Matlab曲线拟合(cftool)分布拟合(dfittool)

合集下载

[matlab曲线拟合]MATLAB的曲线拟合

[matlab曲线拟合]MATLAB的曲线拟合

[matlab 曲线拟合]MATLAB的曲线拟合篇一: MA TLAB的曲线拟合MA TLAB软件提供了基本的曲线拟合函数的命令。

曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。

1.线性拟合函数:regress调用格式:b =regress[b,bint,r,rint,stats]= regress[b,bint,r,rint,stats] =regressx=[ones …];y=x*[10;1]+normrnd;[b,bint]=regress结果得回归方程为:y=9.9213+1.0143xx=1:20;y=x+3*sin;p=polyfitxi=linspace;z=polyval;% 多项式求值函数plotlegendfunction yy=modela=beta0;b=beta0;yy=a+*exp);拟合程序:x=[8.00 8.00 10.00 10.00 10.00 10.00 12.00 12.00 12.00 14.00 14.0014.00...16.00 16.00 16.00 18.00 18.00 20.00 20.00 20.00 20.00 22.00 22.0024.00...24.00 24.00 26.00 26.00 26.00 28.00 28.00 30.00 30.00 30.00 32.0032.00...34.00 36.00 36.00 38.00 38.00 40.00 42.00]‟;y=[0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45 0.43 0.430.44 0.43...0.43 0.46 0.42 0.42 0.43 0.41 0.41 0.40 0.42 0.40 0.40 0.41 0.400.41 0.41...0.40 0.40 0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.390.39]‟;beta0=[0.30 0.02];betafit = nlinfit结果:betafit =0.3896 0.1011即:a=0.3896 ,b=0.1011 拟合函数为:x1 =[1150,1000,900,850,700,625,550,475,3350,3500,5900,5800,5700,4600,4625,4725,11650,11200,11200 ]‟;x2 =[175,100,25,0,75,100,150,200,50,600,500,225,100,1225,1600,2000,1200,1000,1550 ]‟;x = [x1,x2];y=[1.44E-02,1.80E-02,6.08E-02,5.59E-02,3.42E-02,7.74E-03,1.17E-03,6.16E-03,1.91E-04,1.,resplot3)% 值的选取没有定法,与实际问题的模型有关。

matlab两条点数量不同的曲线拟合

matlab两条点数量不同的曲线拟合

Matlab是一款广泛用于科学计算和工程领域的软件,其强大的数据处理和曲线拟合功能使其在各种研究和实际应用中得到广泛的应用。

在实际工程问题中,往往需要对不同数量的数据点进行曲线拟合,这就要求我们熟练掌握Matlab中处理不同数量数据点的方法,以及如何进行准确的曲线拟合。

1. 数据准备在进行曲线拟合之前,首先需要准备好不同数量的数据点。

这些数据点可以是实验测量得到的实际数据,也可以是模拟计算得到的理论数据。

无论是哪一种情况,都需要保证数据的准确性和可靠性。

为了方便处理,建议将数据以数组或矩阵的形式进行存储,以便后续的处理和分析。

2. 数据可视化在进行曲线拟合之前,通常需要首先对数据进行可视化,以便直观地了解数据的分布规律和趋势。

在Matlab中,可以使用plot函数将数据点以散点图的形式进行展示,或者通过线图的形式展示数据的变化趋势。

通过数据可视化,可以更好地选择合适的曲线拟合模型和参数。

3. 选择合适的曲线拟合模型在对不同数量的数据点进行曲线拟合时,需要根据实际情况选择合适的曲线拟合模型。

常用的曲线拟合模型包括线性拟合、多项式拟合、指数拟合、对数拟合等。

不同的曲线拟合模型适用于不同类型的数据分布和趋势,需要根据实际情况进行选择。

4. 曲线拟合在选择好合适的曲线拟合模型之后,就可以利用Matlab中的拟合函数对数据进行曲线拟合了。

通过调用相应的拟合函数,可以得到拟合曲线的参数和拟合误差等信息。

在拟合过程中,需要注意选择合适的拟合方法和参数,以确保拟合结果的准确性和可靠性。

5. 曲线拟合结果评估完成曲线拟合之后,需要对拟合结果进行评估和验证。

通常可以通过计算拟合误差、观察拟合曲线和原始数据的符合程度等方法对拟合结果进行评价。

在评估过程中,需要注意对拟合误差和拟合曲线的合理解释,以确保拟合结果能够有效地描述原始数据的特征和规律。

通过以上步骤,我们可以对不同数量的数据点进行曲线拟合,并得到准确的拟合结果。

matalab曲线拟合

matalab曲线拟合

matalab曲线拟合MATLAB曲线拟合是指在一定条件下,利用数学模型和算法对实验数据进行拟合,以进而得出数据特征和规律的过程。

通过MATLAB曲线拟合,可以在大量数据中筛选出潜在的相关性和规律性,更好地理解实验数据,提高研究结果的分析和预测能力,为科学研究和工业应用提供理论和实践基础。

本文将探讨MATLAB曲线拟合的相关概念、方法和应用。

一、曲线拟合的概念曲线拟合是一种数学方法,利用一定的数学模型和算法对实验数据进行拟合,以得出数据之间的相互关系和规律。

在MATLAB中,曲线拟合具有很高的灵活性和适用性,可以应用于各种不同类型的数据,如线性数据、非线性数据和多项式数据等。

一般来说,拟合函数的形式和参数值将根据数据的特征和目标而变化,以实现最优的拟合效果。

常见的曲线拟合方法包括线性回归、非线性回归、多项式拟合和曲线拟合等,具体如下:1.线性回归线性回归是最简单的曲线拟合方法之一,它试图利用直线函数来拟合数据点,以揭示数据之间的线性关系。

MATLAB中提供了静态和动态线性回归模型,可以通过最小二乘法、梯度下降法等算法来确定最优的拟合函数。

线性回归只适用于线性数据,而非线性回归则可用于拟合更复杂的数据。

MATLAB中提供了非线性函数和指数函数等多种非线性拟合方法,可以根据数据分布和需求进行选择。

3.多项式拟合多项式拟合是一种常见的曲线拟合方法,可以用于拟合多项式数据。

MATLAB中常用的多项式拟合函数包括polyfit和polyval等,它们可以帮助用户通过调整曲线阶数、曲线拟合类型等参数来实现最优的拟合效果4.曲线拟合曲线拟合是将实验数据拟合到特定类型的曲线上,以确定数据之间的关系。

MATLAB中提供了许多曲线拟合函数,如spline、pchip、csape等,它们可以帮助用户根据数据的特点选择最合适的曲线拟合方法。

曲线拟合广泛应用于各种领域,如工程、物理、生物、金融和地质等领域。

下面是一些常见的应用实例:1.金融数据分析:通过曲线拟合模型,可以预测股票价格趋势、货币汇率和股票波动等金融数据的变化。

matlab曲线拟合方法大全

matlab曲线拟合方法大全

(2)排除法和区间排除法 排除法是对数据中的异常值进行排除。 区间排除法是采用一定的区间去排除那些用 于系统误差导致偏离正常值的异常值。 在曲线拟合工具中单击Exclude按钮,可以 打开Exclude对话框
Exclusion rule name指定分离规则的名称 Existing exclusion rules列表产生的文件 名,当你选择一个文件名时,可以进行如下操 作: Copy 复制分离规则的文件; Rename重命名;delete 删去一个文件; View以图形的形式展示分离规则的文件。 Select data set 挑选需要操作的数据集; Exclude graphically允许你以图形的形式去 除异常值,排除个别的点用“×”标记。
0.0073
0.0193x 5 0.0110x 4 0.043x 3 0.0073x 2 0.2449x 0.2961
s=
R: [6x6 double] df: 0 normr: 2.3684e-016 mu = 0.1669 0.1499
自由度为 0 标准偏差为 2.3684e-016
(1)平滑数据 打开拟合工具箱,单击Data按钮,打开 Data对话框,选择Smooth选项卡
Smooth选项卡各选项的功能:
.Original data set 用于挑选需要拟合的 数据集; .Smoothed data set平滑数据的名称; .Method用于选择平滑数据的方法,每一个 相应数据用通过特殊的曲线平滑方法所计 算的结果来取代。平滑数据的方法包括: (ⅰ)Moving average 用移动平均值进 行替换; (ⅱ)Lowess局部加权散点图平滑数据, 采用线性最小二乘法和一阶多项式拟合得 到的数据进行替换;

用MATLAB(高版本) cftool拟合多条曲线

用MATLAB(高版本) cftool拟合多条曲线

听说你想要用cftool作出这样的东西?楼上有人说用cftool-v1,不过很绝望比较新的版本都完全无法使用这个功能了。

反正我的R2016a不行。

我也是在问遍没有可靠的解法后自己无意间摸索出来的,完全原创,希望对大家有帮助!转载请注明原出处和原作者!这里我们以RLC串联谐振需要在同一个坐标里画出频率特性的XC,XL,Z曲线为例,首先敲出坐标数据如下(请手动无视i数据):然后运行,转到了cftool界面如下:首先我们拟合xc-f曲线(这是个反函数曲线),然后点:文件——generate code然后你看到了这个:保存一下,然后点运行,这里就有点GAY了,说什么参数不足,但是没事,你鼠标点一下“键入运行代码那一行然后变成了下面这个样子”,再点运行图标。

然后会跳出一个窗口,就是下面这个玩意儿,注意观察的话,你会发现他的曲线颜色和你一般的直接从cftool里点print to figure曲线颜色不一样!我们要的就是这个效果!保留上面这个窗口,回答cftool依次把剩下的xl-f曲线,z-f曲线按照上面的步骤操作,得到三个窗口。

接下来是见证奇迹的时候了!进到每个窗口把属性编辑器打开,像酱紫:然后你看到下面这一幕:没错,刚才的单个独立窗口合并到了一起变成了三个标签!接下来就是把任何两个标签里的曲线复制到余下哪一个,比如我们把figure1,figure2里的曲线都弄到figure3里:选中figure2曲线——右击复制(千万不要用ctrl+c,不信你可以看一下会发生什么。

)——到figure3里右击粘贴(同样的道理,不要Ctrl+v),现在看到你要的了吧!对figure1实行同样的操作,然后就得到了:剩下的就是用属性编辑器编辑成你要的样子了!声明一下,如果直接从cftool里print to figure三次然后再复制粘贴是不行的,应为根本无法实现曲线的复制粘贴,他产生的结果会和上面你用Ctrl+c复制Ctrl+v粘贴产生同样的效果,根本不是我们想要的!重复一遍,我也是在问遍没有可靠的解法后自己无意间摸索出来的,完全原创,完全野路子,希望对大家有帮助!转载请注明原出处和原作者!谢谢!吐槽一下知乎的回答编辑板块渣渣。

Matlab拟合工具箱CFtool使用指南

Matlab拟合工具箱CFtool使用指南

matlab拟合工具箱使用之马矢奏春创作在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",呈现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行.也可以在命令窗口中直接输入"cftool",翻开工具箱.2.输入两组向量x,y首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据.输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果纷歧致的话是不能在工具箱里面进行拟合的.例如在命令行里输入下列数据:x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353;0.019278; 0.041803; 0.038026; 0.038128; 0.088196];翻开曲线拟合共工具界面,点击最左边的"Data..."按钮,呈现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中.关闭Data对话框.此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图.4.拟合曲线(幂函数power).点击Fitting...按钮,呈现Fitting对话框,Fitting对话框分为两部份,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比力小,Fit Editor部份会被收起来,只要把Table of Fits 上方的横条往下拉就可以看见Fit Editor.在Fit Editor里面点击New Fit按钮,此时其下方的各个选框被激活,在Data Set选框中选中刚才建立的xy数据组,然后在Type of fit选框中选取拟合或回归类型,各个类型的拟合或回归相应的分别是:Custom Equations 用户自界说函数Expotential e指数函数Fourier 傅立叶函数,含有三角函数Gaussian 正态分布函数,高斯函数Interpolant 插值函数,含有线性函数,移动平均等类型的拟合Polynomial 多项式函数Power 幂函数Rational 有理函数(不太清楚,没有怎么用过)Smooth Spline ??(光滑插值或者光滑拟合,不太清楚)Sum of sin functions正弦函数类Weibull 威布尔函数(没用过)在这个Type of fit选框中选择好合适的类型,并选好合适的函数形式.于是点击Apply按钮,就开始进行拟合或者回归了.此时在Curve Fitting Tool窗口上就会呈现一个拟合的曲线.这就是所要的结果.在上面的例子中,选择sum of sin functions中的第一个函数形式,点击Apply按钮,就可以看见拟合获得的正弦曲线.在Fitting对话框中的Results文本框中显示有此次拟合的主要统计信息,主要有General model of sin1:....... (函数形式)Coefficients (with 95% conffidence range) (95%致信区间内的拟合常数)a1=... ( ... ...) (等号后面是平均值,括号里是范围)....Godness of fit: (统计结果)SSE: ... (方差)Rsquared: ... (决定系数,不知道做什么的)Adjusted Rsquared: ... (校正后的决定系数,如何校正的不得而知)RMSE: ... (标准差)上面的例子中经过拟合获得的函数最后为6.拟合分析(Analysis).另外要说的是,如果想把这个拟合的图像导出的话,在Curve Fitting Tool窗口的File菜单下选Print to Figure,此时弹出一个新的图像窗口,里面是你要导出的图像,在这个figure窗口的File菜单里再选Export,选择好合适的格式,一般是jpeg,选择好路径,点击OK就可以了.出来的图像可以在Word等编纂环境中使用,就未几说了.要修改图像的性质,如数据点的年夜小、颜色等等的,只需要在对象上点右键,就差未几可以找到了.另外使用法式来进行曲线拟合:p=polyfit(xdata,ydata,n) n为选取的方法a=polyval(p,xdata) 进行曲线拟合后计算所获得得值可以将拟合曲线与源曲线画出来:plot(xdata,ydata,'b*',xdata,a,'r')legend('ydata','fit');。

用MATLAB(高版本)cftool拟合多条曲线

用MATLAB(高版本)cftool拟合多条曲线

用MATLAB(高版本)cftool拟合多条曲线听说你想要用cftool作出这样的东西?楼上有人说用cftool-v1,不过很绝望比较新的版本都完全无法使用这个功能了。

反正我的R2016a不行。

我也是在问遍没有可靠的解法后自己无意间摸索出来的,完全原创,希望对大家有帮助!转载请注明原出处和原作者!这里我们以RLC串联谐振需要在同一个坐标里画出频率特性的XC,XL,Z曲线为例,首先敲出坐标数据如下(请手动无视i数据):然后运行,转到了cftool界面如下:首先我们拟合xc-f曲线(这是个反函数曲线),然后点:文件——generate code然后你看到了这个:保存一下,然后点运行,这里就有点GAY了,说什么参数不足,但是没事,你鼠标点一下“键入运行代码那一行然后变成了下面这个样子”,再点运行图标。

然后会跳出一个窗口,就是下面这个玩意儿,注意观察的话,你会发现他的曲线颜色和你一般的直接从cftool里点print to figure曲线颜色不一样!我们要的就是这个效果!保留上面这个窗口,回答cftool依次把剩下的xl-f曲线,z-f曲线按照上面的步骤操作,得到三个窗口。

接下来是见证奇迹的时候了!进到每个窗口把属性编辑器打开,像酱紫:然后你看到下面这一幕:没错,刚才的单个独立窗口合并到了一起变成了三个标签!接下来就是把任何两个标签里的曲线复制到余下哪一个,比如我们把figure1,figure2里的曲线都弄到figure3里:选中figure2曲线——右击复制(千万不要用ctrl+c,不信你可以看一下会发生什么。

)——到figure3里右击粘贴(同样的道理,不要Ctrl+v),现在看到你要的了吧!对figure1实行同样的操作,然后就得到了:剩下的就是用属性编辑器编辑成你要的样子了!声明一下,如果直接从cftool里print to figure三次然后再复制粘贴是不行的,应为根本无法实现曲线的复制粘贴,他产生的结果会和上面你用Ctrl+c复制Ctrl+v粘贴产生同样的效果,根本不是我们想要的!重复一遍,我也是在问遍没有可靠的解法后自己无意间摸索出来的,完全原创,完全野路子,希望对大家有帮助!转载请注明原出处和原作者!谢谢!吐槽一下知乎的回答编辑板块渣渣。

CFTOOL

CFTOOL

Matlab非线性拟合工具箱cftool一、单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。

下面结合我使用的Matlab R2007b 来简单介绍如何使用这个工具箱。

假设我们要拟合的函数形式是y=A*x*x + B*x, 且A>0,B>0 。

1、在命令行输入数据:》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];》y=[5 10 15 20 25 30 35 40 45 50];2、启动曲线拟合工具箱》cftool3、进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:Custom Equations:用户自定义的函数类型Exponential:指数逼近,有2种类型,a*exp(b*x) 、a*exp(b*x) + c*exp(d*x)Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w) Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2)Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~ Power:幂逼近,有2种类型,a*x^b 、a*x^b + cRational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1) Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其子类型,并进行相关设置:——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。

Matlab拟合工具箱CFtool使用指南

Matlab拟合工具箱CFtool使用指南

matlab拟合工具箱使用1.打开CFTOOL工具箱在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。

也可以在命令窗口中直接输入"cftool",打开工具箱。

2.输入两组向量x,y首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。

输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。

例如在命令行里输入下列数据:x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353;0.019278; 0.041803; 0.038026; 0.038128; 0.088196];3.选取数据打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。

关闭Data对话框。

此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。

4.拟合曲线(幂函数power)。

点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor。

Matlab曲线拟合(cftool)分布拟合(dfittool)

Matlab曲线拟合(cftool)分布拟合(dfittool)

、单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱cftool,使用方便,能实现多种类型的线性、非线性曲线拟合。

下面结合我使用的Matlab R2009b来简单介绍如何使用这个工具箱。

假设我们要拟合的函数形式是y=A*x*x + B*x,且A>0,B>0。

1、在命令行输入数据:》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];》y=[5 10 15 20 25 30 35 40 45 50];2、启动曲线拟合工具箱》cftool3、进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:∙Custom Equations:用户自定义的函数类型∙Exponential:指数逼近,有2种类型,a*exp(b*x)、a*exp(b*x) + c*exp(d*x)∙Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w)∙Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2)∙Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving∙Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~∙Power:幂逼近,有2种类型,a*x^b、a*x^b + c∙Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型∙Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)∙Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1)∙Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其子类型,并进行相关设置:——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。

matlab数据拟合-有图有例子-一看就会教学教材

matlab数据拟合-有图有例子-一看就会教学教材

m a t l a b数据拟合-有图有例子-一看就会Matlab CFTool使用简介:单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。

下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。

假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。

1、在命令行输入数据:》x=[你的X轴数据];》y=[你的Y轴数据];》cftool可以将上面三个行建立一个M文件,以便后面进行数据拟合时可以直接使用,点击运行即可进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:•Custom Equations:用户自定义的函数类型•Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x)•Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w)•Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2) •Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving•Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~•Power:幂逼近,有2种类型,a*x^b 、a*x^b + c•Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型•Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)•Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1)•Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)•选择好所需的拟合曲线类型及其子类型,并进行相关设置:•——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;•——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。

matlabcftool拟合曲线并得到方程

matlabcftool拟合曲线并得到方程

matlabcftool是一个用于拟合曲线并得到方程的MATLAB函数。

使用此函数时,你需要首先准备一组数据点,这些点将作为拟合曲线的基础。

然后,你可以使用matlabcftool函数进行拟合,该函数可以提供多种拟合方法供选择,例如多项式拟合、非线性拟合等。

你可以根据数据的特点以及自己的需要来选择拟合方法。

首先,打开MATLAB,并在指令窗口中输入"matlabcftool"。

然后,从弹出的窗口中选择"Data Fit"选项,并选择要拟合的数据点。

接下来,在拟合窗口中,可以看到多种拟合方法可供选择。

你可以选择多项式拟合(Polynomial Fit),或者非线性拟合(Nonlinear Fit)等方法。

在拟合过程中,matlabcftool函数会提供详细的拟合结果和模型参数。

一旦拟合完成,你可以选择“Edit Equation”来查看拟合得到的方程。

此方程就是通过对数据点进行拟合得到的,表示了数据点之间的关系。

该方程可以用来预测新的数据点,或者根据实际需求进行曲线拟合。

总的来说,matlabcftool是一个非常实用的函数,它可以帮助你快速、方便地拟合曲线并得到方程。

通过使用此函数,你可以根据实际需求选择合适的拟合方法,并得到精确的拟合结果。

Matlab拟合工具箱CFtool使用指南

Matlab拟合工具箱CFtool使用指南

matlab拟合工具箱使用1.打开CFTOOL工具箱在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。

也可以在命令窗口中直接输入"cftool",打开工具箱。

2.输入两组向量x,y首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。

输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。

例如在命令行里输入下列数据:x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353;0.019278; 0.041803; 0.038026; 0.038128; 0.088196];3.选取数据打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。

关闭Data对话框。

此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。

4.拟合曲线(幂函数power)。

点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits 上方的横条往下拉就可以看见Fit Editor。

Matlab拟合工具箱CFtool使用指南

Matlab拟合工具箱CFtool使用指南

matlab拟合工具箱使用1.打开CFTOO工具箱在Matlab以上的环境下,在左下方有一个"Start "按钮,如同Win dows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting ",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。

也可以在命令窗口中直接输入"cftool ",打开工具箱。

2.输入两组向量x,y首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。

输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。

例如在命令行里输入下列数据x = [196,186, 137, 136, 122, 122, 71, 71,70, 33];3.选取数据打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set 按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。

关闭Data对话框。

此时Curve FittingTool窗口中显示出这一数据组的散点分布图。

4.拟合曲线(幕函数power)。

点击Fitting... 按钮,出现Fitting 对话框,Fitting 对话框分为两部分,上面为Fit Editor ,下面为Table of Fits ,有时候窗口界面比较小,Fit Editor 部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor 。

Matlab拟合工具箱CFtool使用指南

Matlab拟合工具箱CFtool使用指南

matlab拟合工具箱使用1.打开CFTOOL工具箱在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。

也可以在命令窗口中直接输入"cftool",打开工具箱。

2.输入两组向量x,y首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。

输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。

例如在命令行里输入下列数据:x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353;0.019278; 0.041803; 0.038026; 0.038128; 0.088196];3.选取数据打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。

关闭Data对话框。

此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。

4.拟合曲线(幂函数power)。

点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits 上方的横条往下拉就可以看见Fit Editor。

matlab 高斯曲线拟合

matlab 高斯曲线拟合

matlab 高斯曲线拟合(实用版)目录一、引言二、高斯曲线拟合的原理1.高斯分布的特点2.拟合方法三、MATLAB 中的高斯曲线拟合1.MATLAB 中的拟合函数2.高斯曲线拟合的实例四、高斯曲线拟合的注意事项1.数据的预处理2.拟合效果的评估五、结论正文一、引言在科学研究和工程应用中,常常需要对数据进行曲线拟合,以便更好地理解和分析数据。

高斯曲线拟合是一种常见的曲线拟合方法,它适用于许多实际问题。

本文将介绍高斯曲线拟合的原理以及在 MATLAB 中如何实现高斯曲线拟合。

二、高斯曲线拟合的原理1.高斯分布的特点高斯分布,也称为正态分布,是一种常见的概率分布。

它具有一个对称的钟形曲线,其特点是数据集中在均值附近,且随着离均值越远,数据点出现的概率越小。

2.拟合方法高斯曲线拟合的目的是寻找一个高斯分布函数,使得这个函数与给定数据集的误差最小。

拟合方法可以分为两类:最大似然估计和最小二乘法。

最大似然估计寻找能够最大化给定数据集概率的高斯分布参数;最小二乘法通过最小化误差的平方和来寻找最佳拟合曲线。

三、MATLAB 中的高斯曲线拟合1.MATLAB 中的拟合函数MATLAB 提供了基本的拟合函数 cftool,可以方便地进行曲线拟合。

拟合过程中,需要指定拟合函数的类型、输入数据以及拟合参数。

例如,可以使用 cftool 进行高斯曲线拟合,代码如下:```matlabf = cftool(@gaussfit, x, y);```2.高斯曲线拟合的实例假设我们有一组数据 x 和 y,我们希望找到一个高斯分布函数 y = a * exp(-(x-b)^2 / c),使得这个函数与给定数据集的误差最小。

我们可以使用 MATLAB 中的 cftool 函数进行高斯曲线拟合,代码如下:```matlab% 输入数据x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];y = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20];% 使用 cftool 进行高斯曲线拟合f = cftool(@gaussfit, x, y);% 显示拟合结果disp(f);```四、高斯曲线拟合的注意事项1.数据的预处理在进行高斯曲线拟合之前,需要对数据进行预处理。

Matlab拟合工具箱CFtool使用指南

Matlab拟合工具箱CFtool使用指南

matlab拟合工具箱使用1.打开CFTOO工具箱在Matlab以上的环境下,在左下方有一个"Start "按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"CurveFitting ",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。

也可以在命令窗口中直接输入"cftool ",打开工具箱。

2.输入两组向量X,y首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。

输入以后假定叫X向量与y向量,可以在works pace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。

例如在命令行里输入下列数据:X = [196,186, 137, 136, 122, 122, 71, 71,70, 33];3.选取数据打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set 按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。

关闭Data对话框。

此时Curve FittingTool窗口中显示出这一数据组的散点分布图。

4.拟合曲线(幕函数power)。

点击Fitting... 按钮,出现Fitting 对话框,Fitting 对话框分为两部分,上面为Fit Editor ,下面为Table of Fits ,有时候窗口界面比较小,Fit Editor 部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档