2017年中考数学圆知识点总结

合集下载

2017年中考数学考试常见知识点总结圆有关概念公式定理

2017年中考数学考试常见知识点总结圆有关概念公式定理

2017年中考数学考试常见知识点总结(圆有关概念公式定理)
2017年中考数学考试常见知识点总结(圆有关概念公式定理)
圆及有关概念
1 到定点的距离等于定长的点的集合叫做圆(circle).这个定点叫做圆的圆心。

2 连接圆心和圆上的任意一点的线段叫做半径(radius)。

3 通过圆心并且两端都在圆上的线段叫做直径(diameter)。

4 连接圆上任意两点的线段叫做弦(chord). 最长的弦是直径。

5 圆上任意两点间的部分叫做圆弧,简称弧(arc).
大于半圆的弧称为优弧,优弧是用三个字母表示。

小于
半圆的弧称为劣弧,劣弧用两个字母表示。

半圆既不是
优弧,也不是劣弧。

优弧是大于180度的弧,劣弧是小
于180度的弧
6 由两条半径和一段弧围成的图形叫做扇形(sector)。

7 由弦和它所对的一段弧围成的图形叫做弓形。

8 顶点在圆心上的角叫做圆心角(central angle)。

9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

10 圆周长度与圆的直径长度的比值叫做圆周率。

它是一个超越数,通常用π表示,π26535……。

在实际应用中,一般取π≈3.14。

圆周角等于弧所对的圆心角的一半。

字母表示
圆—⊙ ; 半径—r或R(在环形圆中外环半径表示的字母); 弧—⌒ ; 直径—d ;
扇形弧长—L ; 周长—C ; 面积—S。

圆的表示方法要求很严格,需要用到相应的知识要求。

中考圆 知识点总结

中考圆 知识点总结

中考圆知识点总结一、圆的基本概念圆是平面上到一定点的距离等于给定长度的所有点的集合。

这个给定长度叫做圆的半径。

圆的一条封闭曲线叫做圆周,圆心到圆周上任一点的距离叫做半径。

二、圆的性质1. 圆的周长公式:C=πd 或C=2πr2. 圆的面积公式:S=πr²3. 圆心角:以圆心为顶点的角。

它对应的弧叫做这个角的弧4. 圆内接四边形:内接于同一个圆的四条边全是立交于一个点的四边形5. 圆外接四边形:其四顶点在同一个圆上的四边形6. 弧长:圆周上的一小段被称为弧,圆周的任一弧的长即弧长7. 弧度:弧长等于半径长的弧所对函数角的量度叫弧度8. 弧度制:把圆周长等分成361份,每段长为半径长的弧叫做1弧度9. 相似圆周:如果两个弧所对的圆心角的两个弧相等,则这两个arc的两个圆周叫做相似圆周三、圆的定理1. 两条平行余同一个圆的两条切线2. 如果两个arc和中各有一个相等的角的立交于同一条弧的平面内3. 弧与弧所对的角相关联4. 线段与圆相关联5. 邻角对角互补6. 梯形中角平分性质7. 环形中它的两个arc及两个对分-四、圆的变量方法常用的弧度制基本关系:1、1弧度=180/π度2、1度=π/180弧度常用的弧度制与直角度基本关系:1、180度=π弧度2、1度= π/180 弧度圆周率是一个无理数,近似值是3.1415926 。

圆的半径是r ,这样圆周长为C=2πr 。

圆的面积等于S= π(r^2)。

先看C=2πr的这半径(C是所求的圆周长,r是所需求的圆的半径,C=2 πr)由此得到半径的长。

继而计算圆的面积;S=π(r^2)。

五、圆的解析式方程解析式方程就是用$x$和$y$表示方程中的变量,利用解析式方程可以方便表示圆的位置、大小和形状。

圆的解析式方程一般是:$(x-a)^2+(y-b)^2=r^2$其中$(a,b)$为圆心坐标,r为半径。

圆的解析式方程与圆的位置有关。

若圆的圆心位于原点,圆的解析式方程为$x^2+y^2=r^2$,点$(x,y)$满足圆的解析式方程。

中考圆形知识点总结数学

中考圆形知识点总结数学

中考圆形知识点总结数学数学是中考中最重要的科目之一,而在数学中,圆形知识点是一个重要的部分。

本文将为大家总结中考数学中的圆形知识点,并介绍一些解题的步骤和思路。

一、圆的基本概念圆是由平面内到定点的距离恒定的所有点的集合。

其中,定点称为圆心,距离称为半径。

- 圆心:圆心通常用大写字母O表示。

- 半径:半径通常用小写字母r表示。

二、圆的性质 1. 同圆弧对应的圆心角相等。

2. 同弦对应的圆心角相等。

3. 圆内接角等于其对应的圆弧的一半。

三、圆的计算 1. 圆的周长圆的周长是指圆的边界的长度,可以通过公式C=2πr来计算,其中C表示周长,r表示半径。

2.圆的面积圆的面积是指圆的内部区域的大小,可以通过公式S=πr²来计算,其中S表示面积,r表示半径。

四、圆与三角形的关系 1. 圆与直角三角形 - 在直角三角形中,斜边的一半恰好可以作为圆的半径,而直角边可以作为圆心与圆的切点。

- 根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方,即a²+b²=c²。

其中a、b表示直角边,c表示斜边。

2.圆与等腰三角形•在等腰三角形中,等腰边恰好可以作为圆的半径,并且通过等腰边的中垂线可以找到圆心。

•根据勾股定理,等腰三角形的底边的一半为半径,底边的一半和高可以构成直角三角形。

五、圆的相关题型解题步骤 1. 计算周长和面积 - 根据给定的半径或直径,使用相应的公式计算圆的周长和面积。

- 注意单位的换算,保留合适的精度。

2.圆与三角形的关系•根据题目中给出的条件,结合圆的性质和三角形的性质,找到合适的角度和边长关系。

•如果涉及到勾股定理,可以根据已知条件计算未知边长或角度。

3.运用解题方法•对于复杂问题,可以运用解题方法,如相似三角形、平行线性质、面积比较等,来简化解题过程。

•注意思考解题的合理性和步骤的连贯性,避免漏解或多解的情况。

六、小结圆形知识点在中考数学中占据重要的地位,掌握圆的基本概念和性质,能够运用相关公式计算圆的周长和面积,理解圆与三角形的关系,在解题过程中合理运用解题方法,都是取得好成绩的关键。

中考圆的知识点总结(一)

中考圆的知识点总结(一)

中考圆的知识点总结(一)中考圆的知识点总结前言在中考数学中,圆是一个重要的知识点,掌握圆的性质和相关计算方法对于提高数学成绩至关重要。

本文将对中考圆相关的知识进行总结和归纳,以帮助同学们更好地掌握和应用。

正文1. 圆的定义和性质•圆的定义:圆是平面上到一个定点距离相等的所有点的集合。

•圆的性质:–圆心:圆上所有点到圆心的距离相等。

–半径:圆心到圆上任意一点的距离为半径。

–直径:通过圆心的两个点组成的线段,长度等于半径的两倍。

–弧:在圆上两个点之间的部分。

–相交:两个圆的交点即为相交的部分。

–切线:与圆只有一个交点的直线。

2. 圆的计算公式•圆的周长:C = 2πr,其中r为半径。

•圆的面积:S = πr²。

3. 圆的相关定理•弧长定理:弧长 = 弧度× 半径长度。

•弧度与度的关系:一周对应的弧度为2π弧度,180°对应π弧度,360°对应2π弧度。

•圆心角定理:圆心角的弧度等于对应的弧的弧度。

•切线定理:切线与半径垂直。

4. 圆的应用•判断点是否在圆的内部、外部或边界上。

•利用圆的性质解决几何问题,如求两个圆的位置关系、求切线等。

•应用圆的计算公式计算周长和面积。

结尾通过对中考圆的知识进行总结和归纳,我们可以更好地掌握和运用圆的相关性质和计算方法。

希望同学们在备考中能够深入理解这些知识,灵活运用,取得优异的成绩!5. 圆与三角形的关系•内切圆:三角形内部与三条边都相切的圆。

•外接圆:三角形三个顶点在圆上的圆。

•正切圆:三角形的一个顶点在圆上,另外两边分别与圆相切的圆。

6. 圆与直线的关系•弧的度数:弧所对圆心角的度数,通常表示为θ。

•弦:圆上两个点之间的线段。

•弦长定理:弦长等于过弧中点的直径的两倍乘以sin(θ/2)。

•弦切角定理:切线与弦的交点所对的圆心角等于弦上所对的弧的圆心角的一半。

7. 圆与平行线的关系•切割线定理:若两条平行线分别与一个圆相交,那么它们所切割出的弦、切线和割线都是相等的。

中考圆的知识点总结总结

中考圆的知识点总结总结

中考圆的知识点总结总结一、圆的定义和性质1. 圆的定义圆是一个平面上和一个确定点的距离都相等的点的集合。

这个确定点就是圆心,而圆心到圆上的任意点的距离就是半径。

2. 圆的性质(1)圆心角圆心角是以圆心为顶点的角,它的两条边分别是圆周上的两条弦。

圆心角的度数等于对应的弧所对的圆周的度数。

如果圆心角的度数为360度,那么这个角就是周角。

(2)弧圆上的一段弧是圆周的一部分。

圆的周长就是圆周的长度,可以用角度和弧度来表示。

(3)切线和切点切线是一个直线,它与圆相切于一个点。

在圆上,切线与半径的夹角为90度。

(4)同位角同位角是两条平行线被一条截线所切割而形成的一对内角和一对外角。

同位角的性质也可以应用到圆上。

(5)相似两个或者更多的圆是相似的,如果它们有着相同的形状但是不同的尺寸。

相似的圆的半径之比等于它们的直径之比。

二、圆的相关定理1. 圆周角定理圆周角等于圆心角的一半。

2. 圆的面积和周长圆的面积等于πr^2,圆的周长等于2πr,其中r是圆的半径,π是一个无理数,约等于3.14159。

3. 弦长定理在同一个圆上,相交弦的两个切点到圆心的距离相等。

4. 弧长定理同样的圆上,相对的圆周弧长相等。

5. 切线定理切线和半径的夹角为90度。

6. 弧上的角定理同样的圆上,一个圆周弧所对的圆心角等于这个弧上的其他角的和。

7. 线段对定理在一个圆上,两条相交的弧所对的线段互为比例。

三、圆的应用1. 圆的周长和面积的应用圆的周长和面积是经常在实际生活中用到的数学概念。

比如在工程测量中,需要计算环形的周长和面积。

2. 圆的图形补充圆的图形补充,包括扇形、环形等概念,也是圆的知识点之一。

3. 圆的运动学应用在运动学中,圆的运动规律和路径也是一个重要的应用。

四、典型例题下面列举一些典型的中考圆的例题,帮助大家更好地复习和巩固知识。

1. 如果一条切线和一条半径分割了一个角为30度的圆心角,那么这条切线和半径的夹角是多少度?A. 60度B. 45度C. 30度D. 15度答案:A. 60度2. 已知圆的半径为8cm,求圆的面积和周长。

中考圆形知识点总结

中考圆形知识点总结

中考圆形知识点总结一、圆的定义圆是由平面上任意一点到圆心的距离都相等的一组点的集合,这个相等的距离就是圆的半径,用R或r表示。

如果把圆心用O表示,圆上一点用A表示,那么圆的表示就是O为圆心,R为半径的圆,通常写作O(R)。

二、圆的性质1. 圆的周长和面积圆的周长,即圆周长,也称为圆的周长。

由于圆是一个闭合曲线,所以圆的周长是指圆的周围的长度。

圆的周长L可以用公式L=2πr来表示,其中π取约等于3.14。

圆的面积A也和圆的半径r有关,圆的面积A=πr^2。

2. 圆的直径圆的直径是圆上任意两点之间经过圆心的线段的长度,它恰好是圆的半径的两倍,即d=2r。

3. 圆心角的度数圆心角是指以圆心为顶点的角,圆心角的度数可以用角度或弧度来表示。

圆心角的度数等于所对圆弧的中心角。

例如,一个圆的圆周角是360°,因此圆周角所对的圆弧的中心角也等于360°。

4. 圆锥相似圆锥相似是指对于两个圆,如果它们的半径之比相等,则这两个圆是相似的。

5. 圆内接四边形在一个圆中,如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。

在圆内接四边形中,相对的角相等,两对相对边之积相等。

6. 圆对称圆对称是指图形绕圆心旋转180°后,图形不变。

圆对称的图形具有很高的美感,例如很多具有圆对称的图案都可以被人们所接受和欣赏。

三、相关定理1. 圆心角定理圆心角定理是指圆心角的度数等于所对圆弧的中心角,即一个圆心角的度数等于它所对的圆弧的度数。

2. 弦长定理弦长定理是指一个圆上任意一条弦所对的两个弧的长度之和,等于这条弦的长度的平方。

3. 垂径定理垂径定理是指一个圆上的直径垂直于与之相交的弦,且中点与圆心和交点共线。

4. 弧长、扇形面积圆的弧长可以用弧度来表示,即弧长s=θr,其中r为半径,θ为圆心角的弧度。

圆的扇形面积也可以用弧度来表示,扇形的面积等于所对圆心角的弧度的一半乘以半径的平方。

四、计算题1. 计算圆的周长和面积计算圆的周长和面积是圆形题目中最基本的计算题,需要根据给定的半径或直径进行计算。

中考圆的知识点总结

中考圆的知识点总结

中考圆的知识点总结一、圆的相关定义1. 圆的定义:圆是平面上到定点距离等于定长的点的集合。

2. 圆的要素:圆心、半径,圆周、圆内、圆外。

二、圆的相关定理1. 圆的周长和面积(1)周长:圆的周长等于圆的直径乘以π(π≈3.14)。

公式:周长=2πr(2)面积:圆的面积等于圆的半径平方乘以π。

公式:面积=πr²2. 圆心角和圆心角的度数(1)圆心角:以圆心为顶点的角叫做圆心角。

(2)度数:圆周的一份叫做圆周角,圆周角是度数。

一个完整的圆周角是360°。

3. 弧长和弧度(1)弧长:圆的一部分。

弧长的公式:弧长=2πr(圆的半径r乘以圆心角的度数除以360°)。

(2)弧度:圆心角所对应的弧长的长度。

1弧度=弧长/半径。

4. 直角三角形中的圆(1)直角三角形内切圆:直角三角形的内切圆的圆心在直角三角形的斜边上。

(2)直角三角形外切圆:直角三角形的外切圆的圆心在直角三角形的斜边上。

5. 圆与三角形的关系(1)正弦定理:a/sinA=b/sinB=c/sinC(2)余弦定理:a²=b²+c²−2bc⋅cosA(3)正弦定理:a/sinA=b/sinB6. 圆的相交和切线(1)相交:两个圆相交的情况有几种:相离(两个圆不相交)、内切(一个圆在另一个圆内部)、外切(一个圆在另一个圆外部)、内含(一个圆在另一个圆内部,但没有公共点)。

(2)切线:从圆外一点引一条与圆相切的线叫做切线。

7. 圆的应用(1)建筑中的圆:建筑中圆的形状、圆的结构。

(2)生活中的圆:轮胎、钟表、CD/DVD等。

三、圆的相关练习1. 计算圆的周长和面积。

2. 计算圆心角的度数和弧度。

3. 求解直角三角形内切圆和外切圆的问题。

4. 应用正弦定理、余弦定理和正切定理求解相关问题。

5. 求解相交圆的相交情况和切线的情况。

以上就是中考圆的相关知识点总结,希望对大家的学习有所帮助。

初中数学中考圆的知识点总结归纳(中考必备)

初中数学中考圆的知识点总结归纳(中考必备)

中考数学圆的知识点总结归纳一、圆的定义(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

二、圆心(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。

πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

三、周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径四、面积计算公式1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方五、点、直线、圆和圆的位置关系1、点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。

中考数学:圆的知识点_考点解析

中考数学:圆的知识点_考点解析

中考数学:圆的知识点_考点解析中考数学:圆的知识点1.不在同一直线上的三点确定一个圆。

2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2圆的两条平行弦所夹的弧相等3.圆是以圆心为对称中心的中心对称图形4.圆是定点的距离等于定长的点的集合5.圆的内部可以看作是圆心的距离小于半径的点的集合6.圆的外部可以看作是圆心的距离大于半径的点的集合7.同圆或等圆的半径相等8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角12.①直线L和⊙O相交d②直线L和⊙O相切d=r③直线L和⊙O相离d&gt;r13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线14.切线的性质定理圆的切线垂直于经过切点的半径15.推论1经过圆心且垂直于切线的直线必经过切点16.推论2经过切点且垂直于切线的直线必经过圆心17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角18.圆的外切四边形的两组对边的和相等外角等于内对角19.如果两个圆相切,那么切点一定在连心线上20.①两圆外离d&gt;R+r②两圆外切d=R+r③两圆相交R-rr)④两圆内切d=R-r(R&gt;r)⑤两圆内含dr)21.定理相交两圆的连心线垂直平分两圆的公共弦22.定理把圆分成n(n≥3):⊙依次连结各分点所得的多边形是这个圆的内接正n边形⊙经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆24.正n边形的每个内角都等于(n-2)×180°/n25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形26.正n边形的面积Sn=pnrn/2p表示正n边形的周长27.正三角形面积√3a/4a表示边长28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=429.弧长计算公式:L=n兀R/18030.扇形面积公式:S扇形=n兀R^2/360=LR/231.内公切线长=d-(R-r)外公切线长=d-(R+r)32.定理一条弧所对的圆周角等于它所对的圆心角的一半33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等34.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径35.弧长公式l=a*ra是圆心角的弧度数r&gt;0扇形面积公式s=1/2*l*r。

中考压轴圆知识点总结

中考压轴圆知识点总结

中考压轴圆知识点总结中考数学是学生们的一大难题,而数学中颇具难度的数学圆知识点更是让许多学生头疼。

在中考中,圆的知识点占据了重要的地位,学生们需要认真复习和掌握这些知识点才能顺利通过考试。

下面我们就来总结一下中考数学圆的知识点,希望对大家有所帮助。

一、圆的基本概念1. 圆的定义:在平面上所有到圆心的距离都相等的点的集合称为圆。

圆用字母 O 表示。

2. 圆的元素:圆的圆心、半径和弧。

3. 直径、半径、弧长与圆的关系:直径是通过圆心的线段,它的长度等于两倍的半径;半径是从圆心到圆上任意一点的距离;弧长是指圆的一部分弧所对的圆周的长度。

4. 弧度制:一周角的度数为 360°,而一周角对应的弧长为圆周的长度,如果圆的周长为 L,那么一周角所对应的弧长的度数衡量单位是圆周的长度的一个弧长。

这就是弧的弧度制,以弧长等于半径的角叫做1弧度的那个角。

5. 圆内接与外接:内接四边形是指四边形的四个顶点都在圆上,外接四边形是指四边形的四个顶点都在圆的外切,在圆上。

6. 一个绕圆一周转的圆心角是360°(或2 π 弧度)。

这被称为一周角。

二、圆的相关定理1. 圆内切四边形定理:一个四边形是积形,当且仅当它的内部与外部不相交,并且内部的一个角是直角。

2. 圆的面积和周长计算公式:圆的面积公式A=πr^2 ;圆的周长公式C=2πr3. 圆周角的性质:一个绕圆一周转的圆心角是360°,我们也称这个角叫一周角。

4. 圆的切线定理:在过圆外一点做圆的切线,这条圆的切线和这个点到圆心的连线垂直。

5. 弧长与扇形面积关系:圆心角相等的两个弧所对的圆周相等,圆心角相等的两个扇形的面积与依次对应的弧长成正比。

6. 圆内角、弦长与弧长的关系:在一个圆上的两个弦所确定的两个弧,弦分数相等,它们所对应的圆心角相等。

7. 圆的内切关系和切线定理:8. 圆的位置关系定理:每一对不同圆,在共有的外部和内部至少有一个定位的情态。

中考数学圆周长知识点总结

中考数学圆周长知识点总结

中考数学圆周长知识点总结中考数学圆周长知识点总结圆周长是中考数学中的一个重要知识点,它涉及到圆的性质和相关公式的运用。

掌握了圆周长的计算方法,可以帮助我们解决与圆相关的各种问题。

本文将从圆的定义、圆的周长计算公式、周长应用题等方面总结中考数学中与圆周长有关的知识点。

一、圆的定义圆是由平面上的一点到平面上任意一点距离相等的点的集合。

其中,平面上距离圆心的距离等于半径的点,称为圆上的点;平面上距离圆心的距离大于半径的点,称为圆外的点;平面上距离圆心的距离小于半径的点,称为圆内的点。

二、周长计算公式1. 圆周长的计算公式圆周长的计算公式是C = 2πr,其中C表示圆的周长,r表示圆的半径。

2. 直径与周长的关系圆的直径是圆上任意两点之间的线段,也是圆周长的两倍。

所以,直径d与周长C之间的关系是d = 2r。

三、周长知识点归纳1. 运用圆周长的公式计算对于给定圆的半径或直径,通过圆周长公式可以直接计算出圆的周长。

例如,已知一个圆的半径为6cm,可以使用圆周长公式C = 2πr进行计算,得到该圆的周长为C = 2π × 6 = 12π cm(精确值),或者使用近似值π ≈ 3.14计算,得到该圆的周长约等于C ≈ 2 × 3.14 × 6 ≈ 37.68 cm。

2. 运用半径和周长的关系计算已知圆的周长,可以通过周长与半径的关系计算出圆的半径。

例如,一个圆的周长为20π cm(精确值),根据圆周长公式C = 2πr,可以得到20π = 2πr,即r = 10 cm。

3. 运用直径和周长的关系计算已知圆的周长,可以通过周长与直径的关系计算出圆的直径。

例如,一个圆的周长为30 cm,根据圆周长公式C = 2πr,可以得到30 = 2πr,即r = 15 cm,进而得到直径d = 2r = 2 × 15 = 30 cm。

四、周长应用题解题技巧1. 已知直径求周长对于已知直径的题目,可以先通过直径求半径,再利用周长公式计算周长。

中考圆形知识点总结归纳

中考圆形知识点总结归纳

中考圆形知识点总结归纳圆形是中学数学中一个重要的几何概念,在中考中也是一个常见的考点。

本文将对中考中涉及到的圆形知识进行总结和归纳,帮助考生复习和掌握这一部分内容。

一、圆的基本概念圆是由平面上任意一点到另一点的距离都相等的点的集合。

其中,距离相等的这个固定值称为圆的半径,用字母r表示。

圆心是圆上任意两点的连线的垂直平分线的交点。

二、圆的性质1. 圆上任意两点之间的距离都等于圆的半径。

2. 圆心角的度数等于它所对的弧的度数,且圆心角所对的弧长等于圆的半径乘以圆心角的弧度值。

3. 相等弧所对的圆心角是相等的。

4. 圆的内切正多边形的中心与圆心重合。

三、弧1. 圆周角:圆周角是指以圆心为顶点的角,它的两边是相交于圆上的两条弧。

圆周角的度数等于它所对的弧的度数。

2. 弦:圆内部连接两点的线段称为弦。

弦分割出的两条弧叫做弦所对的弧。

3. 弧长:指圆上的一段弧所对应的圆周长度。

弧长等于圆心角的弧度值乘以圆的半径。

四、相交弦与切线的性质1. 相交弦定理:相交弦所对的弧相等,或者说两个相交弦所对应的圆心角相等。

2. 切线的性质:切线与半径的垂直分割线。

切线于半径的交点处所对应的圆心角为直角。

五、圆的面积和周长1. 圆的面积公式:S = πr²,其中S为圆的面积,r为圆的半径,π取近似值3.14。

2. 圆的周长公式:C = 2πr,其中C为圆的周长。

六、圆的应用1. 圆的切线与圆的性质:切线与切点间的弦相等,切线切割出的小圆与大圆相似。

2. 弧长与扇形面积:扇形面积等于扇形所对的圆心角的弧长所占整个圆的比例乘以圆的面积。

总结:通过对中考圆形知识点的总结和归纳,我们可以看到,圆形在中考中的考点比较多,涉及到圆的基本概念、性质、弧、相交弦与切线的性质、面积和周长以及应用等方面的内容。

对于考生而言,要牢固掌握圆的基本概念和性质,熟练运用相关公式和定理,灵活应用于解题过程中。

只有通过不断的实践和练习,才能在考试中熟练运用所学的圆形知识,取得好的成绩。

中考数学圆知识点总结7篇

中考数学圆知识点总结7篇

中考数学圆知识点总结7篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点叫做圆心,定长叫做半径。

圆有无数条对称轴,对称轴经过圆心。

圆具有旋转不变性,即围绕圆心旋转任意角度后,得到的图形仍然与原图形重合。

二、圆的性质1. 圆的直径是最大的弦,弦是连接圆上两点的直线段,直径是特殊的弦。

2. 圆心到圆上各点的距离都等于半径,即圆的半径是圆的长度单位,它决定了圆的大小。

3. 圆的周长与直径的比值叫做圆周率,是一个重要的数学常数,约等于3.1415926。

4. 圆的面积等于π乘以半径的平方,即圆的面积随着半径的增大而增大。

三、圆与直线的关系1. 直线与圆有三种位置关系:相交、相切、相离。

相交是指直线与圆有两个不同的交点;相切是指直线与圆有一个切点;相离是指直线与圆没有交点。

2. 圆的切线垂直于过切点的半径,即切线与半径是垂直关系。

3. 圆的两条平行弦所对的圆心角相等,即圆心角的大小只与弦的位置有关,与弦的长度无关。

四、圆与圆的位置关系1. 两个圆的位置关系有五种:外离、外切、相交、内切、内含。

外离是指两个圆没有公共点;外切是指两个圆有一个公共点;相交是指两个圆有两个不同的公共点;内切是指两个圆有一个公共点且两圆的圆心在公共点的两侧;内含是指两个圆的圆心在同一个大圆的内部。

2. 两个圆的圆心距等于两圆半径之和或差,即两圆的位置关系可以通过计算圆心距来判断。

3. 两个相交的圆,它们的交点叫做共点,共点将两圆分成四段弧,每段弧叫做一拱。

五、圆的幂和极坐标1. 圆的幂是指一个点到一个圆的距离的平方,即该点到圆心的距离乘以它自身。

圆的幂是该点的极坐标系中的ρ值。

2. 极坐标系是一种在平面中表示位置的方法,它使用一个角度和一个距离来表示一个点。

在极坐标系中,圆的幂可以通过ρ值来计算。

3. 通过计算圆的幂和极坐标系中的角度值,我们可以确定一个点是否在某个圆上或某个圆外。

篇2一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。

中考数学知识点总结圆的位置

中考数学知识点总结圆的位置

中考数学知识点总结圆的位置中考数学知识点总结圆的位置中学数学中的圆是一个基础的几何图形,其位置关系也是需要掌握的数学知识点之一。

在中考中,圆的位置关系常常与其他几何图形相结合,考查学生对几何形状的理解和应用能力。

下面将对中考中关于圆的位置关系进行总结。

1. 圆的内外关系对于两个不同的圆,它们之间有三种可能的位置关系:内含、外切和相离。

(1)内含:若一个圆完全位于另一个圆内部,则称这两个圆是内含关系。

内含关系中,小圆的半径小于大圆的半径。

(2)外切:若两个圆仅有一个切点,则称这两个圆是外切关系。

外切关系中,两个圆的半径相等。

(3)相离:若两个圆没有公共点,则称这两个圆是相离关系。

相离关系中,两个圆的半径大小没有固定关系。

2. 圆与直线的位置关系圆与直线的位置关系主要有内切、外切和相割三种情况。

(1)内切:若直线仅有一个切点与圆相切,则称该直线与圆是内切关系。

内切关系中,切点在圆的外部,直线通过圆心且垂直于半径。

(2)外切:若直线仅有一个切点与圆相切,则称该直线与圆是外切关系。

外切关系中,切点在圆的外部,直线通过圆心但不垂直于半径。

(3)相割:若直线与圆相交,并且不是内切或外切关系,则称该直线与圆是相割关系。

相割关系中,直线与圆有两个交点。

3. 圆与圆的位置关系圆与圆的位置关系主要有内切、外切和相交三种情况。

(1)内切:若两个圆仅有一个切点,则称这两个圆是内切关系。

内切关系中,切点在两个圆的外部,两个圆的半径之差等于切点到两个圆心的距离。

(2)外切:若两个圆仅有一个切点,则称这两个圆是外切关系。

外切关系中,切点在两个圆的外部,两个圆的半径之和等于切点到两个圆心的距离。

(3)相交:若两个圆有两个交点,则称这两个圆是相交关系。

相交关系中,两个圆的半径之和大于切点到两个圆心的距离,但小于两个圆的半径之和。

4. 圆心角与弦的位置关系圆心角与弦的位置关系是圆心角的一种特殊情况。

圆心角的度数与其所对应的弧度相等。

2017年中考数学易错知识点:圆

2017年中考数学易错知识点:圆

XX年中考数学易错知识点:圆

易错点1:几个公式一定要牢记:三角形、平行四边形、菱形、矩形、正方形、梯形、圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。

易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。

易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。

易错点4:考查圆与圆的位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,学生很容易忽视其中的一种情况。

(2题分类讨论)易错点:与圆有关的位置关系把握好d与R和R+r,R-r 之间的关系以及应用上述的方法求解。

易错点6:圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角。

直角的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。

易错点7:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。

(选题最后一题考)。

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇第1篇示例:数学是中考考试的必考科目,而关于圆的知识点在数学中占有非常重要的地位。

掌握了圆的相关知识,不仅能够在中考中取得更好的成绩,也有助于我们理解和运用数学知识。

下面我们来总结一下关于中考数学圆知识点的内容。

一、圆的基本概念圆是由平面上距离给定点(圆心)的所有点构成的集合,圆心到圆上任意一点的距离称为半径,圆内不经过圆心的线段称为弦,圆内的一段是弦分成的弧,半径的两端和圆上的一点共线,相交于该点的两条切线长度相等等。

二、圆的性质1. 同圆的弦长相等,异圆的弦长不等。

2. 相等圆的半径相等,而且圆周相等。

3. 圆内角、弦的角平分线和半径三者相交于一点。

4. 圆的外接角是对半的,即半径与切线相交于90度,弦与弦的夹角、切线与切线的夹角相等。

5. 内角落在圆弧内的叫做圆心角。

三、圆的相关定理1. 存在唯一的过三点的圆定理(就是圆的唯一性)。

2. 切、割定理(切线与切线、弦、割线各自乘积相等)。

3. 平行/相似判定定理(有什么情况判断两个圆是否平行或相似)。

4. 余弦定理(三角形当中,直角三角形含有的一种特殊情况)。

5. 弦切角定理(描述弦在圆内部与对应的两平行切线的关系)。

6. 余切定理(指两个切线、或一条切线和半径之间的倍率关系)。

7. 切线定理(圆外一点到圆的切线与切点连线的长度之积)。

四、圆的应用1. 圆的相关计算问题:包括求圆周长、面积等。

2. 圆与三角形、正方形/矩形的结合题:针对圆与其他几何形状的相互作用问题。

3. 圆与证明题:利用圆的性质,进行证明题目。

圆的知识点在中考数学中具有非常重要的地位,掌握了圆的相关知识,可以更好地完成相关题目。

在复习中,我们需要通过大量的练习,加深对圆的概念和性质的理解,提高解题的能力和速度。

希望同学们能够认真学习和练习,取得优异的成绩,顺利通过中考。

第2篇示例:中考数学圆知识点总结圆是我们日常生活中常见的几何图形之一,具有许多特殊性质和规律。

中考圆的知识点总结

中考圆的知识点总结

中考圆的知识点总结前言中考是每个初中毕业生都要面临的重要考试。

其中,圆的知识点在数学科目中占据着重要的地位。

圆是几何学中的基本形状之一,了解和掌握圆的相关知识是学生们在中考中取得优异成绩的关键之一。

本文将对中考圆的知识点进行总结,以帮助学生们更好地复习和备考。

正文圆的定义与特征•圆的定义:圆是平面上所有距离中心点相等的点的集合。

•圆的符号表示:圆的中心点用大写字母 O 表示,圆的半径用小写字母 r 表示,整个圆用符号 O(r) 表示。

圆的基本要素与术语•圆心:圆的中心点,用大写字母 O 表示。

•半径:从圆心到圆上任意一点的距离,用小写字母 r 表示。

•圆上的点:圆上的任意一点,与圆心的距离等于半径。

圆的性质与定理1.直径:通过圆心并且在圆上的一条线段,其长度等于圆的半径的两倍。

2.弦:在圆上连接两点的线段。

3.弧:在圆上连接两点的弧。

4.切线:与圆只有一个交点的直线,与圆的切点处于圆的外部。

5.弦切定理:如果一条弦经过圆心,那么它一定是直径。

6.切线切割定理:切线与圆的切点处的切割线段长度相等。

7.弦心定理:一条弦中点连线与该弦对应的圆心连线垂直且相等。

圆的计算公式与应用1.圆的周长公式:C = 2πr(其中,C 表示圆的周长,r 表示圆的半径)。

2.圆的面积公式:A = πr²(其中,A 表示圆的面积,r 表示圆的半径)。

结尾通过本文的总结,我们对中考圆的相关知识点进行了梳理和归纳。

掌握圆的定义、特征、基本要素与术语,以及圆的性质与定理,可以更好地理解和运用圆的知识。

此外,熟悉圆的计算公式与应用,可以帮助学生们在解题中更加准确地计算圆的周长和面积。

希望本文对学生们的中考备考有所帮助,祝愿大家取得优异成绩!。

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。

圆有无数条对称轴,对称轴经过圆心。

圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。

二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。

2. 切线性质:圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。

3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。

4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。

圆锥椭圆的两焦点是圆锥的底面圆心和顶点。

双曲线类似。

三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。

如圆形广场、圆形剧场等。

2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。

这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。

3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。

这些元件的形状和布局对于电子设备的功能和性能有着重要影响。

4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。

对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。

四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。

我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。

2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。

3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。

中考圆形知识点总结归纳

中考圆形知识点总结归纳

中考圆形知识点总结归纳圆形是中考数学中的一个重要知识点,它涉及到多个概念和性质,以下是对中考圆形知识点的总结归纳:圆的基本定义圆是一个平面上所有与给定点(圆心)距离相等的点的集合。

这个距离称为半径。

圆的方程圆的标准方程是 \( (x - h)^2 + (y - k)^2 = r^2 \),其中 \( (h, k) \) 是圆心的坐标,\( r \) 是半径。

圆的性质1. 圆周上的任意一点到圆心的距离都等于半径。

2. 圆的直径是圆上两点之间的最长距离,直径的长度是半径的两倍。

3. 圆内任意两点之间的线段,最短的是直线段,即直径。

4. 圆的切线在切点处与半径垂直。

圆的面积和周长- 圆的面积公式是 \( A = \pi r^2 \)。

- 圆的周长(圆周)公式是 \( C = 2\pi r \)。

圆与直线的位置关系1. 直线与圆相离:直线与圆没有公共点。

2. 直线与圆相切:直线与圆有一个公共点,即切点。

3. 直线与圆相交:直线与圆有两个公共点。

圆与圆的位置关系1. 两圆外离:两圆没有公共点。

2. 两圆外切:两圆只有一个公共点。

3. 两圆相交:两圆有两个公共点。

4. 两圆内切:一个圆完全包含在另一个圆内,只有一个公共点。

5. 两圆内含:一个圆完全包含在另一个圆内,没有公共点。

圆的内接多边形1. 内接于圆的多边形,其所有顶点都在圆上。

2. 正多边形是内接于圆的多边形,且所有边长相等,所有内角相等。

圆的外切多边形1. 外切于圆的多边形,其所有边都与圆相切。

2. 正多边形的外接圆是所有顶点都与圆相切的圆。

圆的弧和扇形1. 弧是圆上两点之间的线段。

2. 扇形是圆心角和它所对的弧所围成的区域。

圆的切线和割线1. 切线是与圆相切的直线。

2. 割线是与圆相交的直线,但不经过圆心。

结束语通过以上对中考圆形知识点的总结归纳,我们可以看到圆的几何性质和计算在中考数学中占有重要地位。

掌握这些知识点对于解决相关的几何问题至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考数学圆知识点总结
1.不在同一直线上的三点确定一个圆。

2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 dr
13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离dR+r ②两圆外切 d=R+r
③.两圆相交 R-rr)
④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)
21.定理相交两圆的连心线垂直平分两圆的公共弦
22.定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于(n-2)×180°/n
25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长= d-(R-r) 外公切线长= d-(R+r)
32.定理一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
35.弧长公式 l=a*r a是圆心角的弧度数r 0 扇形面积公式
s=1/2*l*r。

相关文档
最新文档