高斯金字塔答案:C二、填空题1. 在图像处理中,____________是指通过一系列像素操作来改变图像的外观或信息。
答案:图像增强2. 在计算机视觉中,特征提取是指从输入的图像或视频中提取出____________的信息。
答案:有用或有区别的特征3. 计算机视觉中常用的评价标准之一是____________,它可以衡量目标检测算法的准确率和召回率。
答案:精确度(precision)4. 在目标跟踪中,____________是指通过预测目标的位置来跟踪目标。
答案:滤波器三、简答题1. 简要介绍计算机视觉中的图像分类任务,并说明其应用。
答案:图像分类是计算机视觉中的一个基本任务,其目标是将输入的图像分到预先定义的类别中。
计算机视觉考试试题及答案
![计算机视觉考试试题及答案](https://img.taocdn.com/s3/m/922854b84793daef5ef7ba0d4a7302768e996f9c.png)
计算机视觉考试试题及答案一、选择题1.计算机视觉是指()。
A. 让计算机识别图像B. 让计算机生成图像C. 让计算机处理音频D. 让计算机播放视频答案:A. 让计算机识别图像2.在计算机视觉中,常用的图像处理技术包括()。
A. 图像去噪B. 图像分割C. 物体检测D. 所有选项都对答案:D. 所有选项都对3.以下哪项不是常用的计算机视觉库?A. OpenCVB. TensorFlowC. PyTorchD. Spring答案:D. Spring4.在计算机视觉中,卷积神经网络(CNN)常用于()。
A. 图像分类B. 文本处理C. 音频合成D. 数字识别答案:A. 图像分类二、判断题1.图像处理和计算机视觉是完全不同的两个领域。
答案:错2.计算机视觉只能应用于静态图像,无法处理视频流。
答案:错3.深度学习在计算机视觉领域取得了很大的成功。
答案:对三、简答题1.请简要介绍一下计算机视觉在实际生活中的应用场景。
答:计算机视觉在实际生活中有很多应用场景,比如人脸识别技术可以用于人脸解锁手机、安防监控等领域;医学影像分析可以帮助医生快速准确地诊断疾病;无人驾驶技术需要计算机视觉来实现障碍物检测和车道识别等功能。
2.简要说明卷积神经网络(CNN)在计算机视觉中的作用。
答:卷积神经网络(CNN)在计算机视觉中被广泛应用于图像分类、目标检测和图像分割等任务。
通过卷积层和池化层的组合,CNN可以提取图像的特征并实现对图像的有效处理和识别。
四、综合题1.请设计一个简单的计算机视觉项目,描述项目的实现步骤及预期效果。
答:设计一个人脸识别系统。
实现步骤包括收集人脸数据集、训练神经网络模型、部署模型到实际系统中。
预期效果是能够准确快速地识别不同人的人脸,并实现相关功能,比如门禁系统或会议签到系统等。
以上是计算机视觉考试试题及答案,希朓可以帮助您更好地理解和掌握计算机视觉领域的知识。
祝您考试顺利!。
cvpr 模板的参考文献
![cvpr 模板的参考文献](https://img.taocdn.com/s3/m/ad2072cacd22bcd126fff705cc17552706225e5e.png)
CVPR 模板的参考文献1. 引言随着科技的不断发展,计算机视觉技术已经成为了人工智能领域的重要分支。
CVPR(计算机视觉和模式识别)作为计算机视觉领域的重要会议,每年都会吸引大量的学者和专家参与。
本文献综述主要围绕CVPR模板进行整理和阐述,为读者提供全面深入的了解。
2. 相关技术概览计算机视觉技术的发展历程中,许多技术都起到了重要的推动作用。
其中包括图像处理、机器学习、深度学习等领域的技术。
这些技术的交叉融合,使得计算机视觉技术在图像识别、目标检测、人脸识别等领域取得了显著的成果。
3. 相关算法原理在计算机视觉领域,有许多经典的算法和模型。
其中包括SIFT、SURF、HOG等特征提取算法,以及深度学习中的卷积神经网络(CNN)等模型。
这些算法和模型在图像识别、目标检测等领域发挥了重要的作用。
4. 实验设计和分析为了验证算法和模型的性能,需要进行实验设计和分析。
实验设计和分析的方法包括准确率、召回率、F1分数等指标的评估,以及与其他算法和模型的比较。
通过实验结果的分析,可以得出算法和模型的优缺点,为未来的研究提供参考。
5. 讨论和未来工作在计算机视觉领域,虽然已经取得了很多成果,但仍存在许多挑战和问题需要解决。
例如,如何提高算法和模型的泛化能力、如何处理大规模数据集等问题。
未来的研究可以从这些方面入手,进一步推动计算机视觉技术的发展。
6. 结论通过对CVPR模板的整理和阐述,可以得出计算机视觉技术的重要性和发展前景。
未来的研究可以从多个角度入手,进一步推动计算机视觉技术的发展。
同时,希望本文献综述能够为读者提供全面深入的了解,为未来的研究提供参考。
7. 附录附录部分主要提供了相关的参考文献,包括重要的学术论文、会议论文集等。
这些参考文献对于深入了解CVPR模板和计算机视觉技术的研究具有重要的参考价值。
图像处理与计算机视觉综合考试
![图像处理与计算机视觉综合考试](https://img.taocdn.com/s3/m/e4ea245b02d8ce2f0066f5335a8102d276a261ed.png)
图像处理与计算机视觉综合考试(答案见尾页)一、选择题1. 图像处理中常用的滤波方法有哪些?A. 中值滤波B. 高斯滤波C. 拉普拉斯滤波D. 均值滤波2. 在计算机视觉中,以下哪个参数通常用于描述图像的特征?A. 像素值B. 边缘强度C. 直方图D. Hessian矩阵3. 以下哪种图像处理技术可以用于增强图像中的边缘信息?A. 滤波B. 图像分割C. 特征提取D. 渐变增强4. 在计算机视觉中,以下哪个步骤不是特征提取的常见步骤?A. 特征点检测B. 特征描述C. 特征匹配D. 深度学习5. 在图像处理中,如何通过锐化操作来增强图像的边缘信息?A. 使用高斯模糊B. 使用拉普拉斯算子C. 使用高通滤波器D. 使用同态滤波器6. 在计算机视觉中,以下哪种算法可以用于物体识别?A. K-均值聚类B. 支持向量机C. 随机森林D. 卷积神经网络7. 在图像处理中,如何通过直方图均衡化来改善图像的对比度?A. 将图像分成小块,分别计算每块的直方图,然后对每块的直方图进行缩放B. 将图像分成小块,分别计算每块的直方图,然后将直方图归一化C. 将图像分成小块,分别计算每块的直方图,然后对每块的直方图进行叠加D. 将图像分成小块,分别计算每块的直方图,然后对每块的直方图进行反转8. 在计算机视觉中,以下哪种技术可以用于测量图像中对象的大小?A. 边缘检测B. 图像分割C. 特征匹配D. 目标跟踪9. 在图像处理中,如何通过均值漂移算法来追踪图像中的运动物体?A. 将均值漂移算法应用于图像的每个像素点B. 将均值漂移算法应用于图像的每个通道C. 将均值漂移算法应用于图像的每个颜色通道D. 将均值漂移算法应用于图像的每个方向10. 在计算机视觉中,以下哪种算法可以用于场景理解?A. 深度学习B. 随机森林C. 支持向量机D. 卷积神经网络11. 图像处理中常用的滤波器类型有哪些?A. 常用滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器B. 滤波器在图像处理中的作用是去除噪声和干扰C. 滤波器的选择取决于图像的特性和处理要求D. 滤波器可以分为线性滤波器和非线性滤波器12. 在计算机视觉中,以下哪种图像变换可以增强特征检测?A. 对图像进行缩放B. 对图像进行旋转C. 对图像进行翻转D. 对图像进行剪切13. 以下哪种图像处理技术可以用于测量图像中对象的大小?A. 图像分割B. 图像锐化C. 图像二值化D. 图像平滑14. 在图像识别中,以下哪种算法被广泛应用于人脸识别?A. K-均值聚类算法B. 支持向量机(SVM)C. 随机森林算法D.卷积神经网络(CNN)15. 在计算机视觉中,以下哪种技术可以用于场景理解?A. 图像分割B. 图像分类C. 特征匹配D. 三维重建16. 在图像处理中,以下哪种操作可以用于调整图像的对比度和亮度?A. 图像缩放B. 图像旋转C. 图像平移D. 图像调整17. 在计算机视觉中,以下哪种算法可以用于目标检测和识别?A. K-均值聚类算法B. 支持向量机(SVM)C. 随机森林算法D. 卷积神经网络(CNN)18. 在图像处理中,以下哪种技术可以用于图像的锐化和增强?A. 图像平滑B. 图像分割C. 图像锐化D. 图像增强19. 在计算机视觉中,以下哪种技术可以用于图像的压缩和解压?A. JPEG压缩B. GIF压缩C. MP3压缩D. PNG压缩20. 在图像处理中,以下哪种操作可以用于图像的背景减除?A. 图像分割B. 图像锐化C. 图像调整D. 图像背景减除21. 图像处理的主要步骤包括哪些?A. 图像获取B. 图像预处理C. 图像特征提取D. 图像识别与分类E. 图像生成与编辑22. 计算机视觉中,以下哪个选项不是用于图像配准的算法?A. 基于特征的方法B. 基于变换的方法C. 基于概率的方法D. 基于深度学习的方法23. 在图像处理中,直方图均衡化是一种改善图像对比度的常用方法,它的作用是:A. 自适应地调整图像的亮度B. 强化图像中的细节和边缘C. 使得图像中的颜色更加鲜艳D. 使得图像中的暗部和亮部区域更加均匀24. 在计算机视觉中,以下哪个选项不是特征匹配中常用的算法?A. SIFT(尺度不变特征变换)B. SURF(加速稳健特征)C. ORB(Oriented FAST and Rotated BRIEF)D. IFEAT(图像特征向量计算)25. 在图像处理中,锐化是一种提高图像边缘清晰度的操作,以下哪种方法属于锐化算法?A. 池化B. 滤波C. 高斯模糊D. 双边滤波26. 在计算机视觉中,以下哪个选项不是目标检测中常用的算法?A. R-CNNB. Fast R-CNNC. YOLOD. SSD27. 在图像处理中,均值滤波是一种线性平滑滤波方法,它的作用是:A. 消除图像中的噪声B. 强化图像中的边缘C. 提高图像的对比度D. 使得图像中的直线更加圆滑28. 在计算机视觉中,以下哪个选项不是图像分割中常用的算法?A. 阈值分割B. 区域生长C. 分水岭算法D.深度学习方法(如FCN)29. 在图像处理中,以下哪个选项不是图像增强中常用的技术?A. 对比度增强B. 直方图均衡化C. 图像缩放D. 自适应直方图均衡化30. 在计算机视觉中,以下哪个选项不是目标跟踪中常用的算法?A. K-means聚类B. meanShift算法C. CamShift算法D. CSRT算法31. 图像处理中常用的滤波方法有哪些?A. 中值滤波B. 均值滤波C. 高斯滤波D. 梯度滤波32. 在计算机视觉中,以下哪个参数通常用于描述目标的形状?A. 边缘检测算子B. Hessian矩阵C. 直方图D. 阈值分割33. 以下哪种图像变换可以增强图像中的边缘信息?A. 对比度变换B. 伽马变换C. 直方图均衡化D.拉普拉斯算子34. 在图像识别中,以下哪个算法不是基于深度学习的?A. SVMB. OCRC. YOLOD. ResNet35. 在计算机视觉中,以下哪个操作通常用于从图像中提取特征?A. 卷积运算B. 池化运算C. 阈值分割D. HOG算法36. 在图像处理中,如何通过均值滤波去除图像中的椒盐噪声?A. 将图像分为小方块,对每个小方块分别进行均值滤波B. 将图像分为小方块,对每个小方块分别进行高斯滤波C. 对整个图像进行均值滤波D. 对整个图像进行高斯滤波37. 在计算机视觉中,以下哪个技术可以用于测量图像中物体的距离?A. 特征匹配B. 目标检测C. 三维重建D. 图像分割38. 在图像处理中,如何通过直方图均衡化增强图像的对比度?A. 将图像分为小方块,对每个小方块分别进行直方图均衡化B. 将图像分为小方块,对每个小方块分别进行高斯平滑C. 对整个图像进行直方图均衡化D. 对整个图像进行高斯平滑39. 在计算机视觉中,以下哪个算法可以用于识别图像中的物体?A. K-均值聚类B. 支持向量机C. 深度学习算法D. 随机森林40. 在图像处理中,如何通过锐化运算增强图像的边缘清晰度?A. 将图像分为小方块,对每个小方块分别进行锐化运算B. 将图像分为小方块,对每个小方块分别进行高斯锐化C. 对整个图像进行锐化运算D. 对整个图像进行高斯锐化二、问答题1. 什么是图像处理?请给出定义并解释其重要性。
【数字图像处理】期末复习资料【考试要点】【老师整理】
![【数字图像处理】期末复习资料【考试要点】【老师整理】](https://img.taocdn.com/s3/m/c74091fa5ef7ba0d4a733bed.png)
第一章数字图像处理概论*图像是对客观存在对象的一种相似性的、生动性的描述或写真。
*模拟图像空间坐标和明暗程度都是连续变化的、计算机无法直接处理的图像*数字图像空间坐标和灰度均不连续的、用离散的数字(一般整数)表示的图像(计算机能处理)。
是图像的数字表示,像素是其最小的单位。
*数字图像处理(Digital Image Processing)利用计算机对数字图像进行(去除噪声、增强、复原、分割、特征提取、识别等)系列操作,从而获得某种预期的结果的技术。
(计算机图像处理)*数字图像处理的特点(优势)(1)处理精度高,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞大。
(5)图像处理技术综合性强。
*数字图像处理的目的(1)提高图像的视感质量,以达到赏心悦目的目的a.去除图像中的噪声;b.改变图像的亮度、颜色;c.增强图像中的某些成份、抑制某些成份;d.对图像进行几何变换等,达到艺术效果;(2)提取图像中所包含的某些特征或特殊信息。
a.模式识别、计算机视觉的预处理(3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。
**数字图像处理的主要研究内容(1)图像的数字化a.如何将一幅光学图像表示成一组数字,既不失真又便于计算机分析处理b.主要包括的是图像的采样与量化(2*)图像的增强a.加强图像的有用信息,消弱干扰和噪声(3)图像的恢复a.把退化、模糊了的图像复原。
模糊的原因有许多种,最常见的有运动模糊,散焦模糊等(4*)图像的编码a.简化图像的表示,压缩表示图像的数据,以便于存储和传输。
(5)图像的重建a.由二维图像重建三维图像(如CT)(6)图像的分析a.对图像中的不同对象进行分割、分类、识别和描述、解释。
(7)图像分割与特征提取a.图像分割是指将一幅图像的区域根据分析对象进行分割。
b.图像的特征提取包括了形状特征、纹理特征、颜色特征等。
(8)图像隐藏a.是指媒体信息的相互隐藏。
《数字图像处理》期末考试重点总结(5篇材料)
![《数字图像处理》期末考试重点总结(5篇材料)](https://img.taocdn.com/s3/m/3f7e09683a3567ec102de2bd960590c69ec3d838.png)
《数字图像处理》期末考试重点总结(5篇材料)第一篇:《数字图像处理》期末考试重点总结*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。
(1)处理精度高,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞大。
(5)图像处理技术综合性强。
*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
图像增强不存在通用理论。
图像增强的方法:空间域方法和变换域方法。
*图像反转:S=L-1-r 1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。
*对数变换 S=C*log(1+r)c为常数,r>=0 作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。
对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。
*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。
*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。
直方图均衡化变换函数必须为严格单调递增函数。
直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。
获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。
*平滑滤波器用于模糊处理和减小噪声。
平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。
优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。
负面效应:模糊了图像的边缘,因为边缘也是由图像灰度的尖锐变化造成的。
计算机图形学考试简答题复习.
![计算机图形学考试简答题复习.](https://img.taocdn.com/s3/m/0ba28263c950ad02de80d4d8d15abe23482f037d.png)
计算机图形学考试简答题复习.计算机图形学考试简答题复习1、简述计算机动画的概念,它经历了哪几个阶段的发展?(2分)计算机动画是指采用图形与图像的处理技术,借助于编程或动画制作软件生成一系列的景物画面,其中当前帧是前一帧的部分修改。
计算机动画是采用连续播放静止图像的方法产生物体运动的效果。
60年代: 二维计算机辅助动画系统70年代: 三维图形与动画的基本技术的开发;80年代: 优化70年代出现的模型和阴影技术;90年代: 动力学仿真技术、三维仿真演员系统2、计算机图形学、图象处理、计算机视觉这三者之间有什么联系和区别?(2分)1. 数字图像处理主要研究的内容数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。
数字图像处理主要研究的内容有以下几个方面:1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
《计算机视觉》期末考试试卷附答案
![《计算机视觉》期末考试试卷附答案](https://img.taocdn.com/s3/m/26a8beb1c9d376eeaeaad1f34693daef5ef713b8.png)
《计算机视觉》期末考试试卷附答案一、选择题(每题2分,共计20分)1. 计算机视觉的主要任务不包括以下哪项?A. 图像分类B. 目标检测C. 图像增强D. 图像分割{答案:C}2. 以下哪个不是卷积神经网络(CNN)的主要优点?A. 参数共享B. 局部感知野C. 需要大量标注数据D. 层次化特征提取{答案:C}3. 以下哪种损失函数常用于图像分类任务?A. softmax损失函数B. 交叉熵损失函数C. 均方误差损失函数D. hinge损失函数{答案:A}4. 在目标检测中,R-CNN系列算法主要包括以下哪些步骤?A. 区域提议网络B. 卷积神经网络特征提取C. 分类与边界框回归D. 非极大值抑制{答案:ABCD}5. 以下哪个是最常见的图像增强方法?A. 随机裁剪B. 直方图均衡化C. 对比度增强D. 数据扩充{答案:B}二、填空题(每题2分,共计20分)1. 在卷积神经网络中,卷积层的主要作用是______。
{答案:局部感知、参数共享、特征提取}2. 支持向量机(SVM)的核心思想是______。
{答案:找到一个最优的超平面,最大化不同类别之间的边界} 3. 目标检测中的实时性要求较高的算法有______。
{答案:YOLO、SSD、Faster R-CNN}4. 图像分割的主要任务是将图像划分为若干个______。
{答案:区域或像素块,具有相似的特征}5. 在深度学习框架TensorFlow中,创建一个全连接层可以使用______。
{答案:yers.dense}三、简答题(每题10分,共计30分)1. 请简要描述卷积神经网络(CNN)的工作原理及主要优点。
{答案:卷积神经网络是一种特殊的神经网络,它通过卷积层、池化层和全连接层进行特征提取和分类。
主要优点包括参数共享、局部感知、层次化特征提取等。
}2. 请简要介绍目标检测的主要任务、方法和挑战。
{答案:目标检测的主要任务是在图像中定位和识别物体。
2023计算机视觉与OpenCV复习 题集附答案
![2023计算机视觉与OpenCV复习 题集附答案](https://img.taocdn.com/s3/m/ca7967bd710abb68a98271fe910ef12d2af9a9ec.png)
2023计算机视觉与OpenCV复习题集附答案2023计算机视觉与OpenCV复习题集附答案计算机视觉与OpenCV是信息技术领域中一门重要的学科,涉及到图像的处理、分析和识别等方面。
在2023年的学习过程中,我们必须要进行深入的复习和巩固,以便掌握相关知识和技能。
本篇文章将为您提供一套包含答案的计算机视觉与OpenCV复习题集,希望对您的学习有所帮助。
一、选择题1. 下列哪项不属于计算机视觉的应用领域?A. 目标检测B. 图像生成C. 机器学习D. 语音识别答案:D2. OpenCV是一种开源的计算机视觉库,以下哪项不属于OpenCV 的主要功能?A. 图像处理B. 视频分析C. 人脸识别D. 语音合成答案:D3. 在OpenCV中,以下哪个函数用于图像的灰度化处理?A. cvtColor()B. threshold()C. Canny()D. warpPerspective()答案:A4. 以下哪个算法常用于目标检测任务?A. SIFTB. K-meansC. AdaBoostD. KNN答案:C5. 在计算机视觉中,以下哪项是用于图像特征提取的技术?A. 边缘检测B. 图像分割D. 图像滤波答案:A二、填空题1. 在OpenCV中,图像的像素值范围通常是______到______。
答案:0,2552. 计算机视觉中常用的图像特征描述符有______和______。
答案:SIFT,SURF3. 在OpenCV中,以下函数用于图像的模糊处理是______。
答案:blur()4. 在目标检测任务中,常用的评价指标是______和______。
答案:准确率,召回率5. 在图像分割中,以下算法常用于分水岭算法的实现是______。
答案:分水岭变换三、综合题1. 请用OpenCV实现图像的平滑处理,并附上代码。
```pythonimport cv2image = cv2.imread('image.jpg')# 图像平滑处理smooth_image = cv2.blur(image, (5, 5))# 显示处理结果cv2.imshow('Smooth Image', smooth_image)cv2.waitKey(0)cv2.destroyAllWindows()```2. 请简要说明SIFT算法在计算机视觉中的应用及其原理。
计算机视觉考试题目及参考答案
![计算机视觉考试题目及参考答案](https://img.taocdn.com/s3/m/705ed736a36925c52cc58bd63186bceb18e8ed7d.png)
计算机视觉考试题目及参考答案一、选择题(每题2分,共30分)1. 计算机视觉主要研究的是:A. 计算机图像处理B. 计算机图形学C. 计算机视觉系统D. 计算机视觉算法答案:C2. 图像处理与计算机视觉的区别在于:A. 图像处理注重图像的获取和传输,计算机视觉注重图像的解释和理解B. 图像处理主要用于网络传输,计算机视觉主要用于图像处理C. 图像处理是计算机视觉的一个子领域D. 图像处理与计算机视觉没有区别答案:A3. 计算机视觉应用广泛,以下哪项不是计算机视觉的应用之一:A. 人脸识别B. 视频监控C. 自动驾驶D. 家电控制答案:D4. 图像分割是计算机视觉中的重要任务,以下哪种方法常用于图像分割:A. 模糊聚类B. 边缘检测C. 直方图均衡化D. 滤波处理答案:B5. 特征提取是计算机视觉中的关键步骤,以下哪种方法常用于特征提取:A. 主成分分析(PCA)B. 高斯模糊C. 轮廓检测D. 图像压缩答案:A二、填空题(每题3分,共30分)1. 图像的分辨率指的是图像中包含的______。
答案:像素点2. 图像的边缘可以通过______算法来检测。
答案:Canny3. 图像配准是指将多幅图像在______方面进行对齐。
答案:空间4. 在计算机视觉中,用于描述图像颜色的模型有RGB和______。
答案:HSV5. OCR是计算机视觉中的一项重要任务,其全称为______。
答案:Optical Character Recognition三、简答题(每题10分,共30分)1. 请简要介绍计算机视觉的基本原理和流程。
答案:计算机视觉的基本原理是通过图像获取、图像处理和图像解释三个步骤来实现对图像的理解和应用。
图像获取是指通过摄像机等设备获取图像数据;图像处理是指对图像进行预处理,包括去噪、增强、分割等操作;图像解释是指通过特征提取、目标检测和识别等算法对图像进行分析和解释。
2. 请简要介绍计算机视觉在人脸识别中的应用及原理。
《机器视觉》复习资料整理总结
![《机器视觉》复习资料整理总结](https://img.taocdn.com/s3/m/0dc8503b58eef8c75fbfc77da26925c52cc59182.png)
《机器视觉》复习资料整理总结1.机器视觉的概念:利用成像系统代替人类的视觉作为输入,由计算机代替大脑完成处理和解释。
2.机器视觉的最终目标:使计算机像人一样,通过视觉观察和理解世界,具有自主适应环境的能力。
3.机器视觉的特点:机器视觉系统具有高效率、高度自动化等特点,可以实现很高的分辨率精度和速度。
机器视觉系统与被检测对象无接触,安全可靠。
4 机器视觉应用:基于机器视觉的仪表板总成智能集成测试系统。
金属板表面自动控伤系统。
汽车车身检测系统定位设备光学检测(检测物体内部有无异物划伤)4.机器视觉系统组成包括(典型的机器视觉系统):图像采集单元(光源、镜头、相机、采集卡、机械平台),图像处理分析单元(工业控制机、图像处理分析软件、图形交互界面),执行单元(电传单元、机械单元)。
5.光源作用:用于被检测对象照明,突出对象的重要特征而抑制不必要特征。
6.互补光:色相间距离角度180度左右的色彩为互补色5.常见的光源:LED,荧光灯,卤素灯,氙灯,钠灯,。
大部分机器视觉照明采用LED补:热辐射光源:白炽灯,卤钨灯;气体放电光源:汞灯,钠灯,氙灯;LED发光二极管;激光光源,光纤激光器,自由电子激光器。
6.光源的种类:环形光源,Dome灯,条形灯,同轴灯等。
7.打光的方式:直接照射,背光照射,散射照射,暗场照射,低角度暗场照射,碗状光照明,同轴光照明等8.光源的作用:1.将感兴趣部分和其他部分的灰度值差异加大;2.尽量消隐不感兴趣部分;3.提高信噪比,利于图像处理; 4.减少因材质、照射角度对成像的影响。
9.镜头焦距:是指镜头光学后主点到焦点的距离,是镜头的重要性能指标。
镜头焦距的长短决定着拍摄的成像大小,视场角大小,景深大小和画面的透视强弱。
当对同一距离远的同一个被摄目标拍摄时,镜头焦距长的所成的象大,镜头焦距短的所成的象小。
根据用途的不同,照相机镜头的焦距相差非常大,有短到几毫米,十几毫米的,也有长达几米的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、1.什么是计算机视觉?理解计算机视觉问题的产生原理。
研究用计算机来模拟生物视觉功能的技术学科。
具体来说,就是让计算机具有对周围世界的空间物体进行传感、抽象、分析判断、决策的能力,从而达到识别、理解的目的。
2.直方图的均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。
是将原图像通过某种变换,得到一幅灰度直方图更为均匀分布的新图像的方法。
设图像均衡化处理后,图像的直方图是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图像看起来就更清晰了。
二、 1.常见的几何变换:平移T x 为点(x ,y )在x 方向要平移的量。
旋转 变尺度:x 轴变大a 倍,y 轴变大b 倍。
2.卷积掩膜技术:(,)(,)(,)(,)m n f i j h i m j n g m n =--∑∑ 对应相乘再相加 掩膜的有效应用——去噪问题3. 均值滤波器(低通):抑制噪声主要用于抑制噪声,对每一个目标像素值用其局部邻域内所有像素值的加权均值置换。
con 命令高斯滤波器:一个朴素的道理,距离目标像素越近的点,往往相关性越大,越远则越不相干。
所以,高斯滤波器根据高斯函数选择邻域内各像素的权值 medfilt1 。
区别方法是:高通滤波器模板的和为0,低通滤波器模板的和为1常用的非线性滤波器:中值滤波;双边滤波;非局部滤波4.边缘检测算子:通过一组定义好的函数,定位图像中局部变换剧烈的部分(寻找图像边缘)。
主要方法有:Robert交叉梯度,Sobel 梯度,拉普拉斯算子,高提升滤波,高斯-拉普拉斯变换(都是高通滤波器)Canny 边缘检测 算法步骤:1. 用高斯滤波器平滑图像.2. 用一阶偏导有限差分计算梯度幅值和方向.3. 对梯度幅值进行非极大值抑制 .4. 用双阈值算法检测和连接边缘.5.分割(大题 伪码?)(1)经典方法是基于灰度阈值的分割方法 *介绍单值阈值,它把一幅灰度图像转换成二值图像 *求T 的常用的方法是求解灰度直方图中的双峰或者多峰,并以两峰之间的谷底作为阈值。
*全局阈值是指整幅图像使用同一个阈值做分割处理,并产生一个二值图,区分出前景对象和背景。
适用于背景和前景对比度大的图像算法实现:-- 选取一个合适的阈值T ,逐行扫描图像– 凡灰度级大于T 的,颜色置为255;凡灰度级小于T 的,颜色置为0(2)自适应阈值:解决单值阈值无法工作的一个方法是将图像分割为子图像,并分别进行阈值化处理6.Hough 变换:可用于将边缘像素连接起来得到边界曲线,主要优点在于受噪声和曲线间断的影响较小(鲁棒性好)⎩⎨⎧≤>=Ty x f T y x f y x g ),( 0),( 1),(如果如果1100cos sin 0[1][1]sin cos 0001x y x y θθθθ-⎛⎫ ⎪= ⎪ ⎪⎝⎭110000[1][1]0000a x y x y b ab ⎛⎫ ⎪= ⎪ ⎪⎝⎭(,)1[,][,]k l N h i j f k l M ∈=∑⎪⎪⎪⎭⎫ ⎝⎛=1010001]1[]1[0011y x T T y x y x这意味着:原图像空间中的每条直线在参数空间中都对应一个点。
如果一幅图像中存在某一条直线,那么对应参数空间中,某个点一定被击中较多次。
但是如果采用表示直线,不能表示水平和竖直的情况。
将其转换为θθsi n cos y x s +=Hough 变换就没有了限制。
直线还会变成单个点。
参数空间的坐标变成了s ,θ7.拓扑描述(应用?)区域的拓扑描述用于描述物体平面区域结果形状的整体性。
也就是说,只要图形不撕裂或者折叠,拓扑描述的性质就不会受到图形变形的影响。
常用的特性有:(1)孔: 如果一个封闭的区域内,其不包含我们感兴趣的像素,则成为此区域为图像的孔洞,用H 表示。
(2)欧拉数EUL :在图像中,图像中所有对象的总数C 与孔洞数相减,为欧拉数。
EUL=C-H在Matlab 中,采用bweuler 计算二值图像的欧拉数。
三、1.角点: 是景物轮廓线上曲率的局部极大点,是物体边缘拐角所在的位置点,对掌握景物的轮廓特征具有决定作用。
一旦找到了景物的轮廓特征点也就大致掌握了景物的形状。
Moravec 角点算子是最早的角点算子颜色特征:属于图像的内部特征,它描述了图像或者图像一部分区域。
颜色特征和线段,角点特征比起来,对于尺寸,方向,突变等不敏感,因此颜色特征被用于图像识别,检索。
颜色矩和颜色直方图颜色矩:以数字方法为基础,通过计算矩来描述颜色的分布,一般来说在RGB 空间,由于颜色分布主要集中在低阶矩,因此常采用一阶矩、二阶矩等表达颜色的分布纹理特征:描述的是对图像区域内的内容变化进行量化,捕捉那种具有周期性,规律性的变化。
例如粗糙度,光滑度,颗粒度,随机性和规范性。
如灰度差统计,自相关函数,灰度更生矩阵和基于频谱特征的分析法。
灰度共生矩阵就是通过研究灰度在空间相关性来描述纹理的常用方法。
????形状特征?尺度空间理论2.排污口检测(大题):具体检测的思路有两种:第一种:间接阈值法step1: 通过大量采样,在晴天、阴天、多云、大雾的天气条件下,分别选定天空和海水的一块区域,分别在此区域内统计海水和天空的饱和度并求均值;step2: 根据上述得到的海水的饱和度设置阈值。
具体阈值的设定方法必须依据天空的饱和度,因为海水的饱和度与天气直接相关。
例如,在晴天的条件下,统计得到的天空的平均饱和度,记为sky_threshold ,并根据sky_threshold 从大量统计数据中确定一个饱和度的取值范围,例如从 M 到N ,海水的平均饱和度记为sea_threshold ,也就是污水的饱和度阈值step3: 当摄像头每次循环获取到当前帧图像时,按照step1中的方法,分别从天空和海水区域分割出一幅子图,统计并计算出二者饱和度的均值,然后进行判断;step4: 当step3中得到的天空的饱和度处于 M 到 N 的范围,就以sea_threshold 作为污水的阈值,如果step3中得到的海水的平均饱和度低于sea_threshold ,就认为海水被污染了,启动报警系统发出警报,否则继续执行step3,直到系统关闭;第二种:直接阈值法step1:采集大量样本图片,不考虑天气因素;step2:在海水区域,在排污口附近分割出一幅子图,并统计饱和度,记为s1;step3:在远离排污口处分割出一幅相同大小的子图,并统计饱和度,记为s2(也可以设置一个经验阈值);step4:计算两个饱和度的差值记s = s1 - s2,然后根据多次试验,求多组 s 的平均值,作为污水的阈值,记threshold ;step4之后,摄像头每次获取的当前图片重复上述操作,当计算得到的饱和度差值大于threshold时,认为排污口正在排污,启动报警系统发出警报。
3.熵熵是图像所具有的信息量的度量,纹理信息也属于图像的信息,是一个随机性的度量,当共生矩阵中所有元素有最大的随机性、空间共生矩阵中所有值几乎相等时,共生矩阵中元素分散分布时,熵较大。
它表示了图像中纹理的非均匀程度或复杂程度。
若灰度共生矩阵值分布均匀,也即图像近于随机或噪声很大,熵会有较大值。
4.Sift特征// 步骤?a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。
b) 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配。
c) 多量性,即使少数的几个物体也可以产生大量SIFT特征向量。
d) 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。
e) 可扩展性,可以很方便的与其他形式的特征向量进行联合5.均值漂移:是一种有效的统计迭代算法。
是一种基于密度梯度上升的非参数方法,通过迭代运算找到目标位置,实现目标跟踪。
它显著的优点是算法计算量小,简单易实现,适合于实时跟踪场合;但是跟踪小目标和快速移动目标时常常失败,而且在全部遮挡情况下不能自我恢复跟踪。
通过实验提出应用核直方图来计算目标分布,证明了均值漂移算法具有很好的实时性特点Mean Shift特性四、1.人工智能:AI。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
它企图了解人类与机器智能的实质,并生产出一种能以人类智能相似的方式做出反应的智能机器。
2.机器学习:通过算法使得机器从大量的历史数据中习得规律,从而对新的数据样本做智能识别或预测未来。
机器学习主要分为符号主义学习(以决策树模型与相关算法为代表)、连接主义学习(以神经网络模型...)与统计学习(以支持向量机...)3.机器学习按照学习的方式:1.监督学习:一种典型的机器学习方法。
利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程。
监督学习相当于有人在旁边看着算法学习(实际上利用两组已经标定好的正样本和负样本去实现),随时纠正学习中的错误。
纠正的方式就是对于错误的学习给予惩罚(例如降低权值),直到训练得到的模型达到目标识别率。
2.非监督学习:在未加标签的数据中(没有正负样本集合了),试图找到隐藏的结构。
因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案。
典型算法为K-means算法。
3.强化学习:不同于监督学习一开始就提供带标签的学习数据集合,强化学习中由环境提供学习好坏作的评价(通常为一个回报函数),RL系统靠获得的反馈不断的获得知识并改进学习方案,从而进行自身学习。
典型的算法:Agent技术。
4.深度学习:概念源于人工神经网络的研究。
是一种多隐式层的神经网络。
通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
相互关系简述每个人工智能机器学习神经网络深度学习4.贝叶斯方法(大题)(概率图模型)算题:P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件的条件概率。
(通常用)•注意:朴素贝叶斯算法是假设各个特征之间相互独立。
举例:一座别墅在过去的20 年里一共发生过 2 次被盗,别墅的主人有一条狗,狗平均每周晚上叫 3 次(A),在盗贼入侵(B)时狗叫的概率被估计为0.9,问题是:在狗叫的时候发生入侵的概率是多少?答:我们假设 A 事件为狗在晚上叫,B 为盗贼入侵,我们现在要估计的是P(B|A)。
则以天为单位统计,P(A) = 3/7,P(B) = 2/(20*365) = 2/7300,P(A|B) = 0.9,按照公式很容易得出结果:P(B|A) = 0.9*(2/7300)/(3/7) = 0.000585.聚类:聚类分析是在数据中发现数据对象之间的关系,将sj进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。