指数函数对数函数专练习题(含答案)

合集下载

高一数学指数函数和对数函数试题答案及解析

高一数学指数函数和对数函数试题答案及解析

高一数学指数函数和对数函数试题答案及解析一、选择题1. 函数 y = 2^x 的反函数是()A. y = log2(x)B. y = log(x)C. y = log2(x+1)D. y = log2(x-1)答案:A解析:由指数函数与对数函数的关系,我们知道指数函数y = 2^x 的反函数是对数函数 y = log2(x)。

因此,选项A正确。

2. 函数 y = log3(x) 的定义域是()A. x > 0B. x ≥ 1C. x < 0D. x ≤ 1答案:A解析:对数函数 y = log3(x) 的定义域是 x > 0,因为对数函数要求真数大于0。

所以选项A正确。

二、填空题1. 函数 y = 3^x 在 x = 2 时的函数值是________。

答案:9解析:将 x = 2 代入函数 y = 3^x,得到 y = 3^2 = 9。

2. 函数 y = log5(x) 在 x = 25 时的函数值是________。

答案:2解析:将 x = 25 代入函数 y = log5(x),得到 y =log5(25) = 2。

三、解答题1. 已知函数 y = 2^x 和 y = log2(x),求它们的交点坐标。

解析:为了求出两个函数的交点坐标,我们可以将两个函数相等,即:2^x = log2(x)对上式两边取以2为底的对数,得到:log2(2^x) = log2(log2(x))x = log2(log2(x))这是一个关于 x 的方程,我们可以通过换元法求解。

设t = log2(x),则原方程可化为:t = log2(t)2^t = t这是一个二次方程,我们可以通过解二次方程的方法求解。

将方程两边移项,得到:2^t - t = 0设 f(t) = 2^t - t,求导得到 f'(t) = 2^t ln(2) - 1。

令 f'(t) = 0,解得 t = log2(ln(2))。

指数函数对数函数计算题集及答案

指数函数对数函数计算题集及答案

指数函数对数函数计算题11、计算:lg 5·lg 8000+06.0lg 61lg )2(lg 23++.2、解方程:lg 2(x +10)-lg(x +10)3=4.3、解方程:23log 1log 66-=x .4、解方程:9-x -2×31-x =27.5、解方程:x )81(=128.6、解方程:5x+1=123-x .7、计算:10log 5log )5(lg )2(lg 2233++·.10log 188、计算:(1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92).9、求函数121log 8.0--=x x y 的定义域.10、已知log 1227=a,求log 616.11、已知f(x)=1322+-x x a ,g(x)=522-+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x).12、已知函数f(x)=321121x x ⎪⎭⎫ ⎝⎛+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0.13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数.14、求log 927的值.15、设3a =4b =36,求a 2+b1的值.16、解对数方程:log 2(x -1)+log 2x=117、解指数方程:4x +4-x -2x+2-2-x+2+6=018、解指数方程:24x+1-17×4x +8=019、解指数方程:22)223()223(=-++-x x ±220、解指数方程:01433214111=+⨯------x x21、解指数方程:042342222=-⨯--+-+x x x x22、解对数方程:log(x-1)=log2(2x+1)223、解对数方程:log(x2-5x-2)=2224、解对数方程:logx+log4x+log2x=71625、解对数方程:log[1+log3(1+4log3x)]=1226、解指数方程:6x-3×2x-2×3x+6=027、解对数方程:lg(2x-1)2-lg(x-3)2=228、解对数方程:lg(y-1)-lgy=lg(2y-2)-lg(y+2)29、解对数方程:lg(x2+1)-2lg(x+3)+lg2=030、解对数方程:lg2x+3lgx-4=0指数函数对数函数计算题1 〈答案〉1、12、解:原方程为lg 2(x +10)-3lg(x +10)-4=0,∴[lg(x +10)-4][lg(x +10)+1]=0.由lg(x +10)=4,得x +10=10000,∴x=9990.由lg(x +10)=-1,得x +10=0.1,∴x=-9.9.检验知: x=9990和-9.9都是原方程的解.3、 解:原方程为36log log 626=x ,∴x 2=2,解得x=2或x=-2. 经检验,x=2是原方程的解, x=-2不合题意,舍去.4、解:原方程为2)3(x --6×3-x -27=0,∴(3-x +3)(3-x -9)=0.∵3-x +3≠0,∴由3-x -9=0得3-x =32.故x=-2是原方程的解.5、解:原方程为x 32-=27,∴-3x=7,故x=-37为原方程的解.6、解:方程两边取常用对数,得:(x +1)lg5=(x 2-1)lg3,(x +1)[lg5-(x -1)lg3]=0. ∴x +1=0或lg5-(x -1)lg3=0.故原方程的解为x 1=-1或x 2=1+5log 3.7、18、(1)1;(2)459、函数的定义域应满足:⎪⎩⎪⎨⎧>≥-≠-,0,01log ,0128.0x x x 即⎪⎪⎩⎪⎪⎨⎧>≥≠,0,1log ,218.0x x x解得0<x ≤54且x ≠21,即函数的定义域为{x|0<x ≤54且x ≠21}.10、由已知,得a=log 1227=12log 27log 33=2log 2133+,∴log 32=aa 23- 于是log 616=6log 16log 33=2log 12log 433+=aa +-3)3(4.11、若a >1,则x <2或x >3;若0<a <1,则2<x <312、(1)(-∞,0)∪(0,+∞);(2)是偶函数;(3)略.13、2个14、设log 927=x,根据对数的定义有9x =27,即32x =33,∴2x=3,x=23,即log 927=23.15、对已知条件取以6为底的对数,得a 2=log 63, b1=log 62, 于是a 2+b1=log 63+log 62=log 66=1.16、x=217、x=018、x=-21或x=2319、x=±120、x=3721、x=2322、x ∈φ23、x=-1或x=624、x=1625、 x=326、x=127、 x=829或x=123128、y=229、x=-1或x=730、x=10或x=10-4指数函数对数函数计算题21、解对数方程:65lg 21lg 32=+++x x2、解对数方程:2log 4x+2log x 4=53、解对数方程:3log x 3+3log 27x=44、解对数方程:log 7(log 3x)=-15、解指数方程:4x +4-x -2x -2-x =06、解指数方程:9x +6x -3x+2-9×2x =07、解指数方程:2x+2-2-x +3=08、解指数方程:2x+1-3×2-x +5=09、解指数方程:5x-1+5x-2+5x-3=15510、解指数方程:26x+3×43x+6=(8x )x11、解指数方程:4x -3·2x+3-432=0.12、解对数方程:lg(6·5x +25·20x )=x+lg2513、解对数方程:log (x-1)(2x 2-5x -3)=214、解对数方程:(0.4)1lg 2-x =(6.25)2-lgx15、解对数方程:x x 323log log52⋅=40016、解对数方程:log 2(9-2x )=3-x17、解对数方程:101gx+1=471+gx x18、解对数方程:log 2(2x -1)·log 2(2x+1-2)=219、解关于x 的方程.3)lg()](lg[22=--a x a x a20、计算:(1)log 622+log 63·log 62+log 63; (2)lg25+32lg8+lg5·lg20+lg 22.21、计算:(1)29)12(lg log 3-+5225)25.0(lg log -;(2)[(1-log 63)2+log 62·log 618]·log 46.22、已知:log 23=a,3b =7.求:log 4256.23、已知:log 89=a,log 25=b,求:lg2,lg3,lg5.24、已知:log 189=a,18b =5,求:log 3645.25、已知:12a =27,求:log 616.26、计算:(1)3log 422+; (2)b a a log 31.27、计算:(1)3lg 100; (2)8log 427log 31125525+.28、计算:.18log 7log 37log 214log 3333-+-29、若函数f(x)的定义域是[0,1],分别求函数f(1-2x)和f(x +a)(a >0)的定义域.30、若函数f(x +1)的定义域是[-2,3),求函数f(x1+2)的定义域.指数函数对数函数计算题2〈答案〉1、x=10或x=105122、x=2或x=163、x=3或x=274、 x=735、x=06、x=27、x=-28、x=-19、x=410、x=-1或x=511、x=2+2log 2312、x=log 253或x=log 25213、x=414、x=10或x=10315、x=916、x=0或x=317、x=10-4或x=1018、x=log 245或x=log 2319、a <0且a ≠-1时,x=0;a >0且a ≠21,x=3a;a=0或a=-1或a=21时,无解20、(1)1 (2)321、(1)3 (2)122、13+++ab a ab23、lg2=b +11 lg3=)1(23b a + lg5=bb +124、log 3645=ab a -+225、log 616=aa +-341226、(1)48 (2)3b27、(1)3 (2)230428、29、{x|0≤x ≤21},{x|-a ≤x ≤1-a}.30、{x|x <-31或x >21}指数函数对数函数计算题31、求函数f(x)=lg(1+x)+lg(1-x)(-21<x <0)的反函数.2、已知实数x,y 满足(log 4y)2=x 21log , 求 yx u =的最大值及其相应的x,y 的值.3、若抛物线y=x 2log 2a +2xlog a 2+8位于x 轴的上方,求实数a 的取值范围.4、已知函数f(x)=(log a b)x 2+2(log b a)x +8的图象在x 轴的上方,求a,b 的取值范围.5、已知f(x)=log a |log a x|(0<a <1).解不等式f(x)>0.判断f(x)在(1,+∞)上的单调性,并证明之.6、计算:2log 9log 412log 221log 5533525.0log 3)3(--++-.7、解方程)13lg()13lg()1lg(2++-=-x .8、解方程:2lg +x x =1000.9、解方程:6(4x -9x )-5×6x =0.10、解方程:1lg )7(lg 4110++=x x x.11、解方程:log x+2(4x +5)-01)54(log 22=-++x x .12、已知12x =3,12y =2,求y x x +--1218的值.13、已知2lg 2y x -=lgx +lgy,求yx 的值.14、已知log a (x 2+1)+log a (y 2+4)=log a 8+log a x +log a y(a >0,a ≠1),求log 8(xy)的值.15、已知正实数x,y,z 满足3x =4y =6z ,(1)求证:yx z 2111=-;(2)比较3x,4y,6z 的大小.16、求7lg20·7.0lg 21⎪⎭⎫ ⎝⎛的值.17、已知函数f(x)=1+log x 3,g(x)=2log x 2(x >0,且x ≠1),比较f(x)与g(x)的大小.18、已知函数f(x)=1log -x a (a >0且a ≠1),(1)求f(x)的定义域;(2)当a >1时,求证f(x)在[a,+∞)上是增函数.19、根据条件,求实数a 的取值范围:(1)log 1+a (1-a)<1;(2)|lg(1-a)|>|lg(1+a)|.20、解方程:9x +4x =25·6x .21、解方程:92x-1=4x22、解方程:x⎪⎭⎫ ⎝⎛271=91-x .23、解方程:9x -2·3x+1-27=0.24、已知函数f(x)=bx b x a-+log (a >0,b >0且a ≠1). (1)求f(x) 的定义域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性;(4)求f(x)的反函数f -1(x).25、已知函数f(x)=)2(log 221x x -.(1)求它的单调区间;(2)求f(x)为增函数时的反函数.26、已知函数f(x)=21-x a满足f(lga)=10,求实数a 的值.27、解关于x 的方程:lg(ax-1)-lg(x-3)=128、解方程:log 0.5x 2-25.03log x x=4log 35.x o .29、解方程:5)(1log 5=-x x .30、解方程:3·16x +36x =2·81x .指数函数对数函数计算题3 〈答案〉1、f -1(x)=-x 101-(lg 43<x <0)2、 考虑y x4log =21-log 42y -log 4y,当x=21,y=41时,u max =2.3、由⎩⎨⎧<⋅-=∆>,08log 4)2log 2(,0log 222a a a 可得2<a <+∞4、a >1,b >a 或0<a <1,0<b <a .5、(1)a <x <a 1且x ≠1;(2)f(x)在(1,+∞)上是减函数.6、4217、)]13)(13lg[()1lg(2+-=-x ,x -1>0,∴x >1(x -1)2=3-1,∴x=1+28、解:原方程为(lgx +2)lgx=3,∴lg 2x +2lgx -3=0,设y=lgx,则有y 2+2y -3=0,∴y 1=1,y 2=-3.由lgx=1,得x=10,由lgx=-3,得x=10001. 经检验,x=10和x=10001都是原方程的解.9、x=-110、x=10或x=0.000111、x=112、3413、3+2214、利用运算法则,得(xy -2)2+(2x -y)2=0∴log s (xy)=3115、(1)略;(2)3x <4y <6z16、令所求式为t,两边取对数,得原式=1417、当0<x <1或x >34时,f(x)>g(x);当1<x <34时,f(x)<g(x);当x=34时,f(x)=g(x).18、(1)当0<a <1时,0<x ≤a;当a >1时,x ≥a.(2)设a ≤x 1≤x 2,则f(x 1)-f(x 2)=1log 1log 21---x x a a =1log 1log log 2121-+-x x x x a a a<0.19、(1)-1<a <0或0<a <1;(2)0<a <120、方程即为2·32x -5·3x ·2x +2·22x =0,即022352322=+⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛x x . 令y=x ⎪⎭⎫ ⎝⎛23,方程又化为2y 2-5y +2=0, 解得y 1=2,y 2=21,于是便可得x 1=2log 23,x 2=-223log .21、 由题意可得x229⎪⎭⎫ ⎝⎛=9,∴2x=9log 29,故x=219log 29.22、方程即为3-3x =32-2x ,∴-3x=2-2x,故x=-2.23、令y=3x >0,则原方程可化为y 2-6y -27=0,由此得y=9(另一解y=-3舍去).从而由3x =9解得x=2.24、(1)(-∞,-b)∪(b,+∞);(2)奇函数;(3)当0<a <1时,f(x)在(-∞,-b)和(b,+∞)上是增函数;当a >1时,f(x)在(-∞,-b)和(b,+∞)上是减函数;(4)略。

(完整版)指数函数对数函数专练习题(含答案).docx

(完整版)指数函数对数函数专练习题(含答案).docx

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称定义图象定义域值域过定点奇偶性单调性函数值的变化情况变化对图象的影响指数函数函数且叫做指数函数图象过定点,即当时,.非奇非偶在上是增函数在上是减函数在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小 .对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称定义函数对数函数且叫做对数函数图象定义域值域过定点奇偶性图象过定点,即当非奇非偶时,.单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,看图象,逐渐减小 .逐渐增大;在第四象限内,从顺时针方向指数函数习题一、选择题aa ≤ b,则函数 f ( x ) =1?2x 的图象大致为 ()1.定义运算 a ?b =>b a b2.函数 f ( x ) = x 2-bx + c 满足 f (1 + x ) =f (1 - x ) 且 f (0) =3,则 f ( b x ) 与 f ( c x ) 的大小关系是()xxA . f ( b ) ≤ f ( c ) x xB . f ( b ) ≥ f ( c )xxC . f ( b )> f ( c )D .大小关系随 x 的不同而不同3.函数 y = |2 x - 1| 在区间A . ( - 1,+∞ )C . ( - 1,1)( k - 1, k + 1) 内不单调,则 k 的取值范围是 ()B . ( -∞, 1)D . (0,2)4.设函数 f ( x ) =ln [( x -1)(2 -x)] 的定义域是 ,函数 ( ) = lg(x - 2x -1) 的定义域是 ,Ag xaB若 ?,则正数a 的取值范围 ()ABA . a >3B . a ≥ 3C . a > 5D . a ≥ 5.已知函数 f (x = 3- a x -3, x ≤ 7,若数列 { a n 满足 a n = f (n )(n ∈ * ,且 {a n }是递5 ) a x - 6, x >7. } N) 增数列,则实数a 的取值范围是 ()A . [ 9, 3)B . ( 9, 3) 44C . (2,3)D . (1,3)2x16.已知 a >0 且 a ≠ 1,f ( x ) = x - a ,当 x ∈ ( - 1,1) 时,均有 f ( x )< 2,则实数 a 的取值范围 是( )1 1 A . (0 , 2] ∪ [2 ,+∞ ) B . [ 4, 1) ∪ (1,4]11C . [ 2, 1) ∪ (1,2]D . (0 , 4) ∪ [4 ,+∞ )二、填空题xa7.函数 y = a ( a >0,且 a ≠ 1) 在 [1,2] 上的最大值比最小值大 2,则 a 的值是 ________.8.若曲线 | y | = 2 x + 1 与直线 y =b 没有公共点,则b 的取值范围是 ________.| x|的定义域为9. (2011 ·滨州模拟 ) 定义:区间 [x 1,x 2 ]( x 1<x 2) 的长度为 x 2- x 1. 已知函数 y = 2 [a , b] ,值域为 [1,2] ,则区间 [a , b] 的长度的最大值与最小值的差为 ________.三、解答题10.求函数y=2x2 3x 4 的定义域、值域和单调区间.11.(2011 ·银川模拟 ) 若函数y=a2x+ 2a x-1( a>0 且a≠ 1) 在x∈ [- 1,1]上的最大值为14,求a 的值.12.已知函数f (x) = 3x,(a+ 2) = 18, (x) =λ·3ax-4x的定义域为 [0,1] .f g(1)求 a 的值;(2) 若函数g( x) 在区间 [0,1] 上是单调递减函数,求实数λ的取值范围.1. 解析:由? = a a≤ b x2x x≤0,b a>b x>0 .1答案: A2. 解析:∵f (1 +x) =f (1 -x) ,∴f ( x) 的对称轴为直线x=1,由此得 b=2.又 f (0)=3,∴c=3.∴f ( x)在(-∞,1)上递减,在(1,+∞)上递增.x≥2x≥ 1,∴ (3 x) ≥(2 x) .若 x≥0,则3f f若 x<0,则3x<2x<1,∴f (3x)> f (2x).∴f (3x)≥ f (2x).答案: A3.解析:由于函数 y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间 ( k- 1,k+ 1) 内不单调,所以有答案: Ck-1<0<k+1,解得-1<k<1.4.解析:由题意得: A=(1,2)x x>1x x>1在(1,2)上恒成立,即,a- 2且 a>2,由 A? B知 a- 2x x上恒成立,令x x xln a-2xln2>0 ,所以函数a-2 - 1>0 在 (1,2)u( x)=a- 2- 1,则u′( x) =au ( x ) 在 (1,2) 上单调递增,则 u ( x )> u (1) = a - 3,即 a ≥ 3.答案: B*f ( n ) 为增函数,5. 解析: 数列 { a } 满足 a = f ( n )( n ∈ N ) ,则函数nna >18- 6- ) × 7- 3,所以 3- a >0注意 a>(3,解得 2<a <3.aa8-6> 3- a × 7-3答案: C1 2x1 21 x x21的图象,6. 解析: f ( x )<? x -a < ? x - <a ,考查函数 y = a与 y =x - 2222当 a >1 时,必有 a-1≥1,即 1<a ≤ 2,21 1当 0<a <1 时,必有 a ≥ ,即 ≤a <1,2 2 1 综上, 2≤ a <1 或 1<a ≤ 2. 答案: C7. 解析: 当 a >1 时, y x在 [1,2] 上单调递增,故 2a3x= a a - a = ,得 a = . 当 0<a <1 时, y = a2 22a在 [1,2] 上单调递减,故 a -a = 2,得 a = 2. 故 a =2或 2.1131 3答案: 2或28. 解析: 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.x+1 与直线 y = b 的图象如图所示,由图象可得:如果x+ 1 与直线 y = b曲线 | y | = 2 | y | = 2没有公共点,则 b 应满足的条件是 b ∈ [- 1,1] .答案: [- 1,1]9. 解析: 如图满足条件的区间 [a , b] ,当 a =- 1, b = 0 或 a = 0, b = 1 时区间长度最小,最小值为 1,当 a =- 1,b = 1 时区间长度最大,最大值为2,故其差为 1.答案: 110. 解: 要使函数有意义,则只需- x 2-3x + 4≥ 0,即 x 2+ 3x -4≤ 0,解得- 4≤ x ≤ 1.∴函数的定义域为 { x | -4≤ x ≤ 1} .223225 令 t =- x - 3x + 4,则 t =- x - 3x + 4=- ( x + ) +4,2253∴当-4≤ x ≤ 1 时, t max = 4 ,此时 x =- 2, t min = 0,此时 x =- 4 或 x =1.∴0≤t ≤ 25 . ∴0≤ -x 2- 3x + 4≤ 5 .4 2∴函数 y = ( 1)x 23 x4的值域为 [ 2 , 1] .8223 225由 t =- x - 3x + 4=- ( x + )+4( - 4≤ x ≤ 1) 可知,23当- 4≤ x ≤- 2时, t 是增函数,3当- 2≤ x ≤1 时, t 是减函数.根据复合函数的单调性知:y = ( 1 )x 23 x 4在 [ - 4,- 3 3] 上是减函数,在 [ - ,1] 上是增函数.22 233∴函数的单调增区间是 [ - 2, 1] ,单调减区间是 [ - 4,- 2] . 11. 解: 令x22tt >0y= t+ 2t1= ( t+ 1)2,其对称轴为t =- 1.该二次函数a = ,∴ ,则--在[ - 1,+ ∞ ) 上是增函数.x12①若 a >1,∵x ∈ [ - 1,1] ,∴t = a ∈ [ a , a ] ,故当 t = a ,即 x =1 时, y max =a + 2a - 1=14,解得 a = 3( a =- 5 舍去 ) .②若 0<a <1,∵x ∈ [ - 1,1] ,∴ = x∈1 1=-时,a [ a , ] ,故当 t = ,即 1t a ax12y max = (a + 1) - 2= 14.11∴a =3或- 5( 舍去 ) .1综上可得 a = 3 或 3.12. 解: 法一: (1) 由已知得 a2 aa =log 32.3 += 18? 3 = 2?(2) 此时 g ( x ) = λ·2x - 4 x ,设 0≤ x 1<x 2≤ 1,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以 g ( x ) - g ( x ) = (2 x - 2x )( λ- 2x - 2x )>0 恒成立,即 λ<2x + 2x 恒成立.1 2 1 2 2 1 2 1由于 2x 2+ 2x 1>2 + 2 = 2,所以实数 λ的取值范围是λ≤ 2.法二: (1) 同法一.(2) 此时 g ( x ) = λ·2x - 4x ,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以有 g ′( x ) = λln2 ·2x - ln4 ·4x = ln2 [- 2 ·(2x )2+ λ·2x] ≤0 成立.x2 设 2 = u ∈ [1,2] ,上式成立等价于-2u+ λu ≤0 恒成立.因为 u ∈ [1,2] ,只需 λ≤2u 恒成立,所以实数 λ的取值范围是λ≤ 2.对数与对数函数同步练习一、选择题1、已知 3a2 ,那么 log3 8 2log 3 6 用 a 表示是()A 、 a 2B 、 5a2C 、 3a (1 a)2D 、 3a a 22、 2log a (M 2N ) log a Mlog a N ,则M的值为()A 、1NB 、4C 、1D 、 4 或 1413 、 已 知 x 2 y 2 1, x0, y 0 , 且 log a (1 x) m,log a n,则 log a y 等 于1 x()A 、 m nB 、 m nC 、 1m nD 、 1m n224、如果方程 lg 2 x (lg5lg 7)lgx lg5 glg 7 0 的两根是 ,,则 g的值是()A 、 lg5 glg 7B 、 lg35C 、 35D 、13515、已知 log 7[log 3 (log 2 x)] 0,那么 x2等于( )A 、1B 、13 C 、1D 、1322 2336、函数 ylg2 1 的图像关于()1 xA 、 x 轴对称B 、 y 轴对称C 、原点对称D 、直线 yx 对称7、函数 ylog (2 x 1) 3x2 的定义域是()A 、 2,1 U 1,B 、 1,1 U 1,32C 、 2,D 、 1,328、函数 ylog 1 (x 2 6x17) 的值域是()2A 、 RB 、 8,C 、, 3D 、 3,9、若 log m 9 log n 9 0 ,那么 m, n 满足的条件是( )A 、 m n 1B 、 n m 1C 、 0 n m 1D 、 0 m n 110、 log a 2 1,则 a 的取值范围是()3A 、 0, 2U 1,B 、 2,C 、 2,1D 、 0, 2U 2,3333 311、下列函数中,在 0,2 上为增函数的是()A 、 ylog 1 ( x1)B 、 y log 2 x 2 12C 、 ylog 2 1D 、 ylog 1 ( x 2 4x 5)x212、已知 g( x) log a x+1 ( a 0且a 1) 在 10, 上有 g( x)0 ,则 f ( x)a x 1 是( )A 、在 ,0上是增加的 B 、在 ,0 上是减少的C 、在, 1 上是增加的D 、在,0 上是减少的二、填空题13、若 log a 2 m,log a 3 n, a 2 m n 。

指数函数与对数函数专项训练(解析版)

指数函数与对数函数专项训练(解析版)

指数函数与对数函数专项训练一、单选题1.(23-24高一下·云南玉溪·期末)函数()()2lg 35f x x x =-的定义域为()A .()0,∞+B .50,3⎛⎫⎪C .()5,0,3∞∞⎛⎫-⋃+ ⎪D .5,3⎛⎫+∞ ⎪【答案】C【详解】由题意知,2350x x ->,即(35)0x x ->,所以0x <或53x >.故选:C.2.(23-24高一上·云南昭通·期末)函数()327x f x x =+-的零点所在的区间是()A .()0,1B .31,2⎛⎫ ⎪⎝⎭C .3,22⎛⎫⎪D .()2,3【答案】B【详解】∵3x y =和27y x =-均在R 上单调递增,∴()327x f x x =+-在R 上单调递增;又()12f =-,327402f ⎛⎫=-> ⎪⎝⎭,∴()f x 在31,2⎛⎫ ⎪⎝⎭上有唯一的零点,故选:B.3.(23-24高一上·云南昆明·期末)滇池是云南省面积最大的高原淡水湖,一段时间曾由于人类活动的加剧,滇池水质恶化,藻类水华事件频发.在适当的条件下,藻类的生长会进入指数增长阶段.滇池外海北部某年从1月到7月的水华面积占比符合指数增长,其模型为23 1.65x y -=⨯.经研究“以鱼控藻”模式能有效控制藻类水华.如果3月开始向滇池投放一定量的鱼群后,鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,将两函数模型放在同期进行比较,如图所示.下列说法正确的是(参考数据:671.6520.2,1.6533.3≈≈)()A .水华面积占比每月增长率为1.65B .如果不采取有效措施,到8月水华的面积占比就会达到60%左右C .“以鱼控藻”模式并没有对水华面积占比减少起到作用D .7月后滇池藻类水华会因“以鱼控藻”模式得到彻底治理【答案】B【详解】对于A ,由于模型23 1.65x y -=⨯呈指数增长,故A 错误;对于B ,当8x =时,8220.63 1.605326.y -⨯==⨯≈,故B 正确;对于C ,因为鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,所以“以鱼控藻”模式对水华面积占比减少起到作用,故C 错误;对于D ,由两函数模型放在同期进行比较的图象可知,7月后滇池藻类水华并不会因“以鱼控藻”模式得到彻底治理,故D 错误.故选:B.4.(23-24高一上·云南昭通·期末)()()1log 14a f x x =-+(0a >且1a ≠)的图象恒过定点M ,幂函数()g x 过点M ,则12g ⎛⎫⎪⎝⎭为()A .1B .2C .3D .4【答案】D【详解】()()1log 14a f x x =-+,令11x -=,得2x =,()124f =,则()()1log 14a f x x =-+(0a >且1a ≠)恒过定点12,4M ⎛⎫⎪⎝⎭,设()g x x α=,则124α=,即2α=-,即()2g x x -=,∴142g ⎛⎫= ⎪⎝⎭,故选:D.5.(23-24高一下·云南楚雄·期末)已知0.320.3lo g 3,2,lo g 2a b c -===,则()A .c b a <<B .<<b c aC .<<c a bD .a b c<<【答案】A【详解】因为2log y x =在(0,)+∞上单调递增,且234<<,所以222log 2log 3log 4<<,所以21log 32<<,即12a <<,因为2x y =在R 上递增,且0.30-<,所以0.300221-<<=,即01b <<,因为0.3log y x =在(0,)+∞上单调递减,且12<,所以0.30.3log 1log 2>,所以0.3log 20<,即0c <,所以c b a <<.故选:A6.(23-24高一上·云南·期末)若()21()ln 1||f x x x =+-,设()0.3(3),(ln2),2a f b f c f =-==,则a ,b ,c 的大小关系为()A .c a b >>B .b c a >>C .a b c >>D .a c b>>【答案】D【详解】由题意知()(),00,x ∈-∞⋃+∞,由()()()21ln 1f x x f x x⎡⎤-=-+-=⎣⎦-,所以()f x 为偶函数,图象关于y 轴对称,当0x >时,由复合函数的单调性法则知()f x 随x 的增大而增大,即()0,x ∈+∞,()21()ln 1||f x x x =+-单调递增,因为()()33a f f =-=,()0.3(ln2),2b f c f ==,且00.3112222=<<=,0ln2lne 1<<=,所以0.3ln 223<<,所以()()()0.3ln223f f f <<-,即b c a <<,也就是a c b >>.故选:D7.(23-24高一下·云南·期末)设222,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则实数a 的取值范围是()A .[]1,2B .(2,3]C .()2,+∞D .()3,+∞【答案】B【详解】方程2[()](2)()20f x a f x a -++=化为[()2][()]0f x f x a --=,解得()2f x =或()f x a =,函数()f x 在(,0]-∞上单调递增,函数值的集合为(2,3],在(0,1]上单调递减,函数值的集合为[0,)+∞,在[1,)+∞上单调递增,函数值的集合为[0,)+∞,在同一坐标系内作出直线2,y y a ==与函数()y f x =的图象,显然直线2y =与函数()y f x =的图象有两个交点,由关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则直线y a =与函数()y f x =的图象有3个交点,此时23a <≤,所以实数a 的取值范围是(2,3].故选:B8.(23-24高一下·云南昆明·期末)若()12:lo g 11,:39a p a q --<<,则p 是q 的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】A【详解】对于()22:log 11log 2p a -<=,则012a <-<,解得13a <<;对于1:39a q -<,则12a -<,解得3a <;因为{}|13a a <<是{}|3a a <的真子集,所以p 是q 的充分不必要条件.故选:A.二、多选题9.(23-24高一上·云南迪庆·期末)已知函数()()2ln 2f x x x =-,则下列结论正确的是()A .函数()f x 的单调递增区间是[)1,+∞B .函数()f x 的值域是RC .函数()f x 的图象关于1x =对称D .不等式()ln 3f x <的解集是()1,3-【答案】BC【详解】对于A ,当1x =时,2210x x -=-<,此时()()2ln 2f x x x =-无意义,故A 错误;对于B ,由于()22y g x x x ==-的值域为[)1,-+∞,满足()[)0,1,+∞⊆-+∞,所以函数()f x 的值域是R ,故B 正确;对于C ,由题意()()()22ln 2ln 11f x x x x ⎡⎤=-=--⎣⎦,且定义域为()(),02,-∞+∞ ,它满足()()()21ln 11f x x f x+=-=-,即函数()f x 的图象关于1x =对称,故C 正确;对于D ,由于()f x 的定义域为()(),02,-∞+∞ ,故D 错误.故选:BC.10.(23-24高一上·云南昆明·期末)已知函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩,若1234x x x x <<<,且()()()()1234fx fx fx fx ===,则下列结论中正确的是()A .122x x +=-B .1204x x <<C .()41,4x ∈D .342x x +的取值范围是332,4⎡⎫⎪⎢⎣⎭【答案】BC【详解】作出函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩的图像如图.对于选项A,根据二次函数的对称性知,12()224x x +=⨯=--,故A 项错误;对于选项B ,因120x x <<,由上述分析知124x x +=-,则21212120()()()42x x x x x x --<=-⋅-≤=,因12x x ≠,故有1204x x <<,即B 项正确;对于选项C ,如图,因0x ≤时,2211()2(2)2222f x x x x =--=-++≤,0x >时,2()|log |f x x =,依题意须使20|log |2x <<,由2|log |0x >得1x ≠,由2|log |2x <解得:144x <<,故有3411,144x x <<<<,即C项正确;对于选项D ,由图知2324log log x x -=,可得341x x =,故431x x =,则343322x x x x ++=,3114x <<,不妨设21,(,1)4y x x x =+∈,显然函数2y x x =+在(1,14)上单调递减,故23334x x <+<,即342x x +的取值范围是(333,4),故D 项错误.故选:BC.11.(23-24高一上·云南昆明·期末)关于函数()ln f x x x =+,以下结论正确的是()A .方程()0f x =有唯一的实数解c ,且(0,1)c ∈B .对,0,()()()x y f xy f x f y ∀>=+恒成立C .对()1212,0x x x x ∀>≠,都有()()1212f x f x x x ->-D .对12,0x x ∀>,均有()()121222f x f x x x f ++⎛⎫≤⎪【答案】AC【详解】A 选项,由于1y x =在R 上单调递增,2ln y x =在()0,∞+上单调递增,故()ln f x x x =+在定义域()0,∞+上单调递增,又()11ln 30,11033f f ⎛⎫=-<=> ⎪⎝⎭,故由零点存在性定理可得,方程()0f x =有唯一的实数解c ,且(0,1)c ∈,A 正确;B 选项,()ln f xy xy xy =+,()()ln ln ln f x f y x x y y x y xy +=+++=++,显然,0x y ∀>,由于xy 与x y +不一定相等,故()()f x f y +与()f xy 不一定相等,B 错误;C 选项,由A 选项可知,()ln f x x x =+在定义域()0,∞+上单调递增,对()1212,0x x x x ∀>≠,都有()()12120f x f x x x ->-,C 正确;D 选项,12,0x x ∀>,均有121212ln 222x xx x x x f +++⎛⎫=+ ⎪⎝⎭,()()12112212121212ln ln ln ln 22222f x f x x x x x x x x x x x x x ++++++==+=+,由于12122x x x x +≥,当且仅当12x x =时,等号成立,故1212ln ln 2x x x x +≥,即()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,D 错误.故选:AC 三、填空题12.(23-24高一上·云南昆明·期末)()()2,(1)29,1x a x f x x ax a x ⎧>⎪=⎨-++-≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围为.【答案】[]2,5【详解】因为在R 递增,则112129a a a a a⎧⎪⎪≥⎨⎪-++-≤⎪⎩>,解得:25a ≤≤,故答案为:[]2,513.(23-24高一下·云南昆明·期末)设函数()ln(1)f x x =+,2()g x x a =-+,若曲线()y f x =与曲线()y g x =有两个交点,则实数a 的取值范围是.【答案】(0,)+∞【详解】当0x ≥时,()ln(1),f x x =+当0x <时()ln(1),f x x =-+函数图象示意图为则2()g x x a =-+与()ln (1)f x x =+有两个零点知a 的取值范围是(0,)+∞.故答案为:(0,).+∞14.(23-24高一下·云南玉溪·期末)苏格兰数学家纳皮尔(J.Napier ,1550-1617)在研究天文学的过程中,经过对运算体系的多年研究后发明的对数,为当时的天文学家处理“大数”的计算大大缩短了时间.即就是任何一个正实数N 可以表示成10(110,)n N a a n =⨯≤<∈Z ,则lg lg (0lg 1)N n a a =+≤<,这样我们可以知道N 的位数为1n +.已知正整数M ,若10M 是10位数,则M 的值为.(参考数据:0.9 1.1107.94,1012.56≈≈)【答案】8或9【详解】依题意可得910101010M ≤<,两边取常用对数可得91010lg10lg lg10M ≤<,即910lg 10M ≤<,所以0.9lg 1M ≤<,即0.91010M ≤<,又M 为正整数,所以8M =或9M =.故答案为:8或9四、解答题15.(23-24高一上·云南昆明·期末)设函数()log (3)(,10a f x x a =-+>且1)a ≠.(1)若(12)3f =,解不等式()0f x >;(2)若()f x 在[4,5]上的最大值与最小值之差为1,求a 的值.【答案】(1)10(,)3+∞(2)2a =或12a =【详解】(1)由(12)3f =可得log (123)13a -+=,解得3a =,即3()log (3)1,(3)f x x x =-+>,则()0f x >,即3log (3)10x -+>,即310,1333x x x >⎧⎪∴>⎨->⎪⎩,故不等式()0f x >的解集为10(,)3+∞;(2)由于()f x 在[4,5]上的最大值与最小值之差为1,故log 11(log 21)1a a +-+=,即log 21,2a a =∴=或12a =,即a 的值为2a =或12a =.16.(23-24高一上·云南昭通·期末)化简求值:(1)()13103420.027π4160.49--++;(2)ln22311lg125lg40.1e log 9log 1632-+++⨯.【答案】(1)8(2)9【详解】(1)()13103420.027π4160.49--++()()()1313423420.3120.7⎡⎤⎡⎤⎡⎤=-++⎣⎦⎣⎦⎣⎦0.3180.78=-++=;(2)ln22311lg125lg4lg 0.1e log 9log 1632-++++⨯3211112lg34lg2lg5lg23222lg2lg3=+-++⨯lg 5lg28=++9=.17.(23-24高一上·云南·期末)已知定义域为R 的函数()11333xx m f x +-⋅=+是奇函数.(1)求m 的值并利用定义证明函数()f x 的单调性;(2)若对于任意t ∈R ,不等式()()22620f t t f t k -+-<恒成立,求实数k 的取值范围.【答案】(1)1m =,证明见解析(2)3k <-【详解】(1)因为()f x 是奇函数,函数的定义域为R ,所以(0)0f =,所以1033m-=+,所以1m =,经检验满足()()f x f x -=-易知()11312133331x x x f x +-⎛⎫==-+ ⎪++⎝⎭设12x x <,则2112122(33)()()3(31)(31)x x x x f x f x --=++因为3x y =在实数集上是增函数,故12()()0f x f x ->.所以()f x 在R 上是单调减函数(2)由(1)知()f x 在(,)-∞+∞上为减函数.又因为()f x 是奇函数,所以()()22620f t t f t k -+-<等价于()()2262f t t f k t-<-,因为()f x 为减函数,由上式可得:2262t t k t ->-.即对一切t R ∈有:2360t t k -->,从而判别式361203k k ∆=+<⇒<-.所以k 的取值范围是3k <-.18.(23-24高一下·云南昆明·期末)已知函数1()xx f x a a ⎛⎫=- ⎪⎝⎭ (0a >且1a ≠).(1)讨论()f x 的单调性(不需证明);(2)若2a =,(ⅰ)解不等式3()2≤f x x;(ⅱ)若21()(22))2(x g f x t x x f +=-+在区间[]1,1-上的最小值为74-,求t 的值.【答案】(1)答案见解析(2)(ⅰ)(](],10,1-∞-⋃;(ⅱ)2t =-或2t =【详解】(1)若1a >,则1()()x xf x a a=-在R 上单调递增;若01a <<,则1()()x xf x a a=-在R 上单调递减.(2)(ⅰ)3()2≤f x x ,即132()022xx x --≤,设13()2()22xx g x x=--,则(1)0g =,()()g x g x -=-,所以()g x 为奇函数,当0x >时,()g x 单调递增,由()(1)g x g ≤,解得01x <≤,根据奇函数的性质,当0x <时,()(1)g x g ≤的解为1x ≤-,综上所述,3()2≤f x x的解集为(](],10,1-∞-⋃.(ⅱ)2122()2(2)2()222(22)x x x x x g x f x tf x t +--=-+=++-,令22x x m --=,因为[]1,1x ∈-,则33,22m ⎡⎤∈-⎢⎥⎣⎦,所以2()()22g x h m m tm ==++,其图象为开口向上,对称轴为m t=-的抛物线,①当32t -≤-,即32t ≥时,min 39177()()3232444h m h t t =-=-+=-=-,解得2t =.②当3322t -<-<,即3322t -<<时,222min 7()()2224h m h t t t t =-=-+=-+=-,解得1152t =,2152t =-矛盾.③当32t -≥,即32t ≤-时,min 39177()()3232444h m h t t ==++=+=-,解得2t =-.综上所述,2t =-或2t =.19.(23-24高一上·云南昆明·期末)函数()e (0)x f x mx m =-<.(1)求(1)f -和(0)f 的值,判断()f x 的单调性并用定义加以证明;(2)设0x 是函数()f x 的一个零点,当1em <-时,()02f x k >,求整数k 的最大值.【答案】(1)1(1)e f m --=+,(0)1f =,()f x 在定义域R 上单调递增,证明见解析,(2)整数k 的最大值为1-【详解】(1)1(1)e f m --=+,(0)1f =,判断()f x 在定义域R 上单调递增,证明如下:在R 上任取1x ,2x ,且12x x <,则1212121212()()e (e )(e e )()x x x x f x f x mx mx m x x -=---=---,因为12x x <,0m <,所以12e e x x <,120x x -<,0m ->,所以12e e 0x x -<,12()0m x x --<,所以1212(e e )()0x x m x x ---<,即12())0(f x f x -<,所以12()()f x f x <,所以()f x 在定义域R 上单调递增.(2)由题意得0()0f x =,即00e 0x mx -=,1em <-,则10e m +<,即0(1)0()f f x -<=,由()f x 是R 上的增函数,所以01x -<,又0(0)10()f f x =>=,所以010x -<<,0200(2)e 2x f x mx =-002e 2e x x =-,令01e (ext =∈,1),则22()2(1)1g t t t t =-=--,所以()g t 在1(e ,1)上单调递减,所以()()11g t g >=-,即0(2)1f x >-,当1em <-时,0(2)f x k >,所以1k ≤-,所以整数k 的最大值为1-.。

指数函数与对数函数专项练习(含答案)

指数函数与对数函数专项练习(含答案)

指数函数与对数函数专项练习1 设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是[ ] (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a2 函数y=ax2+ bx 与y= ||log b ax(ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是[ ]3.设525bm ==,且112a b +=,则m =[ ](A (B )10 (C )20 (D )100 4.设a=3log 2,b=In2,c=125-,则[ ]A. a<b<cB. b<c<aC. c<a<b D . c<b<a 5 .已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是[ ] (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 6.函数()()2log 31x f x =+的值域为[ ]A.()0,+∞ B. )0,+∞⎡⎣ C. ()1,+∞ D. )1,+∞⎡⎣7.下列四类函数中,个有性质“对任意的x>0,y>0,函数f(x)满足f (x +y )=f (x )f (y )”的是 [ ](A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数 8. 函数y=log2x 的图象大致是[ ]PS(A) (B) (C) (D)8.设554a log 4b log c log ===25,(3),,则[ ] (A)a<c<b (B) b<c<a (C) a<b<c (D) b<a<c 9.已知函数 1()log (1),f x x =+若()1,f α= α=[ ](A)0(B)1(C)2(D)310.函数y =的值域是[ ](A )[0,+∞) (B) [0,4] (C) [0,4) (D) (0,4) 11.若372log πlog 6log 0.8a b c ===,,,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>12.下面不等式成立的是( )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<<13.若01x y <<<,则( )A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y<14.已知01a <<,log log a a x =,1log 52a y =,log log a a z =,则( )A .x y z >>B .z y x >>C .y x z >>D .z x y >>15.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a16.已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<< B .101b a-<<<C .101ba -<<<-D .1101ab --<<<18. 已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值.19.已知m x f x +-=132)(是奇函数,求常数m 的值;20.已知函数f(x)=11+-x x a a (a>0且a ≠1).(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性.指数函数与对数函数专项练习参考答案1)A【解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。

(完整版)指数函数对数函数专练习题(含答案)

(完整版)指数函数对数函数专练习题(含答案)

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.指数函数习题一、选择题1.定义运算a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln [(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y =2的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b )得f (x )=1⊗2x=⎩⎨⎧2x(x ≤0),1 (x >0).答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x≥2x≥1,∴f (3x)≥f (2x).若x <0,则3x<2x<1,∴f (3x)>f (2x).∴f (3x)≥f (2x).答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x-2x>1且a >2,由A ⊆B 知a x-2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3.答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎨⎧a >13-a >0a 8-6>(3-a )×7-3,解得2<a <3.答案:C6. 解析:f (x)<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+的值域为[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x-4x,设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立. 由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一. (2)此时g (x )=λ·2x-4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x-ln4·4x=ln2[-2·(2x )2+λ·2x ]≤0成立.设2x=u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立.因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( )A 、lg5lg 7gB 、lg35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭UB 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。

指数函数对数函数专练习题(含答案)

指数函数对数函数专练习题(含答案)

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.且图象过定点,即当.在在变化对图在第一象限内,从逆时针方向看图象,看图象,对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.且图象过定点,即当时,上是增函数上是减函数变化对图在第一象限内,从顺时针方向看图象,看图象,指数函数习题一、选择题 1.定义运算a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln [(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y=211.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a aa x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg7)lg lg5lg70x x +++=的两根是,αβ,则αβ的值是( )A 、lg5lg 7B 、lg 35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( )A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称7、函数(21)log x y -=的定义域是( )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。

指数函数与对数函数练习题(含详解)

指数函数与对数函数练习题(含详解)

指数函数1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为。

2。

指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2。

对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,。

奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小。

指数函数习题一、选择题1.定义运算a⊗b=错误!,则函数f(x)=1⊗2x的图象大致为()2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是()A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(错误!-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a〉3 B.a≥3C.a〉 5 D.a≥错误!5.已知函数f(x)=错误!若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[错误!,3) B.(错误!,3)C.(2,3) D.(1,3)6.已知a〉0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<错误!,则实数a的取值范围是( )A.(0,错误!]∪[2,+∞) B.[错误!,1)∪(1,4]C.[错误!,1)∪(1,2] D.(0,错误!)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大错误!,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1〈x2)的长度为x2-x1。

指数函数、对数函数、幂函数基本性质练习(含答案)

指数函数、对数函数、幂函数基本性质练习(含答案)

1、用根式的形式表示下列各式)0(>a 151a = 232a- =2、用分数指数幂的形式表示下列各式: 134y x = 2)0(2>=m mm3、求下列各式的值 12325= 232254-⎛⎫⎪⎝⎭=4、解下列方程 11318x - = 2151243=-x1、下列函数是指数函数的是 填序号1xy 4= 24x y = 3xy )4(-= 424x y =..2、函数)1,0(12≠>=-a a a y x 的图象必过定点 ..3、若指数函数xa y )12(+=在R 上是增函数;求实数a 的取值范围 ..4、如果指数函数xa x f )1()(-=是R 上的单调减函数;那么a 取值范围是 A 、2<a B 、2>a C 、21<<a D 、10<<a5、下列关系中;正确的是A 、5131)21()21(> B 、2.01.022> C 、2.01.022--> D 、115311()()22- - >6、比较下列各组数大小:10.53.1 2.33.1 20.323-⎛⎫⎪⎝⎭0.2423-⎛⎫⎪⎝⎭3 2.52.3- 0.10.2-7、函数xx f 10)(=在区间1-;2上的最大值为 ;最小值为 .. 函数xx f 1.0)(=在区间1-;2上的最大值为 ;最小值为 ..8、求满足下列条件的实数x 的范围:182>x22.05<x9、已知下列不等式;试比较n m ,的大小:1nm22< 2nm 2.02.0< 3)10(<<<a a a n m10、若指数函数)1,0(≠>=a a a y x的图象经过点)2,1(-;求该函数的表达式并指出它的定义域、值域和单调区间..11、函数x y ⎪⎭⎫ ⎝⎛=31的图象与xy -⎪⎭⎫⎝⎛=31的图象关于 对称..12、已知函数)1,0(≠>=a a a y x在[]2,1上的最大值比最小值多2;求a 的值 ..13、已知函数)(x f =122+-x x a是奇函数;求a 的值 ..14、已知)(x f y =是定义在R 上的奇函数;且当0<x 时;xx f 21)(+=;求此函数的解析式..对数第11份1、将下列指数式改写成对数式11624= 2205=a答案为:1 2 2、将下列对数式改写成指数式13125log 5= 210log 2a =-答案为:1 2 3、求下列各式的值164log 2= 227log 9 = 30001.0lg = 41lg = 59log 3= 69log 31= 78log 32=4、此题有着广泛的应用;望大家引起高度的重视已知.,0,1,0R b N a a ∈>≠>12log a a =_________ 5log a a =_________ 3log -a a =_________ 51log a a =________一般地;ba a log =__________2证明:N a Na =log5、已知0>a ;且1≠a ;m a =2log ;n a =3log ;求n m a +2的值..6、1对数的真数大于0; 2若0>a 且1≠a ;则01log =a ; 3若0>a 且1≠a ;则1log =a a ;4若0>a 且1≠a ;则33log =a a;以上四个命题中;正确的命题是 7、若33log =x ;则=x8、若)1(log 3a -有意义;则a 的范围是 9、已知48log 2=x ;求x 的值10、已知0)](lg [log log 25=x ;求x 的值对数第12份1、下列等式中;正确的是___________________________.. 131log 3= 210log 3=303log 3= 413log 3=53log 53log 252= 612lg 20lg =-7481log 3= 824log 21=2、设1,0≠>a a 且;下列等式中;正确的是________________________.. 1)0,0(log log )(log >>+=+N M N M N M a a a 2)0,0(log log )(log >>-=-N M NM N M a a a3)0,0(log log log >>=N M NMN M a a a4)0,0(log log log >>=-N M NMN M a a3、求下列各式的值1)42(log 532⨯=__________2125log 5=__________31)01.0lg(10lg 2lg 25lg 21-+++=__________ 45log 38log 932log 2log 25333-+- =__________525lg 50lg 2lg 20lg 5lg -⋅-⋅=__________ 61lg 872lg 49lg 2167lg214lg +-+-=__________ 750lg 2lg )5(lg 2⋅+=__________85lg 2lg 3)5(lg )2(lg 33⋅++=__________ 4、已知b a ==3lg ,2lg ;试用b a ,表示下列各对数.. 1108lg =__________ 22518lg=__________ 5、1求32log 9log 38⨯的值__________;28log 7log 6log 5log 4log 3log 765432⨯⨯⨯⨯⨯=__________6、设3643==yx ;求yx 12+的值__________.. 7、若nm 110log ,2lg 3==;则6log 5等于 ..对数函数第13份1、求下列函数的定义域: 1)4(log 2x y -= 2)1,0(1log ≠>-=a a x y a 3)12(log 2+=x y411lg-=x y 5)1(log )(31-=x x f 6)3(log )()1(x x f x -=- 答案为1 2 3 4 5 6 2、比较下列各组数中两个值的大小:133log 5.4log 5.5⎽⎽⎽⎽⎽ 21133log log e π⎽⎽⎽⎽⎽3lg 0.02lg3.12⎽⎽⎽⎽⎽ 4ln 0.55ln 0.56⎽⎽⎽⎽⎽ 52log 7⎽⎽⎽⎽⎽4log 50 676log 5log 7⎽⎽⎽⎽⎽ 75.0log 7.0⎽⎽⎽⎽⎽ 1.17.080.5log 0.3;0.3log 3;3log 2 97.0log 2 7.0log 3 7.0log 2.0 答案为8 93、已知函数x y a )1(log -=在),0(+∞上为增函数;则a 的取值范围是 ..4、设函数)1(log 2-=x y ;若[]2,1∈y ;则∈x5、已知||lg )(x x f =;设)2(),3(f b f a =-=;则a 与b 的大小关系是 ..6、求下列函数的值域1 )1lg(2+=x y 2)8(log 25.0+-=x y对数函数2第14份1、已知5log,5.0log ,6.0log 325.0===c b a ;则c b a ,,的大小 ..2、函数0(3)3(log >+-=a x y a 且)1≠a 恒过定点 ..3、将函数)2(log 3+=x y 的图象向 得到函数x y 3log =的图象;将明函数3log 2y x =+的图象向 得到函数x y 3log =的图象..4、1函数1lg 1lg )(++-=x x x f 的奇偶性是 .. 2函数()1()log (0,1)111a xf x a a x x+=>≠-<<-的奇偶性为5、若函数x x f 21log )(=;则)3(),31(),41(-f f f 的大小关系为 ..6、已知函数)1,0(log ≠>=a a x y a 在]4,2[∈x 上的最大值比最小值多1;求实数a 的值 ..幂函数第15份幂函数的性质A 、xy 2= B 、2x y -=C 、x y 2log =D 、21-=xy2、写出下列函数的定义域;判断其奇偶性12x y =的定义域 ;奇偶性为 23x y =的定义域 ;奇偶性为 321x y =的定义域 ;奇偶性为 431x y =的定义域 ;奇偶性为 51-=x y 的定义域 ;奇偶性为3、若一个幂函数)(x f 的图象过点)41,2(;则)(x f 的解析式为4、比较下列各组数的大小 17.17.14.3____5.3 23.03.03.1___2.1 36.16.15.2___4.2--5、已知函数12+=m x y 在区间()+∞,0上是增函数;求实数m 的取值范围为 ..6、已知函数2221()(1)m m f x m m x --=++是幂函数;求实数m 的值为 ..函数与零点第16份1、证明:1函数462++=x x y 有两个不同的零点;2函数13)(3-+=x x x f 在区间0;1上有零点2、二次函数243y x x =-+的零点为 ..3、若方程方程2570x x a --=的一个根在区间1-;0内;另一个在区间1;2内;求实数a 的取值范围 ..二分法第17份1、设0x 是方程062ln =-+x x 的近似解;且),(0b a x ∈;1=-a b ;z b a ∈,;则b a ,的值分别为 、2、函数x x y 26ln +-=的零点一定位于如下哪个区间A 、()2,1B 、()3,2C 、()4,3D 、()6,53、已知函数()35xf x x =+-的零点[]0,x a b ∈;且1b a -=;a ;b N *∈;则a b += .4、根据表格中的数据;可以判定方程20xe x --=的一个根所在的区间 为5、函数()lg 3f x x x =+-的零点在区间(,1)m m +()m Z ∈内;则m = .6、用二分法求函数43)(--=x x f x 的一个零点;其参考数据如下:据此数据;可得方程043=--x x的一个近似解精确到0.01为 7、利用计算器;列出自变量和函数值的对应值如下表:那么方程22xx =的一个根位于下列区间的分数指数幂第9份答案12、33222,x y m3、1125 281254、1512 216指数函数第10份答案1、12、1,12⎛⎫⎪⎝⎭3、12a >- 4、C5、C6、,,<<<7、11100,,10,10100 8、13(2)1x x ><-9、1m n <2m n >3m n >10、12xy ⎛⎫= ⎪⎝⎭;定义域R;值域()0,+∞单调减区间(),-∞+∞11、y 轴12、213、114、12,0()0,012,0xx x f x x x -⎧+<⎪==⎨⎪-->⎩对数第11份答案1、略2、略3、1623234-405262-7354、12;5;3-;15;b 2略5、126、123478、1a <9、10、100对数第12份答案1、45672、43、1132337241-51-607181 4、123a b +2322a b +-5、1103236、17、1m n m+- 对数函数第13份答案1、1{}|4x x <2{}|1x x > 31|2x x ⎧⎫>-⎨⎬⎩⎭4{}|1x x >5{}|12x x <≤6{}|132x x x <<≠且2、1<2<3<4<5<6<7>80.5log 0.3>3log 2>0.3log 3; 92log 0.7<3log 0.7<7.0log 2.03、2a >4、[]3,55、a b >6、1[)0,+∞2{}|3y y ≥- 对数函数2第14份答案1、c a b >>2、()4,33、向右平移2各单位;向下平移2各单位4、1偶函数2奇函数5、11()()(3)43f f f >>-6、122或 幂函数第15份答案1、D2、略3、1R;偶函数;2R;奇函数;3{}|0x x ≥;非奇非偶函数;4R;奇函数;5{}|0x x ≠;奇函数;6{}|0x x ≠;偶函数4、245、{}|0x x >6、原点7、减8、B 9、C10、D 11、2()f x x -=12、,,><> 13、12m >-14 函数与零点第16份答案1、 略2、 3;13、解:令2()57f x x x a =--则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-<⇒>⎪⎨<⇒--<⇒>-⎪⎪>⇒-->⇒<⎩ 06a ∴<<二分法第17份答案1、2;32、B3、3其中1,2a b ==4、1;25、26、1.567、(1.8,2.2)。

指数函数与对数函数专项学习的学习的练习含标准标准答案.doc

指数函数与对数函数专项学习的学习的练习含标准标准答案.doc

指数函数与对数函数专项练习3 52 2 53 252a ( ) ,b ( ),c ( )1 设 555 ,则 a , b , c 的大小关系是 [](A ) a > c > b( B )a > b > c(C ) c > a > b(D ) b > c > alog b x2 函数 y=ax2+ bx||≠ 0, | a | ≠ | b |) 在同一直角坐标系中的图像可能与 y=a(ab是[ ]1 123. 设 255bm ,且 a b,则m[ ](A )10( B ) 10( C )20( D ) 10014. 设 a=log 32,b=In2,c=5 2A. a<b<cB. b<c<a, 则 []C. c<a<b D . c<b<a5 . 已知函数 f ( x ) | lg x |. 若 a b 且,f ( a )f (b ) ,则 a b的取值范围是 [ ](A)(1,) (B)[1,) (C) (2,)(D)[2,)6. 函数fx log 2 3x1的值域为 [ ]A.0,B.0,C.1,1,D.7. 下列四类函数中, 个有性质 “对任意的 x>0,y>0,函数 f(x) 满足 f ( x + y )= f ( x )f ( y )”的是[](A )幂函数 ( B )对数函数(C )指数函数( D )余弦函数8.函数 y=log2x 的图象大致是 []PS(A)(B) (C)(D), (25,则8. 设alog log 5 3),c log 4 [ ] 5 4 b(A)a<c<b (B) b<c<a (C) a<b<c(D) b<a<c9. 已知函数 f (x)log 1 (x 1), 若 f ( )1,=[ ](A)0(B)1(C)2(D)310. 函数 y 16 4x的值域是[ ](A )[0,)(B) [0, 4](C)[0, 4)(D)(0, 4)11. 若 a log 3 π, b log 7 6, c log 2 0.8 ,则()A . a b cB . b a cC . c a bD . b c a12. 下面不等式成立的是 ( )A . log 3 2 log 2 3 log 2 5B. log 3 2 log 2 5log 2 3C . log 2 3 log 3 2 log 2 5D. log 2 3 log 2 5log 3 213. 若 0x y 1 ,则 ( )A . 3y3xB . log x 3 log y 3C . log 4 x log 4 yD. ( 1) x( 1) y1log a 5 , z4414. 已知 0a 1 , x log a 2 log a 3 , ylog a 21 log a 3 ,则2( )A . x y zB . z y xC . y x zD . z x y15. 若 x(e 1,1), a ln x , b 2ln x , c ln 3 x ,则()A . a < b < cB . c < a < bC . b <a < cD . b < c < a16. 已知函数f ( x ) log (2 xb 1)( a 0 1)的图象如图所示,则 a ,b 满足的关系是a, a yxO1()A.0 a C.0 b 11b 1 B.0 b a 1 1a 1 D.0 a1b 1 118.已知函数y a2 x2a x1(a1)在区间[-1,1]上的最大值是14,求a的值.19. 已知f ( x)2m 是奇函数,求常数m的值;3x 120. 已知函数 f(x) = a x 1 (a>0 且 a≠ 1).a x 1(1) 求 f(x) 的定义域;(2) 讨论 f(x) 的奇偶性; (3) 讨论 f(x) 的单调性 .指数函数与对数函数专项练习参考答案1) A2y ( 2 )x5在 x 0 时是减函数, 所以cb 。

指数函数对数函数计算题集及答案

指数函数对数函数计算题集及答案

指数函数对数函数计算题11、计算:lg 5·lg 8000+06.0lg 61lg )2(lg 23++.2、解方程:lg 2x +10-lgx +103=4.3、解方程:23log 1log 66-=x .4、解方程:9-x -2×31-x =27.5、解方程:x )81(=128.6、解方程:5x+1=123-x .7、计算:10log 5log )5(lg )2(lg 2233++·.10log 188、计算:1lg 25+lg2·lg50; 2log 43+log 83log 32+log 92.9、求函数121log 8.0--=x x y 的定义域.10、已知log 1227=a,求log 616.11、已知fx=1322+-x xa ,gx=522-+x x a a >0且a ≠1,确定x 的取值范围,使得fx >gx.12、已知函数fx=321121x x ⎪⎭⎫ ⎝⎛+-. 1求函数的定义域;2讨论fx 的奇偶性;3求证fx >0.13、求关于x 的方程a x +1=-x 2+2x +2aa >0且a ≠1的实数解的个数.14、求log 927的值.15、设3a =4b =36,求a 2+b1的值.16、解对数方程:log 2x -1+log 2x=117、解指数方程:4x +4-x -2x+2-2-x+2+6=018、解指数方程:24x+1-17×4x +8=019、解指数方程:22)223()223(=-++-x x ±220、解指数方程:01433214111=+⨯------x x21、解指数方程:042342222=-⨯--+-+x x x x22、解对数方程:log2x-1=log22x+123、解对数方程:log2x2-5x-2=224、解对数方程:log16x+log4x+log2x=725、解对数方程:log21+log31+4log3x=126、解指数方程:6x-3×2x-2×3x+6=027、解对数方程:lg2x-12-lgx-32=228、解对数方程:lgy-1-lgy=lg2y-2-lgy+229、解对数方程:lgx2+1-2lgx+3+lg2=030、解对数方程:lg2x+3lgx-4=0指数函数对数函数计算题1 〈答案〉 1、12、解:原方程为lg 2x +10-3lgx +10-4=0,∴lgx +10-4lgx +10+1=0.由lgx +10=4,得x +10=10000,∴x=9990.由lgx +10=-1,得x +10=,∴x=-.检验知: x=9990和-都是原方程的解.3、 解:原方程为36log log 626=x ,∴x 2=2,解得x=2或x=-2. 经检验,x=2是原方程的解, x=-2不合题意,舍去.4、解:原方程为2)3(x --6×3-x -27=0,∴3-x +33-x -9=0. ∵3-x +3≠0,∴由3-x -9=0得3-x =32.故x=-2是原方程的解.5、解:原方程为x 32-=27,∴-3x=7,故x=-37为原方程的解.6、解:方程两边取常用对数,得:x +1lg5=x 2-1lg3,x +1lg5-x -1lg3=0. ∴x +1=0或lg5-x -1lg3=0.故原方程的解为x 1=-1或x 2=1+5log 3.7、18、11;2459、函数的定义域应满足:⎪⎩⎪⎨⎧>≥-≠-,0,01log ,0128.0x x x 即⎪⎪⎩⎪⎪⎨⎧>≥≠,0,1log ,218.0x x x解得0<x ≤54且x ≠21,即函数的定义域为{x|0<x ≤54且x ≠21}.10、由已知,得a=log 1227=12log 27log 33=2log 2133+,∴log 32=a a 23- 于是log 616=6log 16log 33=2log 12log 433+=aa +-3)3(4.11、若a >1,则x <2或x >3;若0<a <1,则2<x <312、1-∞,0∪0,+∞;2是偶函数;3略.13、2个14、设log 927=x,根据对数的定义有9x =27,即32x =33,∴2x=3,x=23,即log 927=23.15、对已知条件取以6为底的对数,得a 2=log 63, b1=log 62, 于是a 2+b1=log 63+log 62=log 66=1.16、x=217、x=018、x=-21或x=2319、x=±120、x=3721、x=2322、x ∈φ23、x=-1或x=624、x=1625、 x=326、x=127、 x=829或x=123128、y=229、x=-1或x=730、x=10或x=10-4指数函数对数函数计算题21、解对数方程:65lg 21lg 32=+++x x2、解对数方程:2log 4x+2log x 4=53、解对数方程:3log x 3+3log 27x=44、解对数方程:log 7log 3x=-15、解指数方程:4x +4-x -2x -2-x =06、解指数方程:9x +6x -3x+2-9×2x =07、解指数方程:2x+2-2-x +3=08、解指数方程:2x+1-3×2-x +5=09、解指数方程:5x-1+5x-2+5x-3=15510、解指数方程:26x+3×43x+6=8xx11、解指数方程:4x -3·2x+3-432=0.12、解对数方程:lg6·5x +25·20x =x+lg2513、解对数方程:log x-12x 2-5x -3=214、解对数方程:1lg 2-x =2-lgx15、解对数方程:x x 323log log52⋅=40016、解对数方程:log 29-2x =3-x17、解对数方程:101gx+1=471+gx x18、解对数方程:log 22x -1·log 22x+1-2=219、解关于x 的方程.3)lg()](lg[22=--a x a x a20、计算:1log 622+log 63·log 62+log 63; 2lg25+32lg8+lg5·lg20+lg 22.21、计算:129)12(lg log 3-+5225)25.0(lg log -;21-log 632+log 62·log 618·log 46.22、已知:log 23=a,3b =7.求:log 4256.23、已知:log 89=a,log 25=b,求:lg2,lg3,lg5.24、已知:log 189=a,18b =5,求:log 3645.25、已知:12a =27,求:log 616.26、计算:13log 422+; 2b a a log 31.27、计算:13lg 100; 28log 427log 31125525+.28、计算:.18log 7log 37log 214log 3333-+-29、若函数fx 的定义域是0,1,分别求函数f1-2x 和fx +aa >0的定义域.30、若函数fx +1的定义域是-2,3,求函数f x1+2的定义域.指数函数对数函数计算题2〈答案〉 1、x=10或x=105122、x=2或x=163、x=3或x=274、 x=735、x=06、x=27、x=-28、x=-19、x=410、x=-1或x=511、x=2+2log 2312、x=log 253或x=log 25213、x=414、x=10或x=10315、x=916、x=0或x=317、x=10-4或x=1018、x=log 245或x=log 2319、a <0且a ≠-1时,x=0;a >0且a ≠21,x=3a;a=0或a=-1或a=21时,无解20、11 2321、13 2122、13+++ab a ab23、lg2=b +11 lg3=)1(23b a + lg5=bb +124、log 3645=ab a -+225、log 616=aa +-341226、148 23b27、13 2230428、29、{x|0≤x ≤21},{x|-a ≤x ≤1-a}.30、{x|x <-31或x >21}指数函数对数函数计算题31、求函数fx=lg1+x +lg1-x -21<x <0的反函数.2、已知实数x,y 满足log 4y 2=x 21log , 求 yx u =的最大值及其相应的x,y 的值.3、若抛物线y=x 2log 2a +2xlog a 2+8位于x 轴的上方,求实数a 的取值范围.4、已知函数fx=log a bx 2+2log b ax +8的图象在x 轴的上方,求a,b 的取值范围.5、已知fx=log a |log a x|0<a <1.解不等式fx >0.判断fx 在1,+∞上的单调性,并证明之.6、计算:2log 9log 412log 221log 5533525.0log 3)3(--++-.7、解方程)13lg()13lg()1lg(2++-=-x .8、解方程:2lg +x x =1000.9、解方程:64x -9x -5×6x =0.10、解方程:1lg )7(lg 4110++=x x x .11、解方程:log x+24x +5-01)54(log 22=-++x x .12、已知12x =3,12y =2,求y x x +--1218的值.13、已知2lg 2y x -=lgx +lgy,求yx 的值.14、已知log a x 2+1+log a y 2+4=log a 8+log a x +log a ya >0,a ≠1,求log 8xy 的值.15、已知正实数x,y,z 满足3x =4y =6z ,1求证:yx z 2111=-;2比较3x,4y,6z 的大小.16、求7lg20·7.0lg 21⎪⎭⎫ ⎝⎛的值.17、已知函数fx=1+log x 3,gx=2log x 2x >0,且x ≠1,比较fx 与gx 的大小.18、已知函数fx=1log -x a a >0且a ≠1,1求fx 的定义域;2当a >1时,求证fx 在a,+∞上是增函数.19、根据条件,求实数a 的取值范围:1log 1+a 1-a <1;2|lg1-a|>|lg1+a|.20、解方程:9x +4x =25·6x .21、解方程:92x-1=4x22、解方程:x⎪⎭⎫ ⎝⎛271=91-x .23、解方程:9x -2·3x+1-27=0.24、已知函数fx=bx b x a-+log a >0,b >0且a ≠1. 1求fx 的定义域;2讨论fx 的奇偶性;3讨论fx 的单调性;4求fx 的反函数f -1x.25、已知函数fx=)2(log 221x x -.1求它的单调区间;2求fx 为增函数时的反函数.26、已知函数fx=21-x a满足flga=10,求实数a 的值.27、解关于x 的方程:lgax-1-lgx-3=128、解方程:-25.03log x x=4log 35.x o .29、解方程:5)(1log 5=-x x .30、解方程:3·16x +36x =2·81x .指数函数对数函数计算题3 〈答案〉 1、f -1x=-x 101-lg43<x <02、 考虑y x 4log =21-log 42y -log 4y,当x=21,y=41时,u max =2.3、由⎩⎨⎧<⋅-=∆>,08log 4)2log 2(,0log 222a a a 可得2<a <+∞4、a >1,b >a 或0<a <1,0<b <a .5、1a <x <a1且x ≠1;2fx 在1,+∞上是减函数.6、4217、)]13)(13lg[()1lg(2+-=-x ,x -1>0,∴x >1x -12=3-1,∴x=1+28、解:原方程为lgx +2lgx=3,∴lg 2x +2lgx -3=0,设y=lgx,则有 y 2+2y -3=0,∴y 1=1,y 2=-3.由lgx=1,得x=10,由lgx=-3,得x=10001. 经检验,x=10和x=10001都是原方程的解.9、x=-110、x=10或x=11、x=112、3413、3+2214、利用运算法则,得xy -22+2x -y 2=0∴log s xy=3115、1略;23x <4y <6z16、令所求式为t,两边取对数,得原式=1417、当0<x <1或x >34时,fx >gx;当1<x <34时,fx <gx;当x=34时,fx=gx.18、1当0<a <1时,0<x ≤a;当a >1时,x ≥a.2设a ≤x 1≤x 2,则fx 1-fx 2=1log 1log 21---x x a a =1log 1log log 2121-+-x x x x a a a<0.19、1-1<a <0或0<a <1;20<a <120、方程即为2·32x -5·3x ·2x +2·22x =0,即022352322=+⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛x x .令y=x⎪⎭⎫ ⎝⎛23,方程又化为2y 2-5y +2=0, 解得y 1=2,y 2=21,于是便可得x 1=2log 23,x 2=-223log .21、 由题意可得x229⎪⎭⎫ ⎝⎛=9,∴2x=9log 29,故x=219log 29.22、方程即为3-3x =32-2x ,∴-3x=2-2x,故x=-2.23、令y=3x >0,则原方程可化为y 2-6y -27=0,由此得y=9另一解y=-3舍去.从而由3x =9解得x=2.24、1-∞,-b ∪b,+∞;2奇函数;3当0<a <1时,fx 在-∞,-b 和b,+∞上是增函数;当a >1时,fx 在-∞,-b 和b,+∞上是减函数;4略;25、1在-∞,0,2,+∞上是减函数;2当x ∈-∞,0时<fx 的反函数是f -1x=1-x⎪⎭⎫ ⎝⎛+211x ∈R.26、a=10或a=101027、 当31<a <10时方程的解为x=-1029 a28、 1,2,34229、51,2530、21。

(完整版)幂函数、指数函数、对数函数专练习题(含答案)

(完整版)幂函数、指数函数、对数函数专练习题(含答案)

精心整理1.函数f(x)= . 1 2x的定义域是A. ( —x, 0]B.[0,+x)C. ( —X, 0)D. (―^,+呵2•函数y . log2 x的定义域是A. (0,1]B.(0,+x)C.(1,+x)D.[1,+x)3. 函数y Jog2 ^2的定义域是A.(3,+x )B.[3,+x )C.(4,+x )D.[4,+x)4. 若集合M {y | y 2x}, N {y | y . x 1},贝"M NA.{y|y 1}B.{y|y 1} C{y|y 0}D.{y|y 0}5. 函数y二-1的图象是x 16. 函数y=1 ——,则下列说法正确的是x 1A.y在(—1,+x)内单调递增B.y在(—1,+x)内单调递减Cy在(1,+x)内单调递增 D.y在(1,+x)内单调递减7. 函数y Jog°.5(3 x)的定义域是A.(2,3)B.[2,3) C[2, )D.( ,3)8. 函数f(x) x 在(0,3]上是xA.增函数B.减函数C在(0,1]上是减函数,[1,3]上是增函数。

.在(0,1]上是增函数,[1,3]上是减函数9. 函数y \ lg (2 x)的定义域是A.(-x, +X)B.(-x, 2)C.(-x, 0]D(-x, 1]— 2 x1,(x 0)10. 设函数f(x) 若f(X o) 1,则X o的取值范围是V x (x 0)11. 函数y |x|2A.是偶函数,在区间(-x ,0)上单调递增B.是偶函数,在区间(-x ,0)上单调递减C是奇函数,在区间(0,+x)上单调递增D.是奇函数,在区间(0,+x)上单调递减精心整理12. 函数y "―1)—的定义域是13. 函数y log i (3x 2)的定义域是A.[1, )B.(3, )C.[|,1]D.(3,1]14. 下列四个图象中,函数f(x) x 1的图象是x15. 设A、B是非空集合,定义A X B={x| x € A U B且x A A B}.已知A={x| y= 2x x2},B={y| y=2x,x>0},则A X B 等于A. :0,1)U (2,u)B. :0,1]U[ 2,+乂)C. :0,1]D. :0,2]16. 设a=20.|,b=0.32,c=log2.|,则Aa> c> bB.a> b> cC.b> c> aD.c> b> a17. 已知点「八3)在幕函数y f(x)的图象上,贝S f(x)的表达式是3 9「J-i 广一”:八, /■/1A. f(x) 3xB. f(x) x3C.f (x) x 2D. f (x)(一厂218. 已知幕函数f(x) x的部分对应值如下表:则不等式f (|x) 1的解集是A. x0 x 42B. x|o x 4C. 弋2 x V2D. x 4 x 419.已知函数f(x) x ax 3a 9的值域为[0,),则f (1)的值为A.3B.4C.5D.6I I \ 、指数函数习题一、选择题1. 定义运算a?b= ?a< b?,b?a>b?)),则函数f(x) =1?2x的图象大致为()2 .函数f (x) = x2- bx+ c 满足f (1 + x) = f (1 —x)且f (0) = 3,则f ( b x)与f (c x)的大小关系是()A. f(b x) <f (c x) 精心整理精心整理B. f(b x) >f(c x)C. f(b x)>f(c x)D. 大小关系随x的不同而不同3. 函数y = |2x- 1|在区间(k —1, k +1)内不单调,则k的取值范围是()A. ( —1,+切B.(―汽1)C. ( —1,1)D. (0,2)4. 设函数f(x) =ln[( x —1)(2 —x)]的定义域是A,函数g(x) = lg( —1)的定义域是B. 若A?B,则正数a的取值范围()A. a>3B. a>3C. a>D. a>5. 已知函数f (x)=若数列{a n}满足a n = f(n)( n€ N*),且{a n}是递增数列,则实数a 的取值范围是()A. [ , 3)B. (, 3)C. (2,3)D. (1,3)6. 已知a>0且a z 1, f (x) = x2—a x,当x € ( —1,1)时,均有f (x)v,则实数a的取值范围是()A. (0 , ] U [2 ,+乂)B. [ , 1) U (1,4]C. [ , 1) U (1,2]D. (0 , ) U [4 ,+ = )二、填空题7. ___________________________________________________________________ 函数y=a x( a>0,且a z 1)在[1,2]上的最大值比最小值大,则a的值是__________________ .8. _____________________________________________________________ 若曲线|y| = 2x+ 1与直线y= b没有公共点,则b的取值范围是 ____________________ .9. (2011 •滨州模拟)定义:区间[X1, X2](X1«2)的长度为X2—心已知函数y = 2|x|的定义域为[a, b],值域为[1,2],则区间[a, b]的长度的最大值与最小值的差为6、1、已知3a 2,那么log 3 8 2log 3 6用a 表示是()A 、 a 2B 、 2、 2叽(皿 5a 2C 3a (1 a)2D 3a a 2Iog a N ,则M的值为() 2N) log a MA 、 3、 丄B 4C 1D 4 或 14已知 x 2 y 21,x 0, yA ,0,且 log a (1 x)m,log a ----------- n,则 log a y 等于()1 xA 、m n B m n C 、1 m 24、 A 、如果方程 lg 2x (Ig5 Ig 7)lg x丄35Ig5gg7 B 、lg35 C 35D 5、 A 、 1一 m n2lg5 clg 7 0的两根是,,贝卩g 的值是()1已知 Iog 7【log 3(log 2 x )] 0,那么 x 2 等于()1B > LC LD 1一3 2 ; 3 2.2 3*3 函数y Ig 2 1的图像关于()x 轴对称B 、y 轴对称C 、原点对称D 直线y x 对称 精心A 、11. (2011 •银川模拟)若函数y = a 2^2a x — 1(a >0且1)在x € [ —1,1]上的最大值 为14,求a 的值.12.已知函数 f (x ) = 3x , f (a + 2) = 18, g (x ) = X ・3ax — 4x 的定义域为[0,1]. (1)求a 的值;⑵ 若函数g (x )在区间[0,1]上是单调递减函数,求实数 入的取值范围.对数与对数函数同步练习、选择题 三、解答题 10.求函数y = 2x 3x4的定义域、值域和单调区间.7、函数y log(2x 1) .3r~2的定义域是()2 1A -,1 U 1, B、,1 U 1,3 2C、2, D !,3 2&函数y log1 (x26x 17)的值域是()2A、R B 8, C , 3 D 3,9、若log m9 log n9 0,那么m,n满足的条件是()A、m n 1B、n m 1C、0 n m 1D 0 m n 110、log a2 1,则a的取值范围是()3A、0, — U 1,B、2,C、—,1 D> 0,—U -2,3 3 3 3 311、下列函数中,在0,2上为增函数的是()A、y log1 (x 1)B、y log2、x2121 2C、y log2—D y log 1 (x 4x 5)x忑12、已知g(x) log a|x+1| (a 0且a 1)在1,0 上有g(x) 0,则f(x)是()A、在,0上是增加的B、在,0上是减少的C、在,1上是增加的D在,0上是减少的二、填空题13、若log a 2 m,log a 3 n,a2m n。

高中数学必修一第四章指数函数与对数函数典型例题(带答案)

高中数学必修一第四章指数函数与对数函数典型例题(带答案)

高中数学必修一第四章指数函数与对数函数典型例题单选题1、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x −2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.2、函数f(x)=2x −1x 的零点所在的区间可能是( ) A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0, 所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增, 所以函数f(x)的零点所在的区间是(12,1), 故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34) C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解, 则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916). 故选:D .4、函数y =2x −2−x ( )A .是R 上的减函数B .是R 上的增函数C .在(−∞,0)上是减函数,在(0,+∞)上是增函数D .无法判断其单调性 答案:B分析:利用指数函数的单调性结合单调性的性质可得出结论.因为指数函数f (x )=2x 为R 上的增函数,指数函数g (x )=2−x =(12)x为R 上的减函数, 故函数y =2x −2−x 是R 上的增函数. 故选:B.5、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果. 若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 6、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( ) A .90<a <100B .90<a <110C .100<a <110D .80<a <100 答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100. 故选:A7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+aB .a+b 1−aC .a−b 1+aD .a−b 1−a答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b 1−a.故选:B .8、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a =5,b =log 83=13log 23,即23b =3,所以4a−3b =4a 43b=(2a )2(23b )2=5232=259.故选:C. 多选题9、已知函数f (x )={e x −1,x ≥a,−(x +1)2,x <a (a ∈R ) ,则( ) A .任意a ∈R ,函数f (x )的值域为R B .任意a ∈R ,函数f (x )都有零点C .任意a ∈R ,存在函数g (x )满足g (−|x |)=f (x )D .当a ∈(−∞,−4]时,任意x 1≠x 2,(x 1−x 2)(f (x 1)−f (x 2))>0答案:BD分析:画出分段函数图像,根据图像逐项分析即可得到结果设函数y=e x−1和y=−(x+1)2的左右两交点坐标为(x1,y1),(x2,y2)对于选项A,由图像可知,当a<x1时,f(x)的值域不为R,故A错误对于选项B,由图像可知,无论a取何值,函数f(x)都有零点,故B正确对于选项C,当x>0时g(−|x|)=g(−x),g(−|−x|)=g(−x)由图像可知f(−x)≠f(x)所以不存在函数g(x)满足g(−|x|)=f(x)对于选项D,若x1<a,x2<a,因为y=−(x+1)2为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立若x1>a,x2>a因为y=e x−1为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立当x1,x2不在同一区间时,因为a∈(−∞,−4],所以y=e x−1(x>a)的图像在y=−(x+1)2(x<a)的图像的上方,所以也满足对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立故D正确故选:BD10、已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b=0其中有可能成立的关系式有()A.①B.②⑤C.②③D.④答案:AB分析:画出指数函数y=2x,y=3x的图象,利用单调生即可得出答案.如图所示,数y=2x,y=3x的图象,由图象可知:( 1 ) 当时x>0,若2a=3b,则a>b;( 2 ) 当x=0时,若2a=3b,则a=b=0;( 3 ) 当x<0时,若2a=3b,则a<b.综上可知,有可能成立的关系式是①②⑤ .故选:AB11、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−2×0.5)x≥22.4,解得x的范围,可得答案.0.2依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,×0.5万册,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2则该杂志销售收入为(10−x−2×0.5)x万元,0.2所以(10−x−2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,0.2故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x (x >2)元时的发行量是解题关键. 填空题 12、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒ 原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2 =(1+1232)(1+1216)(1+128)×(1−128)×2 =(1+1232)(1+1216)×(1−1216)×2 =(1+1232)×(1−1232)×2 =(1−1264)×2 =2−1263所以答案是:2−1263﹒13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、写出一个同时具有下列性质①②③的函数f(x)=________.①定义域为R;②值域为(−∞,1);③对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.答案:f(x)=1−12x(答案不唯一)分析:直接按要求写出一个函数即可.f(x)=1−12x ,定义域为R;12x>0,f(x)=1−12x<1,值域为(−∞,1);是增函数,满足对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.所以答案是:f(x)=1−12x(答案不唯一).解答题15、已知函数f(x)=1−2a|x|+1(a>0,a≠1).(1)判断f(x)的奇偶性并证明;(2)若f(x)在[−1,1]上的最大值为13,求a的值.答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值.解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。

对数与指数函数练习题及解析

对数与指数函数练习题及解析

对数与指数函数练习题及解析题目:对数与指数函数练习题及解析正文:本文将为读者提供一些对数与指数函数的练习题,并给出详细的解析过程,帮助读者更好地掌握这一部分知识。

练习题一:计算下列对数值:1. log2(8)2. log5(25)3. ln(e)4. log9(81)解析:1. log2(8) = log(8)/log(2) = 32. log5(25) = log(25)/log(5) = 23. ln(e) = 14. log9(81) = log(81)/log(9) = 2练习题二:求解下列指数方程:1. 2^x = 162. 3^(2x-1) = 273. e^x = 10解析:1. 2^x = 16,可以写成2^x = 2^4,由指数对数关系可得x = 42. 3^(2x-1) = 27,可以写成3^(2x-1) = 3^3,由指数对数关系可得2x-1 = 3,解得x = 23. e^x = 10,可以写成e^x = e^ln(10),由指数对数关系可得x = ln(10)练习题三:计算下列对数方程的解:1. log2(x) = 32. log5(x) = -1解析:1. log2(x) = 3,可以写成2^3 = x,解得x = 82. log5(x) = -1,可以写成5^(-1) = x,解得x = 1/5练习题四:给定函数f(x) = log2(x),求解f(x)的图像在x轴上的截距点。

解析:对于f(x) = log2(x),当x = 2^0 = 1时,f(x) = log2(1) = 0,因此f(x)的图像在x轴上的截距点为(1, 0)。

练习题五:给定函数f(x) = e^x,求解f(x)的图像在y轴上的截距点。

解析:对于f(x) = e^x,当x = 0时,f(x) = e^0 = 1,因此f(x)的图像在y轴上的截距点为(0, 1)。

通过以上练习题及解析,读者可以加深对数与指数函数的理解,并在解题过程中掌握相关的计算方法和技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限,从逆时针向看图象,逐渐增大;在第二象限,从逆时针向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限,从顺时针向看图象,逐渐增大;在第四象限,从顺时针向看图象,逐渐减小.指数函数习题一、选择题 1.定义运算a ⊗b =⎩⎪⎨⎪⎧a a ≤b ba >b,则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( ) A .f (b x)≤f (c x) B .f (b x)≥f (c x) C .f (b x)>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)不单调,则k 的取值围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1)D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值围( )A .a >3B .a ≥3C .a > 5D .a ≥55.已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题 10.求函数y =2342x x --+的定义域、值域和单调区间.11.(2011·模拟)若函数y =a 2x+2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x,f (a +2)=18,g (x )=λ·3ax-4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,数λ的取值围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧aa ≤b b a >b得f (x )=1⊗2x=⎩⎪⎨⎪⎧2xx ≤0,1 x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x≥2x≥1,∴f (3x)≥f (2x). 若x <0,则3x<2x<1,∴f (3x)>f (2x). ∴f (3x)≥f (2x ). 答案:A3.解析:由于函数y =|2x-1|在(-∞,0)单调递减,在(0,+∞)单调递增,而函数在区间(k -1,k +1)不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x-2x>1且a >2,由A ⊆B 知a x-2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3.答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎪⎨⎪⎧a >13-a >0a 8-6>3-a ×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x -4x, 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立. 由于2x 2+2x 1>20+20=2, 所以实数λ的取值围是λ≤2. 法二:(1)同法一. (2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x]≤0成立. 设2x=u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( )A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x +==-则等于( )A 、m n +B 、m n -C 、()12m n + D 、()12m n - 4、如果程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( ) A 、lg5lg7gB 、lg35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a<,则a 的取值围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭U B 、2,3⎛⎫+∞ ⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。

相关文档
最新文档